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We study weighted particle systems in which new generations are resam-
pled from current particles with probabilities proportional to their weights.
This covers a broad class of sequential Monte Carlo (SMC) methods, widely-
used in applied statistics and cognate disciplines. We consider the genealogi-
cal tree embedded into such particle systems, and identify conditions, as well
as an appropriate time-scaling, under which they converge to the Kingman »-
coalescent in the infinite system size limit in the sense of finite-dimensional
distributions. Thus, the tractable n-coalescent can be used to predict the shape
and size of SMC genealogies, as we illustrate by characterising the limiting
mean and variance of the tree height. SMC genealogies are known to be con-
nected to algorithm performance, so that our results are likely to have appli-
cations in the design of new methods as well. Our conditions for convergence
are strong, but we show by simulation that they do not appear to be necessary.

1. Introduction. Interacting particle systems (IPSs) are a broad class of stochastic mod-
els for phenomena in disciplines including physics, engineering, biology and finance. Promi-
nent examples are particle filters, particle methods and sequential Monte Carlo (SMC), which
feature prominently in numerical approximation schemes for nonlinear filtering, as well as
mean field approximation of Feynman—Kac flows. For additional background, we direct read-
ers to Del Moral (2004), and Doucet and Johansen (2011).

Central to these methods are discrete-time, evolving weighted particle systems. Correla-
tions between particles arise out of resampling: a stochastic selection mechanism in which
particles with high weight are typically replicated while those with low weight vanish, giving
rise to an embedded genealogy. The contribution of this paper is to identify conditions under
which these genealogies converge to the Kingman n-coalescent (Kingman (1982)) in the in-
finite system size limit under an appropriate rescaling of time, as well as to describe ways in
which information about the limiting genealogy can be used to characterize particle systems
in applications.

Consider a sequence of measurable spaces (E;, & );enN, each associated to a Markov tran-
sition kernel K,y : E; x &1+ (0, 00), and a nonnegative potential g;y1: E; X E;41 —
(0, 00). These correspond to state spaces, transition kernels and the importance weight func-
tion of our IPS, respectively.

Let §,(N) = {(wtm, X ,(i) )}lN: | be a weighted N-particle system at time 7 € N, where each
X,(i) € E;, and the weights wt(i) are nonnegative and satisfy ZlN: | w,(i) = 1. Let S be a re-
sampling operator which acts on ;I(N) by assigning to each particle a random number of
offspring. The total number of offspring is fixed at N, and the mean number of offspring
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Algorithm 1 Simulation of an IPS
Require: Particle number N, Markov kernels K/, potentials g;, initial proposal distribution
.
1. forie{l,...,N}do
2: Sample X(()i) ~ .
3: foriefl,...,N}do
@ g0(Xy")

4: Set w

0 XMt o)
5: fortre{0,...,T — 1} do
6: Sample (a(l), e, at(N)) ~ Resample(w(l), e, wt(N)).
7: forie{l,. N} do

(i)
8: Sample Xt D~ K (X)),
9: forie{l,...,N}do
(a ) (i)
X, a X,
10: Set wt(ﬁl <« " gr+1( +1)
e X XD g (x4 X))

of particle i e {1,..., N} is N w(’) All offspring are assigned an equal weight 1/N. More
concretely,

st = (N1 x@ N

where a =jif j in g“ ) is the parent of i in S{,( ). Particles with low weight are ran-
domly removed by having no offspring, while particles with high weight tend to have many
offspring. Algorithm 2 gives an example.

The step from time ¢ to time ¢ 4 1 is completed by propagating each particle in
S{,(N) mdependently through the transition kernel K, to obtain particle locations x¢ ; +1 ~
Ki1(X ,( ’ ), -). Finally, each particle i € {1, ..., N} is assigned a weight proportional to the
potential g, | evaluated at the locations of the particle and its parent so that the full update is

) @) (i)
0) K t . N
(N) S {N_I,X(a’ )}N r+1{ gr1(X: " L X)) x® } ’
i=

Ct i=1 41
B N @) () i=1
j=1 gl’-‘r](Xt ! aXt_Jf_l)

where go(X—1, Xo) = go(Xp). A specification is given in Algorithm 1.

There are many options for the resampling step Resample in line 6 of Algorithm 1.
The simplest is multinomial resampling, given in Algorithm 2. It is analytically tractable, but
suboptimal in terms of Monte Carlo variance. Popular alternatives include residual, stratified
and systematic resampling, which yield algorithms with lower variance (Douc, Cappé and
Moulines (2005)). We prove our main theorem under multinomial resampling, and show by
simulation that its conclusions also hold for these three alternatives, at least in our simple

Algorithm 2 Multinomial resampling

Require: Normalised particle weights {wt }
1: forie{l,...,N}do
2: Sample a( D~ Categorlcal(w( ), s wt(N)).

3: return (a(l) . IN)).
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example. Other schemes which have been studied theoretically, but seem less widely used
in applications, include the tree-based branching approximation of Crisan and Lyons (1997)
and the McKean interpretation approach by Del Moral (2004), Section 2.5.3.

An example system of this form is particle filters: a class of IPSs for approximating
integrals. For an overview see, for example, Doucet and Johansen (2011), and references
therein. They are suited to settings in which expectations are computed with respect to the
law of a latent, discrete-time Markov process conditioned on a sequence of observations,
for example, state space models. A state space model is a Markov chain (X, ¥;);>0 on
E x F C R4 x R? with transition density p(x, x") and emission density ¥ (x, y), both with re-
spect to dominating measures abusively denoted dx’ and dy, respectively. The spaces (E, F)
could be replaced with more general Polish spaces, but we focus on (subsets of) R¢ x R” for
concreteness. Typically, X; is an unobserved state at time ¢, and Y; is a noisy or incomplete
observation of the state.

Let y := (39, ..., y7) be a vector of noisy, conditionally independent observations from
the emission density ¥ (x, y) given an unobserved state trajectory x := (xo, ..., x7). Func-
tionals of the smoothing distribution,

T
P(x|y)dx :=P(X € dx|Y = y) o< [ [ pGer—1, x)¥ (xr, y1) dxo:1

t=0
where we abuse notation and denote the law of Xg by p(x_1, xo) dxg, are typically in-
tractable, and often approximated by particle filters. The simplest is the algorithm introduced
by Gordon, Salmond and Smith (1993), usually known as the bootstrap particle filter, al-
though the term “(interacting) particle filter” seems first to have been used by Del Moral
(1996). It fits into our IPS framework by taking K;i1(x;, dx;4+1) = p(xs, Xr4+1)dx;41 and
8r+1(xs, X¢41) = ¥ (xs+1, y1+1) for a fixed observation sequence in Algorithm 1. Other par-
ticle filters can be considered by introducing a proposal density g;y1(xs, X¢+1) dx;41 With
supp(p(x, -)) € supp(g:(x, -)) for every x and ¢, and setting

Kip1 (e dxey1) = qran (5, Xe1) d Xy,

P (X, Xep DV (X415 Y1)
6]t+1(xt,xz+1)

Our IPS framework also includes more general SMC algorithms, such as SMC samplers
(Del Moral, Doucet and Jasra (2006)) among others; see, for example, Del Moral (2004),
Chapter 12.

There is a genealogy embedded in Algorithm 1. Consider {,(N) at a fixed time ¢. Trac-

8r1(Xr, Xr41) =

ing the ancestor indices (a,(l), el a,(N)) backwards in time results in a coalescing forest of
lineages. The forest forms a tree once the most recent common ancestor (MRCA) of all par-
ticles is reached, provided that happens before reaching the initial time 0. Our main result
(Theorem 1) shows that, under certain conditions and an appropriate time-rescaling, func-
tionals of this genealogy depending upon finite numbers of leaves converge to corresponding
functionals of the Kingman n-coalescent (Kingman (1982)) as N — oo, in the sense of fi-
nite dimensional distributions. Hence, the tractable Kingman n-coalescent can be used to
approximate functionals of SMC genealogies off-line, before the algorithm has been run. In
particular, we show that the expected number of time steps from the leaves to the MRCA
scales linearly in N for any finite number of leaves. This compares to an N log N upper
bound of Jacob, Murray and Rubenthaler (2015) for the genealogy of all N leaves. We also
provide scaling expressions for the variance of the number of time steps to the MRCA (see
Corollary 2). Our result applies to the marginal genealogical tree structure, marginalised over
locations and weights of particles.
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The conditions for convergence to the Kingman n-coalescent can be satisfied by SMC
algorithms under strong but standard conditions (18) and (19), used to control the fluctuations
of family sizes. We expect that they can be relaxed, and simulations in Section 3 also suggest
they are not necessary.

Mergers of lineages into common ancestors result in path degeneracy in SMC algorithms.
Quantities of interest depending on times ¢t < T will be estimated using fewer than N par-
ticles, resulting in high variance. Path degeneracy can be reduced by resampling less fre-
quently, but this increases variance across time. The extreme case of no resampling results
in no path degeneracy, but yields estimators whose variances increase exponentially in 7 in
most cases: a phenomenon known as weight degeneracy (Kong, Liu and Wong (1994)). In-
termediate strategies balance these two difficulties (Liu and Chen (1995), Section 4.2). Our
limiting genealogies are the only method of which we are aware that can provide a priori
estimates of path degeneracy, and thus represent an important tool in minimising both degen-
eracies simultaneously. This is particularly important in the conditional SMC update in the
particle Gibbs algorithm (Andrieu, Doucet and Holenstein (2010)), where retaining multiple
trajectories across a fixed time window is essential.

Genealogies of SMC algorithms have found numerous applications, for example, Cérou,
Del Moral and Guyader (2011), Chan and Lai (2013), Del Moral and Miclo (2001, 2007),
Del Moral and Garnier (2005), Del Moral et al. (2010), Lee and Whiteley (2018), Olsson and
Douc (2019); see also Del Moral (2004), Section 3.4 and Del Moral (2013), Chapter 15. Our
explicit description of the limiting genealogical process is new for SMC, and has the poten-
tial to build on any of these works, as well as generate new ones in the IPS and SMC fields.
We also demonstrate that non-Markovian prelimiting genealogies lie in the domain of attrac-
tion of Kingman’s n-coalescent, in contrast with earlier results which assume Markovianity
(Mohle (1998), Theorem 1). This extension is significant since reverse-time genealogies of
Markov IPSs are not Markov processes in general.

The rest of this paper is structured as follows. In Section 2, we state and prove the conver-
gence of genealogies of IPSs to the Kingman n-coalescent. Section 3 presents a simulation
showing that the scalings predicted by our convergence result hold for an example outside
our technical assumptions, and Section 4 concludes with a discussion. An Appendix contains
some technical calculations. We conclude this section by summarising notation.

Let (x)p ;=x(x —1)---(x — b + 1) be the falling factorial. We adopt the conventions
> 5 =0, ][z =1. When a sum is written over a vector of indices, and that vector is of
length O, it should be interpreted as the identity operator; where this convention might hold,
we emphasize it by writing Y *. The statement f(N) = O(g(N)) (resp., o(g(N))) means
limsupy_, o | f(N)/g(N)| < 00, (resp., = 0), and thus corresponds to the usual Landau big-
O (resp., little-o) notation. For an integer n € N, we define [n] := {1, ..., n} with [0] := &,
and for a finite set A, we let I1,(A) denote the set of partitions of A into at most n nonempty
blocks, with I1,(9) := (&, ..., @). For a partition &, |&| denotes the number of blocks in &,
and x := (x1, ..., xn), where the length of the vector will be clear from context. For a vector
x, |x| denotes the L!-norm.

2. The convergence theorem. It will be convenient to express our IPS in reverse time
by denoting the initial time in Algorithm 1 by 7 and the terminal time by 0, and to describe

the genealogy in terms of a partition-valued family of processes (Gt("’N))tT:O indexed by
n < N, where n denotes the number of observed leaves (time O particles) in a system with

N particles. The process (G;n’N))tT:0 is defined in terms of the underlying IPS via its initial

condition Gé"’N) ={{1}, ..., {n}}, and its dynamics, which are driven by the requirement that

i # j € [n] belong to the same block in G,("’N) if leaves i and j have a common ancestor at

time ¢. Boundary problems will be avoided by ensuring that 7 — oo in our rescaled system
as N — oo.



564 KOSKELA, JENKINS, JOHANSEN AND SPANO

REMARK 1. Our genealogical process (G;n’N))tT:0 evolves on a space which tracks the
ancestral relationships of the observed particles but not their states. The process is a projec-
tion of the time reversal of the historical process of Del Moral and Miclo (2001), in which
particle locations have been marginalised over. A consequence of this is that (ng’N))tT:0 is
not Markovian in general. Indeed, Markovianity fails even for the forward-time evolution of
lineages after removing locations. Genealogical processes typically do track locations in the
SMC literature, whereas our marginal formulation is standard in genetics (Mohle (1998)).
Our (G;"’N))ITZO also coincides with the random ancestral forest of Del Moral et al. (2010),
who showed that the combinatorial structure of the reverse-time genealogy decouples from
the particle locations in the case of neutral models (g;(x, y) = 1). Our contribution is to
prove the same decoupling for suitably rescaled nonneutral models in the N — oo limit, and
to identify the limiting process.

Genealogical processes are a powerful tool in population genetics, where the genealogi-
cal tree is viewed as missing data to be imputed, or an object of inference in its own right.
A common large population limit is given by the Kingman n-coalescent (Kingman (1982)),
which is also a partition-valued stochastic process evolving in reverse time. The initial con-
dition is the singleton partition {{1}, ..., {n}}. Each pair of blocks then merges to a common
ancestor independently at rate 1, forming a death process on the total number of blocks with
rate (]5) when there are k blocks. More formally, the generator of the Kingman n-coalescent,
QO = (gen)en, 1s the square matrix with a row and column corresponding to each partition of
[n], and

1 if  can be obtained from & by merging two blocks,

= —('i') ifn=¢,

and O otherwise. The dynamics terminate once the process hits the MRCA, that is, the trivial
partition {{1,...,n}}. See Wakeley (2009) for an introduction to coalescent processes and
their use in population genetics.

Let vt(') denote the number of offspring that particle i at time ¢ has at time ¢ — 1. The
following standing assumption will be central to our results.

Standing assumption: The conditional distribution of parental indices given offspring
counts, a,|v;, is uniform over all vectors which satisfy vt(i) =#{j € [N]: a,(j ) = i} for each
i €[N].

REMARK 2. The standing assumption concerns the marginal distribution of parental
assignments without particle locations. Conditionally uniform assignment given locations
would be much stronger. A sufficient condition for the standing assumption is exchange-
ability of the Resample mechanism in line 6 of Algorithm 1. However, Mohle ((1998),
page 446) provides an example of a nonexchangeable particle system which still satisfies the
standing assumption. For SMC, multinomial and residual resampling can be implemented in
ways which satisfy the standing assumption, and any resampling scheme can be made to sat-
isfy it by applying a uniformly sampled permutation to each realisation of ancestor indices.
This technique was suggested in Andrieu, Doucet and Holenstein (2010), page 290.

Let & and 7 be partitions of [n] with blocks ordered by the least element in each block, and
with 7 obtained from & by merging some subsets of blocks. For i € [|n]], let b; be the number
of blocks of & that have been merged to form block i in 7, so that by + - -- + b = ||, and
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define

(i1) ()
(vf )bl T (Ul ! )bm
i1y =1
all distinct
as the conditional transition probability of the genealogical process from state & at time ¢ —
1 to state n at time ¢, given v; (suppressed from the notation). The interpretation of (1)

as a conditional transition probability of GE"’N) is justified by the standing assumption by
associating offspring with balls, parents with boxes, and merger events with two or more
balls occupying the same box. Finally, let Py(f) = (pg,(t))e,, denote the corresponding
conditional transition probability matrix.

Now let the conditional probability (resp., upper bound on conditional probability) given
v; of two (resp., more than two) lineages at time ¢ — 1 coalescing at time ¢ be denoted by

1 = —
(D Pen () (N

en () ——1 y (v“))
N (N) t )2
N () )]
— l § : J
D= N(N) i=1 2<Vt ];éz )

The interpretations as (upper bounds on) conditional probabilities are justified by the standing
assumption, and Lemma 1 below. For ¢ > 0, let Ty (¢#) be the time change driven by the
random offspring counts

(1) = minis >1:) con(r) > z}.
r=1

REMARK 3. The quantity cy () will play the role of a merger rate between pairs of
particles at time ¢. For multinomial resampling,

N
RSP RS S | ( (M))
Blew@iwl =2 0)" = gege > v U Ve g, oy x01))

i=1

where ESS(#) is the effective sample size of Kong, Liu and Wong (1994), who also justify the
approximation of the random left-hand side by the deterministic right-hand side. The indices
of X;+1 and X, are flipped due to the time reversal described at the top of this section. Thus
the coalescence rate is high when the unnormalised importance weights have high relative
variance and vice versa.

LEMMA 1. Suppose that the standing assumption holds.
Case 1: For any partition & we have the equality

1E1\ GlEl = D(EI—=2) - 3 _
pee()=1— (2) e +O(N73) — ( 5 ){1 + O(N"Hlen ).

Case 2: Let 1 be obtained from & by merging exactly two blocks. Then

-2
en(t) — ('Slz ){1 + O(N")}DN () < pey(®) < {1+ O(N" ") }en ().

Case 3: For any n obtained from & by one or more mergers involving more than two blocks
in total, we have

2
Pen(t) < <|€|2 >{1 +O(N~")}Dn ().
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PROOF. We begin by proving Case 1 by setting & = n in (1). A multinomial expansion
in reverse yields

Pss(t)zﬁ{(év;wyﬂ <|S|>§ (Z:U(J))la—z}
Z%{l <|5| NzZ }

_ 1 GlEl = DI 2)
_1—(2) N +O(N7?)

- ('il)(l + O(N"Yen (),

where the second and third equalities follow from "N vt(’) = N, and from

N/ AL (721 -3
2 =1 — O(N7).
@ (N); +<2)N+<2) 3N2 +0( )
The proof of Case 2 is essentially identical to calculations in Mohle ((1998), pages 442-443)

and is omitted.
For Case 3, we have

& o\ Y Gy Gl
JIE|-2
pen(t) = W (v,l )2 (Z ! J ) _ Z V;“ v, l&|
&1 i=1 DA g2

all distinct

L& o (e (S o)
= — v NBI™2 — v

JF

N (ISIZ— 2) i(vt(n)z <Z vf(k))'g'_“}

J#i ki

N . .
o Z(vt(z))z[wa—z _ (N = D)2

N (I%‘I — 2) i(v,(f’)zNé"“}

JF#

[\

i {|s| )f”N"f'3+<'§'_2)%(v}”)21v'54},
= W i=1 2 )

where we have used the Bernoulli inequality in the last step. The result follows from (2). [

THEOREM 1. Fix n < N as the observed number of particles from the output of an IPS
with N particles, and suppose that the standing assumption holds. Suppose also that for any
0<s <t < oo, we have

N (1)
(3) lim E[ > DN(r):|=O,

N=o0 r=ty(s)+1
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“) NIEHOOIE[CN(t)] =

‘ TN (1) 5
(5) Nh_r)nooE|:r:T§;)+lcN(r) ] =0 and
(6) E[zn (1) — tn(s)] < Ci 5N,

or some constant C; ¢ > 0 that is independent of N. Then (G(H’N))po converges to the
s P (D) 1Z 8
Kingman n-coalescent in the sense of finite-dimensional distributions as N — o0.

REMARK 4. While unbiasedness of resampling, that is, E[v”|w{’] = Nw(”, is part
of the definition of our IPS, it is not required for Theorem 1. The key ingredients are the
symmetry in the standing assumption, and the control over moments of orders up to four

implicit in (3)—(6). Loosely, condition (4) implies that (G (D) )t>0 converges to a continuous-
time process, and together with (5) ensures that binary mergers happen at the required unit
rate. Condition (3) ensures that mergers involving more than two lineages happen on a slower
timescale than binary mergers, and (6) controls the speed with which the convergence in (4)
takes place.

PROOF OF THEOREM 1. Fork>1and 0 < < --- <t < 00, the finite-dimensional
distributions of the process (Gir;g)))t>0 have the form

(n,N) __ (. N) _ (n,N) _
IP)(GTN(H) m,... GTN(fk) nleTN(to) 770)

k N () k
(o], )]
d=1 =ty (t3-1)+1 Nd—1-1d d=1
where 1o, 11, ..., Nk 1s a sequence of partitions in which the blocks of 1, are obtained by
merging some subsets of blocks of ng_1, or ng = ng—1, and where Py(r) is the condi-
tional transition matrix given family sizes defined below (1). The probability associated with
any other sequence of partitions is zero. We will prove the result by bounding these finite-
dimensional distributions both above and below by those of a Kingman n-coalescent.
Consider a transition between ny_1 and 74 at respective times ty(fgz—1) and Ty (Z7).
The corresponding conditional transition probability given offspring counts vy, )+1, .-,
Yy (1) €an be written

N (ta)
X; = Z 1_[ Pe_15 (D),
§eng—1~nq =N (ta—1)+1

where the sum on the right-hand side is over all paths from n4_1 to 4 of the requisite length,
& =Ma—1, &Nty +1s - - - Ery(tg)—1- Ma), Where each successive element of & either equals
its predecessor, or is obtained from its predecessor by merging some subsets of blocks. By
decomposing based on o > 0 (the number of times between 14— and 54 in which mergers
occur), as well as based on whether each merger involves exactly two lineages or more than
two lineages, we can use Lemma 1, Cases 2 and 3 to upper bound the conditional transition
probability given family sizes by

[na—11—1na4l

s Y (+oWwTh)r X

a=1 *, el ([a])

N (ta) _
Z* {1_[ <2>CN(sr)} 1_[ n ( )DN(Sr) s
Sp<-<Sq=tN(tg—1)+1 rex rep
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and x7 <1if o =0, where n" is an upper bound on the number of arrangements of at most
n lineages into at most n mergers. A further expansion shows that the product of k transition
probabilities has the following bound when oy > 1 for each d € [k]:

k
ehvd

d=1

2 (n nk nol—Iml  Imk—1l=Iml
< nn e
el Xy
aj=1 ar=1  (A,pu)ella(lar])
(7) v (1)
lim E *
* );[ (e [ m <Zl>:
ks ek 211 sy < <Say =T (f0)+1

TN (1)

k
50 1T e TT vt
Sik)<"'<Sg;():TN(tk—l)+1 d=1"reirq repd

2 —2lmal o .
here, n" k(g)"k bounds [T4_, (g)lk‘llnmf"”("zz) " using [Ag| + |pa| < n. Transitions in

which any «y = 0 result in a similar bound in which the corresponding factors on the right-
hand side of (7) are replaced by 1. Next, a multinomial expansion in reverse gives

v (ta)

Z* 1_[ cn(sr)

s1<-<Sq=tN(tg_1)+1r=1

1 TN (tq)

o
L e
" s1# A Sa=TN (la—1)+17=1
all distinct

1 v (ta) o 1 {a TN (td) )
:J< > CN(t)> —a(2>( > cN(t))

t=tn (tg—1)+1 t=ty(tg—1)+1

N (ta) a=2
X ( Z cN(t))

t=tN (tg—1)+1

®)

(where we take ((2)) = (;) =0), so that by definition of T (¢),

1 N (tq)

o
LY Tlevw
" s1F e Fsg=TN (ta—1)+1r=1
all distinct

9) 1 N (ta)

<— Z* 1_[ cn(sr)

S50 8a=TN (tg—1)+1r=1

- [ta —ta—1 +cn(Tn (ta))]* - (tg —tg—1 + 1%

9

o! o!

because cy(¢) < 1. Suppose that ;| > 01in (7) for some i € [k]. Using Dy (sr(d)) <cn (s,(d)),

which is clear from

Lo LS, G2
N 2w ) =t

JF#
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for all but one Dy (sr(d))-factor in (7), and substituting in (9), gives

fim E[]k[xg}‘}

N—o0 1

. (n nk nol—Intl  Imk—1l—Inxl
k
<n’1

aj=1 ar=1 (A,pupellr([og])
k —8: v ()
t;—ti_1+ 1 |ag =84 .
Z {l—[(d d—1 8)' thE Z Dy(s) |,
o)€M ([ ) La=1 (g — 8ai)! 7 L=y (ion+1

where §4; = 14— is the Kronecker delta. As for (7), cases for which some oy are 0 can
be handled by a straightforward modification. All sums outside the expectation consist of
a bounded number of terms in N, so (3) guarantees that the contribution of paths with
2521 |/tq| > 0 vanishes in the limit and only isolated, binary mergers can take place.

To describe transitions in which the only mergers that occur are isolated, binary mergers,
we define Q = (gen)ey to be the matrix obtained from Q by setting its diagonal entries to 0.
Note that (Q"f)g,7 is precisely the number of ways of going from £ to n in exactly «o steps,
where a step consists of merging a pair of blocks.

Now consider a transition from ngz_1 to ng at respective times ty(f4—1) and Tx(#7) via
binary mergers, that is, with & = |9g_1| — |74| and A = [¢]. By Lemma 1, Cases 1 and 2, its
conditional probability is bounded by

™ (ta) o
xa = (0%),, (1 4+ O(NTH)*" 2 {H CN(S’)}

sp<-<Sq=TN(tg—1)+1 Ur=1

N (ta) P
= iisi<r B
I I
r=tn(tg—1)+1
TSy r#Sy
where x4 is the restriction of x to trajectories involving only isolated binary mergers. An
expansion of the product on the second line gives

v (ta) .
I :1—(“”1' . <r}‘){1+0(N‘1)}cN<r>}
r=ty(ts—1)+1 2
F#S], ..., I #Sy
N (ta)—TN (ta—1)—
- 3 —DP(1+0(N""))P
B=0

v (ta) B - .
x > I1 ('n‘H' ’{21 o <rj}|)CN(Vj).
ry<--<rg=ty(tg—1)+1 j=1
Viiri#S], e i £Sa
The product of binomial coefficients depends only on the pattern of orderings between times
denoted by {s;}ie[«] and {r;} g, but is otherwise independent of the exact values of the
time points. Hence we have the bound

N () —TN (ta—1)— .
Xd < > 1+ 0o(NTH)P(g)
B=0

Nd—17d
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(10) X 3 lH_('”d—l|—|{i2€lii<r}|)}

A wel([a+BD: A= [ TEH

N (ta) a+pB
X Z 1—[ cy(sp).
§1<-<Sq4+p=TN (tg—1)+1 r=1

Now we can see that

@) X iH (e r”)}

ey ([a+B]:fr|=a | TEH

(1)
= (o)

Nd—1Md
by noting that

A +
Z (Q )nd 1Nd [(]I+ Q)a ‘B]ndflnd
A ella ([a+BD:|Al=a
is the number of discrete time paths of length & + 8 from 14— to ng using o binary mergers
and B identity steps, where I is the identity matrix of the same size as Q. In (11), each identity
step results in multiplication by the corresponding diagonal entry of Q, which justifies the
equality. Substituting (11) into (10) gives
N (tg)—TN (ta—1)— It
— %
Xa = 2. (O ),
B=0
v (ta) atp
X Z l_[ cn(sy).
51 < <Sq+p=TN (tg—1)+1 r=1

Taking a product of k transition probabilities with ag := |ng| — |ng—1] for d € [k], and ex-
panding that product, gives the bound

e o]

N—o0 d—1

< lim E[Z Z (1+ O(N~1))ltI8

N=o0 B1 Br=

(12) .

+
l_[ Py o e ()~ o g Zaa+Ba)

TN (t1) TN (k) k agq+pa
* *
x > > H H
1 k d=1 r=1
sf <. <sél)+ﬂ =1y (t0)+1 s{ )< <s;k)+ﬁk_t1v(tk 1)+1

We show in the Appendix that the hypotheses of the Fubini and dominated convergence
theorems are satisfied, so that the expectation and limit can be passed inside the k-fold infinite
summation over . That leaves

e fs]

N—o0 d=1

Mg

(13) <

00 k
S Mo, ]

p1=0 Br=0ld=1



SEQUENTIAL MONTE CARLO GENEALOGIES 571

k N (1)
X lim ]E|:{ l_[ ]]-{TN(td)TN(ld_l)Z(Xd+ﬂd}} Z
(1)

N—o0
= 1
d=1 5 <'"<S¢§é1)+ﬁ1 =ty (to)+1

TN (k) k ag+pBa J
) [T IT en(s
ka)<"'<s$)+ﬂk =ty (f_)+14=1 7=l

Consider now a generic term in (13) for which HSZI(Q“d*'ﬂd )ia—ina 18 positive, which re-
quires | B8] to be even by (11). We use the penultimate inequality in (9), and expand the result-
ing product to bound such the expectations in (13) by

k N (1)
lim E|:{ H ]l{rN(td)—rN(td_1)ZOld+ﬂd}} Z
(1)

N—o0
d=1 (1
s <..,<sal+ﬁl_‘L’N(to)+l

T (t) k aqg

+Ba
> HHMM}

k k =1 r=
Sl()<"'<Sék)+ﬂk:TN(tk71)+1d Ior=1

g + Ba\ (ta — tg—1)*HFa—ia
= Z Z H ( ) (g + Ba)!

j=0  j=0d=1\ Jd

(14)

(tg — tg—1)%a+Pa
X hm Elcy rN(td)
[ 1:[1 (aa + Ba)!

’

where the last step follows from cy (t) < 1, and from (4). Expansion (8) also yields the lower
bound

TN (td)

> [TenGs)

S1<--<Sq=TN(tg—1)+1r=1

o en (T (ta—1))}”
- o!

N (ta) =2
—tg-1+1
B (3)( Z N (t)z) - o;! : ’

t=1tN (tg—1)+1

meaning that expectations in (13) with odd |B| can be lower bounded by

X TN (t1)
lim EH 1_[ ]l{rN(td)TN(td_l)Zacl+ﬂd}} Z
(1)

N—oo
_ 1
d=1 5 <-~<sél)+ﬁ1=f1v(to)+l

2 [T IT en(ss®

TN (1) k ag+Pa :|
1d=1 r:l

(k) k- _
S <SSy gy TN (tge—1)+

k
> Z E[{ 1_[ ]l{rN(td)—tN(tdl)zotd+,3d}}

A, ez ([k]) d=1
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{ {ta — ta—1 — cN (TN (t4—1))}%d TP }
<111
dei (aa + Ba)!

™~ (1a) it 1)%a+Ba—2
) aver) et

dep t=1y(tg—1)+1

Using the lower bound for terms with a positive sign and upper bound for terms with a
negative sign from

v (t2) v (tq)
0< Z en()? < Z en() < (g —tg—1+1)
t=tN(tg—1)+1 t=ty(tg—1)+1

on all factors d € p apart from one, and then (5), shows that terms with |¢| > O vanish in the
limit, after which an expansion akin to (14) results in

k v (1)
NIEHOOEHE Jl{rN(zd>—rN<rd_1>zad+ﬂd}} ., >

s < <v‘§[l)ﬂ(j =1N(fg)+1

TN (t)

k oq+Ba
(15) > ]‘[ I1 cN(sr(d)):|

k k -
;)< <3;k)+,sk_TN(fk p+1d=l r=l

k
(tg — tg—1)%Tha
z {l_[ lim [E 1_[Jl{rN(rd>—rN<zd_1>zad+ﬂd} .

del (otg + Ba)! N—00

Now, for0 <s <t < oo and o € N, we have

wv(s)+p
{tn@) — v (s) <a) C min{p >1: Z en(r) >t —s] < a}

r=ty(s)+1

p
= min{pzl:ZCN(tN(s)—I—r)Zt—s} <a}

r=1

IN

> en(tn(s) +r) Zt—S},

r=1

and hence
k
A}I_EHOOE[}:[] :U'{TN(fd)_TN(td—l)Zad}:|
(16) >1—lengn P(Z;CN TN (ta—1) +7) > tg — tq— 1)
k o
Z Z lim E[ey(ty(ta—1+71))] =
i1 fd —ld—1 ;] N—o0

where the last two steps follow by Markov’s inequality, and (4). Substituting (14) for terms
in (13) with |B| even, and (15) as well as (16) for terms in (13) with |8| odd, and using the
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fact that (Qf),,d_l,,d =0 for j < ay gives

k ag+pBa
@t (ta — ta—1)
ﬁﬁ%ﬂ“}gz ZhTQ ™ g +

0 ld=1
k
1_[ O(tg—ta— 1)
ﬂd—l’]d’

where the required absolute convergence for the final rearrangement is guaranteed by the
calculation in the Appendix used to bound (12).
In the other direction, Lemma 1, Cases 1 and 2, give the lower bound

TN (ta)

Xd E Z* (Qa)rldflrld

s1<-<Sq=TN(tg_1)+1

[t (oo (75 o v

TN (ta)
(Bn—1(n—2) -
< ] {1_@ {1+ o)

r=ty(tg-1)+1
TF#S] .., T # Sy

- ('"‘Hl - |g s r”)h + O(N_l)}CN(r)}.

A multinomial expansion of the product spanning the last two lines yields

(ta)—tN(ta—1)— _
INUg)—TNg—1)—& (1+0(N 1))ﬂ ~

Xd Z ;32:%) (1+ O(N—2))*+p Q )ﬂd—md

§ 5 {n_<|nd_1|—|{i2e/\:i<r}|>}

(A el (latBl): A= | 71

. ) . v (tg)—tN (ta—1) v (tq)
x|1-— <2> N2 Z
Sl<...<sa+ﬁ=TN(td71)+1

[LTeve) T {even = (" %)+ o iouen

rep rex

for sufficiently large N; and expanding the product over A gives

N (tg)—TN (tg—1)— . n—"2 ||
Xd = Z (Qa)ﬂd—lﬂd Z =_< o) )}

B=0 A u,m)ell3([a+BD):ul=p

A+ oWyt ([ ‘1
X (1+0(N—2))a+ﬁ 2/ N2

N (ta)—TN (ta—1)
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8 ll—[_<|77d—l| — |t ezku:r:i <r}|>=
rep

N (1)
x > {TT extn | TT owtsn:
sl<...<sa+ﬂ=‘[]\](l‘d71)+l rexu remw

Via a further multinomial expansion, the lower bound for the k-step transition probability can
be written as

lim E
N—o0 |:1—[Xd:|
d=1
N (t)—TN (t)

n\2 1 s

> lim E[(l—()—) >
N—o00 2 N2

B1=0

Bk=0 (A1, p1,m) €Mz (e +B1D: 1 1=p1 (e k> wi) €T3 (Lo +Bic D)Lk |[=Br

{ (n 2 2) }25_1 T (1 OV BT
X —
2

(17) (1 4+ O(N~-2))lel+B]

i@ ()

d=1 reg
v (1) TN (T%)
% Z* Z*
stV <zl =tvo+1 s <as® L —tn@ D+
1_[ Jl{rN<rd)—rN(rd_1)zad+ﬁd}{ [1 CN(Sr(d))} [T Dn(s® }
d=1 reiqgUug remng

As for the upper bound, we verify in the Appendix that passing the expectation and the limit
through the infinite sums is justified, whereupon (3), and the argument used to show that
mergers involving more than two lineages cannot happen in the limit, implies that the con-
tribution of terms with ZZZI |7r4| > O vanishes in the limit. Applying (11) to the remaining

terms gives

Jim E[]_[ Xd:| > i : i :ﬁ ) nd—md}

d=1 =0  pr=0\d

2 TN (%) —TN (o)
. n 1
x lim E|[1-— —
N—oo 2 N2

k Ty (t)
X {1_[ ]]‘{TN(fd)_TN(td—l)Zad+/5d}} Z
(])

= 1
d=1 Spo<w <‘So(tl)+ﬂ1:rN(t0)+1
TN (k) k aq+pa J

*
> [T IT en(s®
sPcoas® 0 —ty o +14=1 =1

o +Pk
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Likewise, the expansion (14) applied to terms with negative sign (|8| odd), and (15) applied
to terms with a positive sign (|8] even), followed by (4) and (5) show that

0" (ta — tg—y)%+Pd
hm E[n Xd] /512: Z {H d+ﬁd ’/d—lnd (aq + Ba)! }

d=1 =0ld=1

2 TN (%) —TN (f0)
. n 1
x lim E 1-— —
N—o0 2 ]V2

k

X 1_[ :H‘{TN(td)—TN(ld—l)Ead+13d}j| .
d=1

For terms with even |8], the bound 1 — x < e™* gives the inequality

(B —tn (o)

2
n 1
E (1 — <2> m) H Loy (t) =t (ta—1) =0a+Ba)

d=1

k 2
n\ 1
EH l_[ ]l{fzv(td)—rzv(tdl)zad+ﬂd}} +log (1 — <2) m)
d=1

x [tn () — T (to)]]

Using (16) on the first term and (6) on the second yields
) —tv (o)

2
. n\ 1
ngnooE (1 B (2) F) 1_[ Loy (ta) ~n (ta—1) 2 +Ba)

d=1

2
. n 1
> 1+ ]\Jll—l;nooNCtk’tO 10g (1 — <2> m) =1.

A corresponding upper bound of 1 for terms with odd | 8] is immediate, resulting in the overall
lower bound

(ta — tg—1)%atha

1 B ag+pPa —
1m |:l_[ Xdi| /312: Z[l_[ )nd—lnd (oeg + Ba)!

d=1 0 ld=1

k
H Q(td td— 1)
Wd—lnd’

which again follows from the fact that (Q/),, ,», = 0 for j < ay, and the bound obtained
for (17) in the Appendix. [J

Our next aim is to show that particle filters with multinomial resampling can satisfy (3)-
(6). We define the filtration F; := o (vy; 1 <s <1t) and will make extensive use of Lemma 2,
whose proof is given in the Appendix, and one further preparatory lemma.

LEMMA 2. Forany (0 <s <t < 00,

(1) v (1)
IE|: > cN(r)i|:IE|: > E[CN(r)l]:r_l]]

r=ty(s)+1 r=ty(s)+1
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REMARK 5. It will be clear from the proof that the choice of summand, cy (), is not
special in Lemma 2. Any family of bounded functions depending on family sizes at only a
single time could be substituted, and we will also apply the same result to cy (r)? and Dy (r).

LEMMA 3. Suppose that the kernels K;(x,dx") in Algorithm 1 have respective densities
q:(x, x")dx’, and that

1 /
(18) Cs&(xn ) =a,
(19) eh(x) < qi(x, %) < éh(x/),

for some constants 0 < ¢ <1 < a < 0o, and probability density h(x), uniformly in t as well
as both arguments. Then SMC algorithms with multinomial resampling (i.e., Algorithm 1, for
which the Resample method on line 6 is Algorithm 2) satisfy

C
(20) E[DN ()| Fi-1] < S Elen (1)1 Fizi]
2 G
2D Elen ()71 F-1] < WE[CN(I)U:I—I],
for constants C1, Co > 0 that are independent of N, and
e at
(22) WEE[CN(Z)LE—I]fW-

REMARK 6. Assumptions (18) and (19) are strong, and can only be expected to hold
on compact state spaces. Many rigorous results about SMC require similarly strong assump-
tions, but are robust to violations of them in practice (Cérou, Del Moral and Guyader (2011),
Chopin (2004), Del Moral and Guionnet (2001), Kiinsch (2005), Jacob, Murray and Ruben-
thaler (2015)).

PROOF OF LEMMA 3. Recall that our reverse-time perspective results in SMC algo-
rithms whose time steps progress backwards through time points r + 1,¢,¢ — 1,..., 0. Thus,
for any integrable function f(a;), the forwards-in-time Markov property of SMC algorithms
gives

E[f(at)u:z—l] = E[E[f(at)|xt—1,Wt—1]|-7:t—1]
=E[E[f(at)|at+l,xz+l,Xt,Xz—l,Wt—1]|]:t—l]-

For multinomial resampling, the law with respect to which the inner conditional expectation
is taken is

Pa; = ala; 1, Xo41, X, X1, Wy 1)
i @ @ (@) (@
1 i i
X l_[g,(XH_’I“ X )@ (X X)),
i=1
that is, the entries of a;|a;y1, X;+1, X¢, X¢—1, W;—1 are independent, with

(@)
a; a1, Xeg1, X, X1, Wi

@) a | ~
X (X0 50,

@ LW V) ()
1+1 » Xy )Clt—l(Xt ,Xt_l)),

~ Categorical (g; (X

’vgt(X
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where in this and subsequent uses, the probabilities parametrising categorical distributions
are given up to a normalising constant.

We call a function f [-increasing if it is increasing in ) ;c; |{j € [N]: a(J) =i}| for
I C [N]. A balls-in-bins coupling shows that an /-increasing E[ f(a;)|a;+1, X¢+1, X¢, Xr—1,
w;_1] < E[f(a;)], where a is independent of F,, the entries of a; are independent of each

other, and
~(j) Tuen—1ngn a\ 1iven—Lingn
a; NCategorlcal<< ) Yo (—) >,
€ e

which follows from substituting upper bounds from (18) and (19) for the probabilities corre-
sponding to bins in 7, corresponding lower bounds elsewhere, and canceling common factors.
Writing

N

Y E[fi@)|Fi-1].

i=1

) E[(v"),1Fio1] =

Efen ()| Fi-1] = —— L
lev 1) =5, 2 V)2

noting that f; is {i}-increasing, and using the binomial moment formula,
(23) X ~Bin(N;:p) = E[(X)4]=N)gp?,

which can be found, for example, in Mosimann (1962), applied to v(l) yields

4

aje 2 g
Elen (0171 <WZ( (o) v

Flipping the upper and lower bounds in the argument establishes (22) via

4
(24) Eley (0| Fi-1] = %

To verify (21), we write

Elen ()21 Fi-1]

N
f
[(N>2]2 [(; ) - ‘}
l () () ()
25 ! F E ! INNF_
(25) [(N)z] (Zl PIF- +ZZ ), | F; 1]>

i=1j#i

N
Z{ (0)4 +408), + 201717 1]

1
[(N)z]

+ZE [0 + ), + 40" + )+ 2007 +v7), |ft—1]}’
J#

where the inequality uses [(1)2]? = (V)4 + 4(v)3 + 2(v)2. The first expectation on the right-
hand side is {i }-increasing, and so by (18), (19) and (23),

(N)2a* fa*  4a?
(+7+2)

(26) E[(vt(i))4 +4(Vt(i))3 + Z(Vt(l)) | Fi—1] < “N2eA \ G4 + 2 +2).
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The second is {i, j}-increasing, which gives
E[( (@) + 1)(J)) +4( (@) + v(j)) + 2( (@) + Vt(j)) |]:z—1]
8(N)2a* [2a*  4a®
=ne g Tt
Substituting (26) and (27) into (25) yields

(27)

16a* [a* 24 (&
Elen @\ Fi] = s (% +55 +1) = FElev@17-1),

where the last inequality follows from (24).
Finally, for (20) we write

E[Dn (1) F—1]

1 (z) 0 (z) o)
F E[( F
N<N>z§{ Bl t1+Nj§‘: 7)1 1]
N
(l) i) (l) ()
< s+ 20 F ]+ = Y B[ + v
N(N)zgi SREE ; e

+507 +v) + 400 +01), |]:t—1]}’

where the second line follows from (v)2v% = (V)4 + 5(v)3 +4(v)2. The expectations are {i }-
and {i, j}-increasing, respectively, and so (23) gives

E[( (z)) +2( (z)) \Fi_ 1] (N)Za ( 2+2>,

- N24 g2

E[0 +07)y + 507 +07)y + 40 + 7)1 1]

8(N)pa* 502 24*
SN BTt )
Using (24) then yields
1 ((N)a* (a2 ) 8(N)pa* < 5a% 2a4)}
Dy ()| F, — 42— (24 =+
E[Dy (0)|F 1] < (N)z{ (G +2) + (2 2+

C
< WIE[cN(t)IfH]. 0

COROLLARY 1. Genealogies of n particles from SMC algorithms with multinomial re-
sampling converge to the Kingman n-coalescent in the sense of finite-dimensional distribu-
tions under the time-scaling introduced in Theorem 1 under the conditions of Lemma 3.

PROOF. The standing assumption holds by exchangeability of multinomial resampling.
Condition (4) is immediate by taking expectations in (22).
To verify (5), we use Lemma 2 twice with (21) in between to obtain

v (1) v (1)
E[ > CN(F)2]=E[ > E[cN<r)2|fr_1]}

r=tn(s)+1 r=ty(s)+1

v (1) _
< %E[ > CN(F)} LGzt

r=ty(s)+1 N
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Condition (3) can be checked using (20) via the same argument as for (5):

() 7] ™ (1) _
E[ Y Dy S%E[ > cN(r)}sM.

r=ty(s)+1 . r=ty(s)+1 N
Finally, for (6) we use (22) and Lemma 2 to obtain

W Elen ()1 F-1]
_r:rN(s)—H CN(r)l-Fr 1]

E[‘EN(Z‘) — ‘L'N(S)] =E

} —N(t—s+1)
0

We now demonstrate that while the mode of convergence in Theorem 1 is too weak for
convergence of expectations of continuous, bounded test functions, useful information can
still be obtained. For example, the time until the Kingman n-coalescent reaches its MRCA can
be constructed as 7,, :== >} _, Sk, where the (52, ..., S,) are independent, and Sy ~ Exp(( ))-
Moments of 75 (7;,) give the time scale on which a SMC algorithm will reach its MRCA.

COROLLARY 2. Under the assumptions of Corollary 1, the following bounds hold for
any 1 <n < N, and any coupling of (ty, T,):

264N 2a*N ab

— (1—n"") <E[etn(T)] < (1—n~ )+8—4,
N2%a® (472
Var(‘cN(Tn)) < 8—8<T — 12+ 0(1’1_1)) + O(N),

2.8
Var(ty (1)) = Naif (4% —12+0(n )>

PROOF. By (22), Lemma 2, the definition of 7y, and the fact that

E[ew ()] = E[E[ew () w,]] = iE[(wfi))z] <

we have

Y Elen)IF-11] _ et [0
E[ty(1)] =IEL§ m] < N84EL§ E[CN(S)|.FS_1]:|

at () a* 4 44
=N8—4E|:Z CN(S):| = N8—4{l‘ +]E[CN(‘L'N(I))]} < N8—4(t + _)

s=1 N

A corresponding lower bound of Nre*/a* is obtained via the same argument. Conditioning
on T, in E[tx(T},)], and using E[T,,] =2(1 — n—1 (Wakeley (2009), page 76) establishes the
claimed bounds on the mean.

A similar argument for the variance gives

TN (1) 4 N (1)
Var(ty (1)) = Var( Z M) < Var(]\;—j Z IE[CN(S)|-7:s—1])

* Eley ()| Fo—1] =~

N248 v (1) v (1) 2
=— (15;[ > cN(sl)cN(sg)]—E[ch)} )

s1,82=1 s=1
NZaS 2 12

< ——E[ft +en(mv )] -1 =

&

t+ 0(),
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because taking expectations in (21) shows that E[cy (1)%] = O(N~2). Thus, by the law of
total variance,

Var(ty(T,)) = Var(E[ty (Tn)|T,]) + E[Var(zn (T)1T)]

2.8 12
< —— Var(Ty) + =——E[T,]1+ 0(1)
& &
N2a® /4x? 1
=— (3——n+0m »+0mm

since Var(T},) = 4n? /3 —12+ omn™h (Wakeley (2009), page 76). The other direction is
much simpler since variance is nonnegative:

2.8
Var(ty(T,)) > Var(E[ty (T)|T,]) > pr Var(T,,)
N2e8 r4n2 1

Simulations in the next section confirm that the scalings predicted by Corollary 2 hold for
real algorithms. Strengthening the mode of convergence in Theorem 1 to obtain a wider class
of bounds is a subject of ongoing work.

3. A numerical example. In this section, we study the robustness of Theorem 1 by
demonstrating via simulation that the scalings of Corollary 2 hold nonasymptotically for a
particle system for which (18) and (19) fail. We also show that the same scalings hold for
popular alternatives to multinomial resampling which do not satisfy the standing assumption.

Let (X, Y:);>0 be the discretised Ornstein—Uhlenbeck process:

Xep1 = (1= M) X, + VAg,
Xo~ N(0,1),
Y, X ~ N(X;,0%),
where A > 0 is the step size, o2 is the observation noise and & i N(,1).

We observe a realisation of the trajectory ¥ = y, but not X, and specify a bootstrap particle
filter targeting the smoothing distribution P (x|y) via

—&U%I—Anﬂ)
2A ’
—(i = x/)Z)

202

q(x,x") = p(x,x) == QuA)~1/? exp(
g(x. x) =y (', y) = (2ro?)"/? exp(

12 —x?
px_1,x)=pnx):=Qm)~ / exp(T>,

in Algorithm 1. We set A = o = 0.1, simulated an observed trajectory of length 7' = 40,960,
and used it as the input for bootstrap particle filters with N = 8192, and recorded subtree
heights for uniformly sampled subsets of leaves of size n € {2,4,8, ..., N}. The mean and
variance of tree heights were then estimated from 1000 replicates for each of multinomial,
residual, stratified and systematic resampling, with all four simulations run using the same
observed data and the same random seed. Representative results are shown in Figure 1; results
for filters as small as N = 128 were similar.
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F1G. 1.  Mean (left) and variance (right) of tree heights forn < N.

All depicted moment estimators remain bounded away from 0 and oo as predicted by
Corollary 2, including in the n &~ N regime to which Theorem 1 does not apply. As such, our
simulations suggests that the O (N log N) bound of Jacob, Murray and Rubenthaler (2015)
on the height of the genealogy of all N particles could be sharpened to an O (N) bound.

4. Discussion. We have shown in Theorem 1 that genealogies of SMC algorithms con-
verge, in the sense of finite-dimensional distributions, to the Kingman n-coalescent under a
suitable rescaling of time, and certain assumptions. Thus, we are able to use the tractability
of the Kingman n-coalescent to characterise SMC algorithms as well. We illustrated this in
Corollary 2 by obtaining scaling results for the first two moments of the number of genera-
tions from the leaves to the MRCA. Asymptotic expressions for other quantities, for exam-
ple, the probability of retaining at least two branches for a time window of a desired length
can also be easily obtained. Our method is the only tool for a priori estimation of path degen-
eracy of which we are aware, and represents an important step towards practical guidelines
for simultaneous minimisation of path and weight degeneracies. Strengthening the mode of
convergence in Theorem 1, along the lines of Mohle (1999), Theorem 3.1, would be desirable
to enable the analysis of larger classes of functionals, and is the subject of ongoing work.

Our assumptions essentially require a compact state space and multinomial resampling.
However, the simulation study in Section 3 suggests that neither is necessary: our example did
not satisfy (18) or (19), and a range of resampling methods fit the predictions of Corollary 2.
We believe that our assumptions can be relaxed if subtler arguments are used to control the
variability of family sizes. Our simulations also confirmed that the predicted scalings hold
nonasymptotically, and hence are relevant for real algorithms.

Theorem 1 also demonstrates that the domain of attraction of the Kingman n-coalescent in-
cludes non-Markovian genealogies. Previous results have focused on Markovian genealogies,
which are typical models for neutral genetic evolution (Mohle (1998), Theorem 1). Thus, our
results improve the tractability of models with random but inherited fecundity.

APPENDIX

Here we verify that the Fubini and dominated convergence theorems apply to (12) and (17)
are satisfied, and prove Lemma 2. Taking the modulus of summands on the right-hand side
of (12) and using (9) yields

Jim B[ [T = im, 3 - 3 000

Bi
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ﬁ |Q|0‘d+,3d (tg — tg—1 + 1P
o™ (aq + o

k
— H(elg‘(td_td71+l))nd71nd < 00,

where |Q] is the matrix whose entries are the absolute values of those of @, and the last
equality holds because (|Q1/)y,_,n, =0 for j < ayg.
Similarly, for (17), using Dy (¢) < cpn(t), (9) and (11) gives

o]

d=1

el 1y)lee|+181
d+0WN"Y)
= Jim Z Z( 2 ) (1 + O(N—2))lel+IAl

N—>oo

(tg — ta—1 + 1) P
(aa + Ba)!

k
Old+ﬂd
X }_[1 10l nd—md

Lo\l & 1
=(177) Mo, <o

d=1

PROOF OF LEMMA 2. Define M, := Z£=s+1 cny(@) — Eleny ()| Fr—_1], and for fixed
K > 0 note that Ty () A K is a bounded F;-stopping time. We have

E[MS,‘[N(I)/\K]
K

= Y El(en() = E[en()IFr=1])Lizyi)nk=r}]

r=s+1

K

= Y E[lpyonksr—1)(Elen () = Elen (DI Fr—1]) | Fr-1]] =0,
r=s+1

where the second line holds because 1y )rk>r} = Lizy()AK>r—1) 18 Fr_1-measurable.
Conditioning on Ty (s) and using Ty (s) < Ty (¢) yields

v(AK v ()AK
E[ > cN(r)]=E[ > E[cN(rnfr_l]},

r=ty(s)+1 r=ty(s)+1

and the monotone convergence theorem concludes the proof. [
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