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This paper studies the joint limiting behavior of extreme eigenvalues and
trace of large sample covariance matrix in a generalized spiked population
model, where the asymptotic regime is such that the dimension and sample
size grow proportionally. The form of the joint limiting distribution is applied
to conduct Johnson–Graybill-type tests, a family of approaches testing for
signals in a statistical model. For this, higher order correction is further made,
helping alleviate the impact of finite-sample bias. The proof rests on deter-
mining the joint asymptotic behavior of two classes of spectral processes,
corresponding to the extreme and linear spectral statistics, respectively.

1. Introduction. Considering a sequence of independent and identically distributed
(i.i.d.) p-dimensional real-valued random vectors {X1, . . . ,Xn} with zero mean and popu-
lation covariance matrix �p , the corresponding sample covariance matrix is defined as

(1.1) Sn = 1

n

n∑
i=1

XiX
T
i ,

with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 denoting the eigenvalues of Sn. It is statistically fundamental
and important to study the distributions of the m largest eigenvalues λ1, . . . , λm and the trace,
Tr(Sn) =∑p

j=1 λj , of Sn as p = pn grows to infinity with n.
Indeed, each of them has led to a large volume of literature. For results on extreme sample

eigenvalues, [16] first introduced the spiked population model as the nonnull case where all
eigenvalues of �p are unit except for a fixed small number of spikes, that is,

(1.2) Spec(�p) = {α1, . . . , αm,1, . . . ,1︸ ︷︷ ︸
p−m

}.

Here, we define Spec(A) to be the sets of eigenvalues of matrix A. Under the “null” (i.e., �p

is the identity matrix Ip), [16] established the Tracy–Widom law for the largest eigenvalue of
real Wishart matrix Sn. Following Johnstone’s development, many efforts have been put into
quantifying the effect caused by spiked eigenvalues {αk , 1 ≤ k ≤ m} on m extreme sample
ones {λk , 1 ≤ k ≤ m}. To name a few, under Johnstone’s spiked model settings, [6] thoroughly
studied the almost sure limits of the extreme sample eigenvalues under the Marčenko–Pastur
regime when p,n → ∞, p/n → y ∈ (0,∞). They found that these limits are different when
the corresponding population spiked eigenvalues are larger or smaller than critical values
1 +√

y and 1 −√
y. Similar phase transition phenomenon of largest sample eigenvalues was

shown in [5] for complex Gaussian population. Paul [23] further proved that a phase tran-
sition of eigenvectors also occurs with Gaussian observations. Bai and Yao [2] followed the
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set-up of [6] and established central limit theorems (CLTs) for the extreme sample eigenval-
ues associated with spikes outside the interval [1 − √

y,1 + √
y] under general population

distributions. Bai and Yao [3] extended the theory in [2] to a generalized spiked population
model where the base population covariance matrix is arbitrary.

In contrast to extreme sample eigenvalues, many important statistics in multivariate anal-
ysis can be expressed as linear functionals of eigenvalues of some random matrices, namely,
linear spectral statistics (LSS). Tr(Sn) is one of the most important examples. Limiting be-
haviors of LSS has been intensively studied in the literature. One of the most widely used
results is [4], which first established the asymptotic normality for LSS of sample covariance
matrix Sn under the Marčenko–Pastur regime with some moment restrictions on data entries.
Further refinement and extensions can be found in numerous follow-up works. To name a few,
[31] studied CLT for LSS of sample covariance matrix when the population mean vector is
unknown. Chen and Pan [9] investigated the ultrahigh dimensional case when the dimension
p is much larger than the sample size n. They further established the asymptotic normality for
LSS as p/n → ∞ and n → ∞. Zheng et al. [32] removed the fourth-order moment condition
in [4] and incorporated it into the limiting parameters. Zheng [30] derived a CLT for LSS of
large dimensional general Fisher matrices. The limiting distribution of Tr(Sn) is derivable by
implementing these results.

Despite the substantial advances in both directions, to our knowledge, little has been made
on investigating the joint distribution of extreme sample eigenvalues and trace, which is
equivalent to studying the asymptotic joint distribution of the largest and summation of sam-
ple eigenvalues. As will be seen soon, obtaining such a limiting distribution is fundamental
in many applications, and is worth investigating in depth.

As a first contribution of this paper, we aim to study such a joint distribution. For this, we
focus on Bai and Yao’s generalized spiked model [3], which generalizes Johnstone’s spiked
model in [16]. Here, the population covariance matrix �p has the structure

(1.3) �p =
(
� 0
0 Vp′

)
,

where � and Vp′ are of dimension m × m and p′ × p′ (p′ = p − m) and � is assumed
fixed. The eigenvalues of � and Vp′ are α1 ≥ · · · ≥ αm > 0 and βp′,1 ≥ · · · ≥ βp′,p′ ≥ 0,
respectively. The α′

j s are larger than and well separated from βp′,j ′s, thus named as spiked
eigenvalues.

Under the generalized spiked model with p/n → y ∈ (0,∞), we prove that the extreme
eigenvalues and Tr(Sn) are jointly asymptotically normal and asymptotically independent.
The results are hence connected to the influential work of [11] and [14] on sum and maximum
of i.i.d. and strongly mixing random variables. The conclusion holds as long as finite fourth-
order moments exist, and in particular, requires no normality assumption. Our result is hence
also connected to another interesting related work [12] where for sample covariance matrix
Sn with heavy-tailed entries, this asymptotic independence also holds.

Although Tr(Sn) can be represented as the summation of all sample eigenvalues, in fact
it is very difficult to quantify the correlation between extreme eigenvalues and the rest bulky
ones, especially under the high dimensional settings without a Gaussian assumption. In fac-
ing this challenge, we make full use of the spiked model structure and carry out a block-
decomposition analysis of spiked and nonspiked ones. The correlation between extreme
eigenvalues and trace of each block of Sn is analyzed separately based on the joint asymptotic
behavior of two classes of spectral processes, corresponding to the extreme and linear spec-
tral statistics, respectively. The idea of block-decomposition provides a novel perspective for
proving the asymptotic independency between (λk)1≤k≤m and Tr(Sn). [23] adopted a similar
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block-decomposition technique to represent sample eigenvalues as solutions to certain equa-
tions. However, [23] only considered the Gaussian case and focused on individual behavior
of eigenvalues and eigenvectors when their population covariance is spiked with unit bulk
eigenvalues.

The form of joint limiting distribution is then employed to conduct Johnson–Graybill-type
tests [15], a family of approaches testing for signals in a statistical model based on the sam-
ple ratio λ1/(Tr(Sn)/p). To name an application, this family of tests is important in modern
signal processing applications, such as testing for the presence of signals in cognitive radio
and nonparametric signal detection in array processing. For more details, we refer the readers
to [8] and a comprehensive review paper [24]. Johnstone [16] proved that when �p = σ 2Ip ,
λ1/σ

2 converges to the Tracy–Widom (TW) distribution after appropriate centering and scal-
ing. However, this ratio test statistic λ1/(Tr(Sn)/p) cannot be well approximated by the same
asymptotic distribution. Finite sample adjustment of critical values for every (p,n) combi-
nations was made in [21]. Deo [13] suggested an alternative variance correction which also
improved the finite sample approximation. However, neither of them derived the asymptotic
distribution of this studentized statistic. Furthermore, in the presence of m spikes, the limit-
ing TW distribution of λm+1/σ

2 has not been fully testified yet. Deo [13] performed some
simulation experiments of testing multiple spikes based on the TW conjecture of λm+1/σ

2.
They found that the test was uniformly undersized due to the downward bias of the TW
approximation. Further analytic tools are needed to correct this bias, which is nevertheless
nontrivial.

In this paper, we start from a different perspective by studying the behavior of λm/σ 2 in
the presence of m spikes. We use (p − m)−1∑

j>m λj instead of p−1 Tr(Sn) as the surrogate
for σ 2. Although the analytic tools are the same, the former enjoys better performance in
finite sample cases. As a specific example, we formulate our null hypothesis as the spiked
covariance model where

(1.4) �p =
m∑

i=1

aiviv
T
i + σ 2Ip,

and vi’s are orthonormal vectors. A typical example of such parametrization originates from
the factor model where the p-dimensional data vector Xt has a factor structure of the form

Xt = AF t + Et ,

with Et ∼ N(0, σ 2Ip) independent of F t ∼ N(0, Im) and Ap×m is a deterministic ma-
trix such that AAT has spectrum

∑m
i=1 αiviv

T
i . The limiting distribution of our test

statistic, λm/ 1
p−m

∑
j>m λj , is then derived based on the asymptotic joint distribution of

((λk)1≤k≤m,Tr(Sn))
T, and the corresponding test is implementable due to the developed the-

ory. Our test targets at detection of signals above certain signal-to-noise ratio. Higher order
corrections are further made to alleviate the impact of finite sample bias, which ensures sat-
isfactory testing size and power.

It is worth mentioning here that this test is closely related to sphericity test (i.e., to test
H0 : m = 0, v.s. H1 : m > 0) discussed in [22] and [27]. In particular, they have nonzero
power under the spiked alternative (i.e., H1 : m > 0) even when the spikes are below the
phase transition threshold. Admittedly, our test statistic can only detect distant spikes above
the phase transition threshold. However, the sphericity test in [22] and [27] is only designed
for testing existence of signals while our tests can be used to detect total number of spikes
and the signal strength of the spikes being tested. In another related work, [10] formulated
the observed data matrix X ∈ Rn×p as the sum of a low-rank signal matrix B ∈ R

n×p and
a Gaussian noise matrix E ∈ R

n×p and aimed at finding the rank of the deterministic signal
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matrix B. It is, however, very different from our model settings. In their model, signals are
treated as a low-rank mean of the observed data matrix while in this paper we analyze spiked
models when factors are embedded in a spiked population covariance structure.

Throughout the paper, we use bold Roman capital letters to represent matrices, for ex-
ample, A. Tr(A) and |A| denote the trace and determinant of matrix A. For matrix A, [A]ij
denotes the (i, j)th entry of A. diag(α1, . . . , αm) represents an m × m diagonal matrix with
diagonal entries α1, . . . , αm. Scalars are often in lowercase letters and random ones in capi-
tals. Vectors follow bold italic style like vi and random vectors are in capitals like F i . N, R
and C represent the sets of natural, real and complex numbers. 1(·) stands for indicator func-
tion and T stands for transpose of vectors or matrices. Let f : C → C be a complex-valued
function defined on the complex plane C, then

∮
γ f (z)dz denotes the contour integral of f (z)

on the Jordan curve γ . For any x ∈R, δx represents the point mass at x.
The remaining sections are organized as follows. Section 2 gives a detailed description of

the generalized spiked model and introduces some preliminary results which form the basis of
our analysis. Our main results are presented in Section 3. An application to factor modeling
is studied in depth in Section 4. Proofs of theorems and technical lemmas are relegated to
Section 5.

2. Generalized spiked population model and preliminaries. For any p × p square
matrix A with eigenvalues (θj )1≤j≤p , its empirical spectral distribution (ESD) is the mea-
sure F A = p−1∑p

j=1 δθj
(weighting equally the eigenvalues). Under the generalized spiked

population model (1.3), the following assumptions are made:

(i) as n → ∞, p = pn → ∞ such that p/n → y ∈ (0,∞);
(ii) the sequence of spectral norms of �p is bounded and the ESD Hp′ of Vp′ converges

to a nonrandom limiting distribution H ;
(iii) the eigenvalues {βp′,j , 1 ≤ j ≤ p′} of Vp′ are such that as n → ∞,

sup
j≤p′

d(βp′,j ,	H ) = εp → 0,

where d(x,A) denotes the Euclidean distance of x to a set A and 	H stands for the support
of H ;

(iv) the sample vectors Xi , 1 ≤ i ≤ n can be expressed as Xi = �
1/2
p Y i , where Y i are

i.i.d. p-dimensional vectors with i.i.d. components {Yij , j = 1, . . . , p} satisfying EYij = 0,
E|Yij |2 = 1, and E|Yij |4 = ν4 < ∞.

Letting μ be a finite measure on the real line with support 	μ, its Stieltjes transform sμ(z)

is defined as

sμ(z) =
∫ 1

x − z
μ(dx), z ∈ C

+,

where C+ := {z ∈ C : 
(z) > 0} is the upper half-plane with positive imaginary part and 
(z)

denotes the imaginary part of any given complex value z.
Let F Sn be the ESD of the sample covariance matrix Sn. It is well known that under

Assumptions (i) to (iv), F Sn weakly converges to a nonrandom probability measure Fy,H ,
the Marčenko–Pastur (M.P.) distribution with indexes (y,H). Its Stieltjes transform s(z) is
implicitly defined as a solution to the equation

s(z) =
∫ 1

t
(
1 − y − yzs(z)

)− z
dH(t).

Correspondingly, the Stieltjes transform sn(z) = 1
p

Tr(Sn −zIp)−1 of the ESD F Sn converges
to s(z) almost surely as n → ∞.
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Moreover, consider an n × n companion matrix for Sn,

Sn := 1

n
YT�pY with Y = (Y 1, . . . ,Y n).

Both matrices share the same nonnull eigenvalues and their ESDs satisfy

nF Sn − pF Sn = (n − p)δ0.

Their limits and respective Stieltjes transforms are linked to each other by the relation

Fy,H − yFy,H = (1 − y)δ0, s(z) = −1 − y

z
+ ys(z),

and the Stieltjes transform s(z) of F Sn satisfies the Silverstein equation [25]:

(2.1) z = −1

s
+ y

∫
t

1 + ts
dH(t).

Notice that the spiked structure (1.3) can be viewed as a finite rank perturbation of a
general population covariance matrix with eigenvalues {βp′,j }. As the number of spikes m is
fixed while p → ∞, the limiting spectral distribution of F Sn is determined by the distribution
of bulk population eigenvalues {βp′,j } independent of the spikes. However, the behavior of
the m extreme sample eigenvalues λ1, . . . , λm relies heavily on their population counterparts
α1, . . . , αm.

Consider the functional inverse ψ of the function α : x �→ −1/s(x). By (2.1), we have

(2.2)

ψ(α) = ψy,H (α) = α + yα

∫
t

α − t
dH(t),

ψ ′(α) = 1 − y

∫
t2

(α − t)2 dH(t), ψ ′′(α) = 2y

∫
t2

(α − t)3 dH(t).

This function ψ(·) is well defined for all α /∈ 	H .
Bai and Yao [3] gave a detailed characterization about the phase transition phenomenon

of the limits of λ1, . . . , λm when α1, . . . , αm satisfy different conditions. They name a gen-
eralized spiked eigenvalues α a distant spike for the M.P distribution Fy,H if ψ ′(α) > 0 and
a close spike if ψ ′(α) ≤ 0. Using the characterization of support of the LSD Fy,H given
in [25], it can be seen that for distant spikes, the corresponding sample eigenvalues almost
surely converge to limits which are outside the support 	Fy,H of LSD of Sn. These spikes are
also referred as “outliers” in the literature.

In this paper, we are focused on the generalized spiked model with distant spikes. In addi-
tion, for presentation simplicity, we only consider the case when α1, . . . , αm are nonidentical.
Extension to the case with possible overlaps on population spikes is straightforward using
the developed techniques in this paper. Therefore, in addition to Assumptions (i) to (iv), we
further assume that:

(v) � is a fixed m × m matrix with nonidentical bounded eigenvalues α1 > · · · > αm >

supp maxj βp′,j . All α′
ks are distant spiked eigenvalues satisfying ψ ′(αk) > 0.

3. Main results. In this section, we study the asymptotic behavior of m largest sample
eigenvalues λ1, . . . , λm and trace of Sn. Define the spectral decomposition of � = (
ij )m×m

to be

� = U diag(α1, . . . , αm)UT,

where we remind that diag(α1, . . . , αm) represents the m × m diagonal matrix with diagonal
entries α1, . . . , αm.
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THEOREM 3.1. Under Assumptions (i) to (v), for the m largest eigenvalues λ1, . . . , λm

of Sn, denoting ψ(αk) as ψk , we have, the m-dimensional random vector(√
n

(
λ1

ψ1
− 1

)
, . . . ,

√
n

(
λm

ψm

− 1
))T

and Tr(Sn) are jointly asymptotically normal and independent. Marginally,

Tr(Sn) − Tr(�p)
d−→ N

(
0,2yγ2 + y(ν4 − 3)γd,2

)
,

where for k = 1,2, . . ., γk := ∫
tk dH(t) denotes the kth moment of LSD of Vp′ and γd,2 :=

limp′→∞ 1
p′
∑p′

i=1[Vp′ ]2
ii .

Moreover, (
√

n( λ1
ψ1

− 1), . . . ,
√

n( λm

ψm
− 1))T weakly converges to an m-dimensional Gaus-

sian vector (M1, . . . ,Mm)T, with each

Mk = uT
kG
(
ψ(αk)

)
uk,

where uk = (u1k, . . . , umk)
T is the kth column of U, G(ψ(αk)) is an m×m Gaussian random

matrix with independent entries such that

(a) its diagonal elements are i.i.d. Gaussian with mean zero and variance

(3.1) σ 2
αk

:= 2
α2

k

ψ2
k

· ψ ′(αk) + βy

α2
k

ψ2
k

· (ψ ′(αk)
)2

,

with βy = E|Yij |4 − 3 = ν4 − 3 denoting the fourth cumulant of base entries {Yij };
(b) its upper triangular elements are i.i.d. Gaussian, with mean zero and variance

(3.2) s2
αk

= αk

ψk

· ψ ′(αk).

Meanwhile, denoting the (i, j)th entry of matrix A by [A]ij , we have, for k1 �= k2,

Cov
([

G
(
ψ(αk1)

)]
ij ,
[
G
(
ψ(αk2)

)]
ij

)= αk1αk2ψ
′(αk1)ψ

′(αk2)

ψk1ψk2

· αk1 − αk2

ψk1 − ψk2

, i �= j,

Cov
([

G
(
ψ(αk1)

)]
ii ,
[
G
(
ψ(αk2)

)]
ii

)= αk1αk2ψ
′(αk1)ψ

′(αk2)

ψk1ψk2

·
(

2 · αk1 − αk2

ψk1 − ψk2

+ βy

)
,

Cov
([

G
(
ψ(αk1)

)]
ij ,
[
G
(
ψ(αk2)

)]
i′j ′
)= 0 for all other cases.

Of note, [26] studied the limiting distribution of the random vector(√
n

(
λ1

ψ1
− 1

)
, . . . ,

√
n

(
λm

ψm

− 1
))T

under Johnstone’s spiked model (1.2) with Vp′ = Ip′ . Here, we allow a more general Vp′ .
Following the proof of Theorem 3.1, we are actually able to provide a more accurate ap-

proximation for the asymptotic parameters of the limiting joint distribution of (λk,Tr(Sn))
T.

Some second-order terms which are ignored in the proof of Theorem 3.1 are sorted out in the
following theorem. In applications, it may happen that the spiked eigenvalues α′

ks are quite
large while the sample size n remains limited. In such situations, the correction terms below
will be significant although their large n limits are theoretically null. These terms are very
useful for finite sample approximations as studied in the application of Section 4.
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THEOREM 3.2. The asymptotic parameters in Theorem 3.1 can be further approximated
as follows:

E

(√
n

(
λk

ψk

− 1
))

= α2
kψ

′(αk)√
nψk

μMk
+ o

(
1√
nα2

k

)
,

Var
(√

n

(
λk

ψk

− 1
))

=
m∑

i=1

u4
ikσ

2
αk

+
m∑

i �=j

u2
iku

2
jks

2
αk

+ α4
k

nψ2
k

(
ψ ′(αk)

)2
σ 2

Mk
+ o

(
1

nα2
k

)
,

Var
(
Tr(Sn) − Tr(�p)

)
= 2

n
Tr
(
V2

p′
)+ (ν4 − 3)

n

p′∑
i=1

[Vp′ ]2
ii + 1

n

(
m∑

i=1


2
ii(ν4 − 1) +∑

i �=j


2
ij

)
,

Cov
(√

n

(
λk

ψk

− 1
)
,Tr(Sn) − Tr(�p)

)

= ρk + y(ν4 − 1)√
nψk

∫
t2

(1 − t/αk)2 dH(t) + o

(
1√
nαk

)
,

where

ρk = αkψ
′(αk)√
nψk

(
(ν4 − 1)

m∑
i=1


iiu
2
ik +

m∑
i �=j


ijuikujk

)
,

μMk
= − 1

α3
k

( y
∫

t2

(1−t/αk)
3 dH(t)(

1 − y

α2
k

∫
t2

(1−t/αk)
2 dH(t)

)2 +
yβy

∫
t2

(1−t/αk)
3 dH(t)

1 − y

α2
k

∫
t2

(1−t/αk)
2 dH(t)

)
,

σ 2
Mk

= 2s′(ψk)s
′′′(ψk) − 3

(
s′′(ψk)

)2
6
(
s′(ψk)

)2 + yβy

(
s′(ψk)

)2 ∫ t2

(1 + ts(ψk))4 dH(t).

REMARK 3.1. In a related study, [28] proved, when the spiked part αj = αj (p) → ∞
while cj = p/(nαj ) is bounded and the nonspiked part

1

p − m

p′∑
j=1

βp′,j = c + o
(
n−1/2),

as p/n → ∞, we have

√
n

{
λj

αj

− (1 + ccj + OP

(
α−1

j

√
p/n

))} d−→N(0, ν4 − 1).

Notice that α−1
j

√
p/n = cj

√
n/p, while cj is bounded and p/n → ∞. Accordingly,

OP(α
−1
j

√
p/n) is of order oP(1). On the other hand, although our result in Theorem 3.1

is derived for bounded αj for ease of presentation, it turns out that it is still valid when
αj → ∞. In fact, by some simple manipulations, Theorem 3.1 implies (under our settings)
that

√
n

{
λj

αj

−
(

1 + y

∫
t

αj − t
dH(t)

)}
d−→ N(0, ν4 − 1).

It is interestingly compatible with the result in [28] where the term ccj + OP(α
−1
j

√
p/n) is

equivalent to y
∫

t
αj−t

dH(t) as αj → ∞.
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As an immediate application of Theorems 3.1 and 3.2, the following theorem characterizes
the asymptotic behavior of an important statistic, the ratio statistic λk

p−1 Tr(Sn)
, which has been

widely used in the literature of signal detection.

THEOREM 3.3. Under Assumptions (i) to (v), for 1 ≤ k ≤ m, we have

(3.3)
√

n

(
λk

1
p

Tr(Sn)
− ψk

1
p

Tr(�p)

)
d−→N

(
0,

ψ2
k

γ 2
1

(
m∑

i=1

u2
ikσ

2
αk

+
m∑

i �=j

u2
iku

2
jks

2
αk

))
,

where uij is the (i, j)th entry of �’s eigenmatrix U, γ1 = ∫
t dH(t), the mean value of LSD

of Vp′ , σ 2
αk

and s2
αk

are defined in (3.1) and (3.2).
Moreover, the asymptotic variance in (3.3) can be further approximated by

(3.4)

ψ2
k

( 1
p

Tr(�p))2

(
m∑

i=1

u2
ikσ

2
αk

+
m∑

i �=j

u2
iku

2
jks

2
αk

)
+ α4

k (ψ
′(αk))

2σ 2
Mk

n( 1
p

Tr(�p))2

− 2(ψk + α2
kψ ′(αk)

n
μMk

)

p( 1
p

Tr(�p))3

[
αkψ

′(αk)

(
(ν4 − 1)

m∑
i=1


iiu
2
ik +

m∑
i �=j


ijuikujk

)

+ y(ν4 − 1)

∫
t2

(1 − t/αk)2 dH(t)

]
+ (2γ2 + (ν4 − 3)γd,2)(ψk + α2

kψ ′(αk)

n
μMk

)2

p( 1
p

Tr(�p))4

+ (
∑m

i=1 
2
ii(ν4 − 1) +∑i �=j 
2

ij )(ψk + α2
kψ ′(αk)

n
μMk

)2

p2( 1
p

Tr(�p))4
.

Under the generalized spiked population model in (1.3), by applying Delta’s method to
the ratio function f (x, y) = x/y, with the joint limiting distribution of (λ1, . . . , λm,Tr(Sn))

T

in Theorems 3.1 and 3.2, we immediately have the above limiting distribution of λk/Tr(Sn)

(proof thus omitted). Observing that p−1 Tr(Sn) − p−1 Tr(�p) = op(1), one might obtain
(3.3) by directly using Slutsky’s theorem. However, the second-order terms in (3.4) need
implementation of the Delta’s method.

4. Application. Determination of the number of signals embedded in noise is a funda-
mental problem in signal processing and chemometrics community. A significant portion of
this literature has been focused on the spiked covariance model arising from the following
factor structure. Consider a sequence of p-dimensional random vectors {Xt , t ∈ Z}, admitting
a version of static m-factor structure with m fixed,

(4.1) Xt = AF t + Et .

Here, the factors F t ∼ N(0, Im) are assumed to be independent of the idiosyncratic error
terms Et ∼ N(0, σ 2Ip) with σ 2 fixed. The loading matrix Ap×m is deterministic and of full
rank such that ATA has fixed eigenvalues a1 > · · · > am > 0. Suppose that we observe {Xt ,
t = 1, . . . , n} with n comparable to p. In the high dimensional context, one major inference
problem in (4.1) is to infer the total number of factors m.

Note that the eigenvalues of population covariance matrix �p of Xt are

Spec(�p) = {
a1 + σ 2, . . . , am + σ 2, σ 2, . . . , σ 2︸ ︷︷ ︸

p−m

}
.

Thus, it is immediate to observe that Xt follows the generalized spiked model (1.3) with
αk = ak + σ 2, 1 ≤ k ≤ m, βp′,1 = · · · = βp′,p′ = σ 2.
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A typical approach to test the number of factors is to find all the “outliers” among eigen-
values λ1 ≥ · · · ≥ λp of sample covariance matrix. According to the phase transition phe-
nomenon of sample eigenvalues established in [5], it is known that the asymptotic behavior
of λk(1 ≤ k ≤ m) differs depending on whether αk/σ

2 > 1 + √
p/n or not. Only when the

signal-to-noise ratio (SNR) αk/σ
2 of the spikes is large enough can the corresponding sam-

ple eigenvalues be separated away from those bulk ones (outliers). Otherwise, these factors
would be too weak and mix up with the noise. In this section, we develop a new test for pres-
ence of moderately strong factors. For any given integer m0 ≥ 1 and constant c > 1 +√

p/n,
we aim to test

(4.2) H0 : αm0

σ 2 ≥ c v.s. H1 : αm0

σ 2 < c.

In other words, under H0, there are at least m0 signals with SNR larger than c. If c = 1 +√
p/n, we are actually testing for the number of moderately strong factors above the critical

transition value 1 + √
p/n, that is to test

(4.3) H0 : m ≥ m0 v.s. H1 : m < m0.

Compared to [10] and [22] who have developed procedures to test “m = 0” against “m > 0”
which still have nonzero power even when the factors are weak (SNR below the threshold
1 + √

p/n), our test focuses more on testing existence of multiple strong spikes and their
signal strength.

Since the noise variance σ 2 is typically unknown in real applications, we propose the
following normalized sample eigenvalue as our test statistic:

Tm0 = λm0

/ 1

p − m0

p∑
j>m0

λj

Here, we use (p−m0)
−1∑p

j>m0
λj instead of the popular alternative p−1 Tr(Sn) as the surro-

gate for σ 2. Although asymptotically equivalent under our conditions, (p −m0)
−1∑p

j>m0
λj

is often found to have better finite-sample behavior and serve as a better estimate of σ 2 than
p−1 Tr(Sn) under cases where several large spikes or a sizable collection of medium sized
spikes are present. Correspondingly, Tm0 often has superior detection power compared to
T̃m0 = λm0/(p

−1 Tr(Sn)) in finite sample cases.
In the literature, [21] and [13] adopted the test statistic T̃1 = λ1/(p

−1 Tr(Sn)) while they
focus on testing the existence of one single spike, that is,

(4.4) H0 : �p = σ 2Ip v.s. H1 : m ≥ 1.

Notice that this test is equivalent to the classical “sphericity test with a spiked alternative.”
In the seminal paper [16], it has been proven that when �p = σ 2Ip with Gaussian data, as
p,n → ∞ with p/n → y,

λ1/σ
2 − μnp

σnp

d−→ TW1,

where μnp = 1
n
(
√

n − 1 + √
p)2, σnp =

√
μnp

n
( 1√

n−1
+ 1√

p
)1/3 and TW1 denotes Tracy–

Widom distribution of order 1. Ma [20] further refined the centering and scaling parameters
which improves the convergence rate from O((n ∧ p)−1/3) to O((n ∧ p)−2/3). Note that the
fluctuation in σ̂ 2 = p−1 Tr(Sn) is of order O(1/p), which is negligible compared to that in
λ1. Therefore, we still have, as p,n → ∞,

P

(
T̃1 − μnp

σnp

< s

)
→ TW1(s).
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But in finite samples, the quality of this approximation for T̃1 breaks down due to studen-
tization. Nadler [21] derived an explicit approximation formula for the tail probabilities of
T̃1, which provides a significantly better fit to the empirical distribution of T̃1. But still, it is
not a proper distribution function. Deo [13] suggested an alternative variance adjustment for
the scaling parameter σnp to improve the finite sample performance of T̃1. Tests based on
these two corrections eliminate the downward size bias of the uncorrected test and improve
its power performance for small values of (p,n).

However, the problem of testing the existence of multiple spikes has not been fully re-
solved yet, that is, for m0 > 1, to test

(4.5) H0 : m ≤ m0 v.s. H1 : m > m0.

First, in the presence of m (m > 1) spikes, the conjecture of

(4.6)
λm+1/σ

2 − μn,p−m

σn,p−m

d−→ TW1

has not been proven yet except for the complex Gaussian case (GUE case) in [5]. Second,
the finite sample bias caused by the replacement of σ 2 with p−1 Tr(Sn) becomes more severe
under H0 in (4.5). Deo [13] and Kritchman and Nadler [18] adopted alternative estimators
of σ 2 based on p − m bulk eigenvalues. However, their testing procedures are still based
on the unverified conjecture (4.6) and simulation experiments show that these tests are still
uniformly undersized due to the negative bias in the presence of spikes. Further analytic tools
are needed to correct this bias.

In this paper, we start from a different perspective by studying the behavior of λm/

( 1
p−m

∑p
j>m λj ) instead of λm+1 in the presence of m spikes and aim to test (4.2) and (4.3).

Although our test hypothesis is different from previous works, it can still be used to determine
the total number of factors by performing a sequence of hypothesis tests on testing whether
λk (1 ≤ k ≤ m) arise from the signal or noise. The limiting distribution of our test statistic
Tm is fully implementable under H0 in (4.2) assuming that all the conditions in Theorems 3.1
and 3.2 are satisfied. Our test statistic is not only capable of testing the existence of multiple
spikes, but can also be used to test their signal strength. Higher order corrections are further
made to alleviate finite sample bias, which ensures satisfactory testing size and power even
when (p,n) is not large.

The corollary below follows from a direct implementation of Theorem 3.2.

COROLLARY 4.1. Considering the factor model (4.1), for 1 ≤ k ≤ m, as n → ∞, p =
pn → ∞ such that p/n → y > 0, we have

(4.7)
√

n

(
λk

1
p−k

∑
j>k λj

− ψk

σ̃ 2

)
d−→ N

(
0,

2α2
kψ

′(αk)

σ 4

)
,

where

ψj = αj + yαjσ
2

αj − σ 2 , ψ ′(αj ) = 1 − yσ 4

(αj − σ 2)2 , αj = aj + σ 2,

σ̃ 2 = 1

p − k

[
Tr(�p) −

k∑
j=1

{
ψj + α2

jψ
′(αj )

n
μMj

}]
.
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Additionally, we have a refined correction for the variance of λk
1

p−k

∑
j>k λj

,

(4.8)

σ 2∗,k = 2α2
kψ

′(αk)

σ̃ 4 + 4α2
kψ

′(αk){ψk + 2α2
kψ ′

k(αk)

n
μMk

}
(p − k)σ̃ 6

+ α4
k (ψ

′(αk))
2σ 2

Mk

nσ̃ 4 − 4α2
k {ψk + α2

kψ ′(αk)

n
μMk

}
(p − k)σ̃ 6

+ n

(p − k)2

(
2yσ 4 + 2

n

m∑
i=1

α2
i

){ψk + 2α2
kψ ′

k(αk)

n
μMk

}2

σ̃ 8

+ 2ψkα
4
k (ψ

′(αk))
2σ 2

Mk

n(p − k)σ̃ 6 + ψ2
k

∑k
j=1{2α2

jψ
′(αj ) − 4α2

j }
(p − k)2σ̃ 8 .

Here,

μMj
= − yσ 4

(αj − σ 2)3{1 − yσ 4

(αj−σ 2)2 }2
, σ 2

Mj
= 2s′(ψj )s

′′′(ψj ) − 3
(
s′′(ψj )

)2
6
(
s′(ψj )

)2 .

Let Zα be the lower-α quantile of the standard normal distribution at level α. In order to
define an appropriate critical value, one notes that the null hypothesis (4.2) is composite. For
a given value of αm0 under the null, the decision rule is to

reject H0 in (4.2) at the value αm0 if Tm0 <
ψm0

σ̃ 2 + Zα · σ∗,m0√
n

.

Letting tk = αk/σ
2, both the critical value above and the refined variance (4.8) can be ex-

pressed as functions of these tk’s:

qn,α = qn,α(tm0, tm0−1, . . . , t1) = ψm0

σ̃ 2 + Zα · σ∗,m0√
n

=
tm0 + y

1−1/tm0

1 − 1
p−m0

∑m0
j=1

y
1−1/tj

+ Zα · σ∗,m0√
n

,

σ 2∗,m0
= σ 2∗,m0

(tm0, tm0−1, . . . , t1)

= 2t2
m0

(
1 − y

(tm0 − 1)2

)(
1

1 − 1
p−m0

∑m0
j=1

y
1−1/tj

)2

− 4yt2
m0

(p − m0)(tm0 − 1)2

(
tm0 + y

1 − 1/tm0

)(
1

1 − 1
p−m0

∑m0
j=1

y
1−1/tj

)3

+ 2yn

(p − m0)2

(
tm0 + y

1 − 1/tm0

)2( 1

1 − 1
p−m0

∑m0
j=1

y
1−1/tj

)4

+
t2
m0

(1 − y

(tm0−1)2 )2

n

(
1

1 − 1
p−m0

∑m0
j=1

y
1−1/tj

)2{ 4ytm0

3(tm0 − 1)3
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− 4ytm0

3(tm0 − 1)3(1 − y

(tm0−1)2 )3 + 2y2t2
m0

3(tm0 − 1)6(1 − y

(tm0−1)2 )
4

+ 2yt2
m0

(tm0 − 1)4 + 4y2t2
m0

3(tm0 − 1)6(1 − y

(tm0−1)2 )

}
.

Therefore, for the composite null (4.2), we will use the critical value

(4.9) q∗
n,α = q∗

n,α(tm0−1, . . . , t1) = inf
c≤tm0<tm0−1

qn,α(tm0, tm0−1, . . . , t1),

and reject the null if Tm0 < q∗
n,α . For this procedure, it holds that

lim sup
n→∞

sup
c≤tm0<tm0−1

P
(
Tm0 < q∗

n,α

)≤ α.

Implementation of this procedure finally requires to estimate the values of larger spikes
{tk,1 ≤ k < m0} that appear in the critical value functions qn,α and q∗

n,α . As a matter of fact,
consistent estimates for these spike values have been proposed in [1]. It is known that, under
H0 in (4.2), for distant spikes αk (1 ≤ k ≤ m0), as p,n → ∞, p/n → y, λk

a.s.−→ �k , satisfying
s(�k) = − 1

αk
. Based on this result, [1] proposed a consistent estimator α̂k for αk ,

α̂k = − 1

ŝ(�k)
, ŝ(�k) = −1 − y

λk

+ 1

n

∑
i>m0

1

λi − λk

.

Here, the noise level σ 2 is intrinsically hidden inside the values of sample eigenvalues λj ’s,
not explicitly used in the estimation of αk . Note that the conditions used in [1] which ensure
the consistency of α̂k are satisfied under our settings (Assumptions (i) to (v)). Thus for 1 ≤
k < m0, the tk’s can be consistently estimated by

t̂k = α̂k

(Tr(Sn) −∑m0
�=1 α̂�)/(p − m0)

.

Plugging these estimates into the critical value functions qn,α and q∗
n,α leads to a full imple-

mentation of the test.
To summarize, the proposed testing procedure is to

(4.10) reject H0 in (4.2) if Tm0 < q̂∗
n,α,

where

(4.11) q̂∗
n,α = q∗

n,α(̂tm0−1, . . . , t̂1) = inf
c≤tm0<t̂m0−1

qn,α(tm0, t̂m0−1, . . . , t̂1).

Simulation experiments are conducted in the Supplementary Material [19] to examine
the performance of out testing procedure. Empirical data are generated following the fac-
tor model in (4.1). Different numbers of factors and signal strength are assigned for various
model settings. Results (Tables 1 and 2) show that our test works for different numbers of
factors. It has better performance for higher signal strength levels. The same supplement
section has also designed experiments to illustrate the necessity of incorporating the second-
order correction to the asymptotic variance proposed in (4.8). Numerical comparison is made
between (4.10) and the following testing procedure to

(4.12) reject H0 in (4.2) if Tm0 < q̃∗
n,α,

where q̃∗
n,α is defined as q̂∗

n,α in (4.11) except that
ψm0
σ̃ 2 is replaced by

ψm0
σ 2 and the refined

asymptotic variance σ 2∗,m0
used there is replaced by σ̃ 2

m0
= 2t2

m0
− 2yt2

m0
(tm0−1)2 . Tables 3 and 4 in
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the Supplementary Material [19] show that this refined correction (4.8) for the variance plays
an important role in controlling the size and improves the power in the testing procedure,
especially when the data dimension and sample size are relatively small.

5. Proofs.

5.1. Proof of Theorem 3.1. Considering the block structure of population covariance ma-
trix �p , the analysis is carried out using a decomposition into blocks of size m and p − m,
respectively. Define

Y i =
(
Y 1i

Y 2i

)
, �p =

(
� 0
0 Vp′

)
, Xi =

(
X1i

X2i

)
=
(
�1/2Y 1i

V1/2
p′ Y 2i

)
.

The sample covariance matrix is then

Sn = 1

n

n∑
i=1

XiX
T
i = 1

n

(
X1XT

1 X1XT
2

X2XT
1 X2XT

2

)
=
(

S11 S12
S21 S22

)
,

where

S11 = 1

n
�1/2Y1YT

1�
1/2, S22 = 1

n
Vp′1/2Y2YT

2Vp′1/2,

X1 = (X11, . . . ,X1n), X2 = (X21, . . . ,X2n),

Y1 = (Y 11, . . . ,Y 1n), Y2 = (Y 21, . . . ,Y 2n).

The proof of Theorem 3.1 builds on the above block-decomposition analysis of spiked and
nonspiked ones. Tr(Sn) follows the decomposition Tr(Sn) = Tr(S11) + Tr(S22). It will later
be shown that Tr(S22) is asymptotically independent of the random vector (λ1, . . . , λm)T,
while the covariance between Tr(S11) and (λ1, . . . , λm)T is of the order O(1/

√
n). The proof

in general consists of four steps as follows:

Step 1. deriving the asymptotic joint distribution of (λ1, . . . , λm)T;
Step 2. deriving the marginal limiting distribution of Tr(S11) and Tr(S22);
Step 3. deriving the asymptotic joint distribution of ((λk)1≤k≤m,Tr(Sn))

T.

Step 1: Joint limiting distribution of (λ1, . . . , λm)T.
Many efforts in the literature have been put into the study of the asymptotic behavior of

extreme sample eigenvalues under various spiked population models. Notably, [3] derived
a CLT for sample eigenvalues corresponding to one distant spiked eigenvalue under a more
generalized model where possible multiplicity of spiked eigenvalues is allowed such that

(5.1) Spec(�p) = {α1, . . . , α1︸ ︷︷ ︸
m1

, . . . , αK, . . . , αK︸ ︷︷ ︸
mK

,βp′,1, . . . , βp′,p′ }.

Here, we eliminate the multiplicity of spikes in model (5.1) and focus on the correlation
among sample eigenvalues corresponding to different spikes. Wang et al. [26] studied such
correlations under the model where

Spec(�p) = {α1, . . . , α1︸ ︷︷ ︸
m1

, . . . , αK, . . . , αK︸ ︷︷ ︸
mK

,1, . . . ,1},

while our model (1.3) is more general in the sense of bulk eigenvalue distribution H(t). The
proof in general combines the Z-estimation scheme in [3] and the result of joint CLT for
several random sesquilinear forms in [26]. Detailed proofs are presented here, which will
also be used in subsequent steps and the proof of Theorem 3.2.
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Noting that, whenever A is invertible,∣∣∣∣A B
C D

∣∣∣∣= |A| · ∣∣D − CA−1B
∣∣,

an eigenvalue λi of Sn that is not an eigenvalue of S22 satisfies

(5.2) 0 = |λiIp − Sn| = |λiIp−m − S22| ·
∣∣λiIm − Kn(λi)

∣∣,
where

Kn(�) := S11 + S12(�Ip−m − S22)
−1S21.

Thus, the eigenvalues of Sn satisfy

(5.3)
∣∣λiIm − Kn(λi)

∣∣= 0.

Consider a real number � outside the support of LSD Fy,H of S22 and the goal is to find
the limit of random matrix Kn(�) with fixed dimension m. Since for � �= 0 which is not an
eigenvalue of ATA,

In + A
(
�Ip−m − ATA

)−1AT = �
(
�In − AAT)−1

,

it holds that

(5.4)

Kn(�) = 1

n
X1

{
In + 1

n
XT

2

(
�Ip−m − 1

n
X2XT

2

)−1
X2

}
XT

1

= �

n
�1/2Y1

(
�In − 1

n
YT

2Vp′Y2

)−1
YT

1�
1/2.

By Assumptions (i)–(iv), � is outside the support of LSD Fy,H of S22 and for n large
enough, the operator norm of (�Ip−m − 1

n
YT

2Vp′Y2)
−1 is bounded. Meanwhile, Y1 is inde-

pendent of Y2. Then by the law of large numbers, Corollary 3.9 in [17], and Theorem 11.8 in
[29], we have, as p,n → ∞, p/n → y > 0,

�−1/2Kn(�)�
−1/2 a.s.−→ −�s(�) · Im,

where s(�) is the Stieltjes transform of the LSD of 1
n

YT
2Vp′Y2.

Therefore, the eigenvalue λi of Sn satisfying (5.3) converges almost surely to the limit �

such that ∣∣� · �−1 + �s(�) · Im

∣∣= 0,

that is,

s(�) = −1/αk, � = ψ(αk), k = 1, . . . ,m,

where Spec(�) = {α1, . . . , αm}. The following lemma, due to [25], characterizes the close
relationship between the supports of the generating measure H and the Marčenko–Pastur
(M-P) distribution Fy,H .

LEMMA 5.1 (By [25]). If λ /∈ 	Fy,H , then s(λ) �= 0 and α = −1/s(λ) satisfies:

(1) α /∈ 	H and α �= 0 (so that ψ(α) is well defined);
(2) ψ ′(α) > 0.

Conversely, if α satisfies (1)–(2), then λ = ψ(α) /∈ 	Fy,H .
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By Lemma 5.1, � = ψ(αk) is outside the support of LSD Fy,H if and only if ψ ′(αk) > 0.
By Assumption (v), all spiked values αk are large enough to make ψ ′(αk) > 0. Therefore, the
limits

� = ψ(αk) =: ψk, k = 1, . . . ,m

are all outside the support of LSD Fy,H . Meanwhile, for the m largest eigenvalues λ1, . . . , λm

of Sn, as p,n → ∞, p/n → y > 0,

λk

ψk

a.s.−→ 1 for 1 ≤ k ≤ m.

Note that ψ(·) is the functional inverse of function α : x �→ −1/s(x), then

(5.5)

s(ψk) = − 1

αk

, s′(ψk) = 1

α2
kψ

′(αk)
,

s′′(ψk) = − 2

α3
k (ψ

′(αk))2
− ψ ′′(αk)

α2
k (ψ

′(αk))3
,

s′′′(ψk) = 6

α4
k (ψ

′(αk))3
− 2ψ ′′(αk)s

′′(ψk)

(ψ ′(αk))2

− α2
kψ

′(αk)ψ
′′′(αk) − ψ ′′(αk)(2αkψ

′(αk) + α2
kψ

′′(αk))

α4
k (ψ

′(αk))2
,

where [·]′|α=αk
means to take first-order derivative with regard to α and then let α = αk . Here,

ψk = ψ(αk) = αk + y

∫
t

1 − t/αk

dH(t),

ψ ′(αk) = 1 − y

∫
t2

(αk − t)2 dH(t), ψ ′′(αk) = 2y

∫
t2

(αk − t)3 dH(t).

Denote sn(�) = 1
n

Tr(�In − 1
n

YT
2Vp′Y2)

−1, then

Kn(�) = �√
n
�1/2Rn(�)�

1/2 − ��s(�) + ��
(
s(�) − sn(�)

)
,

where Rn(�) is a sequence of m × m random matrix-valued processes

(5.6)

Rn(�) = 1√
n

(
Y1

(
�In − 1

n
YT

2Vp′Y2

)−1
YT

1

− Im Tr
(
�In − 1

n
YT

2Vp′Y2

)−1)
, � ∈ U .

Here, U is a compact set of indexes outside the support of LSD of S22.
The establishment of CLT for extreme sample eigenvalues λ′

is relies heavily on the finite
dimensional convergence of processes{

Rn(�), � ∈ U
}

and
{
n
(
sn(z) − s(z)

)
, z ∈ C \ 	Fy,H

}
,

which has been well established in [3], Lemma 1.1 in [4]. More specifically, we have the
following lemma.

LEMMA 5.2 (By Theorem 11.10 in [29]). Under Assumptions (i) to (iv), for any L index
values {�j }, the L random matrices{

Rn(�1), . . . ,Rn(�L)
}
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weakly converge to L Gaussian random matrices determined as follows: for arbitrary L

numbers a1, . . . , aL, the random matrix

R̃n = a1Rn(�1) + · · · + aLRn(�L)

weakly converges to a Gaussian random matrix R = {Rij } where:

(1) the diagonal entries are i.i.d. zero-mean Gaussian with variance

Var(Rii) = w
(
E|Yij |4 − 3

)+ 2θ;
(2) the upper off-diagonal entries are i.i.d. zero-mean Gaussian with variance θ ;
(3) all these entries are mutually independent.

Here, the parameters θ and w are

θ =
L∑

j=1

a2
j s

′(�j ) + 2
∑
j<k

ajak

s(�j ) − s(�k)

�j − �k

, w =
(

L∑
j=1

aj s(�j )

)2

.

Notice that

λkIm − Kn(λk) = λkIm − λk√
n
�1/2Rn(λk)�

1/2 + λk�s(λk) − λk�
(
s(λk) − sn(λk)

)
.

Since we have spectral decomposition � = U diag(α1, . . . , αm)UT,

UT(Im − λ−1
k Kn(λk)

)
U

=

⎛⎜⎜⎝
. . . (

1 + αus(λk)
)

. . .

⎞⎟⎟⎠
m×m

− 1√
n

UT�1/2Rn(λk)�
1/2U −

⎛⎜⎜⎝
. . .

αu

(
s(λk) − sn(λk)

)
. . .

⎞⎟⎟⎠
m×m

.

Now considering δn,k = √
n( λk

ψk
− 1), ψk = αk + y

∫
t

1−t/αk
dH(t), by Taylor expansion, we

have

s(λk) = s(ψk) + ψk√
n

· δn,k · s′(ψk) + OP

(
1

n

)
,

which then yields

UT(Im − λ−1
k Kn(λk)

)
U

=

⎛⎜⎜⎜⎜⎝
. . .

1 + αus(ψk) + αu

(
ψk√

n
· δn,k · s′(ψk) + OP

(
1

n

))
. . .

⎞⎟⎟⎟⎟⎠

− 1√
n

UT�1/2Rn(λk)�
1/2U −

⎛⎜⎜⎝
. . .

αu

(
s(λk) − sn(λk)

)
. . .

⎞⎟⎟⎠ .
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First, it can be seen that all the nondiagonal terms tend to zero on the right-hand side.
Then for a diagonal term with index u �= k, by definition 1 + s(ψk)αu �= 0 and it is indeed
the leading term with the remaining three terms converging to zero. As for the kth diagonal
term, 1 + s(ψk)αk = 0 by definition, thus the kth diagonal term reduces to

αk

(
ψk√

n
· δn,k · s′(ψk) + OP

(
1

n

))
− 1√

n

[
UT�1/2Rn(λk)�

1/2U
]
kk − αk

(
s(λk) − sn(λk)

)
.

Noting that |UT(Im − λ−1
k Kn(λk))U| = 0, for n sufficiently large, we have

(5.7)
∣∣∣∣ ψk√

n
· δn,k · s′(ψk) + OP

(
1

n

)
− 1√

n

[
UTRn(λk)U

]
kk − (s(λk) − sn(λk)

)∣∣∣∣= 0.

Taking into account the convergence of process {Rn(�), � ∈ U} and {Mn(z) = n(sn(z) −
s(z))} in Lemma 5.2 and [4], it follows that δn,k weakly converges to a solution of the limit
of ∣∣∣∣ ψk√

n
· δn,k · s′(ψk) − 1√

n

[
UTRn(ψk)U

]
kk − OP

(
1

n

)∣∣∣∣= 0,

that is,

δn,k = √
n

(
λk

ψk

− 1
)

d−→ [UTR(ψk)U]kk

ψks′(ψk)
.

Denote

G(ψk) = R(ψk)

ψks′(ψk)
.

Then by Lemma 5.2, G(ψk) is a Gaussian random matrix with mutually independent entries
where the diagonal entries are i.i.d. zero-mean Gaussian with variance

Var
([

G(ψk)
]
ii

)= (ν4 − 3)s(ψk)
2 + 2s′(ψk)(

s′(ψk)
)2

ψ2
k

,

and the upper off-diagonal entries are i.i.d. zero mean Gaussian with variance

Var
([

G(ψk)
]
ij

)= 1

s′(ψk)ψ
2
k

.

Now we consider the asymptotic joint distribution of (λk1, λk2)
T, 1 ≤ k1 �= k2 ≤ m. It can

be seen from the previous proof that the leading term of δn,k = √
n( λk

ψk
− 1) is [UTRn(ψk)U]kk

s′(ψk)ψk
.

Thus the correlation between limits of (λk1, λk2)
T is determined by the joint limiting distri-

bution of the two random sesquilinear forms Rn(ψk1) and Rn(ψk2). This task is nontrivial.
Here, we apply a joint CLT for random vector whose components are function of random
sesquilinear forms by [27].

LEMMA 5.3 (By [27]). Consider a sequence (Xi ,Y i )i∈N of i.i.d. real valued zero-mean
random vectors belonging to R

K ×R
K with finite fourth-order moment:

Xi = (X1i , . . . ,XKi)
T, 1 ≤ i ≤ n, X(�) = (X�1, . . . ,X�n)

T, 1 ≤ � ≤ K,

Y i = (Y1i , . . . , YKi)
T, 1 ≤ i ≤ n, Y (�) = (Y�1, . . . , Y�n)

T, 1 ≤ � ≤ K,
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and ρ(�): = E(X�1Y�1). Let {An} and {Bn} be two sequences of n × n symmetric matrices.
Assume the following limits exist:

w1 = lim
n→∞

1

n
Tr(An � An), w2 = lim

n→∞
1

n
Tr(Bn � Bn),

w3 = lim
n→∞

1

n
Tr(An � Bn),

θ1 = lim
n→∞

1

n
Tr
(
AnAT

n

)
, θ2 = lim

n→∞
1

n
Tr
(
BnBT

n

)
,

θ3 = lim
n→∞

1

n
Tr
(
AnBT

n

)
,

where A � B denotes the Hadamard product of two matrices A and B, that is, [A � B]ij : =
[A]ij [B]ij . Define two groups of sesquilinear forms:

U(�) = 1√
n

(
X(�)TAnY (�) − ρ(�)Tr(An)

)
,

V (�) = 1√
n

(
X(�)TBnY (�) − ρ(�)Tr(Bn)

)
.

Then the 2K-dimensional random vector (U(1), . . . ,U(K),V (1), . . . , V (K))T weakly con-
verges to a zero-mean Gaussian vector with covariance matrix B = (B11 B12

B21 B22

)
2K×2K , with

each block Bij = (Bij (�, �
′))1≤�,�′≤K a K × K matrix having structure, for 1 ≤ �, �′ ≤ K ,

B11
(
�, �′)= Cov

(
U(�),U

(
�′))= w1a1 + (θ1 − w1)(a2 + a3),

B22
(
�, �′)= Cov

(
V (�),V

(
�′))= w2a1 + (θ2 − w2)(a2 + a3),

B12
(
�, �′)= Cov

(
U(�),V

(
�′))= w3a1 + (θ3 − w3)(a2 + a3),

a1 = E(X�1Y�1X�′1Y�′1) − ρ(�)ρ
(
�′),

a2 = E(X�1X�′1)E(Y�1Y�′1), a3 = E(X�1Y�′1)E(X�′1Y�1).

Noting that

Rn(�) = 1√
n

(
Y1

(
�In − 1

n
YT

2Vp′Y2

)−1
YT

1 − Im Tr
(
�In − 1

n
YT

2Vp′Y2

)−1)
,

it can be seen that, for any 1 ≤ i, j, i ′, j ′ ≤ m, the random vector ([Rn(ψk1)]ij , [Rn(ψk2)]i′j ′)T

forms a sesquilinear pair(
U(�) = 1√

n

(
X(�)TAnY (�)−ρ(�)Tr(An)

)
,V
(
�′)= 1√

n

(
X
(
�′)TBnY

(
�′)−ρ

(
�′)Tr(Bn)

))T

,

where

An =
(
ψk1In − 1

n
YT

2Vp′Y2

)−1
, Bn =

(
ψk2In − 1

n
YT

2Vp′Y2

)−1
,

ρ(�) = E(X�1Y�1) = δij , ρ
(
�′)= δi′j ′,

and X(�) corresponds to the ith row of Y1, Y (�) corresponds to the j th row of Y1, X(�′)
corresponds to the i ′th row of Y1, Y (�′) corresponds to the j ′th row of Y1.
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Therefore,

w3 = lim
n→∞

1

n
Tr
((

ψk1In − 1

n
YT

2Vp′Y2

)−1
�
(
ψk2In − 1

n
YT

2Vp′Y2

)−1)
= s(ψk1)s(ψk2),

θ3 = lim
n→∞

1

n
Tr
((

ψk1In − 1

n
YT

2Vp′iiY2

)−1(
ψk2In − 1

n
YT

2Vp′Y2

)−1)
= s(ψk1) − s(ψk2)

ψk1 − ψk2

.

By Lemma 5.3, for any 1 ≤ i, j, i ′, j ′ ≤ m, ([Rn(ψk1)]ij , [Rn(ψk2)]i′j ′)T weakly converges
to a zero-mean Gaussian vector ([R(ψk1)]ij , [R(ψk2)]i′j ′)T with the following covariance
structure:

(1) for i = i ′, j = j ′, i �= j , a1 = a2 = 1, a3 = 0,

Cov
([

R(ψk1)
]
ij ,
[
R(ψk2)

]
ij

)= θ3 = s(ψk1) − s(ψk2)

ψk1 − ψk2

;

(2) for i = i ′ = j = j ′, a1 = ν4 − 1, a2 = 1, a3 = 1,

Cov
([

R(ψk1)
]
ii ,
[
R(ψk2)

]
ii

)= 2θ3 + (ν4 − 3)w3 = 2(s(ψk1) − s(ψk2))

ψk1 − ψk2

+ βys(ψk1)s(ψk2);

(3) for all the other cases, a1 = a2 = a3 = 0,

Cov
([

R(ψk1)
]
ij ,
[
R(ψk2)

]
i′j ′
)= 0.

Then substituting s(ψk) with (5.5), the limiting distribution of (
√

n( λ1
ψ1

− 1), . . . ,
√

n( λm

ψm
−

1))T in Theorem 3.1 naturally follows.

Step 2: Marginal limiting distribution of Tr(S22) and Tr(S11).
In this step, we study the marginal limiting distribution of Tr(S22). In fact,

Tr(S22) = Tr
(

1

n
YT

2Vp′Y2

)
= 1

n

n∑
i=1

Y T
i Vp′Y i ,

where each Y i is a random vector with p′ i.i.d. entries Yij (1 ≤ j ≤ p′) satisfying EYij = 0,
EY 2

ij = 1, EY 4
ij = ν4.

Moreover, by some calculations, we have

E
(
Tr(S22)

)= 1

n

n∑
i=1

E
(
Y T

i Vp′Y i

)= Tr(Vp′),

E
(
Tr(S22)

)2 = 1

n2

n∑
i �=j

E
(
Y T

i Vp′Y iY
T
j Vp′Y j

)+ 1

n2

n∑
i=1

E
(
Y T

i Vp′Y i

)2

= n2 − n

n2 Tr2(Vp′) + 1

n

[
Tr2(Vp′) + 2 Tr

(
V2

p′
)+ (ν4 − 3)

p′∑
i=1

[Vp′ ]2
ii

]
.

Thus

Var
(
Tr(S22)

)= 2

n
Tr
(
V2

p′
)+ ν4 − 3

n

p′∑
i=1

[Vp′ ]2
ii .

Actually, in Section 4.2.3 of [7], the authors have proved the asymptotic normality for trace
of any symmetric polynomial of a general class of sample (auto)covariance matrices. It is
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directly applicable to our case of Tr(S22) since our model settings fulfill all their assumptions.
Therefore, we have, as p, n → ∞, p/n → y > 0,

Tr(S22) − Tr(Vp′)
d−→N

(
0,2yγ2 + y(ν4 − 3)γd,2

)
,

where γ2 = limp′→∞ 1
p′ Tr(V2

p′), γd,2 = limp′→∞ 1
p′
∑p′

i=1[Vp′ ]2
ii .

Similarly, we have

E
(
Tr(S11)

)= Tr(�), Var
(
Tr(S11)

)= 2

n
Tr
(
�2)+ ν4 − 3

n

m∑
i=1

[�]2
ii .

By Linderberg–Feller central limit theorem, as n → ∞,

(5.8)
√

n
(
Tr(S11) − Tr(�)

) d−→N

(
0,

m∑
i=1


2
ii(ν4 − 1) +∑

i �=j


2
ij

)
.

Step 3: Joint limiting distribution of ((λk)1≤k≤m,Tr(Sn))
T.

First, by (5.8), we have

Tr(Sn) − Tr(�p) = Tr(S11) − Tr� + Tr(S22) − Tr(Vp′) = Tr(S22) − Tr(Vp′) + OP

(
1√
n

)
.

Thus Tr(Sn)−Tr(�p) shares the same Gaussian limiting distribution with Tr(S22)−Tr(Vp′),
that is, under Assumptions (i) to (iv),

Tr(Sn) − Tr(�p)
d−→ N

(
0,2yγ2 + y(ν4 − 3)γd,2

)
.

Second, from the previous proof we know that the main fluctuation of λ′
ks originates from

Rn(�). It can be seen that (λk)1≤k≤m are asymptotically independent of Y2 because Rn(�)

weakly converges to a Gaussian matrix with distribution independent of Y2. Actually, by
going through the proof of Theorem 11.10 (see Lemma 5.2 in this paper) and the result of
Theorem 10.8 in [29], it can be proved that, conditioning on Y2, the limiting distribution of
Rn(�) is a function of the LSD of S22, which does not depend on the value of the conditioning
variable Y2.

This establishes the asymptotic independence between Rn(�) and Y2. Moreover, since

Rn(�) = 1√
n

(
Y1

(
�In − 1

n
YT

2Vp′Y2

)−1
YT

1 − Im Tr
(
�In − 1

n
YT

2Vp′Y2

)−1)
,

if we treat 1√
n

Y1(�In − 1
n

YT
2Vp′Y2)

−1YT
1 as f (Y1,Y2), then

1√
n

Im Tr
(
�In − 1

n
YT

2Vp′Y2

)−1
= E

(
f (Y1,Y2)|Y2

)
,

Rn(�) = f (Y1,Y2) −E
(
f (Y1,Y2)|Y2

)
, Cov

(
Rn(�),Y2

)= 0.

Note that Tr(S22) = 1
n

Tr(YT
2Vp′Y2), the randomness of Tr(S22) all originates from Y2

and marginally Tr(S22) is also asymptotically normal. Accordingly, we have ((λk)1≤k≤m,

Tr(S22))
T are asymptotically normal and independent.

Since Tr(S11) is of order O(1/
√

n) and (λk)1≤k≤m is of constant order, ((λk)1≤k≤m,

Tr(Sn))
T is also asymptotically normally distributed and the covariance between (λk)1≤k≤m

and Tr(Sn) is of order O(1/
√

n).
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5.2. Asymptotic joint distribution of ((λk)1≤k≤m,Tr(S11))
T. In this section, we present a

result of the joint distribution of ((λk)1≤k≤m,Tr(S11))
T. It is crucial for quantifying second-

order terms in Theorem 3.2.
Without loss of generality, we consider (λk,Tr(S11))

T first. Since

Tr(S11) − Tr(�) = 1

n
Tr
(
YT

1�Y1
)− Tr(�),

the leading term of δn,k = √
n( λk

ψk
− 1) is

[UTRn(ψk)U]kk

s′(ψk)ψk

+
√

n(s(ψk) − sn(ψk))

ψks′(ψk)
.

The second term sn(ψk) is a function of Y2 which is independent from Tr(S11). Therefore,
we only have to consider the correlation between Rn(ψk) and Tr(S11).

Note that Tr(S11) = 1
n

Tr(�Y1YT
1) can be seen as linear combinations of entries in the

m × m matrix 1
n

Y1YT
1. According to Lemma 5.3,

(Rn(�),
1√
n
(Y1YT

1 − Im))T forms a random sesquilinear pair with

An =
(
�In − 1

n
YT

2Vp′Y2

)−1
, Bn = In.

If the correlation between each entry of Rn(�) and 1√
n
(Y1YT

1 − Im) can be obtained, then we

can derive the joint distribution of (λk,Tr(S11))
T. More specifically, we have the following

result, whose proof is relegated to the Supplementary Material [19].

PROPOSITION 5.1. Under Assumptions (i)–(iv), as p,n → ∞, p/n → y, we have⎛⎝ √
n

(
λk

ψk

− 1
)

√
n
(
Tr(S11) − Tr(�)

)
⎞⎠ d−→N

((
0
0

)
,

(
σ 2

1 ρk

ρk σ 2
2

))
,

where

σ 2
1 =

m∑
i=1

u4
ikσ

2
αk

+
m∑

i �=j

u2
iku

2
jks

2
αk

, σ 2
2 =

m∑
i=1


2
ii(ν4 − 1) +∑

i �=j


2
ij ,

ρk = αkψ
′(αk)

ψk

(
(ν4 − 1)

m∑
i=1


iiu
2
ik +

m∑
i �=j


ijuikujk

)
,

� = (
ij )m×m, has spectral decomposition � = U diag(α1, . . . , αm)UT, U = (uij )m×m, σ 2
αk

and s2
αk

are defined in (3.1) and (3.2).
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