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Lai and Robbins (Adv. in Appl. Math. 6 (1985) 4–22) and Lai (Ann.
Statist. 15 (1987) 1091–1114) provided efficient parametric solutions to the
multi-armed bandit problem, showing that arm allocation via upper confi-
dence bounds (UCB) achieves minimum regret. These bounds are constructed
from the Kullback–Leibler information of the reward distributions, estimated
from specified parametric families. In recent years, there has been renewed
interest in the multi-armed bandit problem due to new applications in ma-
chine learning algorithms and data analytics. Nonparametric arm allocation
procedures like ε-greedy, Boltzmann exploration and BESA were studied,
and modified versions of the UCB procedure were also analyzed under non-
parametric settings. However, unlike UCB these nonparametric procedures
are not efficient under general parametric settings. In this paper, we propose
efficient nonparametric procedures.

1. Introduction. Lai and Robbins (1985) provided an asymptotic lower bound for the
regret in the multi-armed bandit problem, and proposed an index strategy that is efficient,
that is, it achieves this bound. Lai (1987) showed that allocation to the arm having the high-
est upper confidence bound (UCB), constructed from the Kullback–Leibler (KL) information
between the estimated reward distributions of the arms, is efficient when the distributions
belong to a specified exponential family. Agrawal (1995) proposed a modified UCB proce-
dure that is efficient despite not having to know in advance the total sample size. Cappé et al.
(2013) provided explicit, nonasymptotic bounds on the regret of a KL-UCB procedure that is
efficient on a larger class of distribution families.

Burnetas and Katehakis (1996) extended UCB to multi-parameter families, almost show-
ing efficiency in the natural setting of normal rewards with unequal variances. Yakowitz and
Lowe (1991) proposed nonparametric procedures that do not make use of KL-information,
suggesting logarithmic and polynomial rates of regret under finite exponential moment and
moment conditions, respectively.

Auer, Cesa-Bianchi and Fischer (2002) proposed a UCB1 procedure that achieves loga-
rithmic regret when the reward distributions are supported on [0,1]. They also studied the
ε-greedy algorithm of Sutton and Barto (1998) and provided finite-time upper bounds of its
regret. Both UCB1 and ε-greedy are nonparametric in their applications and, unlike UCB-
Lai or UCB-Agrawal, are not expected to be efficient under a general exponential family
setting. Other nonparametric methods that have been proposed include reinforcement com-
parison, Boltzmann exploration (Sutton and Barto (1998)) and pursuit (Thathacher and Sas-
try (1985)). Kuleshov and Precup (2014) provided numerical comparisons between UCB and
these methods. For a description of applications to recommender systems and clinical tri-
als, see Shivaswamy and Joachims (2012). Burtini, Loeppky and Lawrence (2015) provided
a comprehensive survey of the methods, results and applications of the multi-armed bandit
problem, developed over the past 30 years.
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A strong competitor to UCB under the parametric setting is the Bayesian method; see,
for example, Fabius and van Zwet (1970) and Berry (1972). There is also a well-developed
literature on optimization under an infinite-time discounted window setting, in which alloca-
tion is to the arm maximizing a dynamic allocation (or Gittins) index, see the seminal papers
Gittins (1979) and Gittins and Jones (1979), and also Berry and Fristedt (1985), Chang and
Lai (1987), Brezzi and Lai (2002). Recently, there has been renewed interest in the Bayesian
method due to the developments of UCB-Bayes [see Kaufmann, Cappé and Garivier (2012)]
and Thompson sampling [see, e.g., Korda, Kaufmann and Munos (2013)].

In this paper, we propose an arm allocation procedure subsample-mean comparison
(SSMC), that though nonparametric, is nevertheless efficient when the reward distributions
are from an unspecified one-dimensional exponential family. It achieves this by comparing
subsample means of the leading arm with the sample means of its competitors. It is empiri-
cal in its approach, using more informative subsample means rather than full-sample means
alone, for better decision-making. The subsampling strategy was first employed by Baransi,
Maillard and Mannor (2014) in their best empirical sampled average (BESA) procedure.
However, there are key differences in their implementation of subsampling from ours, as will
be elaborated in Section 2.2. Though efficiency has been attained for various one-dimensional
exponential families by say UCB-Agrawal or KL-UCB, SSMC is the first to achieve ef-
ficiency without having to know the specific distribution family. In addition, we propose in
Section 2.4 a related subsample-t comparison (SSTC) procedure, applying t-statistic compar-
isons in place of mean comparisons, that is, efficient for normal distributions with unknown
and unequal variances.

The layout of the paper is as follows. In Section 2, we describe the subsample comparison
strategy for allocating arms. In Section 3, we show that the strategy is efficient for exponen-
tial families, including the setting of normal rewards with unknown and unequal variances.
In Section 4, we show logarthmic regret for Markovian rewards. In Section 5, we provide
numerical comparisons against existing methods. In Section 6, we provide a concluding dis-
cussion. In Section 7, we prove the results of Sections 3 and 4.

2. Subsample comparisons. Let Yk1, Yk2, . . . , 1 ≤ k ≤ K , be the observations (or re-
wards) from a population (or arm) �k . We assume here and in Section 3 that the rewards
are independent and identically distributed (i.i.d.) within each arm. We extend to Markovian
rewards in Section 4. Let μk = EYkt and μ∗ = max1≤k≤K μk .

Consider a sequential procedure for selecting the population to be sampled, with the deci-
sion based on past rewards. Let Nk be the number of observations from �k when there are N

total observations, hence N = ∑K
k=1 Nk . The objective is to minimize the regret

RN :=
K∑

k=1

(μ∗ − μk)ENk.

The Kullback–Leibler information number between two densities f and g, with respect to
a common (σ -finite) measure, is

(2.1) D(f |g) = Ef

[
log

f (Y )

g(Y )

]
,

where Ef denotes expectation with respect to Y ∼ f . An arm allocation procedure is said to
be uniformly good if

(2.2) RN = o
(
Nε) for all ε > 0,

over all reward distributions lying within a specified parametric family.
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Let fk be the density of Ykt and let f∗ = fk for k such that μk = μ∗ (assuming f∗ is
unique). The celebrated result of Lai and Robbins (1985) is that under (2.2) and additional
regularity conditions,

(2.3) lim inf
N→∞

RN

logN
≥ ∑

k:μk<μ∗

μ∗ − μk

D(fk|f∗)
.

Lai and Robbins (1985) and Lai (1987) went on to propose arm allocation procedures that
have regrets achieving the lower bound in (2.3), and are hence efficient.

2.1. Review of existing methods. In the setting of normal rewards with unit variances,
UCB-Lai can be described as the selection, for sampling, �k maximizing

(2.4) Ȳknk
+

√
2 log(N/n)

n
,

where Ȳkt = 1
t

∑t
u=1 Yku, n is the current number of observations from the K populations,

and nk is the current number of observations from �k . Agrawal (1995) proposed a modified
version of UCB-Lai that does not involve the total sample size N , with the selection instead
of the population �k maximizing

(2.5) Ȳknk
+

√
2(logn + log logn + bn)

nk

,

with bn → ∞ and bn = o(logn). Efficiency holds for (2.4) and (2.5), and there are corre-
sponding versions of (2.4) and (2.5) that are efficient for other one-parameter exponential
families. Cappé et al. (2013) proposed a more general KL-UCB procedure that is also effi-
cient for distributions with given finite support.

Auer, Cesa-Bianchi and Fischer (2002) simplified UCB-Agrawal to UCB1, proposing that
�k maximizing

(2.6) Ȳknk
+

√
2 logn

nk

be selected. They showed that under UCB1, logarithmic regret RN = O(logN) is achieved
when the reward distributions are supported on [0,1]. In the setting of normal rewards with
unequal and unknown variances, Auer et al. suggested applying a variant of UCB1 which they
called UCB1-Normal, and showed logarithmic regret. Under UCB1-Normal, an observation
is taken from any population �k with nk < 8 logn. If such a population does not exist, then
an observation is taken from �k maximizing

Ȳknk
+ 4σ̂knk

√
logn

nk

,

where σ̂ 2
kt = 1

t−1
∑t

u=1(Yku − Ȳkt )
2.

Auer et al. provided an excellent study of various nonparametric arm allocation proce-
dures, for example, the ε-greedy procedure proposed by Sutton and Barto (1998), in which
an observation is taken from the population with the largest sample mean with probability
1 − ε, and randomly with probability ε. Auer et al. suggested replacing the fixed ε at every
stage by a stage-dependent

(2.7) εn = min
(

1,
cK

d2n

)
,
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with c user-specified and 0 < d ≤ mink:μk<μ∗(μ∗ − μk). They showed that if c > 5, then
logarithmic regret is achieved for reward distributions supported on [0,1]. A more recent
numerical study by Kuleshov and Precup (2014) considered additional nonparametric proce-
dures, for example, Boltzmann exploration in which an observation is taken from �k with

probability proportional to eȲknk
/τ , for some τ > 0.

2.2. Subsample-mean comparisons. A common characteristic of the procedures de-
scribed in Section 2.1 is that allocation is based solely on a comparison of the sample means
Ȳknk

, with the exception of UCB1-Normal in which σ̂knk
is also utilized. As we shall illustrate

in Section 2.3, we can utilize subsample-mean information from the leading arm to estimate
the confidence bounds for selecting from the other arms. In contrast, UCB-based procedures
like KL-UCB discard subsample information and rely on parametric information to estimate
these bounds. Even though subsample-mean and KL-UCB are both efficient for exponential
families, the advantage of subsample-mean is that the underlying family need not be speci-
fied.

In SSMC a leader is chosen in each round of play to compete against all the other arms.
Let r denote the round number. In round 1, we sample all K arms. In round r for r > 1,
we set up a challenge between the leading arm (to be defined below) and each of the other
arms. An arm is sampled only if it wins all its challenges in that round. Hence, for round
r > 1 we sample either the leading arm or a nonempty subset of the challengers. Let n (= nr )
be the total number of observations from all K arms at the beginning of round r , let nk

(= nr
k) be the corresponding number from �k . Hence, n1

k = 0 and n2
k = 1 for all k, and

K + (r − 2) ≤ nr ≤ K + (K − 1)(r − 2) for r ≥ 2.
Let cn be a nonnegative monotone increasing sampling threshold in SSMC and SSTC,

with

(2.8) cn = o(logn) and
cn

log logn
→ ∞ as n → ∞.

For example in our implementation of SSMC and SSTC in Section 5, we select cn = (logn)
1
2 .

An explanation of why (2.8) is required for efficiency of SSMC is given in the beginning of
Section 7.1. Let Ȳk,t :u = 1

u−t+1
∑u

v=t Ykv , hence Ȳkt = Ȳk,1:t .

Subsample-mean comparison (SSMC).

1. r = 1. Sample each �k exactly once.
2. r = 2,3, . . . .

(a) Let the leader ζ (= ζ r ) be the population with the most observations, with ties re-
solved by (in order):

i. the population with the larger sample mean,
ii. the leader of the previous round,

iii. randomization.

(b) For all k �= ζ set up a challenge between �ζ and �k in the following manner:

i. If nk = nζ , then �k loses the challenge automatically.
ii. If nk < nζ and nk < cn, then �k wins the challenge automatically.

iii. If cn ≤ nk < nζ , then �k wins the challenge when

Ȳknk
≥ Ȳζ,t :(t+nk−1) for some 1 ≤ t ≤ nζ − nk + 1.(2.9)

(c) For all k �= ζ , sample from �k if �k wins its challenge against �ζ . Sample from �ζ

if �ζ wins all its challenges. Hence, either �ζ is sampled, or a nonempty subset of
{�k : k �= ζ } is sampled.
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SSMC may recommend more than one populations to be sampled in a single round when
K > 2. In the event that nr < N < nr+1 for some r , we select N − nr populations randomly
from among the nr+1 − nr recommended by SSMC in the r th round, in order to make up
exactly N observations.

If �ζ wins all its challenges, then ζ and (nk : k �= ζ ) are unchanged, and in the next
round it suffices to perform the comparison in (2.9) at the largest t instead of at every t . The
computational cost is thus O(1). The computational cost is O(r) if at least one k �= ζ wins
its challenge. Hence, when there is only one optimal arm and SSMC achieves logarithmic
regret, the total computational cost is O(r log r) for r rounds of the algorithm.

In step 2(b)ii, we force the exploration of arms with less than cn rewards. By (2.8) we select
cn small compared to logn, so that the cost of such forced explorations is asymptotically
negligible. In contrast the forced exploration in the greedy algorithm (2.7) is more substantial,
of order logn for n rewards.

BESA, proposed by Baransi, Maillard and Mannor (2014), also applies subsample-mean
comparisons. We describe BESA for K = 2 below, noting that tournament-style elimination
is applied for K > 2. Unlike SSMC, exactly one population is sampled in each round r > 1
even when K > 2.

Best Empirical Sampled Average (BESA).

1. r = 1. Sample both �1 and �2.
2. r = 2,3, . . . .

(a) Let the leader ζ be the population with more observations, and let k �= ζ .
(b) Sample randomly without replacement nk of the nζ observations from �ζ , and let

Ȳ ∗
ζnk

be the mean of the nk observations.

(c) If Ȳknk
≥ Ȳ ∗

ζnk
, then sample from �k . Otherwise sample from �ζ .

As can be seen from the descriptions of SSMC and BESA, the mechanism of choosing
the arm to be played in SSMC clearly promotes exploration of nonleading arms, relative to
BESA. Whereas Baransi et al. demonstrated logarithmic regret of BESA for rewards bounded
on [0,1] (though BESA can of course be applied on more general settings but with no such
guarantees), we show in Section 3 that SSMC is able to extend BESA’s subsampling idea
to achieve asymptotic optimality, that is efficiency, on a wider set of distributions. Tables 4
and 5 in Section 5 show that SSMC controls the oversampling of inferior arms better relative
to BESA, due to its added explorations.

2.3. Comparison of SSMC with UCB methods. Lai and Robbins (1985) proposed a UCB
strategy in which the arms take turns to challenge a leader with order n observations. Let us
restrict to the setting of exponential families. Denote the leader by ζ and the challenger by k.
Lai and Robbins proposed, in their (3.1), upper confidence bounds Un

kt = Un
k (Yk1, . . . , Ykt )

satisfying

P
(

min
1≤t≤n

Un
kt ≥ μk − ε

)
= 1 − o

(
n−1)

for all ε > 0.

The decision is to sample from arm k if

Un
knk

≥ Ȳζnζ (
.= μζ ),

otherwise arm ζ is sampled. By doing this we ensure that if μk > μζ , then the probability
that arm k is sampled is 1 − o(n−1).
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We next consider SSMC. Let Lζnk
= min1≤t≤nζ −nk+1 Ȳζ,t :(t+nk−1). Since nζ is of order n,

it follows that if μk > μζ , then as Ykt is stochastically larger than Yζ t ,

P(Lζnk
≤ Ȳknk

) = 1 − o
(
n−1)

.

In SSMC, we sample from arm k if Lζnk
≤ Ȳknk

, ensuring, as in Lai and Robbins, that an
optimal arm is sampled with probability 1 − o(n−1) when the leading arm is inferior.

In summary, SSMC differs from UCB in that it compares Ȳknk
against a lower confidence

bound Lζnk
of the leading arm, computed from subsample-means instead of parametrically.

Nevertheless the critical values that SSMC and UCB-based methods employ for allocating
arms are asymptotically the same, as we shall next show.

For simplicity, let us consider unit variance normal densities with K = 2. Consider first
unbalanced sample sizes with say n2 = O(logn) and note, see Appendix A, that

(2.10) min
1≤t≤n1−n2+1

Ȳ1,t :(t+n2−1) = μ1 − [
1 + op(1)

]√2 logn

n2
.

Hence, arm 2 winning the challenge requires

(2.11) Ȳ2n2 ≥ μ1 − [
1 + op(1)

]√2 logn

n2
.

By (2.5) and (2.6), UCB-Agrawal, KL-UCB and UCB1 also select arm 2 when (2.11) holds,

since Ȳ1n1 +
√

2 logn
n1

= μ1 + op(1). Hence, what SSMC does is to estimate the critical

value μ1 − [1 + op(1)]
√

2 logn
n2

, empirically by using the minimum of the running averages

Ȳ1,t :(t+n2−1). In the case of n1, n2 both large compared to logn,
√

2 logn
n1

+
√

2 logn
n2

→ 0, and
SSMC, UCB-Agrawal, KL-UCB and UCB1 essentially select the population with the larger
sample mean.

2.4. Subsample-t comparisons. For efficiency outside, one-parameter exponential fam-
ilies, we need to work with test statistics beyond sample means. For example, to achieve
efficiency for normal rewards with unknown and unequal variances, the analogue of mean
comparisons is t-statistic comparisons

Ȳknk
− μζ

σ̂knk

≥ Ȳζ,t :(t+nk−1) − μζ

σ̂ζ,t :(t+nk−1)

,

where σ̂ 2
k,t :u = 1

u−t

∑u
v=t (Ykv − Ȳk,t :u)2 and σ̂kt = σ̂k,1:t . Since μζ is unknown, we estimate

it by Ȳζnζ .

Subsample-t comparison (SSTC). Proceed as in SSMC, with step 2(b)iii′ below replac-
ing step 2(b)iii.

iii.′ If cn ≤ nk < nζ , then �k wins the challenge when either Ȳknk
≥ Ȳζnζ or

(2.12)
Ȳknk

− Ȳζnζ

σ̂knk

≥ Ȳζ,t :(t+nk−1) − Ȳζnζ

σ̂ζ,t :(t+nk−1)

for some 1 ≤ t ≤ nζ − nk + 1.

As in SSMC only O(r log r) computations are needed for r rounds when there is only one
optimal arm and the regret is logarithmic. This is because it suffices to record the range of
Ȳζnζ that satisfies (2.12) for each k �= ζ , and the actual value of Ȳζnζ . The updating of these
requires O(1) computations when both ζ and (nk : k �= ζ ) are unchanged.
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3. Efficiency. Consider first an exponential family of density functions

(3.1) f (x; θ) = eθx−ψ(θ)f (x;0), θ ∈ 	,

with respect to some measure ν, where ψ(θ) = log[∫ eθxf (x;0)ν(dx)] is the log mo-
ment generating function and 	 = {θ : ψ(θ) < ∞}. For example the Bernoulli family sat-
isfies (3.1) with ν the counting measure on {0,1} and f (0;0) = f (1;0) = 1

2 . The fam-
ily of normal densities with variance σ 2 satisfies (3.1) with ν the Lebesgue measure and
f (x;0) = 1

σ
√

2π
e−x2/(2σ 2).

Let fk = f (·; θk) for some θk ∈ 	, 1 ≤ k ≤ K . Let θ∗ = max1≤k≤K θk and f∗ = f (·; θ∗).
By (2.1) and (3.1), the KL-information in (2.3),

D(fk|f∗) =
∫ {

(θk − θ∗)x − [
ψ(θk) − ψ(θ∗)

]}
f (x; θk)ν(dx)

= (θk − θ∗)μk − [
ψ(θk) − ψ(θ∗)

] = I∗(μk),

where I∗ is the large deviations rate function of f∗. Let � = {
 : μ
 = μ∗} be the set of
optimal arms.

THEOREM 1. For the exponential family (3.1), SSMC satisfies

(3.2) lim sup
r→∞

Enr
k

log r
≤ 1

D(fk|f∗)
, k /∈ �,

and is thus efficient.

UCB-Agrawal and KL-UCB are efficient as well for (3.1), see Agrawal (1995) and Cappé
et al. (2013), SSMC is unique in that it achieves efficiency by being adaptive to the expo-
nential family, whereas UCB-Agrawal and KL-UCB achieve efficiency by having selection
procedures that are specific to the exponential family. On the other hand UCB-based meth-
ods require less storage space, and more informative finite-time bounds have been obtained.
Specifically for UCB-based methods in exponential families we need only store the sample
mean for each arm, and the numerical complexity is of the same order as the sample size. For
SSMC as given in Section 2.3, all observations are stored (more of this in Section 6) and the
numerical complexity for a sample of size N is N logN when we have efficiency and exactly
one optimal arm.

We next consider normal rewards with unequal and unknown variances, that is with den-
sities

(3.3) f
(
x;μ,σ 2) = 1

σ
√

2π
e
− (x−μ)2

2σ2 ,

with respect to Lebesgue measure. Let M(g) = 1
2 log(1+g2). Burnetas and Katehakis (1996)

showed that if fk = f (·;μk,σ
2
k ), then under uniformly fast convergence and additional reg-

ularity conditions, an arm allocation procedure must have regret RN satisfying

lim inf
N→∞

RN

logN
≥ ∑

k:μk<μ∗

μ∗ − μk

M(
μ∗−μk

σk
)
.

They proposed an extension of UCB-Lai but needed the verification of a technical condition
to show efficiency. In the case of UCB1-Normal, logarithmic regret also depended on tail
bounds of the χ2- and t-distributions that were only shown to hold numerically by Auer,
Cesa-Bianchi and Fischer (2002). In Theorem 2, we show that SSTC achieves efficiency.
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THEOREM 2. For normal densities (3.3) with unequal and unknown variances, SSTC
satisfies

lim sup
r→∞

Enr
k

log r
≤ 1

M(
μ∗−μk

σk
)
, k /∈ �,

and is thus efficient.

4. Logarithmic regret. We show here that logarithmic regret can be achieved by SSMC
under Markovian assumptions. This is possible because in SSMC we compare blocks of
observations that retain the Markovian structure.

For 1 ≤ k ≤ K , let Xk1,Xk2, . . . be a potentially unobserved X -valued Markov chain, with
σ -field A and transition kernel

(4.1) Pk(x,A) = P(Xkt ∈ A|Xk,t−1 = x), x ∈ X ,A ∈ A.

We shall assume for convenience that (Xkt )t≥1 is stationary. Let Yk1, Yk2, . . . be real-valued
and conditionally independent given (Xkt )t≥1, and having conditional densities {fk(·|x) : 1 ≤
k ≤ K,x ∈X }, with respect to some measure ν, such that

P(Ykt ∈ B|Xk1 = x1,Xk2 = x2, . . .) =
∫
B

fk(y|xt )ν(dy).

We assume that the K Markov chains are independent, and that the following Doeblin-type
condition holds.

(C1) For 1 ≤ k ≤ K , there exists a nontrivial measure λk on (X ,A) such that

Pk(x,A) ≥ λk(A), x ∈X ,A ∈ A.

As before let μk = EYkt , μ∗ = max1≤k≤K μk and the regret

RN = ∑
k:μk<μ∗

(μ∗ − μk)ENk.

In addition to (C1), we assume the following sample mean large deviations.
(C2) For any ε > 0, there exists b(= bε) > 0 and Q(= Qε) > 0 such that for 1 ≤ k ≤ K

and t ≥ 1,

(4.2) P
(|Ȳkt − μk| ≥ ε

) ≤ Qe−tb.

(C3) For k such that μk < μ∗ and 
 such that μ
 = μ∗, there exists b1 > 0, Q1 > 0 and
t1 ≥ 1 such that for ω ≤ μk and t ≥ t1,

(4.3) P(Ȳ
t < ω) ≤ Q1e
−tb1P(Ȳkt < ω).

THEOREM 3. For Markovian rewards satisfying (C1)–(C3), SSMC achieves Enr
k =

O(log r) for k /∈ �, hence RN = O(logN).

Agrawal, Teneketzis and Anantharam (1989) and Graves and Lai (1997) considered con-
trol problems in which, instead of (4.1) with K Markov chains, there are K arms with each
arm representing a distinct Markov transition kernel acting on the same chain. Tekin and Liu
(2010) on the other hand considered (4.1), with the constraints that X is finite and fk(·|x) is a
point mass function for all k and x. They provided a UCB algorithm that achieves logarithmic
regret.
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We can apply Theorem 3 to show logarithmic regret for i.i.d. rewards on nonexponential
parametric families. Lai and Robbins (1985) showed that for the double exponential (DE)
densities

(4.4) fk(y) = 1

2τ
e−|y−μk |/τ ,

with τ > 0, efficiency is achieved by a UCB strategy involving KL-information of the DE
densities, hence implementation requires knowledge that the family is DE, including know-
ing τ . In Example 1 below, we state logarithmic regret, rather than efficiency, for SSMC.
The advantage of SSMC is that we do not assume knowledge of (4.4) in its implementation.
Verifications of (C1)–(C3) under (4.4) is given in Appendix B.

EXAMPLE 1. For the double exponential densities (4.4), conditions (C1)–(C3) hold,
hence under SSMC, Enr

k = O(log r) for k /∈ �.

5. Numerical studies. We compare SSMC and SSTC against procedures described in
Section 2.1, as well as more modern procedures like BESA, KL-UCB, UCB-Bayes and
Thompson sampling. The reader can refer to Chapters 1–3 of Kaufmann (2014) for a de-
scription of these procedures. In Examples 2 and 3, we consider normal rewards and the
comparisons are against procedures in which either efficiency or logarithmic regret has been
established. In Example 4, we consider double exponential rewards and there the comparisons
are against procedures that have been shown to perform well numerically. In Examples 5–7,
we perform comparisons under the settings of Baransi, Maillard and Mannor (2014).

In the simulations done here, J = 10,000 datasets are generated for each N , and the regret
of a procedure is estimated by averaging over

∑K
k=1(μ∗ −μk)Nk . Standard errors are located

after the ± sign. In Examples 5–7, we reproduce simulation results from Baransi, Maillard
and Mannor (2014). Though no standard errors are provided, they are likely to be small given
that a larger J = 50,000 number of datasets are generated there.

EXAMPLE 2. Consider Ykt ∼ N(μk,1), 1 ≤ k ≤ 10. In Table 1 we see that SSMC im-
proves upon UCB1 and outperforms UCB-Agrawal [setting bn = log log logn in (2.5)]. Here
we generate μk ∼ N(0,1) in each dataset.

EXAMPLE 3. Consider Ykt ∼ N(μk, σ
2
k ), 1 ≤ k ≤ 10. We compare SSTC against UCB1-

tuned and UCB1-Normal. UCB1-tuned was suggested by Auer et al. and shown to perform
well numerically. Under UCB1-tuned the population �k maximizing

Ȳknk
+

√
logn

nk

min
(

1

4
,Vkn

)
,

TABLE 1
The regrets of SSMC, UCB1 and UCB-Agrawal. The rewards have normal
distributions with unit variances. For each N we generate μk ∼ N(0,1)

for 1 ≤ k ≤ 10 a total of J = 10,000 times

Regret

N = 1000 N = 10,000

SSMC 88.4 ± 0.2 137.0 ± 0.5
UCB1 90.2 ± 0.3 154.4 ± 0.7
UCB-Agrawal 113.0 ± 0.3 195.7 ± 0.8
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TABLE 2
The regrets of SSTC, UCB1-tuned and UCB1-Normal. The rewards have

normal distributions with unequal and unknown variances. For each N we
generate μk ∼ N(0,1) and σ−2

k ∼ Exp(1) for 1 ≤ k ≤ 10 a total of
J = 10,000 times

Regret

N = 1000 N = 10,000

SSTC 239 ± 1 492 ± 5
UCB1-tuned 130 ± 2 847 ± 23
UCB1-Normal 1536 ± 5 4911 ± 31

where Vkn = σ̂ 2
knk

+
√

2 logn
nk

, is selected. In Table 2, we see that UCB1-tuned is significantly
better at N = 1000 whereas SSTC is better at N = 10,000. UCB1-Normal performs quite
poorly. Here we generate μk ∼ N(0,1) and σ−2

k ∼ Exp(1) in each dataset.

Kaufmann, Cappé and Garivier (2012) performed simulations under the setting of normal
rewards with unequal variances, with (μ1, σ1) = (1.8,0.5), (μ2, σ2) = (2,0.7), (μ3, σ3) =
(1.5,0.5) and (μ4, σ4) = (2.2,0.3). They showed that UCB-Bayes achieves regret of about
28 at N = 1000 and about 47 at N = 10,000. We apply SSTC on this setting, achieving
regrets of 26.0 ± 0.1 at N = 1000 and 43.3 ± 0.2 at N = 10,000.

EXAMPLE 4. Consider double exponential rewards Ykt ∼ fk , with densities

fk(y) = 1

2λ
e−|y−μk |/λ, 1 ≤ k ≤ 10.

We compare SSMC against UCB1-tuned, BESA, Boltzmann exploration and ε-greedy. For
ε-greedy we consider εn = min(1, 3c

n
). We generate μk ∼ N(0,1) in each dataset.

Table 3 shows that UCB1-tuned has the best performances at N = 1000, whereas SSMC
has the best performances at N = 10,000. BESA does well for λ = 2 at N = 1000, and also
for λ = 5 at N = 10,000. A properly-tuned Boltzmann exploration does well at N = 1000
for λ = 2, whereas a properly-tuned ε-greedy does well at λ = 2 and 5 for N = 1000 and at
λ = 5 for N = 10,000.

In Tables 4 and 5, we tabulate the frequencies of the empirical regrets
∑K

k=1(μ∗ − μk)Nk

over the J = 10,000 simulation runs each for N = 1000 and 10,000, at λ = 1, for SSMC,
BESA and UCB1-tuned. Tha tables show that SSMC has the best control of excessive sam-
pling of inferior arms, the worst empirical regret being less than half that of BESA and UCB1-
tuned.

EXAMPLE 5. Consider N = 20,000 Bernoulli rewards under the following scenarios:

1. μ1 = 0.9, μ2 = 0.8.
2. μ1 = 0.81, μ2 = 0.8.
3. μ2 = 0.1, μ2 = μ3 = μ4 = 0.05, μ5 = μ6 = μ7 = 0.02, μ8 = μ9 = μ10 = 0.01.
4. μ1 = 0.51, μ2 = · · · = μ10 = 0.5.

When comparing the simulated regrets in Table 6, it is useful to remember that BESA
and SSMC are nonparametric, using the same procedures even when the rewards are not
Bernoulli, whereas KL-UCB and Thompson sampling utilize information on the Bernoulli
family. SSMC∗ is a variant of SSMC, see Section 6, with more moderate levels of explo-
rations.
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TABLE 3
Regret comparisons for double exponential density rewards. For each N and λ we generate μk ∼ N(0,1) for

1 ≤ k ≤ 10 a total of J = 10,000 times

Regret Regret (×10)

N = 1000 N = 10,000

λ = 1 λ = 2 λ = 5 λ = 1 λ = 2 λ = 5

SSMC 141.7 ± 0.4 330 ± 1 795 ± 3 23.6 ± 0.1 65.0 ± 0.3 236.9 ± 0.8
BESA 117 ± 1 265 ± 2 627 ± 3 28.9 ± 0.7 73 ± 1 215 ± 2
UCB1-tuned 101 ± 2 244 ± 3 608 ± 6 50 ± 1 183 ± 3 499 ± 6

Boltz τ = 0.1 130 ± 2 294 ± 4 673 ± 7 84 ± 2 224 ± 4 557 ± 6
0.2 128 ± 2 264 ± 3 632 ± 6 80 ± 1 169 ± 3 465 ± 6
0.5 332 ± 1 387 ± 2 632 ± 5 310 ± 5 311 ± 2 428 ± 4
1 728 ± 2 737 ± 2 816 ± 4 731 ± 2 716 ± 2 712 ± 3

ε-greedy c = 0.1 170 ± 3 327 ± 4 681 ± 7 133 ± 3 283 ± 4 579 ± 7
0.2 162 ± 3 312 ± 4 653 ± 6 114 ± 2 251 ± 4 536 ± 6
0.5 150 ± 2 282 ± 3 604 ± 6 82 ± 2 189 ± 3 444 ± 5
1 159 ± 2 271 ± 3 569 ± 5 61 ± 1 146 ± 3 370 ± 5
2 200 ± 1 289 ± 2 559 ± 4 52.9 ± 0.9 113 ± 2 302 ± 4
5 334 ± 1 396 ± 2 617 ± 4 63.4 ± 0.5 101 ± 1 241 ± 3
10 524 ± 2 567 ± 2 742 ± 3 95.7 ± 0.4 119.5 ± 0.8 226 ± 2
20 811 ± 3 839 ± 3 951 ± 3 156.9 ± 0.5 172.1 ± 0.7 251 ± 2

TABLE 4
Number of simulations (out of 10,000) lying within a given empirical regret range, and the worst empirical

regret, when N = 1000 and λ = 1

Frequency of emp. regrets
lying within a given range

0 200 400 600 800 1000 1200
to to to to to to to Worst

200 400 600 800 1000 1200 2100 emp. regret

SSMC 9134 845 16 5 0 0 0 770
BESA 9314 424 143 66 27 15 11 2089
UCB1-tuned 8830 625 301 132 64 32 16 1772

TABLE 5
Number of simulations (out of 10,000) lying within a given empirical regret range, and the worst empirical

regret, when N = 10,000 and λ = 1

Frequency of emp. regrets
lying within a given range

0 1000 2000 3000 4000 5000 10,000
to to to to to to to Worst

1000 2000 3000 4000 5000 10,000 21,000 emp. regret

SSMC 9988 8 3 0 0 1 0 6192
BESA 9708 125 59 34 25 40 9 20,639
UCB1-tuned 8833 365 250 161 122 225 44 16,495
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TABLE 6
Regret comparisons for Bernoulli rewards

Scenario

1 2 3 4

SSMC 12.4 ± 0.1 43.1 ± 0.4 97.9 ± 0.2 165.3 ± 0.2
SSMC∗ 9.5 ± 0.2 48.5 ± 0.6 64.4 ± 0.3 156.0 ± 0.4

BESA 11.83 42.6 74.41 156.7
KL-UCB 17.48 52.34 121.21 170.82
KL-UCB+ 11.54 41.71 72.84 165.28
Thompson 11.3 46.14 83.36 165.08

EXAMPLE 6. Consider truncated exponential and Poisson distributions with N =
20,000. For truncated exponential, we consider Ykt = min(Xkt

10 ,1), where Xkt
i.i.d.∼ Exp(λk)

(density λke
−λkx) with λk = 1

k
, 1 ≤ k ≤ 5. For truncated Poisson, we consider Ykt =

min(Xkt

10 ,1), where Xkt
i.i.d.∼ Poisson(λk), with λk = 0.5 + k

3 , 1 ≤ k ≤ 6. The simulation re-
sults are given in Table 7. BESAT is a variation of BESA that starts with 10 observations
from each population.

EXAMPLE 7. Consider K = 2 and N = 20,000 with Y1t
i.i.d.∼ Uniform(0.2,0.4) and

Y2t
i.i.d.∼ Uniform(0,1). Here SSMC underperforms with regret of 163 ± 7 compared to

Thompson sampling, which has regret of 13.18. On the other hand SSTC, by normalizing
the different scales of the two uniform distributions, is able to achieve the best regret of 2.9 ±
0.2.

6. Discussion. Together with BESA, the procedures SSMC and SSTC that we introduce
here form a class of nonparametric procedures that differ from traditional nonparametric pro-
cedures, like ε-greedy and Boltzmann exploration, in their recognition that when deciding
between which of two populations to be sampled, samples or subsamples of the same rather
than different sizes should be compared. Among the parametric procedures, Thompson sam-
pling fits most with this scheme.

As mentioned earlier, in SSMC (and SSTC), when the leading population �ζ in the pre-
vious round is sampled, essentially only one additional comparison is required in the current
round between �ζ and �k for k �= ζ . On the other hand when there are n rewards, an order n

comparisons may be required between �ζ and �k when �k wins in the previous round. It is

TABLE 7
Regret comparisons for truncated exponential and Poisson rewards

Trunc. expo. Trunc. Poisson

SSMC 33.8 ± 0.4 18.6 ± 0.1
SSMC∗ 29.6 ± 0.7 14.7 ± 0.2

BESA 53.26 19.37
BESAT 31.41 16.72
KL-UCB-expo 65.67 –
KL-UCB-Poisson – 25.05
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these added comparisons that, relative to BESA, allows for faster catching-up of a potentially
undersampled optimal arm. Tables 4 and 5 show the benefits of such added explorations in
minimizing the worst-case empirical regret.

To see if SSMC still works well if we moderate these added explorations, we experimented
with the following variation of SSMC in Examples 6 and 7. The numerical results indicate
improvements.

SSMC∗ . Proceed as in SSMC, with step 2(b)iii replaced by the following:

2(b)iii′ If cn ≤ nk < nζ , then �k wins the challenge when

Ȳknk
≥ Ȳζ,t :(t+nk−1) for some t = 1 + unk,0 ≤ u ≤

⌊
nζ

nk

⌋
− 1.

In contrast to SSMC, in SSMC∗ we partition the rewards of the leading arm into groups of
size nk for comparisons instead of reusing the rewards in moving-averages. In principle, the
members of the group need not be consecutive in time, thus allowing for the modifications of
SSMC∗ to provide storage space savings when the support of the distributions is finite. That
is, rather than to store the full sequence, we simply store the number of occurrences at each
support point, and generate a new (permuted) sequence for comparisons whenever necessary.
Likewise in BESA, there is substantial storage space savings for finite-support distributions
by storing the number of occurrences at each support point.

7. Proofs of Theorems 1–3. Since SSMC and SSTC are index-blind, we may assume
without loss of generality that μ1 = μ∗. We provide here the statements and proofs of sup-
porting Lemmas 1 and 2, and follow up with the proofs of Theorems 1–3 in Sections 7.1–7.3.
We denote the complement of an event D by D̄, let �·
 and �·� denote the greatest and least
integer function respectively, and let |A| denote the number of elements in a set A.

Let nr
k (= nk) be the number of observations from �k at the beginning of round r . Let

nr(= n) = ∑K
k=1 nr

k . Let nr∗ = max1≤k≤K nr
k . Let

� = {
 : μ
 = μ∗} be the set of optimal arms,

ζ r (= ζ ) the leader at the beginning of round r(≥ 2).

More specifically, let

Zr = {
k : nr

k = nr∗
}
,

Zr
1 = {


 ∈ Zr : Ȳ
nr


≥ Ȳknr

k
for all k ∈ Zr}.

If ζ r−1 ∈ Zr
1 , then ζ r = ζ r−1. Otherwise the leader ζ r is selected randomly (uniformly) from

Zr
1 . In particular if Zr

1 has a single element, then that element must be ζ r . For r ≥ 2, let

Ar = {
ζ r /∈ �

} = {leader at round r is inferior}.
We restrict to r ≥ 2 because the leader is not defined at r = 1. Likewise in our subsequent
notations on events Br , Cr , Dr , Gr

k and Hr
k , we restrict to r ≥ 2.

In Lemma 1 below, the key ingredient leading to (7.3) is condition (I) on the event Gr
k ,

which says that it is difficult for an inferior arm k with at least (1 + ε)ξk log r rewards to win
against a leading optimal arm ζ . In the case of exponential families we show efficiency by
verifying (I) with ξk = 1

I1(μk)
. Condition (II), on the event Hr

k , says that analogous winnings
from an inferior arm k with at least Jk log r rewards, for Jk large, are asymptotically negli-
gible. Condition (III) limits the number of times an inferior arm is leading. This condition
is important because Gr

k and Hr
k refer to the winning of arm k when the leader is optimal,

hence the need, in (III), to bound the event probability of an inferior leader.
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LEMMA 1. Let k /∈ � (i.e., k is not an optimal arm) and define

Gr
k = {

ζ s ∈ �,ns+1
k = ns

k + 1,
(7.1)

ns
k ≥ (1 + ε)ξk log r for some 2 ≤ s ≤ r − 1

}
,

H r
k = {

ζ s ∈ �,ns+1
k = ns

k + 1,
(7.2)

ns
k ≥ Jk log r for some 2 ≤ s ≤ r − 1

}
,

for some ε > 0, ξk > 0 and Jk > 0. Consider the following conditions:

(I) There exists ξk > 0 such that for all ε > 0, P(Gr
k) → 0 as r → ∞.

(II) There exists Jk > 0 such that P(Hr
k ) = O(r−1) as r → ∞.

(III) P(Ar) = o(r−1) as r → ∞.

Under (I)–(III),

(7.3) lim sup
r→∞

Enr
k

log r
≤ ξk.

PROOF. Consider r ≥ 3. Let br = 1 + (1 + ε)ξk log r and dr = 1 + Jk log r . Under the
event Ḡr

k , arm k in round s ∈ [2, r − 1] is sampled to a size beyond br only when ζ s /∈ � (i.e.,
under the event As ). In view that n2

k = 1 (< br ), it follows that

nr
k ≤ br +

r−1∑
s=2

1As .

Hence

(7.4) nr
k1Ḡr

k
≤ br +

r−1∑
s=2

1As .

Similarly, under the event H̄ r
k ,

nr
k ≤ dr +

r−1∑
s=2

1As .

Hence

(7.5) nr
k1(Gr

k\Hr
k ) ≤ dr1Gr

k
+

r−1∑
s=2

1As .

Since nr
k ≤ r , by (7.4) and (7.5),

Enr
k = E

(
nr

k1Gr
k∩Hr

k

) + E
(
nr

k1(Gr
k\Hr

k )

) + E
(
nr

k1Ḡr
k

)
≤ rP

(
Hr

k

) +
[
drP

(
Gr

k

) +
r−1∑
s=2

P
(
As)] +

[
br +

r−1∑
s=2

P
(
As)].

(7.6)

By (III),
∑r

s=2 P(As) = o(log r), therefore by (7.6), (I) and (II),

lim sup
r→∞

Enr
k

log r
≤ (1 + ε)ξk.

We can thus conclude (7.3) by letting ε → 0. �

The verification of (III) is made easier by Lemma 2 below. To provide intuitions for the
reader, we sketch its proof first before providing the details.
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LEMMA 2. Let

Bs = {
ζ s ∈ �,ns+1

k = ns
k + 1, ns

k = ns
ζ − 1 for some k /∈ �

}
,

Cs = {
ζ s /∈ �,ns+1


 = ns

 for some 
 ∈ �

}
.

If as s → ∞,

P
(
Bs) = o

(
s−2)

,(7.7)

P
(
Cs) = o

(
s−1)

,(7.8)

then P(Ar) = o(r−1) as r → ∞.

SKETCH OF PROOF. Note that (7.7) bounds the probability of an inferior arm taking the
leadership from an optimal leader in round s + 1, whereas (7.8) bounds the probability of an
inferior leader winning against an optimal challenger in round s. Let s0 = � r

4
 and for r ≥ 8,
let

Dr = {
ζ s ∈ � for some s0 ≤ s ≤ r − 1

}
= {the leader is optimal for some rounds between s0 to r − 1}.

Under Ar ∩ Dr , there is a leadership takeover by an inferior arm at least once between
rounds s0 + 1 and r . More specifically, let s1 be the largest s ∈ [s0, r − 1] for which ζ s ∈ �.
If s1 < r − 1, then by the definition of s1, ζ s1+1 /∈ �. If s1 = r − 1, then since we are under
Ar , ζ s1+1 = ζ r /∈ �. In summary

Ar ∩ Dr = {
ξ s ∈ � for some s0 ≤ s ≤ r − 1, ζ r /∈ �

}
⊂

r−1⋃
s=s0

{
ζ s ∈ �,ζ s+1 /∈ �

}
.

(7.9)

By showing that

(7.10)
{
ζ s ∈ �,ζ s+1 /∈ �

} ⊂ Bs,

we can conclude from (7.7) and (7.9) that

(7.11) P
(
Ar ∩ Dr) ≤

r−1∑
s=s0

P
(
Bs) = o

(
rs−2

0

) = o
(
r−1)

.

To see (7.10), recall that by step 2(b)i of SSMC or SSTC, if the (optimal) leader and (inferior)
challenger have the same sample size, then the challenger loses by default. The tie-breaking
rule then ensures that the challenger is unable to take over leadership in the next round. Hence
for ζ s to lose leadership to an inferior arm k in round s + 1, it has to lose to arm k when arm
k has exactly ns

ζ − 1 observations.
What (7.11) says is that if at some previous round s ≥ s0 the leader is optimal, then (7.7)

makes it difficult for an inferior arm to take over leadership during and after round s, so the
leader is likely to be optimal all the way from rounds s to r . The only situation we need to
guard against is D̄r , the event that leaders are inferior for all rounds between s0 and r −1. Let
#r = ∑r−1

s=s0
1Cs be the number of rounds an inferior leader wins against at least one optimal

arm. In (7.13) we show that by (7.8), the optimal arms will, with high probability, lose less
than r

4 times between rounds s0 and r − 1 when the leader is inferior.
We next show that

(7.12) D̄r ⊂
{

#r ≥ r

4

}
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(or {#r < r
4} ⊂ Dr ), that is, if the optimal arms lose this few times, then one of them has to

be a leader at some round between s0 to r − 1. Lemma 2 follows from (7.11)–(7.13). �

PROOF OF LEMMA 2. Consider r ≥ 8. By (7.8),

E
(
#r) =

r−1∑
s=s0

P
(
Cs) = o

(
rs−1

0

) → 0,

hence, by Markov’s inequality,

(7.13) P

(
#r ≥ r

4

)
≤ E(#r )

r/4
= o

(
r−1)

.

It remains for us to show (7.12). Assume D̄r . Let ms = ns
ζ − max
∈� ns


. Observe that

ns+1
ζ = ns

ζ if ns+1

 = ns


 + 1 for some 
 �= ζ s . This is because the leader ζ s is not sampled if
it loses at least one challenge. Moreover by step 2(b)i of SSMC or SSTC, all arms with the
same number of observations as ζ s are not sampled. Therefore if ζ s /∈ � and ns+1


 = ns

 + 1

for all 
 ∈ �, that is, if all optimal arms win against an inferior leader, then ms+1 = ms − 1.
In other words,

(7.14) F s := {
ζ s /∈ �,ns+1


 = ns

 + 1 for all 
 ∈ �

} ⊂ {
ms+1 = ms − 1

}
.

Since ms+1 ≤ ms + 1, it follows from (7.14) that ms+1 ≤ ms + 1 − 21Fs . Therefore

mr ≤ ms0 + (r − s0) − 2
r−1∑
s=s0

1Fs ,

and since mr ≥ 0 and ms0 ≤ s0, we can conclude that

(7.15)
r−1∑
s=s0

1Fs ≤ r

2
.

Under D̄r , 1Cs = 1 − 1Fs for s0 ≤ s ≤ r − 1, and it follows from (7.15) that

#r ≥ (r − s0) − r

2
≥ r

4
,

and (7.12) indeed holds. �

7.1. Proof of Theorem 1. We consider here SSMC. Equation (7.7) follows from Lemma 4
below and cr = o(log r) whereas (7.8) follows from Lemma 5 and cr

log log r
→ ∞. We can thus

conclude P(Ar) = o(r−1) from Lemma 2, and together with the verification in Lemma 6 of
(I), see Lemma 1, for ξk = 1/I1(μk) and (II) for Jk large, we can conclude Theorem 1.

The proofs of Lemmas 4–6 use large deviations Chernoff bounds that are given below
in Lemma 3. They can be shown using change-of-measure arguments. Let Ik be the large
deviations rate function of fk .

LEMMA 3. Under (3.1), if 1 ≤ k ≤ K , t ≥ 1 and ω = ψ ′(θ) for some θ ∈ 	, then

P(Ȳkt ≥ ω) ≤ e−tIk(ω) if ω > μk,(7.16)

P(Ȳkt ≤ ω) ≤ e−tIk(ω) if ω < μk.(7.17)

In Lemmas 4–6, we let ω = 1
2(μ∗ + maxk:μk<μ∗ μk) and a = min1≤k≤K Ik(ω). Recall that

the parameter cr is a threshold for forced explorations, in step 2(b)ii of SSMC.
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LEMMA 4. Under (3.1), P(Br) ≤ 3K2

1−e−a e−a( r
K

−1) when r
K

− 1 ≥ cr .

PROOF. Let r be such that r
K

−1 ≥ cr . The event Br occurs if at round r the leading arm

 is optimal (i.e. 
 ∈ �), and it loses to an inferior arm k(/∈ �) with nk = u and n
 = u + 1
for u + 1 ≥ r

K
(since arm 
 is leading). It follows from Lemma 3 that

P(Ȳ
,t :(t+u−1) ≤ ω for t = 1 or 2) ≤ 2e−uI
(ω), 
 ∈ �,

P (Ȳku ≥ ω) ≤ e−uIk(ω), k /∈ �.

Since arm 
 loses to arm k when Ȳku ≥ min(Ȳ
,1:u, Ȳ
,2:(u+1)), it follows that

P
(
Br) ≤ ∑


∈�

∑
k /∈�

r∑
u=� r

K
�−1

(
2e−uI
(ω) + e−uIk(ω)),

and Lemma 4 holds. �

LEMMA 5. Under (3.1), P(Cr) ≤ K2e−cra (log r)6

r
+ o(r−1).

PROOF. The event Cr occurs if at round r the leading arm k is inferior (i.e. k /∈ �), and
it wins a challenge against one or more optimal arms 
 (∈ �). By step 2(b)ii of SSMC, arm
k loses automatically when n
 < cn, hence we need only consider n
 ≥ cn. Note that when
nk = n
, for arm k to be the leader, by the tie-breaking rule we require Ȳkn


≥ Ȳ
n

. We shall

consider n
 > (log r)2 in Case 1 and n
 = v for cn ≤ v < (log r)2 in Case 2.
Case 1: n
 > (log r)2. By Lemma 3,

P
(
Ȳ
n


≤ ω for some n
 > (log r)2) ≤ 1

1 − e−a
e−a(log r)2

,(7.18)

P
(
Ȳkn


≥ ω for some n
 > (log r)2) ≤ 1

1 − e−a
e−a(log r)2

.(7.19)

Case 2: n
 = v for (cr ≤)cn ≤ v < (log r)2. In view that nk ≥ r
K

when k is the leading
arm, we shall show that for r large, for each such v there exists ξ (= ξv) such that

P(Ȳ
v < ξ) ≤ e−cra
(log r)4

r
,(7.20)

P

(
Ȳk,t :(t+v−1) > ξ for 1 ≤ t ≤ r

K

)
(7.21) [≤ P(Ȳkv > ξ)�

r
Kv


] ≤ exp
[
−(log r)2

K
+ 1

]
.

The inequality within the brackets in (7.21) follows from partitioning [1, r
K

] into � r
Kv


 seg-
ments of length v, and applying independence of the sample on each segment.

Since θ
 > θk , if
∑v

t=1 yt ≤ vμk , then by (3.1),
v∏

t=1

f (yt ; θ
) = e(θ
−θk)
∑v

t=1 yt−v[ψ(θ
)−ψ(θk)]
v∏

t=1

f (yt ; θk)

≤ e−vI
(μk)
v∏

t=1

f (yt ; θk).

Hence if ξ ≤ μk , then as v ≥ cr ,

(7.22) P(Ȳ
v < ξ) ≤ e−vI
(μk)P (Ȳkv < ξ) ≤ e−craP (Ȳkv < ξ).
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Let ξ(≤ μk for large r) be such that

(7.23) P(Ȳkv < ξ) ≤ (log r)4

r
≤ P(Ȳkv ≤ ξ).

Equation (7.20) follows from (7.22) and the first inequality in (7.23), whereas (7.21) follows
from the second inequality in (7.23) and v < (log r)2. By (7.18)–(7.21),

P
(
Cr) ≤ ∑


∈�

∑
k /∈�

{
2

1 − e−a
e−a(log r)2

+
�(log r)2
∑
v=�cr�

(
e−cra

(log r)4

r
+ exp

[
−(log r)2

K
+ 1

])}
,

and Lemma 5 holds. �

LEMMA 6. Under (3.1) and cr = o(log r), (I) (in the statement of Lemma 1) holds for
ξk = 1/I1(μk) and (II) holds for Jk > max( 1

Ik(ω)
, 2

I1(ω)
), where ω = 1

2(μ∗ + maxk:μk<μ∗ μk).

PROOF. Let k /∈ �. Let μk < ωk < μ1 be such that (1 + ε)I1(ωk) > I1(μk). Consider
nk = u for u ≥ (1 + ξk) log r (in Gr

k) and u ≥ Jk log r (in Hr
k ). Since I
 = I1 for 
 ∈ �, it

follows from Lemma 3 that

P(Ȳ
,t :(t+u−1) ≤ ωk for some 1 ≤ t ≤ r) ≤ re−uI1(ωk),(7.24)

P(Ȳku ≥ ωk) ≤ e−uIk(ωk).(7.25)

Since cr = o(log r), we can consider r large enough such that (1 + ε)ξk log r ≥ cr . Hence
if in round 1 ≤ s ≤ r arm k has sample size of at least (1 + ε)ξr log r , it wins against leading
optimal arm 
 only if

Ȳku ≥ Ȳ
,t :(t+u−1) for some 1 ≤ t ≤ n
 − u + 1(≤ r).

By (7.1), (7.24), (7.25) and Bonferroni’s inequality,

P
(
Gr

k

) ≤
r−1∑

u=�(1+ε)ξk log r�
P {Ȳku ≥ Ȳ
,t :(t+u−1) for some 1 ≤ t ≤ r and 
 ∈ �}

≤
r−1∑

u=�(1+ε)ξk log r�

(|�|re−uI1(ωk) + e−uIk(ωk)
)

≤ Kr

1 − e−I1(ωk)
e−(1+ε)ξkI1(ωk) log r + 1

1 − e−Ik(ωk)
e−(1+ε)ξkIk(ωk) log r ,

and (I) holds because (1 + ε)ξkI1(ωk) > 1 and (1 + ε)ξkIk(ωk) > 0.
Let Jk > max( 1

Ik(ω)
, 2

I1(ω)
). It follows from (7.2), (7.24), (7.25) and the arguments above

that

P
(
Hr

k

) ≤
r−1∑

u=�Jk log r�

(|�|re−uI1(ω) + e−uIk(ω))
≤ Kr

1 − e−I1(ω)
e−JkI1(ω) log r + 1

1 − e−Ik(ω)
e−JkIk(ω) log r ,

and (II) holds because JkI1(ω) > 2 and JkIk(ω) > 1. �
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7.2. Proof of Theorem 2. We consider here SSTC. By Lemmas 1 and 2 it suffices, in
Lemmas 8–11 below, to verify the conditions needed to show that (7.3) holds with ξk =
1/M(

μ∗−μk

σk
). Lemma 7 provides the underlying large deviations bounds for the standard

error estimator. Let �(z) = P(Z ≤ z) and �̄(z) = P(Z > z)(≤ e−z2/2 for z ≥ 0) for Z ∼
N(0,1).

LEMMA 7. For 1 ≤ k ≤ K and t ≥ 2,

P
(
σ̂ 2

kt /σ
2
k ≥ x

) ≤ exp
[
(t − 1)

2
(logx − x + 1)

]
if x > 1,(7.26)

P
(
σ̂ 2

kt /σ
2
k ≤ x

) ≤ exp
[
(t − 1)

2
(logx − x + 1)

]
if 0 < x < 1.(7.27)

PROOF. We note that σ̂ 2
kt/σ

2
k

d= 1
t−1

∑t−1
s=1 Us , where Us

i.i.d.∼ χ2
1 , and that U1 has large

deviations rate function

IU (x) = sup
θ< 1

2

(
θx − logEeθU1

)

= sup
θ< 1

2

[
θx − 1

2
log

(
1

1 − 2θ

)]
= 1

2
(x − 1 − logx).

The last equality holds because the supremum occurs when θ = x−1
2x

. We conclude (7.26) and
(7.27) from (7.16) and (7.17) respectively. �

LEMMA 8. Under (3.3), P(Br) ≤ Qe−ar for some Q > 0 and a > 0, when r
K

− 1 ≥ cr .

PROOF. Let r be such that r
K

−1 ≥ cr . The event Br occurs if at round r the leading arm

 is optimal, and it loses to an inferior arm k with nk = u and n
 = u + 1 for u ≥ r

K
− 1. Let

k /∈ �, 
 ∈ � and let ε > 0 be such that ω := μk−μ
+ε
2σk

< 0. Let τi(u), 1 ≤ i ≤ 3, be quantities
that we shall define below. Note that

(7.28)

τ1(u) := P

(
Ȳku − Ȳ
,u+1

σ̂ku

≥ ω

)

≤ P

(
Ȳku − Ȳ
,u+1

2σk

≥ ω

)
+ P(σ̂ku ≥ 2σk).

Since Ȳku − Ȳ
,u+1 ∼ N(μk − μ
,
σ 2




u+1 + σ 2
k

u
),

(7.29) P

(
Ȳku − Ȳ
,u+1

2σk

≥ ω

)
≤ �̄

(
ε

√
u

σ 2

 + σ 2

k

)
≤ e

− ε2u

2(σ2
k

+σ2



) .

It follows from (7.26) and (7.27) that

P(σ̂ku ≥ 2σk) ≤ e−a1(u−1)/2,(7.30)

P

(
σ̂
u ≤ σ


2

)
≤ e−a2(u−1)/2,(7.31)

where a1 = 1 − log 2 (> 0) and a2 = log 2 − 1
2 (> 0). By (7.28)–(7.30),

(7.32) τ1(u) ≤ e
− ε2u

2(σ2
k

+σ2



) + e− a1(u−1)

2 .
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Since Ȳ
u−Ȳ
,u+1
σ
/2 ∼ N(0, λ) for λ ≤ 4( 1

u
+ 1

u+1) ≤ 8
u

, it follows that

P

(
Ȳ
u − Ȳ
,u+1

σ
/2
≤ ω

)
≤ �̄

(
|ω|

√
u

8

)
≤ e−ω2u

16 .

Hence, by (7.31),

τ2(u) := P

(
Ȳ
,t :(t+u−1) − Ȳ
,u+1

σ̂
,t :(t+u−1)

≤ ω for t = 1 or 2
)

≤ 2
[
P

(
Ȳ
u − Ȳ
,u+1

σ
/2
≤ ω

)
+ P

(
σ̂
u ≤ σ


2

)]
(7.33)

≤ 2
(
e−ω2u

16 + e− a2(u−1)

2
)
.

We check that for ωk = μk+μ


2 ,

τ3(u) := P(Ȳku ≥ Ȳ
,u+1)

≤ P(Ȳku ≥ ωk) + P(Ȳ
,u+1 ≤ ωk)(7.34)

≤ e−u(ωk−μk)
2/(2σ 2

k ) + e−(u+1)(ωk−μ
)
2/(2σ 2


 ).

By (7.32)–(7.34),

P
(
Br) ≤ ∑

k /∈�

∑

∈�

r∑
u=� r

K
�−1

[
τ1(u) + τ2(u) + τ3(u)

]
,

and Lemma 8 indeed holds. �

LEMMA 9. Under (3.3), P(Cr) ≤ K2e−cra (log r)6

r
+ o(r−1) for some a > 0.

PROOF. The event Cr occurs if at round r the leading arm k is inferior, and it wins a
challenge against one or more optimal arms 
. By step 2(b)ii of SSTC, we need only consider
n
 ≥ cn. Note that when nk = n
, for arm k to be leader, by the tie-breaking rule we require
Ȳknk

≥ Ȳ
n

. Consider nk taking values u, n
 taking values v and let τi(·), 1 ≤ i ≤ 4, be

quantities that we shall define below.
Case 1. n
 > (log r)2. Let ω = μ
+μk

2 and check that

τ1(u, v) := P(Ȳ
v ≤ ω) + P(Ȳku ≥ ω)

≤ e−v(μ
−μk)
2/(8σ 2


 ) + e−u(μ
−μk)
2/(8σ 2

k ).
(7.35)

Case 2. (cr ≤)cn ≤ n
 < (log r)2. Let ω be such that

(7.36) (pω :=)P

(
Ȳkv − μk + r− 1

3

σ̂kv

≤ ω

)
= (log r)4

r
.

Hence,

τ2(v) := P

(
Ȳk,t :(t+v−1) − μk + r− 1

3

σ̂kv

> ω for 1 ≤ t ≤ r

K

)
[≤ (1 − pω)�

r
Kv


] ≤ exp
[
−(log r)2

K
+ 1

]
.

(7.37)
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We shall show that there exists a > 0 such that for large r ,

(7.38) τ3(v) := P

(
Ȳ
v − μk − r− 1

3

σ̂
v

≤ ω

)
≤ e−av(log r)4

r

(
≤ e−cra(log r)4

r

)
.

For u ≥ r
K

,

(7.39) τ4(u) := P
(|Ȳku − μk| ≥ r− 1

3
) ≤ e−ur−1/3/(2σ 2

k ) ≤ e−r2/3/(2Kσ 2
k ).

Since (7.37) and (7.38) hold with “−Ȳku” replacing “−μk + r− 1
3 ” and “−μk − r− 1

3 ” respec-
tively, by adding τ4(u) to the upper bounds,

P
(
Cr) ≤ ∑

k /∈�

∑

∈�

(�(log r)2
∑
v=�cr�

[
τ2(v) + τ3(v)

] +
r∑

u=� r
K

�
2τ4(u)

+
r∑

u=� r
K

�

r∑
v=�(log r)2�

τ1(u, v)

)
.

We conclude Lemma 9 from (7.35) and (7.37)–(7.39).
We shall now show (7.38), noting first that for r large, the ω satisfying (7.36) is negative.

This is because for v < (log r)2,

P

(
Ȳkv − μk + r− 1

3

σ̂kv

≤ 0
)

= �

(
−r− 1

3
√

v

σk

)
→ 1

2
,

whereas (log r)4

r
→ 0.

Let gv be the common density function of σ̂kv/σk and σ̂
v/σ
. By the independence of Ȳkv

and σ̂kv ,

P

(
Ȳkv − μk + r− 1

3

σ̂kv

≤ ω

)
=

∫ ∞
0

P

(
Ȳkv − μk + r− 1

3

σk

≤ ωx

)
gv(x) dx

=
∫ ∞

0
�

(√
v

(
ωx − r− 1

3

σk

))
gv(x) dx.

(7.40)

By similar arguments,

(7.41) P

(
Ȳ
v − μk − r− 1

3

σ̂
v

≤ ω

)
=

∫ ∞
0

�

(√
v

(
ωx − � − r− 1

3

σ


))
gv(x) dx,

where � := μ
 − μk (> 0). Let δ1 = r
− 1

3

σk
, δ2 = �−r

− 1
3

σ

and b = −ωx. Since b > 0 and

δ2 > δ1 > 0 for r large,

(7.42) �
(√

v(−b − δ2)
) ≤ e−arv�

(√
v(−b − δ1)

)
,

where ar = (δ2−δ1)
2

2 (→ �2

2σ 2



as r → ∞). Let a = �2
2

4σ 2



. It follows from (7.40)–(7.42) that for

r large,

P

(
Ȳ
v − μk − r− 1

3

σ̂kv

≤ ω

)
≤ e−avP

(
Ȳkv − μk + r− 1

3

σ̂kv

≤ ω

)
.

Hence, by (7.36), the inequality in (7.38) indeed holds. �
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LEMMA 10. Let Zs ∼ N(0, 1
s+1) and Ws ∼ χ2

s /s be independent. For any g < 0 and
0 < δ < M(g), there exists Q > 0 such that for s1 ≥ 1,

∞∑
s=s1

P

{
Zs√
Ws

≤ g

}
≤ Qe−s1[M(g)−δ].

PROOF. Consider the domain � = R+ × R, and the set

A = {
(w, z) ∈ � : z ≤ g

√
ω

}
.

Let I (w, z) = 1
2(z2 + w − 1 − logw), and check that

inf
(w,z)∈A

I (w, z) = inf
w>0

I (w,g
√

w)

= inf
w>0

[
1

2

(
g2w + w − 1 − logw

)] = 1

2
log

(
1 + g2)

= M(g),

(7.43)

the second to last equality follows from the infimum occurring at w = 1
g2+1

.
Let Lv , 1 ≤ v ≤ V , be half-spaces constructed as follows. Let

L1 = {
(w, z) : z ≤ z1,0 < w < ∞}

with g < z1 < 0 and I (1, z1) ≥ M(g) − δ.
(7.44)

The existence of z1 satisfying second line of (7.44) follows from I (1, g) = 1
2g2 > M(g).

Since (A \ L1) ⊂ (0,1) × (z1,0), by (7.43), we can find half-spaces

Lv = {
(w, z) : 0 < w ≤ wv, z ≤ zv

}
with 0 < wv < 1,

zv ≤ 0 and I (wv, zv) ≥ M(g) − δ,2 ≤ v ≤ V,
(7.45)

such that (A \ L1) ⊂ ⋃V
v=2 Lv . Therefore A ⊂ ⋃V

v=1 Lv , and so

(7.46)
∞∑

s=s1

P

{
Zs√
Ws

≤ g

}
≤

∞∑
s=s1

V∑
v=1

P
{
(Ws,Zs) ∈ Lv

}
.

It follows from (7.27), (7.44), (7.45) and the independence of Zs and Ws , setting w1 = 1,
that

(7.47) P
{
(Ws,Zs) ∈ Lv

} ≤ e−sI (wv,zv) ≤ e−s[M(g)−δ], 1 ≤ v ≤ V.

Lemma 10, with Q = V
1−e−M(g)+δ , follows from substituting (7.47) into (7.46). �

LEMMA 11. Under (3.3) and cr = o(log r), (I) (in the statement of Lemma 1) holds for
ξk = 1/M(

μ∗−μk

σk
) and (II) holds for Jk large.

PROOF. By considering the rewards Ykt −μ∗, we may assume without loss of generality
that μ∗ = 0. Let k /∈ � (hence μk < 0) and ε > 0. Let gk = μk

σk
and let gω < 0 and δ > 0 be

such that

(7.48) 0 > gω − 3δ > gk and (1 + ε)
[
M(gω − δ) − δ

]
> M(gk).

Let mr = �(1 + ε)(log r)/M(gk)�. Since cr = o(log r), we can consider r large enough such
that mr ≥ cr . By (7.27),

(7.49)
r∑

u=mr

P

(
σ̂ 2


u/σ
2

 ≤ 1

4

)
→ 0, 1 ≤ 
 ≤ K.
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Let σ0 = min1≤
≤K σ
. For 
 ∈ �,
r∑

v=� r
K

�
P

( |Ȳ
v|
σ0/2

≥ δ

)
≤

r∑
v=� r

K
�
exp

(
−δ2σ 2

0 v

8σ 2



)
= O

(
r−1)

,(7.50)

ηr := P

(
Ȳknk

≥ Ȳ
n

for some nk ≥ mr,n
 ≥ r

K
, 
 ∈ �

)

≤
r∑

u=mr

exp
(
−uμ2

k

8σ 2
k

)
+ ∑


∈�

r∑
v=� r

K
�
exp

(
−vμ2

k

8σ 2



)
→ 0.

(7.51)

By (7.1) and (7.48),

P
(
Gr

k

) ≤ P

(
Ȳknk

− Ȳ
n


σ̂knk

≥ Ȳ
,t :(t+nk−1) − Ȳ
n


σ̂
nk

for some 1 ≤ t ≤ r, 
 ∈ �,nk ≥ mr,n
 ≥ r

K

)
+ ηr

(7.52)

≤
r∑

u=mr

[
P

(
Ȳku

σ̂ku

≥ gk + δ

)
+ r

∑

∈�

P

(
Ȳ
u

σ̂
u

≤ gω − δ

)

+
K∑


=1

P

(
σ̂ 2


u/σ
2

 ≤ 1

4

)]
+ ∑


∈�

r∑
v=� r

K
�
P

( |Ȳ
v|
σ0/2

≥ δ

)
+ ηr .

By (7.49)–(7.52), to show (I), it suffices to show that
r∑

u=mr

P

(
Ȳku

σ̂ku

≥ gk + δ

)
→ 0,(7.53)

r

r∑
u=mr

P

(
Ȳ
u

σ̂
u

≤ gω − δ

)
→ 0.(7.54)

Keeping in mind that gk + δ < 0, let w > 1 be such that
√

w(gk + δ) > gk . It follows from
(7.26) and gkσk = μk that

r∑
u=mr

P

(
Ȳku

σ̂ku

≥ gk + δ

)

≤
r∑

u=mr

[
P

(
Ȳku ≥ √

w(μk + δσk)
) + P

(
σ̂ 2

ku/σ
2
k ≥ w

)]

≤
r∑

u=mr

[
e−u[μk−√

w(μk+δσk)]2/(2σ 2
k ) + e−(u−1)(w+1−logw)/2]

,

and (7.53) indeed holds. Finally, by Lemma 10,
r∑

u=mr

P

(
Ȳ
u

σ̂
u

≤ gω − δ

)
≤ Qe−(mr−1)[M(gω−δ)−δ],

for some Q > 0, and so (7.54) follows from (7.48).
To show (II), we consider mr = �Jr log r�. By (7.27), we can select Jk large enough to

satisfy (7.49) with “→ 0” replaced by “= O(r−1)”. We note that (7.52) holds with Hr
k in

place of Gr
k for this mr . Therefore to show (II), it suffices to note that for Jk large enough,

(7.51), (7.53) and (7.54) hold with “→ 0” replaced by “= O(r−1)”. �
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7.3. Proof of Theorem 3. Assume (C1)–(C3) and let μ̃ = maxk:μk<μ∗ μk . By Lemmas 1
and 2 it suffices, in Lemmas 12–14 below, to verify the conditions needed for SSMC to satisfy
(7.3) for some ξk > 0.

LEMMA 12. Under (C2), P(Br) ≤ 3QK2

1−e−b e−b( r
K

−1) for some b > 0 and Q > 0, when
r
K

− 1 ≥ cr .

PROOF. Consider r such that (nk ≥) r
K

− 1 ≥ cr . Let ε = 1
2(μ∗ − μ̃) and let b and Q be

the constants satisfying (C2). Lemma 12 follows from arguments similar to those in the proof
of Lemma 4, setting ω = 1

2(μ∗ + μ̃). �

LEMMA 13. Under (C1)–(C3), P(Cr) ≤ K2Q1e
−crb1 (log r)6

r
+ o(r−1) for some b1 > 0

and Q1 > 0.

PROOF. The event Cr occurs if at round r the leading arm k is inferior, and it wins
against one or more optimal arms 
. By step 2(b)ii of SSMC, we need only consider n
 = v

for v ≥ cn. Note that nk ≥ r
K

and nk ≥ n
.
Case 1: n
 > (log r)2. Let ω and ε be as in the proof of Lemma 12. By (C2), there exists

b > 0 and Q > 0 such that

(7.55) P(Ȳ
v ≤ ω) + P(Ȳkv ≥ ω) ≤ 2Qe−vb.

Case 2: n
 = v for (cr ≤)cn ≤ v < (log r)2. Select ω(≤ μk for r large) such that

(7.56) P(Ȳkv < ω) ≤ (log r)4

r
≤ P(Ȳkv ≤ ω).

Let pω = P(Ȳkv > ω) and let d = �2(log r)2�, η = � r/K−1
d


. By (C1) and the second inequal-
ity of (7.56),

τ(v) := P

(
Ȳk,t :(t+v−1) > ω for 1 ≤ t ≤ r

K

)
≤ P(Ȳk,t :(t+v−1) > ω for t = 1, d + 1, . . . , ηd + 1)

(7.57)
≤ pη+1

ω + η
[
1 − λk(R)

]d−v+1

≤ exp
(
−(η + 1)(log r)4

r

)
+ η

[
1 − λk(R)

](log r)2 [= o
(
r−2)]

.

To see the second inequality of (7.57), let

Dm = {Ȳk,t :(t+v−1) > ω for t = md + 1}, 0 ≤ m ≤ η.

Note that the probability in the second line of (7.57) is P(
⋂η

m=0 Dm), and that by (7.56),

P(Dm) = pω ≤ 1 − (log r)4

r
. By the triangular inequality and the convention

∏η
m=η+1 = 1,∣∣∣∣∣P

( η⋂
m=0

Dm

)
−

η∏
m=0

P(Dm)

∣∣∣∣∣
≤

η∑
u=1

∣∣∣∣∣P
(

u⋂
m=0

Dm

) η∏
m=u+1

P(Dm) − P

(
u−1⋂
m=0

Dm

) η∏
m=u

P (Dm)

∣∣∣∣∣(7.58)

≤
η∑

u=1

∣∣∣∣∣P
(

u⋂
m=0

Dm

)
− P

(
u−1⋂
m=0

Dm

)
P(Du)

∣∣∣∣∣.
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By (C1),

(7.59)

∣∣∣∣∣P
(

u⋂
m=0

Dm

)
− P

(
u−1⋂
m=0

Dm

)
P(Du)

∣∣∣∣∣ ≤ [
1 − λk(R)

]d−v+1
, 1 ≤ u ≤ η,

since
⋂u−1

m=0 Dm depends on (Yk1, . . . , Yk,(u−1)d+v) whereas Du depends on (Yk,ud+1, . . . ,

Yk,ud+v). Substituting (7.59) into (7.58) gives us the second inequality of (7.57).
It follows from (C3) and the first inequality of (7.56) that there exists Q1 > 0, b1 > 0 and

t1 ≥ 1 such that for v ≥ t1,

P(Ȳ
v < ω) ≤ Q1e
−b1v

(log r)4

r
.

Hence, by (7.55) and (7.57), for r such that cr ≥ t1,

P
(
Cr) ≤ ∑

k /∈�

∑

∈�

(
r∑

v=�(log r)2�
2Qe−vb +

�(log r)2
∑
v=�cr�

[
Q1e

−b1cr
(log r)4

r
+ τ(v)

])
,

and Lemma 13 holds. �

LEMMA 14. Under (C2) and cr = o(log r), statement (II) in Lemma 1 holds.

PROOF. Let ε and ω be as in the proof of Lemma 12, and let b and Q be the constants
satisfying (C2). For an optimal arm 
,

P(Ȳ
,t :(t+u−1) ≤ ω for some 1 ≤ t ≤ r) ≤ Qre−ub,

P (Ȳku ≥ ω) ≤ Qe−ub.

Let Jk > 2
b

. Since cr = o(log r), for r large, �Jk log r� ≥ cr and therefore by Bonferroni’s
inequality,

P
(
Hr

k

) ≤ ∑

∈�

r∑
u=�Jk log r�

Q(r + 1)e−ub,

and (II) holds. �

APPENDIX A: SHOWING (2.10)

Let �(z) = P(Z ≤ z) for Z ∼ N(0,1). It follows from �(−z) = [1 + o(1)] 1
z
√

2π
e−z2/2 as

z → ∞ that

�(−
√

2 logn) = 1 + o(1)

2n
√

π logn
,(A.1)

�

(
−

√
2 log

(
n

(logn)2

))
= [

1 + o(1)
](logn)3/2

2n
√

π
.(A.2)

Assume without loss of generality μ1 = 0 and consider n1 = u and n2 = v (hence u+ v = n)
with v = O(logn). By (A.1) and Bonferroni’s inequality,

P

(
min

1≤t≤u−v+1
Ȳ1,t :(t+v−1) ≤ −

√
2 logn

v

)

≤
u−v+1∑

t=1

P

(
Ȳ1,t :(t+v−1) ≤ −

√
2 logn

v

)
(A.3)

= (u − v + 1)�(−
√

2 logn) → 0.
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By (A.2) and independence of Ȳ1,(sv+1):[(s+1)v] for 0 ≤ s ≤ u−v
v

,

P

(
min

1≤t≤u−v+1
Ȳ1,t :(t+v−1) ≥ −

√
2 log(n/(logn)2)

v

)

≤ P

(
min

0≤s≤(u−v)/v
Ȳ1,(sv+1):[(s+1)v] ≥ −

√
2 log(n/(logn)2)

v

)
(A.4)

=
[
1 − �

(
−

√
2 log

(
n

(logn)2

))]� u−v
v


+1

≤ exp
[
−

(⌊
u − v

v

⌋
+ 1

)
�

(−√
2 log

(
n/(logn)2

))] → 0.

We conclude (2.10) from (A.3) and (A.4).

APPENDIX B: VERIFICATIONS OF (C1)–(C3) FOR DOUBLE
EXPONENTIAL DENSITIES

By dividing Ykt by τ if necessary, we may assume without loss of generality that τ = 1.
We check that (C1) holds for λk(A) = ∫

A fk(y) dy, whereas (C2) follows from the Cher-
noff bounds given in Lemma 3, that is, (4.2) holds for Q = 2 and b = I (ε), where I (μ) =
sup|θ |<1[θμ − log(1 − θ2)] is the large deviations rate function of the double exponential

density f (y) = 1
2e−|y|.

Let St = ∑t
u=1 Yu with Yu

i.i.d.∼ f and let � = μ
 − μk . Since μk − Ykt ∼ f , and similarly
when k is replaced by 
, to show (C3), it suffices to show that for z ≥ 0 and t ≥ 1,

(B.1) P(St > z + �t) ≤ e−tb1P(St > z),

where b1 = � − 2 log(1 + �
2 ) (> 0). By (B.1), (C3) holds for Q1 = 1, t1 = 1 and the above

b1.

Since Yu
d= Zu1 − Zu2, with Zu1 and Zu2 independent exponential random variables with

mean 1, it follows that St
d= St1 − St2 where St1 and St2 are independent Gamma random

variables. Using this, Kotz, Kozubowski and Podgórski (2001) showed, see their (2.3.25),
that the density ft of St can be expressed as ft (x) = e−xgt (x) for x ≥ 0, where

(B.2) gt (x) = 1

(t − 1)!22t−1

t−1∑
j=0

ctj x
j with ctj = (2t − 2 − j)!2j

j !(t − 1 − j)! .

We shall show that

(B.3) g′
t (x)

(
1 + x

2t

)
≤ gt (x).

By (B.3),

f ′
t (x)

ft (x)
= e−x[g′

t (x) − gt (x)]
e−xgt (x)

≤ 2t

x + 2t
− 1,

and therefore for y ≥ 0,

log
[
ft (y + t�)

ft (y)

]
=

∫ y+t�

y

f ′
t (x)

ft (x)
dx

≤ 2t log
(

y + (2 + �)t

y + 2t

)
− t� ≤ −tb1.
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Hence ft (y + t�) ≤ e−tb1ft (y). It follows that for z ≥ 0,

P(St > z + t�) =
∫ ∞
z

ft (y + t�)dy

≤ e−tb1

∫ ∞
z

ft (y) dy = e−tb1P(St > z),

and (C3) indeed holds.
We shall now show (B.3) by checking that after substituting (B.2) into (B.3), the coefficient

of xj in the left-hand side of (B.3) is not more than in the right-hand side, for 0 ≤ j ≤ t − 1.
More specifically that (with ctt = 0),

(B.4) (j + 1)ct,j+1 + j

2t
ctj ≤ ctj

[
⇔ ct,j+1 ≤ 1

j + 1

(
1 − j

2t

)
ctj

]
.

Indeed by (B.2),

ct,j+1 = 2(t − 1 − j)

(j + 1)(2t − 2 − j)
ctj = 1

j + 1

(
1 − j

2t − 2 − j

)
ctj , 0 ≤ j ≤ t − 1,

and the right-inequality of (B.4) holds.
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