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FINITARY CODINGS FOR SPATIAL MIXING MARKOV RANDOM FIELDS
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It has been shown by van den Berg and Steif (Ann. Probab. 27 (1999)
1501–1522) that the subcritical and critical Ising model on Z

d is a finitary
factor of an i.i.d. process (ffiid), whereas the super-critical model is not. In
fact, they showed that the latter is a general phenomenon in that a phase tran-
sition presents an obstruction for being ffiid. The question remained whether
this is the only such obstruction. We make progress on this, showing that
certain spatial mixing conditions (notions of weak dependence on boundary
conditions, not to be confused with other notions of mixing in ergodic the-
ory) imply ffiid. Our main result is that weak spatial mixing implies ffiid with
power-law tails for the coding radius, and that strong spatial mixing implies
ffiid with exponential tails for the coding radius. The weak spatial mixing
condition can be relaxed to a condition which is satisfied by some critical
two-dimensional models. Using a result of the author (Spinka (2018)), we de-
duce that strong spatial mixing also implies ffiid with stretched-exponential
tails from a finite-valued i.i.d. process.

We give several applications to models such as the Potts model, proper
colorings, the hard-core model, the Widom–Rowlinson model and the beach
model. For instance, for the ferromagnetic q-state Potts model on Z

d at in-
verse temperature β, we show that it is ffiid with exponential tails if β is
sufficiently small, it is ffiid if β < βc(q, d), it is not ffiid if β > βc(q, d) and,
when d = 2 and β = βc(q, d), it is ffiid if and only if q ≤ 4.

1. Introduction and results. Let (S,S) and (T ,T ) be two measurable spaces, and let
X = (Xv)v∈Zd and Y = (Yv)v∈Zd be (S,S)-valued and (T ,T )-valued translation-invariant
random fields (i.e., stationary Z

d -processes) for some d ≥ 1. A coding from Y to X is a
measurable function ϕ : T Z

d → SZ
d
, which is translation-equivariant, that is, commutes with

every translation of Zd , and which satisfies that ϕ(Y ) and X are identical in distribution. Such
a coding is also called a factor map or homomorphism from Y to X, and when such a coding
exists, we say that X is a factor of Y .

The coding radius of ϕ at a point y ∈ T Z
d
, denoted by Rϕ(y), is the minimal integer

r ≥ 0 such that ϕ(y′)0 = ϕ(y)0 for almost all y′ ∈ T Z
d

which coincide with y on the ball
of radius r around the origin in the graph-distance, that is, y′

v = yv for all v ∈ Z
d such that

‖v‖1 ≤ r . It may happen that no such r exists, in which case, Rϕ(y) = ∞. Thus, associated
to a coding is a random variable R = Rϕ(Y ) which describes the coding radius. A coding is
called finitary if R is almost surely finite. When there exists a finitary coding from Y to X,
we say that X is a finitary factor of Y . When X is a finitary factor of an i.i.d. (independent
and identically distributed) process, we say it is ffiid. We say that a coding has exponential
tails if P(R ≥ r) ≤ Ce−cr for some C,c > 0 and all r > 0 and that it has power-law tails if
P(R ≥ r) ≤ Cr−c instead.

In this paper, we always take S to be a nonempty finite set (and S its power set) and X to
be a (finite-valued) Markov random field. With the relevant definitions given below, we state
our main result.
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THEOREM 1.1. Let d ≥ 2 and X be a translation-invariant Markov random field on Z
d .

(a) If X satisfies exponential weak spatial mixing, then it is ffiid with power-law tails.
(b) If X satisfies exponential strong spatial mixing, then it is ffiid with exponential tails.

Let X = (Xv)v∈Zd be a random field. We say that X is a Markov random field if the
conditional distribution of its values on any finite set V ⊂ Z

d , given its values on V c, depends
only on its values on the boundary ∂V , that is, if (Xv)v∈V and (Xv)v∈V c are conditionally
independent given (Xv)v∈∂V , where ∂V is the set of vertices at graph-distance 1 from V . We
say that X is translation-invariant if its distribution is not affected by translations, that is, if
(Xv+u)v∈Zd has the same distribution as X for all u ∈ Z

d .
Let X be a Markov random field. Denote the topological support of X by

(1) � := {
x ∈ SZ

d : P(XV = xV ) > 0 for all finite V ⊂ Z
d}

,

where we write xV := (xv)v∈V for the restriction of a configuration x ∈ SZ
d

to V . Thus, �

is the set of “feasible” configurations. Note that � is a closed subset of SZ
d

in the product
topology. When X is translation-invariant, � is a shift space (a closed invariant subset of
SZ

d
). For V ⊂ Z

d and τ ∈ S∂V , denote

�V := {ωV : ω ∈ �} and �τ
V := {ωV : ω ∈ �,ω∂V = τ }.

The specification of X is the collection P of conditional finite-dimensional distributions,
namely,

P := (
P τ

V

)
V ⊂Zd finite, τ∈�∂V

and P τ
V := P(XV ∈ · | X∂V = τ).

Note that, for V ⊂ Z
d finite and τ ∈ �∂V , the measure P τ

V is well defined and supported on
�τ

V . We write P τ
v for P τ{v}, and for U ⊂ V , we write P τ

V,U for the marginal of P τ
V on U .

Usually a specification P̄ is defined in and of itself for all boundary conditions arising from
some closed subset �̄ of SZ

d
, and one then says that X is a Gibbs measure for P̄ if � ⊂ �̄ and

P τ
V = P̄ τ

V for all finite V ⊂ Z
d and τ ∈ �∂V (i.e., P agrees with P̄ for all feasible boundary

conditions). This point of view will not be important for us and so we chose only to define
the “specification of X”. We also remark that while the specification of a translation-invariant
Markov random field is always translation-invariant (in the obvious sense), the converse is
not true—there exist nontranslation-invariant Markov random fields whose specifications are
translation-invariant (e.g., the Dobrushin state for the low-temperature Ising model in three
dimensions).

A Markov random field and its specification are said to satisfy weak spatial mixing with
rate function ρ if, for any finite sets U ⊂ V ⊂ Z

d ,

(2)
∥∥P τ

V,U − P τ ′
V,U

∥∥ ≤ |U | · ρ(
dist(U, ∂V )

)
for any τ, τ ′ ∈ �∂V ,

where ‖ · ‖ denotes total-variation distance (half the L1 norm) and dist(A,B) is the mini-
mum graph-distance between a vertex in A and a vertex in B . We use the term rate function
to refer to any monotone function ρ : {1,2, . . .} → [0,∞) which tends to 0. We remark that
the precise definition of weak spatial mixing varies throughout the literature; our definition
closely follows the one in [106] (see also [70]). It is easy to verify that if a specification satis-
fies weak spatial mixing (with any rate function), then there is a unique Markov random field
having that specification (i.e., it has a unique Gibbs measure). We say that a specification sat-
isfies exponential weak spatial mixing if it satisfies weak spatial mixing with an exponentially
decaying rate function, that is, if ρ(n) ≤ Ce−cn for some C,c > 0 and all n ≥ 1.
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A Markov random field and its specification are said to satisfy strong spatial mixing with
rate function ρ if, for any finite sets U ⊂ V ⊂ Z

d ,

(3)
∥∥P τ

V,U − P τ ′
V,U

∥∥ ≤ |U | · ρ(
dist(U,	τ,τ ′)

)
for any τ, τ ′ ∈ �∂V ,

where 	τ,τ ′ is the subset of ∂V on which τ and τ ′ disagree. Evidently, (3) implies (2).
We say that a specification satisfies exponential strong spatial mixing if it satisfies strong
spatial mixing with an exponentially decaying rate function. We mention that the definition
of strong spatial mixing sometimes varies in the literature, especially in the class of (U,V )

for which (3) is required to hold (e.g., V may be restricted to be a cube). Though we state the
strongest form for simplicity (requiring (3) to hold for arbitrary pairs), the proof of part (b)
of Theorem 1.1 uses (3) only for a restricted class of (U,V ). This is particularly relevant in
two-dimensions as it allows us to prove ffiid with exponential tails under a weaker assumption
(see Section 1.2).

The assumption of exponential weak spatial mixing in part (a) of Theorem 1.1 can be
substantially relaxed. For finite sets U ⊂ V ⊂ Z

d , define

(4) γ (V,U) := ∑
ω∈�U

min
τ∈�∂V

P τ
V,U (ω).

As we will see in Section 2.2, γ (V,U) is the probability under an optimal coupling that
configurations sampled in V with every possible boundary condition all coincide on U . For
r > 0, denote

�r := [−r, r]d ∩Z
d .

THEOREM 1.2. Let X be a translation-invariant Markov random field. If

(5) lim sup
n→∞

γ (�n,�δn) > 0 for some 0 < δ < 1,

then X is ffiid. If

(6) lim inf
n→∞ γ (�n,�δn) > 0 for some 0 < δ < 1,

then X is ffiid with power-law tails.

We will show in Section 3 that exponential weak spatial mixing implies (6) (in fact, it
implies that the limit in (6) is 1 for all δ) so that Theorem 1.2 implies part (a) of Theorem 1.1.
Although Theorem 1.2 is applicable in any dimension, our only real application for it (i.e.,
when (6) holds, but exponential weak spatial mixing does not hold) is for the critical two-
dimensional Potts model (see Corollary 1.5 below).

The theorems presented above are concerned with sufficient conditions for being ffiid. In
the other direction, van den Berg and Steif gave a necessary condition [105], Theorem 2.1,
by showing that a phase transition presents an obstruction for being ffiid in systems with no
hard constraints (i.e., when � = SZ

d
). That is, they showed that if there exists more than

one translation-invariant Markov random field with a given specification in which no hard
constraints are present, then neither random field is ffiid (to be precise, the statement of their
theorem is that neither field is a finitary factor of a finite-valued i.i.d. process, but the same
ideas also show that neither field is ffiid). We extend this to models with hard constraints,
under a mild condition on the probabilities of feasible boundary conditions (which always
holds for systems with no hard constraints). A random field is ergodic if it is translation-
invariant and it has no nontrivial translation-invariant events, that is, every such event occurs
with probability 0 or 1.
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THEOREM 1.3. Let X and X′ be two distinct ergodic Markov random fields with the
same specification. Suppose that, for some ε > 0,

(7) inf
T ⊂�∂�n :P(X′

∂�n
∈T )≥1−ε

P(X∂�n ∈ T ) ≥ e−o(nd) as n → ∞.

Then X is not ffiid.

In our applications, we shall also be concerned with models in which the phase transition
is of a different nature, where there is a single translation-invariant Markov random field with
the given specification, but multiple periodic ones (as occurs, for instance, in the hard-core
model at high fugacity). Thus, we also mention here that total ergodicity (i.e., ergodicity with
respect to every translation) is a necessary condition for being ffiid (in fact, even for being a
factor of i.i.d.). This is due to the fact that an i.i.d. process is totally ergodic and that factors
preserve ergodicity with respect to any translation.

REMARK 1. The statements of our results mention nothing about the i.i.d. process in-
volved in the ffiid conclusion. However, any result in this paper that shows that a translation-
invariant Markov random field X is ffiid, actually yields a stronger property. Specifically, any
coding ϕ from Y to X that we construct has the property that Yv is a sequence of independent
finite-valued random variables (Yv,n)n∈N, and ϕ is finitary in both the Z

d space (as in the
usual definition of finitary coding) and in the N space, that is, there exists an almost surely
finite R̃ such that ϕ(Y )0 is determined by (Yv,n)|v|≤R̃,n≤R̃

. Moreover, for the results whose
conclusions are ffiid with exponential tails, the random variables Yv,n are, in addition, identi-
cally distributed, and R̃ is shown to have exponential tails. This allows one to apply a result
of the author [95], Proposition 10, to obtain that X is also a finitary factor of a finite-valued
i.i.d. process (abbreviated fv-ffiid) with stretched-exponential tails, meaning that the coding
radius R satisfies P(R ≥ r) ≤ Ce−rc

for some C,c > 0 and all r > 0. In particular, every
time we write “ffiid with exponential tails”, we could instead (or in addition) write “fv-ffiid
with stretched-exponential tails”. We chose not to include these comments in the statements
of our theorems as we preferred to keep these statements short and concise and did not want
to lose sight of the main goal, which is showing that certain Markov random fields are ffiid.

REMARK 2. All our results extend to r-Markov random fields, which are random fields
X satisfying that, for any finite V ⊂ Z

d , XV and XV c are conditionally independent given
X∂rV , where ∂rV is the set of vertices u ∈ Z

d having 1 ≤ dist(u,V ) ≤ r .

REMARK 3. We chose to work with the graph G = Z
d and the group � of its translations,

though much of the proof works in greater generality. For instance, the proof shows that if
one assumes (in addition to the assumptions stated in the theorems) that X is invariant to
all automorphisms of Zd (not just translations), then the resulting coding commutes with all
automorphisms. In a more general setting, G is a transitive locally-finite graph, � is a group
acting transitively on V (G) by automorphisms, X is a �-invariant Markov random field and
a coding is a �-equivariant map. Our results (and proofs) readily extend to the triangular
lattice, the hexagonal lattice, the line graph of Z

d and variants of these. However, as our
proof relies on geometric considerations (namely in Section 4.3), it is unclear how wide the
class of graphs for which our results hold is. In particular, we do not know whether they
hold for all transitive graphs of subexponential growth (part (a) of Theorem 1.1 seems to
easily extend to this class). We also mention that transitivity is not strictly necessary and the
definitions and proofs could be adapted to work for, say, quasi-transitive actions on graphs
similar to Z

d (e.g., when G = Z
d and � is the group of parity-preserving translations).
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1.1. Applications. Many classical discrete spin systems on Z
d satisfy spatial mixing

properties (for appropriate model parameters). In some of the examples below, we refer to
Dobrushin’s uniqueness condition [25], to van den Berg and Maes’s disagreement percola-
tion condition [103], in which case, we denote by pc(Z

d) the critical probability for site-
percolation on Z

d , and to Häggström and Steif’s high noise condition [46], and use the fact
each implies exponential strong spatial mixing. See Section 1.2 for a discussion about these
conditions. We write Zτ

V below for a normalizing constant which makes P τ
V a probability

measure.

1.1.1. Proper colorings. Let q ≥ 3 and set S := {1, . . . , q}. A proper q-coloring is a
configuration x ∈ SZ

d
satisfying that xu �= xv for any adjacent vertices u and v. Let � be

the set of proper q-colorings of Zd and let the specification be uniform, that is, P τ
V is the

uniform distribution on �τ
V , the set of proper q-colorings of V which are compatible with

the boundary condition τ . It is well known (e.g., by Dobrushin’s uniqueness condition) that
there is a unique Gibbs measure for proper q-colorings when q > 4d , and that this measure
satisfies exponential strong spatial mixing. In [40], it is shown that exponential strong spatial
mixing holds in any triangle-free graph of maximum degree � ≥ 3 when q > α�−γ , where

(8) α is the solution to αα = e and γ := 4α3 − 6α2 − 3α + 4

2(α2 − 1)

(so α ≈ 1.763 and γ ≈ 0.47). It is also shown there that, for Z3, q ≥ 10 suffices. For Z2,
it is known that q ≥ 6 suffices [1, 39]. On the other hand, for any q ≥ 3, it is known that
there are multiple maximum-entropy Gibbs measures for proper q-colorings of Z

d when
the dimension d is sufficiently large (d ≥ Cq10 log3 q suffices, with C a universal constant)
[81], and that these are not totally ergodic (they are mixtures of 2-periodic extreme Gibbs
measures), so that, in particular, they are not ffiid. Thus, we obtain the following corollary.

COROLLARY 1.4. For d ≥ 2 and q > 2αd − γ , with α and γ given by (8), the unique
Gibbs measure for proper q-colorings of Zd is ffiid with exponential tails. Moreover, this also
holds for 6-colorings in two dimensions and 10-colorings in three dimensions. In addition,
for any q ≥ 3, when d is sufficiently large, no maximum-entropy Gibbs measure for proper
q-colorings of Zd is ffiid.

REMARK 4. The first part of the corollary extends a previous result of the author [95],
where ffiid with exponential tails was shown when q ≥ 4d(d +1) (see Theorem 2, Theorem 5
and Proposition 9 there).

1.1.2. The Potts model. Let q ≥ 2 and set S := {1, . . . , q}. Given a parameter β ∈ R,
called the inverse temperature, the specification is defined by

(9) P τ
V (ω) := 1

Zτ
V

· eβHτ
V (ω) where Hτ

V (ω) := ∑
{u,v}∈E(Zd )
{u,v}∩V �=∅

1{ωu=ωv}.

When β > 0, neighbouring spins tend to take the same value and the model is said to be
ferromagnetic. When β < 0, neighbouring spins tend to take different values and the model
is said to be antiferromagnetic. In particular, the case of β = −∞ reduces to that of proper
q-colorings.

For the ferromagnetic Potts model, it is well known (see, e.g., [38], Theorem 3.2) that there
exists a critical value βc = βc(q, d) ∈ (0,∞) such that there is a unique Gibbs measure at
inverse temperature 0 < β < βc and multiple ergodic Gibbs measures at inverse temperature
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β > βc. Using the random-cluster representation of the Potts model and the sharp phase
transition in the random-cluster model [29], it follows that at inverse temperature β < βc, the
unique Gibbs measure satisfies exponential weak spatial mixing. In two dimensions, more is
known: there is a unique Gibbs measure at the critical β = βc if and only if q ≤ 4 [28, 30, 84],
there is a RSW property at criticality when q ≤ 4 [30], and exponential weak spatial mixing
implies exponential strong spatial mixing for squares (see Section 1.2). Putting these results
together allows us to show the following.

COROLLARY 1.5. Let d ≥ 2 and q ≥ 2. There exists β0(q, d) ≥ 1/2d satisfying
β0(q, d) = βc(q, d) if either q = 2 or d = 2, such that the following holds. Let μ be a Gibbs
measure for the ferromagnetic q-state Potts model on Z

d at inverse temperature β > 0.

• If β < β0(q, d) then μ is ffiid with exponential tails.
• If β < βc(q, d) then μ is ffiid with power-law tails.
• If β > βc(q, d) then μ is not ffiid.
• If β = βc(q, d) and d = 2, then μ is ffiid if and only if q ≤ 4.

PROOF. Some of the proofs here rely on the well-known connection between the Potts
model and the random-cluster model via the Edwards–Sokal coupling, which we now explain
(see, e.g., [41] for definitions and properties of the latter model and coupling). Let V ⊂
Z

d be finite and let G be the graph with vertex-set V ∪ ∂V and edge-set {{u, v} ∈ E(Zd) :
{u, v} ∩ V �= ∅}. We denote by φV,p,q the random-cluster measure (with the parameter p

chosen in correspondence to β , namely, p := 1 − e−β ) on G with wired boundary conditions
(meaning that clusters intersecting ∂V do not contribute a factor of q to the weight of a
configuration). An element η in the configuration space of φV,p,q is a spanning subgraph
of G. For a boundary condition τ ∈ {1, . . . , q}∂V , let Eτ be the event that the clusters of u

and v in η are disjoint for any u, v ∈ ∂V such that τu �= τv . We may obtain a sample ωτ from
P τ

V by first sampling ητ from φV,p,q(· | Eτ ) and then independently assigning each cluster
of ητ a uniform value in {1, . . . , q} if it does not intersect ∂V , or the deterministic value τv

if it contains some v ∈ ∂V . Moreover, since Eτ is a decreasing event for any τ , the FKG
property of φV,p,q [41], Theorem 3.8, implies that ητ is stochastically dominated by η1 for
any τ . Thus, by Strassen’s theorem [97], we may couple all (ητ )τ so that ητ ⊂ η1 almost
surely for all τ . By carrying out the above construction simultaneously for every τ (namely,
by assigning the same value to a cluster of ητ and a cluster of ητ ′

whenever the two clusters
are identical and do not intersect ∂V ), we may further couple (ωτ )τ on the same probability
space as (ητ )τ , so that (ωτ

U )τ all coincide on the event that U is not connected to ∂V in η1

(i.e., the event that no cluster of η1 intersects both U and ∂V ).
We proceed to prove the corollary. The second part will follow from part (a) of Theo-

rem 1.1, once we verify that μ satisfies exponential weak spatial mixing. Indeed, by the
above coupling, we have that ‖P τ

V,U − P τ ′
V,U‖ is bounded above by the probability that U

is connected to ∂V in η1. Since p < pc(q, d), the probability that any given u ∈ U is con-
nected to ∂V in η1 decays exponentially fast in dist(U, ∂V ) [29], Theorem 1.2, thus implying
exponential weak spatial mixing.

The third part follows from Theorem 1.3 and the definition of βc(q, d).
The last part follows using the results in [28, 30]. Namely, when q > 4, there are multiple

ergodic Gibbs measures ([28], Theorem 1.1) so that μ is not ffiid by Theorem 1.3. When q ≤
4, by the Russo–Seymour–Welsh estimates [30], Theorems 3 and 4, and the FKG property,
the probability that �n/4 is connected to ∂�n in η1 is at most c for some constant 0 < c < 1.
From this and the coupling above (with U := �n/4 and V := �n), it is easy to see that
γ (�n,�n/4) ≥ 1 − c so that Theorem 1.2 implies that μ is ffiid.
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It remains to prove the first part of the corollary. By Dobrushin’s uniqueness condition
and a direct computation, μ is ffiid with exponential tails when β < 1/2d . This shows that
β0(q, d) can be chosen to satisfy β0(q, d) ≥ 1/2d . The fact that we may take β0(q, d) =
βc(q, d) when q = 2 follows from the results in [105] for the Ising model. The fact that we
may also take β0(q, d) = βc(q, d) when d = 2 is due to the fact that, in two dimensions,
exponential weak spatial mixing implies exponential strong spatial mixing for squares [6,
73] and this is the only assumption needed for the proof of part (b) of Theorem 1.1 (see
Section 1.2 and Remark 11). �

REMARK 5. The result in the case of the Ising model (q = 2) was already known [105].
In fact, since the Ising model is known to undergo a continuous phase transition in any di-
mension d ≥ 2 [2, 3, 109], the unique Gibbs measure at the critical point β = βc(2, d) is also
ffiid. It is still unknown whether this unique Gibbs measure is fv-ffiid, though it is known that
it is not ffiid with finite expected coding volume [105].

REMARK 6. Using the Edwards–Sokal coupling [32, 99], it is a simple consequence of
Corollary 1.5 that the (wired/free) random-cluster measure φp,q on Z

d with q ∈ N is ffiid
when p < pc(q, d) (with exponential tails when p is sufficiently small, q = 2 or d = 2),
and, when d = 2 and p = pc(q, d), is ffiid if and only if q ≤ 4. Indeed, under this coupling,
given the Potts configuration, the state of the edges in the random-cluster configuration are
independent. In two dimensions, it follows by duality that φp,q is ffiid when p > pc(q, d). In
particular, φp,q is ffiid for all p when d = 2 and q ≤ 4.

In a work with Matan Harel [47], we study finitary codings for the random-cluster model
and show that φp,q is ffiid with exponential tails whenever p < pc(q, d). In particular, it
follows that the unique Gibbs measure for the ferromagnetic Potts model is ffiid with expo-
nential tails whenever β < βc(q, d).

The picture for the antiferromagnetic Potts model is less complete. Dobrushin’s uniqueness
condition implies that there is a unique Gibbs measure for the antiferromagnetic q-state Potts
model on Z

d at inverse temperature β < 0 whenever β > −cq/d or q > 4d [88], where
cq > 0 is a constant depending only on q , and that this Gibbs measure satisfies exponential
strong spatial mixing (see also [110]). Thus, in this regime, the unique Gibbs measure is
ffiid with exponential tails. In [39], the two-dimensional model is investigated and various
sufficient conditions are given for exponential strong spatial mixing (thus implying ffiid with
exponential tails), but we do not list those here. In the other direction, for every q ≥ 3 and
β0 < 0, there exists d0(q,β0) such that there are multiple ergodic Gibbs measures at inverse
temperature β ≤ β0 in dimension d ≥ d0(q,β) [80], and it follows from Theorem 1.3 that
they cannot be ffiid.

REMARK 7. The antiferromagnetic Ising model (q = 2, β < 0) is an interesting spe-
cial case. On the one hand, it is well known that, on Z

d (or any other bipartite graph), it is
equivalent to the ferromagnetic Ising model (so that, in particular, −βc(2, d) is the critical
inverse temperature for the existence of multiple Gibbs measures for the antiferromagnetic
model). This is because “flipping” the spins on one of the sublattices has the effect of chang-
ing the sign of β in (9). It would therefore seem that one could transform a finitary coding
for the ferromagnetic Ising model at inverse temperature β > 0 into a finitary coding for
the antiferromagnetic Ising model at inverse temperature −β < 0. However, the operation of
“flipping a sublattice” cannot be carried out in a translation-equivariant manner, so that this
does not provide a recipe for constructing a finitary coding for the antiferromagnetic model.
Nevertheless, the antiferromagnetic model does indeed satisfy the analogous properties as
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the ferromagnetic model: ffiid with exponential tails when 0 > β > −βc(2, d), ffiid when
β = −βc(2, d) and not ffiid when β < −βc(2, d). This is due to the fact that the antifer-
romagnetic Ising model is antimonotone (see Section 1.2; see also Remark 8 where this is
explained in more detail for the hard-core model).

1.1.3. The hard-core model. We set S := {0,1} and identify configurations in SZ
d

with
subsets of Zd . Let � be the collection of independent sets in Z

d , where an independent set
is a subset of vertices that contains no two adjacent vertices. Given a parameter λ > 0, called
the fugacity or activity, the specification is defined by

P τ
V (ω) := 1{ω∪τ is an independent set}

Zτ
V

· λ|ω|.

Dobrushin’s uniqueness condition (or, alternatively, the high noise condition) implies that
there is a unique Gibbs measure for the hard-core model when λ < 1

2d−1 , and that this Gibbs
measure satisfies exponential strong spatial mixing. The disagreement percolation condition

broadens this regime to λ <
pc(Z

d )

1−pc(Zd )
(see [104]). It has further been shown by Weitz [108]

that this continues to hold when λ < λc(2d − 1), where

λc(�) := ��

(� − 1)�+1

is the critical fugacity for the hard-core model on the regular tree of degree �+ 1. Moreover,
it is shown in [91] that exponential strong spatial mixing further holds when λ < λc(μd),
where μd is the connective constant of Zd (this improves Weitz’s result since μd < 2d − 1
and λc(�) is decreasing in �). We refer the reader to [91], where the known bounds on the
connective constants of several lattices are conveniently summarized in a table. For Z2, the
authors of [91] also show (by a different means than improving the connective constant of
Z

2) that exponential strong spatial mixing holds when λ ≤ 2.538. On the other hand, for
d ≥ 2 and λ > Cd−1/3 log2 d , with C a universal constant, it is known that there are multiple
Gibbs measures for the hard-core model on Z

d at fugacity λ [79]. In fact, in this regime, there
are two 2-periodic extreme Gibbs measures, μe and μo, characterized by unequal densities
on the even and odd sublattices (when λ > Cd−1/4 log2 d , it has been shown that these are
the only periodic extreme Gibbs measures [80]), and the translation-invariant Gibbs measure
1
2(μe + μo) is not totally ergodic, and hence not ffiid. Since the existence of a safe symbol
ensures that (7) holds, Theorem 1.3 implies that no Gibbs measure can be ffiid in this regime.
Thus, we obtain the following corollary.

COROLLARY 1.6. For d ≥ 2 and λ < λc(μd), the unique Gibbs measure for the hard-
core model on Z

d at fugacity λ is ffiid with exponential tails. Moreover, in the case d = 2,
this also holds when λ ≤ 2.538. In addition, there exists a universal constant C such that for
d ≥ 2 and λ > Cd−1/3 log2 d , no Gibbs measure for the hard-core model on Z

d at fugacity λ

is ffiid.

REMARK 8. At any fugacity, the hard-core model is antimonotone (see Section 1.2 for
the definition; see also [44, 104]). Using that Zd is bipartite and that the hard-core model
has only nearest-neighbour interactions, allows to take advantage of the antimonotonicity is
a strong manner. Define a partial order � on {0,1}Zd

in which ω � ω′ if and only if ωv ≤ ω′
v

for all even v and ωv ≥ ω′
v for all odd v (where v ∈ Z

d is said to be even or odd according
to the sum of its coordinates). Let ωe and ωo be unique minimal and maximal elements of
{0,1}Zd

with respect to this partial order and note that ωe,ωo ∈ � (these elements correspond
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to the independent sets induced by the even and odd sublattices). It follows (see, e.g., [104],

Lemma 3.2) that P
ωe

∂V

V and P
ωo

∂V

V converge weakly as V increases to Z
d , giving rise to two

Gibbs measures, μe and μo, which are the smallest and largest Gibbs measures in the sense
of stochastic domination (with respect to the partial order �), and that there is a unique
Gibbs measure if and only if μe = μo. Thus, when there is more than one Gibbs measure,
Theorem 1.3 implies that no Gibbs measure is ffiid. On the other hand, when there is a
unique Gibbs measure, the arguments in [105] (adapted to antimonotone systems instead of
monotone systems) yield that the unique Gibbs measure is ffiid (see Section 1.2). We remark
that, since the existence of multiple Gibbs measures in the hard-core model is not known to
be monotonic with respect to the fugacity [13, 43], we do not know that there exists a critical
fugacity for the property of being ffiid.

1.1.4. The Widom–Rowlinson model with q ≥ 2 types of particles. Set S := {0,1, . . . , q}
and let � be the set of configurations x ∈ SZ

d
satisfying xuxv = 0 or xu = xv for any adjacent

u and v. Given a parameter λ > 0, called the activity, the specification is defined by

P τ
V (ω) := 1�τ

V
(ω)

Zτ
V

· λ
∑

v∈V 1{ωv �=0} .

The high noise condition implies that there is a unique Gibbs measure when qλ < 1
2d−1 , and

that this measure satisfies exponential strong spatial mixing. Dobrushin’s unique condition
implies the same whenever qλ < min{ q

2d−1 , 1
2d−1−2d/q

}, and the disagreement percolation

condition implies this whenever qλ <
pc(Z

d )

1−pc(Zd )
. Thus, in these regimes, Theorem 1.1 implies

that the unique Gibbs measure is ffiid with exponential tails. On the other hand, when λ

is sufficiently large as a function of the dimension (λ > Cd−1/8 logd suffices [80]), it has
been shown that there are multiple ergodic Gibbs measures [16, 63, 80, 87], and since the
existence of a safe symbol implies that (7) holds for any two such measures (see Section 1.2),
Theorem 1.3 implies that these Gibbs measures are not ffiid. We remark that, in the special
case of q = 2, the model is monotone, so that whenever there is a unique Gibbs measure it is
ffiid (see Section 1.2).

1.1.5. The beach model. Set S := {−2,−1,1,2} and let � be the set of configurations
x ∈ SZ

d
satisfying that xuxv ≥ −1 for any adjacent u and v. Given a parameter λ > 0, called

the activity, the specification is defined by

(10) P τ
V (ω) := 1�τ

V
(ω)

Zτ
V

· λ
∑

v∈V |ωv |.

Häggström [42] showed that there exists a critical activity λc(d) ∈ (0,∞) such that there is a
unique Gibbs measure for the beach model on Z

d at activity λ < λc(d) and multiple ergodic
Gibbs measures at activity λ > λc(d). Moreover, Burton and Steif [15] and Häggström [42]
establish the bounds

2

2d2 + d − 1
≤ λc(d) ≤ min

{
4e28d, (1 + √

2)22d−2} − 1,

and the results in [80] imply that λc(d) → 1 as d → ∞. As we show below, no Gibbs measure
is ffiid when λ > λc(d). On the other hand, showing that the unique Gibbs measure is ffiid
when λ < λc(d) is not straightforward, even for small λ. This is because neither Dobrushin’s
uniqueness condition nor disagreement percolation can be directly applied to this model, as
their assumptions do not hold for any λ > 0. Nevertheless, we can show the following.



1566 Y. SPINKA

COROLLARY 1.7. Let d ≥ 2 and let λc(d) be the critical activity for the beach model
on Z

d . Let λ > 0 and let X be a Gibbs measure for the beach model on Z
d at activity λ. If

λ < 2/(2d2 + d − 1), then X is ffiid with exponential tails; if λ < λc(d) then X is ffiid, and if
λ > λc(d) then X is not ffiid.

PROOF. The proof of the first part of the corollary is based on a correspondence between
the beach model and the so-called site-centered ferromagnetic, which is an Ising-type model
(with finite-range ferromagnetic interactions on more than just pairs of sites). We briefly de-
scribe some properties of this correspondence; see [42], Section 4, for details and proofs
(though the model is defined in [42] only for rational λ, the proofs there extend to any pos-
itive λ). Define a ±1-valued random field Z by Zv := sign(Xv) so that X = (Zv|Xv|)v∈Zd .
Then Z is a Gibbs measure for the site-centered ferromagnet (one may take the induced spec-
ification of Z as the definition of the site-centered ferromagnet). Moreover, conditioned on
Z, the random field (|Xv|)v∈Zd is an i.i.d. process, where, for every v, we have that |Xv| = 1
almost surely if Zu �= Zv for some u ∈ ∂v, and |Xv| − 1 is a Bernoulli random variable with
parameter λ/(1 + λ) otherwise.

When λ < 2/(2d2 + d − 1), it is shown in [42] (see the proof of Lemma 4.9 there) that
Z satisfies Dobrushin’s uniqueness condition. Thus, Z satisfies exponential strong spatial
mixing so that, by Theorem 1.1, it is ffiid with exponential tails (actually, Z is a 2-Markov
random field, but Theorem 1.1 extends to this case; see Remark 2). Let W = (Wv)v∈Zd be
an i.i.d. process, independent of Z, with Wv distributed Ber(λ/(1 + λ)). Since X is a finitary
factor of (Z,W) with (deterministic) coding radius 1, it easily follows that X is ffiid with
exponential tails.

When λ < λc(d), there is a unique Gibbs measure. Since the beach model is monotone, it
follows that X is ffiid (see Section 1.2).

When λ > λc(d), there are two distinct ergodic Gibbs measures (characterized by an equal
density of positive and negative values) [42, 80]. Thus, Theorem 1.3 will imply that X is not
ffiid once we show that (7) holds for any two ergodic Gibbs measures. In fact, we shall show
that the stronger (14) holds. Specifically, we show that for any finite U ⊂ Z

d and any τ ∈ �U ,

P(XU = τ) ≥ c(2d+1)2|U | where c := min
τ∈�∂v

min
s∈�τ

v

P τ
v (s) = min{1, λ}

2 + λ
.

In fact, this follows from [11], Proposition 4.9 (perhaps with a different constant c), since �

satisfies a property called topological strong spatial mixing. Nevertheless, we provide a short
self-contained proof. Denote W := U ∪ ∂U and V := W ∪ ∂W . It suffices to show that, for
any ξ ∈ �∂V ,

P(XU = τ | X∂V = ξ) ≥ c|V | ≥ c(2d+1)2|U |.

This will follow if we show that there exists ω ∈ �
ξ
V such that ωU = τ , and that, for any

ω ∈ �
ξ
V , P

ξ
V (ω) ≥ c|V |. The latter easily follows from (10), since Zτ

V ≤ (λ(2 + λ))|V |. To see
the former, first observe that, for any η ∈ �∂v , we have 1 ∈ �

η
v (we slightly abuse notation

here by identifying �
η
v with a subset of S) if and only if ηu �= −2 for all u ∈ ∂v. A similar

property holds for −1. Thus, there exists τ ′ ∈ �W such that τ ′
U = τ and τ ′

v ∈ {−1,1} for all
v ∈ ∂U , and similarly, there exists ξ ′ ∈ �∂V ∪∂W such that ξ ′

∂V = ξ and ξ ′
v ∈ {−1,1} for all

v ∈ ∂W . It follows that the concatenation of τ ′ and ξ ′ is a feasible configuration on V ∪ ∂V .
That is, the element ω ∈ SV defined by ωW := τ ′ and ω∂W = ξ ′

∂W belongs to �
ξ
V . �

REMARK 9. In light of the correspondence established in [42] between the beach model
and the site-centered ferromagnet (which is monotone and enjoys an additional monotonicity
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property with respect to λ), it seems plausible that one may be able to obtain a sharp transition
for the existence of a finitary coding (in a similar manner as for the Ising model). Namely,
that for λ < λc(d), the unique Gibbs measure is ffiid with exponential tails. We do not pursue
this here.

1.1.6. The monomer-dimer model. This model consists of a random matching in Z
d ,

that is, a collection of disjoint edges (also called dimers), in which a matching ω in finite-
volume is chosen with probability proportional to λ to the power of the number of dimers.
In particular, configurations in this model are elements of {0,1}E(Zd ) (in fact, this model is
precisely the hard-core model on the line graph of Zd ). Strictly speaking, such models do
not fall into the setting of our theorems, but the results extend to this case (see Remark 3)
(alternatively, we could instead regard configurations as elements of, say, {0,1, . . . ,2d}Zd

by
encoding the direction of the dimer incident to a vertex, where 0 means no dimer is present).
Van den Berg [102] showed that this model satisfies exponential strong spatial mixing for any
finite value of λ > 0. It follows that the monomer-dimer model on Z

d is ffiid with exponential
tails for any λ.

1.1.7. Graph homomorphisms. In [12, 14], it is shown that a large class of nearest-
neighbour spin systems satisfy exponential weak spatial mixing. Theorem 1.1 shows that
the unique Gibbs measure in such a system is ffiid. We do not describe the general class
of these systems (they are certain weighted homomorphisms to dismantlable graphs), but
instead give one simple example in which weak spatial mixing is satisfied, but strong
spatial mixing is not. Let � be the set of all configurations x ∈ {0,1,2,3}Zd

such that
{xu, xv} /∈ {{0,2}, {1,3}, {2,2}} for any adjacent u and v, and let P τ

V be the probability mea-
sure on �τ

V in which P τ
V (ω) is proportional to λ

∑
v∈V 1{ωv=0} . It is shown in [12], Proposi-

tion 9.2, that this specification satisfies exponential weak spatial mixing when λ is sufficiently
large (as a function of d), but does not satisfy strong spatial mixing (with any rate function)
for any λ. Thus, for any d ≥ 2, when λ is sufficiently large, the unique Gibbs measure is
ffiid, but we do not know whether it is ffiid with exponential tails. On the other hand, using
the results in [80], one may check that, for any fixed λ �= 1, when d is sufficiently large, no
Gibbs measure is ffiid; for λ < 1, the reason being that there is a unique translation-invariant
Gibbs measure and this measure is not totally ergodic (it is a mixture of two 2-periodic ex-
treme Gibbs measures, characterized by having an unequal density of {0,2} and {1,3} on the
even and odd sublattices), and for λ > 1, the reason being that there are precisely two ergodic
Gibbs measures (characterized by having a very high density of either {0,1} or {0,3}) so that
Theorem 1.3 applies (although � does not have a safe symbol and does not satisfy topologi-
cal strong spatial mixing, one may check in a similar manner as in the proof of Corollary 1.7
that (14) holds, so that assumption (7) of the theorem is satisfied).

1.2. Discussion. This work deals with a relation between finitary codings and spatial
mixing properties. We give a short survey on each of these.

Finitary codings and finitary isomorphisms (invertible finitary codings, whose inverses are
also finitary) have a long history (see, e.g., [90] for a survey), beginning with Meshalkin’s
example of finitarily isomorphic i.i.d. processes [75], and culminating in the work of Keane
and Smorodinsky [58] who showed that i.i.d. processes of the same entropy are finitarily
isomorphic, strengthening the celebrated Ornstein isomorphism theorem [78]. The theory
of finitary codings and finitary isomorphisms for one-dimensional processes is rather well
established [4, 21, 33, 48, 49, 57–59, 62, 85, 86, 89, 93]. Finitary codings of random fields
in one or more dimensions have also been studied both in particular models such as the
Ising model [95, 105], proper colorings [7, 50–52, 101], random walk in random scenery
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[22, 60, 96] and perfect matchings [68, 94, 100], and in general settings [20, 35, 46, 48,
95, 105]. While any finite-state mixing Markov chain in one dimension is isomorphic to an
i.i.d. process (and is a finitary factor of any i.i.d. process with larger entropy [48]), this is not
the case for Markov random fields in two or more dimensions [92]. Moreover, there exists
a Markov random field which is isomorphic to an i.i.d. process, but which is not finitarily
isomorphic to such a process. On the one hand, del Junco showed that there always exists
a finitary coding from any ergodic Markov random field to any finite-valued i.i.d. process
with lower entropy [20]. On the other hand, however, there does exist a Markov random field
which is a factor of an i.i.d. process (and is thus isomorphic to an i.i.d. process [56]), but
which is not ffiid. The plus-state of the Ising model above the critical inverse temperature is
such an example [105].

Spatial mixing properties have been of interest, among other reasons, because of their
implications on uniqueness of Gibbs measures and on efficient approximation of counting
problems. They have been studied both in particular models such as the Potts model [39, 66,
76, 110], proper colorings [1, 37, 40, 55], the hard-core (and monomer-dimer) model [91,
102, 108], and in general settings [5, 6, 9, 12, 14, 31, 64, 67, 69, 71, 77]. In two-dimensional
models with no hard constraints, exponential weak spatial mixing implies exponential strong
spatial mixing for squares [73] (we elaborate on this below). Exponential strong (and in some
cases also weak) spatial mixing is intimately related to optimal temporal mixing of natural
local dynamics (such as Glauber dynamics and various block dynamics) [31, 70–72, 98, 106]
and has even been used to establish cutoff, a sharp transition in the convergence to equilibrium
[66, 67].

Rapid temporal mixing of local dynamics is closely related to perfect sampling (also called
exact simulation), a subject which has received much attention (see, e.g., [24, 82]). A simple
and useful method, called coupling-from-the-past, was devised by Propp and Wilson [83] for
perfectly sampling from the stationary distribution of a one-dimensional Markov chain on a
finite state-space (e.g., a stochastic spin system on a finite graph). This method works partic-
ularly well for monotone spin systems and even for antimonotone ones [44]. In the absence
of monotonicity, auxiliary processes (these have been given several names, including bound-
ing chains, dominating processes, super-PCA and envelope-PCA) have been used together
with coupling-from-the-past to provide efficient perfect sampling algorithms [17, 45, 46, 53,
54, 61]. An extension of coupling-from-the-past to Markov random fields (nearest-neighbour
spin systems on infinite graphs) was a basic ingredient underlying the constructions of fini-
tary codings in [46, 95, 105], and is such in the present paper as well. In particular, these
constructions also provide an algorithm for perfectly sampling the marginal XV of a Markov
random field X (for which the results apply) on any finite set V ⊂ Z

d . This is somewhat
surprising since, in such random fields, the value Xv at any given site v is usually correlated
with the value at infinitely many other sites. We mention that perfect sampling of non-Markov
random fields (having infinite-range interactions) has also been studied [18, 19, 35, 36, 47].

For (discrete nearest-neighbour) monotone spin systems, van den Berg and Steif [105]
established Theorem 1.1 under weaker assumptions (they did not formulate the results in
the precise manner that we now describe, but these follow from their results). Let us first
explain what we mean by a monotone system. A specification P is said to be monotone if
there exists a linear ordering ≤ on S such that, for any vertex v ∈ Z

d and any boundary
conditions τ, τ ′ ∈ �∂v such that τ ≤ τ ′ pointwise (i.e., τu ≤ τ ′

u for all u ∈ ∂v), we have that
P τ

v is stochastically dominated by P τ ′
v , that is,

P τ
v (ωv ≥ s) ≤ P τ ′

v (ωv ≥ s) for all s ∈ S.

Many well-known spin systems are monotone, including the Ising model (see Section 1.1.2),
the Widom–Rowlinson model with two types of particles (see Section 1.1.4) and the beach
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model (see Section 1.1.5). Let us also mention a similar antimonotonic property. A specifi-
cation P is said to be antimonotone if there exists a linear ordering ≤ on S such that P τ

v is
stochastically dominated by P τ ′

v whenever τ ≥ τ ′ pointwise. The hard-core model (see Sec-
tion 1.1.3) is an example of an antimonotone spin system. Van den Berg and Steif showed
that when there is a unique Markov random field with a given monotone specification, this
random field is ffiid. Furthermore, using a result of Martinelli and Olivieri [71], they showed
that, for monotone systems with no hard constraints, exponential weak spatial mixing implies
ffiid with exponential tails (they also showed that this implies fv-ffiid, that is, finitary factor
of a finite-valued i.i.d. process, which was improved to fv-ffiid with stretched-exponential
tails in [95]). An inspection of the proofs in [71, 105] reveals that these results carry over to
antimonotone systems (for this it is important that Zd is bipartite and that the spin system
has only nearest-neighbour interactions, rather than any finite-range interaction; see [44]).
Thus, for monotone and antimonotone systems with no hard constraints, Theorem 1.1 yields
weaker results than those in [105]. On the other hand, when exponential strong spatial mix-
ing is satisfied, though Theorem 1.1 does not yield a new result, we provide a self-contained
proof (whereas the result in [105] appeals to [71]). Also, when (6) holds (e.g., for the critical
two-dimensional Ising model), the result in [105] gives no information on the coding radius in
general (though specifically for the Ising model, one could get such information by appealing
to results about the mixing time [65]), whereas our proof yields a more explicit power-law
bound on its tails.

Häggström and Steif [46] showed how one could drop the monotonicity assumption in
exchange for a high noise condition, which is, with our definitions,

(11) γ
({v}, {v}) > 1 − 1

2d
.

The quantity γ ({v}, {v}) is called the multigamma admissibility, and, as mentioned, is the
probability under an optimal coupling of (P τ

v )τ∈�∂v
that the value at v is the same for

all boundary conditions (see Section 2.2). The authors of [46] proved that any translation-
invariant Markov random field satisfying (11) is ffiid with exponential tails (as in the case
above, they also show fv-ffiid and this was improved to fv-ffiid with stretched-exponential
tails in [95]).

Let us further compare the high noise condition (11) to two well-known weaker conditions
existing in the literature, which are sufficient for exponential strong spatial mixing. These
are Dobrushin’s uniqueness condition [25] and van den Berg and Maes’s disagreement per-
colation condition [103] (we formulate these for translation-invariant Markov random fields,
though both are more general). As will immediately be evident, the main advantage of these
conditions over the above high noise condition is that they involve comparisons between
pairs of boundary conditions, whereas (11) involves a simultaneous comparison between all
boundary conditions. In particular, it is the case that each of the two conditions is implied
by (11). Recall that 	τ,τ ′ is the set on which τ and τ ′ disagree. The uniqueness condition of
Dobrushin is

(12)
∑
u∈∂v

max
τ,τ ′∈�∂v
	τ,τ ′={u}

∥∥P τ
v − P τ ′

v

∥∥ < 1.

Since ‖P τ
v −P τ ′

v ‖ ≤ 1−γ ({v}, {v}) for any τ, τ ′ ∈ �∂v , it is immediate that (11) implies (12).
It is also known that (12) implies exponential strong spatial mixing (see [106], Corollary 3.12,
Theorem 4.6; see also [106], Theorem 3.3, or [107], Theorem 3.2, for the implication of
exponential weak spatial mixing). One may interpret (12) as a bound on the total influence
(of the neighbours a site) on a site. Similar conditions have been studied [26, 27, 98, 106,
107], allowing for other metrics, larger finite-size criteria (rather than a single-site criterion),
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and total influence of a site (dual to the notion of total influence on a site). The disagreement
percolation condition of van den Berg and Maes is, in its simplest form,

(13)
∥∥P τ

v − P τ ′
v

∥∥ < pc

(
Z

d)
for all τ, τ ′ ∈ �∂v,

where pc(Z
d) is the critical probability for site-percolation on Z

d . Using that pc(Z
d) >

1/(2d − 1) for d ≥ 2, one sees that (11) implies (13). Moreover, the proof in [103] shows
that (13) implies exponential strong spatial mixing. Neither (12) nor (13) follow from one
another, and there are situations in which either one provides better bounds than the other
(see [38, 103] for a discussion and comparison between the two conditions). As both (12)
and (13) imply exponential strong spatial mixing, by Theorem 1.1, they are both sufficient
conditions for a translation-invariant Markov random field to be ffiid with exponential tails.

Strong spatial mixing, by definition, allows to couple any two measures P τ
V and P τ ′

V so
that, with high probability, they agree on the region of V which is far away from the set 	τ,τ ′
of disagreement between τ and τ ′. Such a coupling is “optimal” for the pair of boundary
conditions {τ, τ ′}. The main challenge in the proof of part (b) of Theorem 1.1 is to construct
a coupling of the measures (P τ

V )τ , for all possible boundary conditions τ ∈ �∂V , which is
simultaneously nearly optimal for any pair of boundary conditions (in fact, we need this
for more than just pairs of boundary conditions). It is not immediately clear that this is at all
possible (see Remark 10 in Section 2.2; this is somewhat analogous to the difference between
stochastic monotonicity and realizable monotonicity [34]). Although versions of the proof of
Theorem 4.1 have appeared before [46, 95] (the proof is based on a contracting property for
an auxiliary “bounding” random field [23, 45, 46, 54, 95]), the key ingredient, Theorem 4.2,
which establishes the existence of such a coupling, seems to be new.

As mentioned above, in two-dimensional models with no hard constraints (i.e., when the
topological support � is SZ

2
), exponential weak spatial mixing implies exponential strong

spatial mixing for squares [73] (see also [6]). In fact, for this conclusion, it even suffices to
assume exponential weak spatial mixing only for subsets of a sufficiently large square (see
the remark just after Theorem 1.1 in [73]). More precisely, for any exponentially decaying
rate function ρ, there exists L0 and an exponentially decaying rate function ρ′ for which,
if (2) holds for all (U,V ) such that V ⊂ �L0 , then (3) holds (with rate function ρ′) for all
(U,V ) such that V = �L for some L. An inspection of the proof of part (b) of Theorem 1.1
for the two-dimensional case, shows that we only require exponential strong spatial mixing
for squares (see Remark 11). Thus, we obtain that a translation-invariant Markov random
field on Z

2 that has no hard constraints and satisfies exponential weak spatial mixing (even
just for subsets of a sufficiently large square) is ffiid with exponential tails.

As we have also mentioned, van den Berg and Steif [105] showed that a phase transi-
tion presents an obstruction for being ffiid in models with no hard constraints (their proof
is based on the so-called blowing-up property, which was established for finitary factors of
i.i.d. processes by Marton and Shields [74]). One explanation behind this phenomenon is that
the ergodic theorem holds at an exponential rate for i.i.d. processes, and ffiid preserves this
property, while a phase transition prohibits an exponential rate in the ergodic theorem, as the
configuration may “jump” from one phase to another at a subexponential “cost” (such a tran-
sition comes with a boundary effect, but no cost in the bulk) (see [105] for a more detailed
discussion). Theorem 1.3 generalizes this phenomenon to models with hard constraints (the
idea of the proof is based on the explanation above and on some remarks in [105]). Indeed, it
is easy check that (7) holds in the absence of hard constraints, since, in this case, P τ

v (s) > 0
for any τ ∈ �∂v and s ∈ S, implying the stronger property that, for some c > 0,

(14) P(X∂�n = τ) ≥ e−cnd−1
for any n ≥ 1 and any τ ∈ �∂�n.
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One may similarly check that (14) holds whenever there is a so-called “safe symbol”, that
is, a value s0 ∈ S for which P τ

v (s0) > 0 for any τ ∈ �∂v . In fact, (14) holds in much greater
generality, namely, whenever the topological support � satisfies topological strong spatial
mixing [11], Proposition 4.9 (see Section 1.1.5 for a hands-on proof in the case of the beach
model). Moreover, (14) also holds in other natural situations in which there is neither a safe
symbol nor topological strong spatial mixing (e.g., the example given in Section 1.1.7). Thus,
for such models, Theorem 1.3 says that a phase transition (i.e., the existence of more than one
ergodic Markov random field with the given specification) is an obstruction for being ffiid.

We conclude with some open problems:

1. Does exponential weak spatial mixing imply ffiid with finite expected coding radius?
(our proof gives a coding radius having heavy power-law tails)

2. Does exponential weak spatial mixing imply fv-ffiid? (we showed that it implies ffiid)
3. Does weak spatial mixing with some rate function imply ffiid?
4. Does exponential strong spatial mixing imply fv-ffiid with exponential tails? (we

showed that it implies ffiid with exponential tails and also fv-ffiid with stretched-exponential
tails)

5. Does exponential strong spatial mixing imply the existence of a finitary coding from
every i.i.d. process with larger entropy?

6. Does ffiid with exponential tails imply weak spatial mixing?
7. Can assumption (7) be removed from Theorem 1.3 (instead assuming only that X and

X′ have the same topological support)?

1.3. Notation. We consider Zd as a graph in which two vertices u and v are adjacent if
|u − v| = 1, where |v| = ‖v‖1 := |v1| + · · · + |vd | denotes the �1-norm. For sets U,V ⊂ Z

d ,
we write dist(U,V ) := minu∈U,v∈V |u − v| and dist(u,V ) := dist({u},V ). We denote ∂V :=
{u ∈ Z

d : dist(u,V ) = 1} and ∂v := ∂{v}. We use 0 to denote the origin (0, . . . ,0) ∈ Z
d .

1.4. Organization. In Section 2, we provide the basic technique of proof used to con-
struct the finitary codings. We then apply this in Section 3 to prove Theorem 1.2 and part (a)
of Theorem 1.1. In Section 4, we again apply this technique in order to prove part (b) of
Theorem 1.1. Finally, in Section 5, we prove Theorem 1.3.

2. Proof technique and overview. There is a common thread lying at the base of the
proofs of the two parts of Theorem 1.1 (and also Theorem 1.2), which is the use of block
dynamics in conjunction with the method of coupling-from-the-past. We begin by explaining
the dynamics in Section 2.1. We then discuss couplings in Section 2.2, an important ingredi-
ent for the implementation of coupling-from-the-past. Next, in Section 2.3, we give a formal
definition of the dynamics, coupled from all starting configurations. Finally, we show in Sec-
tion 2.4 how these coupled dynamics can be used together with coupling-from-the-past to
provide a recipe for constructing finitary codings, and we indicate in Section 2.5 how this
method is later applied in Section 3 and Section 4 to obtain Theorem 1.1 and Theorem 1.2.

2.1. Dynamics. Our proofs rely on a dynamics called the heat-bath block dynamics. On
a finite graph, this is the following procedure:

• Choose a block � (a set of vertices) at random according to some distribution.
• Resample the configuration on � according to the conditional distribution given by the

current configuration on ∂�.
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On an infinite graph, we may follow a similar procedure, as long as we restrict ourselves to
blocks � which have no infinite connected components. As we are considering Markov ran-
dom fields, this restriction ensures that the resampling step is well defined by the specification
(the configuration is resampled independently in each component).

As we aim to construct a coding, our block distributions cannot be arbitrary and should
satisfy certain properties such as translation invariance. We thus restrict ourselves specialized
block distributions which arise from the following procedure:

• Let �0 ⊂ Z
d be finite and contain 0—this is the “base” block.

• Declare each vertex of Zd , independently, to be “active” with probability p0.
• Declare each active vertex to be “chosen” if there are no other active vertices within dis-

tance diam(�0) + 1 from it.
• Let � be the union of the translates of �0 by the chosen vertices.

Note that the definition of “chosen” ensures that every connected component of � is al-
most surely a translate of �0. It is instructive to note that the block distribution obtained is
translation-invariant and is ffiid (with bounded coding radius).

2.2. Couplings. Let μ and ν be two probability measures on a common space A, which
we assume to be finite for simplicity. A coupling of μ and ν is a probability measure π on
A2 which has marginals μ and ν, that is„ π(A ×A) = μ(A) and π(A× A) = ν(A) for any
A ⊂ A. The total-variation distance between μ and ν is

‖μ − ν‖ := max
A⊂A

∣∣μ(A) − ν(A)
∣∣ = 1

2

∑
a∈A

∣∣μ(a) − ν(a)
∣∣.

It is well known that ‖μ − ν‖ equals the probability that a sample from μ and ν are different
under an optimal coupling. That is, if (Z,Z′) is sampled from a coupling of μ and ν, then

P
(
Z = Z′) ≤ 1 − ‖μ − ν‖,

and there exists a coupling for which equality holds. Noting that

1 − ‖μ − ν‖ = ∑
a∈A

min
{
μ(a), ν(a)

}
,

the above immediately generalizes to any number of distributions μ1, . . . ,μk on A. Namely,
if (Z1, . . . ,Zk) is sampled from a coupling of μ1, . . . ,μk , then

(15) P(Z1 = Z2 = · · · = Zk) ≤ ∑
a∈A

min
{
μ1(a), . . . ,μk(a)

}
,

and there exists a coupling for which equality holds. A coupling for which there is equality
in (15) is called an optimal coupling of μ1, . . . ,μk . When k ≥ 3, we often refer to a coupling
of μ1, . . . ,μk as a grand coupling in order to stress the fact that it is a coupling of multiple
measures, and not just of two measures.

We shall be interested in grand couplings of (P τ
V )τ∈�∂V

or (P τ
V,U )τ∈�∂V

for various finite
sets U ⊂ V ⊂ Z

d . Note that such a grand coupling simultaneously couples samples of the
Markov random field (on V or U ) under all boundary conditions, and not just under two
boundary conditions. Recall the definition of γ (V,U) from (4) and observe that a grand
coupling π of (P τ

V,U )τ∈�∂V
is an optimal coupling if and only if

π
(
ωτ = ωτ ′

for all τ, τ ′ ∈ �∂V

) = γ (V,U).

Since any such coupling can be extended to a coupling of (P τ
V )τ∈�∂V

, it follows that there is
also a grand coupling π̃ of (P τ

V )τ∈�∂V
for which

(16) π̃
(
ωτ

U = ωτ ′
U for all τ, τ ′ ∈ �∂V

) = γ (V,U).
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We say that such a coupling is optimal for the marginals on U . In particular, such couplings
exist.

REMARK 10. A word of caution regarding the optimality of grand couplings: there
typically does not exist an optimal coupling of μ1, . . . ,μk which induces an optimal cou-
pling of every subcollection μi1, . . . ,μim . As an example, consider the case where μi , for
1 ≤ i ≤ k, is the uniform distribution on {1,2, . . . , k} \ {i}. Observe that any coupling of
μ1, . . . ,μk is optimal since the right-hand side of (15) is zero for this choice of μ1, . . . ,μk .
Moreover, one may check that if (Z1, . . . ,Zk) is sampled from any coupling of μ1, . . . ,μk ,
then P(Zi �= Zj) ≥ 2/k for some i �= j . In particular, since ‖μi − μj‖ = 1/(k − 1) for
i �= j , there does not exist a grand coupling for which P(Zi �= Zj) = ‖Zi − Zj‖ for all
i �= j . In fact, the same is true for any 2 ≤ m ≤ k − 1. Namely, for any grand coupling,
P(Zi1 = · · · = Zim) ≤ 1 − m/k for some 1 ≤ i1 < · · · < im ≤ k, which is strictly less than∑k

j=1 min{P(Zi1 = j), . . . ,P(Zim = j)} = 1 − (m − 1)/(k − 1). Thus, no grand coupling
induces an optimal coupling of μi1, . . . ,μim for all 1 ≤ i1 < · · · < im ≤ k.

This example shows that it is not obvious that one can find a grand coupling of (P τ
V )τ∈�∂V

which reflects “good” properties the subcollections (P τ
V )τ∈T , T ⊂ �∂V . This will be a pri-

mary difficulty in the proof of part (b) of Theorem 1.1 in Section 4, where we will use strong
spatial mixing, a property stated in terms of pairs of boundary conditions, to construct a grand
coupling which has a similar property for all pairs (and other T ) simultaneously.

Lastly, we mention that it has recently been shown [8] that there always exists a grand
coupling which induces nearly optimal pairwise couplings; however, this is not sufficient for
our purposes, as we also need the induced coupling to be nearly optimal for the marginals on
arbitrary U ⊂ V .

2.3. The coupled dynamics. We shall require a simultaneous coupling of the dynamics
started from all possible starting states. Let us define these coupled dynamics formally.

The nth step of the dynamics depends on three parameters: a number pn ∈ (0,1) indicating
the probability to be active, a base block �n ⊂ Z

d and a grand coupling πn of (P τ
�n

)τ∈�∂�n
.

Given these parameters, we let ((An,Bn))n≥1 be a sequence of independent random variables,
where, for each n ≥ 1, An and Bn are independent, An is a Bernoulli random variable with
parameter pn and Bn = (Bτ

n )τ∈�∂�n
is a sample from πn. We place an independent copy of

this sequence at each vertex of Zd so as to obtain an i.i.d. process

Y = (Yv)v∈Zd where Yv := (
(Av,n,Bv,n)

)
n≥1.

This will ultimately be the process from which we will obtain a finitary coding to our target
Markov random field X.

We regard Av,n as indicating whether v is active at time n. We then let A′
v,n be the indicator

of the event that v is the only active vertex in a ball of radius

(17) rn := diam(�n) + 1

around v at time n, so that A′
v,n indicates whether v is chosen at time n. Define

(18) Uv,n := {
u ∈ v − �n : A′

u,n = 1
}
,

and observe that |Uv,n| ≤ 1 almost surely. If Uv,n = ∅ then v will not be updated at time n,
while, if Uv,n = {u}, then v will be updated as part of the update to the block centered at u.

This and the description in Section 2.1 then give rise to the random function

fn : � → �
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defined by

(19) fn(ξ)v :=
{
ξv if Uv,n =∅,

Bτ
u,n(v − u) if Uv,n = {u} and τ = (ξw+u)w∈∂�n.

It is immediate that fn is almost surely well defined. The function fn describes a coupling
of one step of the dynamics (at time n) started from all possible starting states (see [23] for
more on this point of view). We remark that these dynamics may be seen as a (nontime-
homogeneous) probabilistic cellular atomaton (PCA).

LEMMA 2.1. For any n ≥ 1, fn preserves the distribution of X. More precisely, if X and
Y are independent, then fn(X) has the same distribution as X.

PROOF. The proof is standard (and straightforward), and thus omitted. �

2.4. Constructing finitary codings using coupling-from-the-past. Let ξ ∈ � be the start-
ing configuration. The usual dynamics is loosely described by the evolution:

ξ −→ f1(ξ) −→ (f2 ◦ f1)(ξ) −→ · · · −→ (fn ◦ fn−1 ◦ · · · ◦ f2 ◦ f1)(ξ) −→ · · · .

In other words, one starts with the configuration ξ at time zero and then, by iteratively com-
posing functions on the left, follows its trajectory forward in time until some positive time n.
The method of coupling-from-the-past suggests to reverse this process by starting with the
configuration ξ at some negative time and then following its trajectory (still forward in time)
until time zero. Rather than using negative times, one may instead realize this idea by com-
posing functions on the right. This leads us to consider the evolution:

· · · ←− (f1 ◦ f2 ◦ · · · ◦ fn−1 ◦ fn)(ξ) ←− · · · ←− (f1 ◦ f2)(ξ) ←− f1(ξ) ←− ξ.

The difference between the two evolutions is subtle, but significant. In the first process, when
(fn ◦fn−1 ◦ · · · ◦f2 ◦f1)(·)v becomes a constant (but still random) function, even though the
evolution ceases to depend on the starting configuration, it still continues to evolve in time.
The main advantage of the second process is that once (f1 ◦f2 ◦ · · · ◦fn−1 ◦fn)(·)v becomes
constant, the evolution not only becomes independent of the starting configuration, but also
stabilizes.

The following proposition summarizes the usefulness of coupling-from-the-past for our
purposes. Denote

ωn := f1 ◦ f2 ◦ · · · ◦ fn−1 ◦ fn

and

(20) Tv := min
{
n ≥ 0 : (

ωn(·))v is a constant function
}
.

PROPOSITION 2.2. Suppose that Tv is almost surely finite for all v. Then the random
field

ω∗ = (
ωTv(·)v)

v∈Zd

has the same distribution as X.

PROOF. Let ξ be sampled from the distribution of X, independently of Y . Fix a finite
V ⊂ Z

d . Since ωt(·)v = ω∗
v for all t ≥ Tv , we have ωt(ξ)V = ω∗

V for all t ≥ maxv∈V Tv . Since,
by Lemma 2.1, ωt(ξ)V has the same distribution as XV for all t ≥ 0, and since ωt(ξ)V = ω∗

V

for sufficiently large t , we conclude that ω∗
V has the same distribution as XV . As V was

arbitrary, the proposition follows. �
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PROPOSITION 2.3. Suppose that Tv is almost surely finite for all v. Then ω∗ defines a
finitary coding from Y to X whose coding radius R satisfies

R ≤ 2(r1 + r2 + · · · + rT0).

PROOF. The fact that ω∗ defines a coding from Y to X is a consequence of Proposi-
tion 2.2 and the observation that fn is translation-equivariant by (19). We proceed to bound
the coding radius. By (18) and (19), for any n ≥ 1 and v ∈ Z

d , fn(ξ)v depends only on
ξv+�2rn

and (Yv+u,n)u∈�2rn
. Thus, for any k ≥ 1, fn(ξ)�k

depends only on ξ�k+2rn
and

(Yu,n)u∈�k+2rn
. Proceeding by induction, we see that

(21) ωn(ξ)0 depends only on ξ�2r1+···+2rn
and (Yu,i)u∈�2r1+···+2ri

,1≤i≤n.

The bound on R follows. �

2.5. Outline of proof of theorems. Proposition 2.3 provides a recipe for constructing a
finitary coding from Y to X. Thus, the method of proof of both parts of Theorem 1.1 (and of
Theorem 1.2) consists of showing that a suitable choice of (pn,�n,πn)n≥1 yields a coding
whose coding radius has the desired properties (either power-law tails for part (a) of the
theorem or exponential tails for part (b)).

For part (a) of the theorem, we shall choose a rapidly growing sequence of blocks �n.
The probabilities pn will be chosen to be of order |�n|−1 so that a vertex has a constant
probability of being updated at any step. Moreover, the grand coupling πn will be chosen
so that there is also a constant probability to reach the stopping time T0 at each step— the
existence of which is made possible by the assumption (6). This will give exponential tails
for T0, but since rn will grow exponentially fast, it will yield heavy power-law tails for the
coding radius.

For part (b) of the theorem, we shall choose �n to be a large, but fixed (i.e., independent
of n), box �n0 . The probabilities pn will also be fixed, say to 1/2. The choice of n0, and of
course the assumption of exponential strong spatial mixing, will guarantee the existence of
a grand coupling with “contracting” properties, which will in turn ensure that the stopping
time T0 is reached exponentially fast, thus leading to exponential tails for the coding radius.

3. Weak spatial mixing implies ffiid with power-law tails. In this section, we prove
Theorem 1.2 and part (a) of Theorem 1.1. Let us first explain how Theorem 1.2 implies
part (a) of Theorem 1.1. For this, we require an additional notion of spatial mixing. A Markov
random field and its specification are said to satisfy ratio weak spatial mixing with rate func-
tion ρ if, for any finite sets U ⊂ V ⊂ Z

d ,

(22) max
ω∈�U

(
1 − P τ ′

V,U (ω)

P τ
V,U (ω)

)
≤ |U | · ρ(

dist(U, ∂V )
)

for any τ, τ ′ ∈ �∂V ,

where the maximum is only over those ω having P τ
V,U (ω) > 0. It may strike the reader as

strange that there are parenthesis in the left-hand side of (22) and not absolute value. How-
ever, the two are essentially equivalent, since when the right-hand side of (22) is, say, less
than 1/2, the parenthesis can be replaced with absolute value at the price of introducing a
multiplicative factor of 2 in the right-hand side. The difference between the two is then only
apparent when the right-hand side is not small. In particular, the definition given in (22)
does not convey any information when the right-hand side is greater than 1. For this rea-
son, we find this definition more convenient. Ratio weak spatial mixing is a priori stronger
than weak spatial mixing, as (22) clearly implies (2). Surprisingly, exponential weak spatial
mixing is equivalent to exponential ratio weak spatial mixing (see [5], Theorem 3.3, or Sec-
tion 4.2 below for a short self-contained proof of an analogous statement for strong spatial
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mixing). Observe that exponential ratio weak spatial mixing easily implies that, for any fixed
0 < δ < 1, for sufficiently large n, we have

(23) min
τ,τ ′∈�∂�n

min
ω∈��δn

P τ ′
�n,�δn

(ω)

P τ
�n,�δn

(ω)
≥ δ,

where the second minimum is over ω having P τ
�n,�δn

(ω) > 0 (in fact, the left-hand side in
(23) tends to 1 exponentially fast as n → ∞). It is immediate that (23) implies (6).

We now turn to the proof of Theorem 1.2. Let X be a translation-invariant Markov random
field satisfying (5). It follows from (5) that there exist 0 < δ, ε < 1/3 and a sequence (�n)n≥1
of positive integers such that, for all n ≥ 1,

(24) δ�n+1 > 4d(�1 + · · · + �n)

and

(25) γ (��n,�3δ�n) > ε.

In addition, if (6) holds, then (�n) can be chosen to also satisfy

(26) �n ≤ ecn for some c > 0 and all n ≥ 1.

Set �n := ��n and pn := �−d
n . Recall (17) and note that rn = 2d�n. Let πn be any grand

coupling of (P τ
�n

)τ∈�∂�n
which is optimal for the marginals on �3δ�n , so that, by (25) and

(16),

(27) πn(En) > ε where En := {
ωτ

�3δ�n
= ωτ ′

�3δ�n
for all τ, τ ′ ∈ �∂�n

}
.

In light of Proposition 2.3, Theorem 1.2 boils down to establishing bounds on the tails of
Tv . These are provided by the following two lemmas. Define

T ′
v := min

{
n ≥ 0 : Uv,n = {u} and Bu,n ∈ En for some u ∈ v + �δ�n

}
.

In words, T ′
v is the first time at which v is updated by the dynamics in such a way that (i) it

falls deep within the inner region of the updated block and (ii) the updated block successfully
couples its inner region (thus shielding its inner region from the boundary conditions). See
Figure 1.

FIG. 1. At each step of the dynamics, the blocks of the chosen vertices (i.e., those v having A′
v,n = 1) are

updated. The updated blocks v + ��n
and their inner regions v + �3δ�n

are depicted (not drawn to scale). The
blocks which successfully shield their inner regions from the outside boundary condition (i.e., those for which
Bv,n ∈ En) are depicted in light blue and the ones which fail to do so in gray. The vertex 0 is indicated by ×. The
green shade indicates regions of vertices v for which T ′

v ≤ n, that is, vertices whose value at time 0 is guaranteed
not to depend on the starting configuration at time n. In particular, T ′

0 is the first time at which the origin becomes
green, which is T ′

0 = 3 in the depicted case.
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LEMMA 3.1. T ′
v has exponential tails. In particular, T ′

v is almost surely finite.

PROOF. Fix n ≥ 1. Let Fn be the event that U0,n = {u} and Bu,n ∈ En for some u ∈ �δ�n .
Then, using that {(Au,n,Bu,n)}u∈Zd are i.i.d., that Au,n and Bu,n are independent, and (18),

P(Fn) ≥ P(B0,n ∈ En) · P(∣∣{u ∈ �δ�n : Au,n = 1}∣∣ = 1
)

· P({u ∈ �δ�n+rn : Au,n = 1} =∅
)

= πn(En) · P(
Bin

(|�δ�n |, �−d
n

) = 1
) · P(

Bin
(|�δ�n+rn |, �−d

n

) = 0
)

≥ c > 0,

where we used (27) and the fact that |�δ�n | = �(�d
n) and |�δ�n+rn | = �(�d

n). Thus, by trans-
lation invariance, P(T ′

v > n) = P(T ′
0 > n) = P(Fc

1 ) · · ·P(Fc
n) ≤ (1 − c)n. �

LEMMA 3.2. Tv ≤ T ′
v almost surely.

PROOF. By translation invariance, it suffices to prove that T0 ≤ T ′
0 almost surely. By the

definition of T0, it suffices to show that ωT ′
0(ξ)0 does not depend on the starting state ξ .

By (21), we have that ωn−1(ξ)0 depends on ξ only through ξ�2r1+···+2rn−1
. By (24) and

since rn = 2d�n, we have that ωn−1(ξ)0 depends on ξ only through ξ�δ�n
. Since ωn(ξ)0 =

ωn−1(fn(ξ))0, we conclude that ωn(ξ)0 depends on ξ only through fn(ξ)�δ�n
.

Suppose now that U0,n = {u} and Bu,n ∈ En for some n ≥ 1 and u ∈ �δ�n . Observe that
Uv,n = {u} for all v ∈ u + ��n . Thus, by (19), (fn(ξ)w+u)w∈��n

= Bτ
u,n for some τ ∈ �∂��n

which depends on ξ . But since Bu,n ∈ En, (27) implies that (Bτ
u,n)�3δ�n

does not depend
on τ . Hence, (fn(ξ)w+u)w∈�3δ�n

, or equivalently, fn(ξ)u+�3δ�n
, does not depend on ξ . Since

u ∈ �δ�n , we have �δ�n ⊂ u+�3δ�n , and thus, fn(ξ)�δ�n
does not depend on ξ . We conclude

that ωT ′
0(ξ)0 does not depend on ξ . �

PROOF OF THEOREM 1.2. In light of Proposition 2.3, the first part of Theorem 1.2 fol-
lows immediately from the fact that Tv is almost surely finite, as is shown by the above
two lemmas. Similarly, for the second part of the theorem, it suffices to show that (6) im-
plies that r1 + r2 + · · · + rTv has power-law tails. Indeed, since the above two lemmas imply
that P(Tv > t) ≤ Ce−ct for some C,c > 0 and all t > 0, and since (24) and (26) imply that
r1 + r2 + · · · + rn ≤ ec′n for some c′ > 0 and all n ≥ 1, we see that

P(r1 + r2 + · · · + rTv > t) ≤ P
(
ec′Tv > t

) = P

(
Tv >

1

c′ log t

)

≤ Ce
− c

c′ log t = Ct−c/c′
. �

4. Strong spatial mixing implies ffiid with exponential tails. In this section, we prove
part (b) of Theorem 1.1. Let us begin with a simple observation. For a finite set V ⊂ Z

d and
a grand coupling π of (P τ

V )τ∈�∂V
, define

κπ := 1

|V |
∑
v∈V

∑
s∈S

π
(
ωτ

v = s for all τ ∈ �∂V

)
.

One may regard κπ as the average ratio of vertices in V that are successfully coupled (i.e.,
whose value does not depend on the boundary condition τ ) by π . As such, recalling (16), it
is easy to see that every grand coupling π which is optimal for the marginals on some U ⊂ V

satisfies

κπ ≥ γ (V,U) · |U |
|V | .
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We aim to prove a statement of the form “if there exists a grand coupling π for which the
average ratio of vertices in V that are successfully coupled by π is sufficiently close to 1,
then X is ffiid with exponential tails”. In particular, we will show that if there exists a grand
coupling π for which

(28) κπ > 1 − 1

|∂V | ,
then X is ffiid with exponential tails (showing that the high noise condition (11) can be
somewhat relaxed). Unfortunately, this result is not sufficient in order to deduce part (b)
of Theorem 1.1 as, under the assumption of exponential strong spatial mixing, we cannot
guarantee that (28) holds for some grand coupling. We thus require a more refined version of
this, which we now formulate.

For a boundary condition τ ∈ �∂V and a subset A ⊂ ∂V , define

λπ(τ,A) := 1

|V |
∑
v∈V

π
(
ωτ

v �= ωτ ′
v for some τ ′ ∈ �∂V having τ∂V \A = τ ′

∂V \A
)
.

Note that λπ(τ,A) ≤ λπ(τ,A′) for any τ ∈ �∂V and A ⊂ A′ ⊂ ∂V , and that

λπ(τ, ∂V ) = 1 − κπ for any τ ∈ �∂V .

One may regard the role of A in λπ(τ,A) as indicating which vertices on the boundary ∂V are
still uncoupled (i.e., whose values depend on the initial configuration in the coupled dynamics
and are thus unknown), so that λπ(τ,A) measures the average ratio of vertices in V that are
not successfully coupled by π (and hence, whose values are unknown after applying one
step of the coupled dynamics), given that we know that the values of the vertices in ∂V \ A

are given by τ . Thus, λπ(τ,A) allows us to relax (28), or equivalently, λπ(τ, ∂V ) < 1/|∂V |,
to a condition which takes into account the known/available information. When little or no
information is available (i.e., when A is large or even equal to ∂V ), we shall require a much
more modest bound on λπ(τ,A). As more information becomes available (i.e., as A becomes
smaller), we shall require a better bound, which will match the original one precisely when
|A| = 1.

THEOREM 4.1. Let X be a translation-invariant Markov random field with specifica-
tion P . If for some finite set V ⊂ Z

d and some grand coupling π of (P τ
V )τ∈�∂V

,

(29) λπ(τ,A) <
|A|
|∂V | for all τ ∈ �∂V and nonempty A ⊂ ∂V,

then X is ffiid with exponential tails.

One may regard a coupling satisfying (29) as a contraction, since it reduces the density
of vertices whose values are unknown. Indeed, (29) says that if we know the values of the
vertices in ∂V \A, then on average, after applying one step of the coupled dynamics, the ratio
of vertices in V whose values are unknown is strictly less than it was on the boundary.

The following theorem implies that, under the assumption of exponential strong spatial
mixing, one may always find a grand coupling satisfying (29), at least when V is a sufficiently
large box.

THEOREM 4.2. Let P be the specification of a Markov random field satisfying expo-
nential strong spatial mixing. Then there exists a grand coupling πn of (P τ

�n
)τ∈�∂�n

such
that

λπn(τ,A) ≤ C logd n

nd
· |A| for all τ ∈ �∂�n and A ⊂ ∂�n,

where C > 0 depends on P , but does not depend on n.
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Part (b) of Theorem 1.1 is an immediate consequence of the two theorems above. The
proof of Theorem 4.1 is given in Section 4.1. In Section 4.2, we prove that exponential strong
spatial mixing implies exponential ratio strong spatial mixing. We then use this in Section 4.3
to prove Theorem 4.2.

4.1. Contraction implies ffiid with exponential tails. It is instructive to consider a more
general setting than that of Theorem 4.1. Let ψ : 2S \{∅} → [0,∞) be any function satisfying

(30) ψ(A) ≤ ψ(B) for any nonempty A ⊂ B ⊂ S

and

(31) ψ(A) = 0 ⇐⇒ |A| = 1 for any nonempty A ⊂ S.

We think of ψ as a measure of how much uncertainty there is about the value at a vertex.
The simplest such ψ (and the one which is relevant for Theorem 4.1 and Theorem 4.2) is ψ1
defined by

ψ1(A) := 1{|A|>1}.

For finite V ⊂ Z
d and η ∈ (2S)∂V , denote

�∂V,η := {τ ∈ �∂V : τv ∈ ηv for all v ∈ ∂V }.
For a grand coupling π of (P τ

V )τ∈�∂V
and η ∈ (2S)∂V such that �∂V,η �= ∅, define

(32) λπ,ψ(η) := 1

|V |
∑
v∈V

π
[
ψ

({
ωτ

v : τ ∈ �∂V,η

})]
.

Note that λπ,ψ1(η) = λπ(τ,A), where A := {v ∈ ∂V : |ηv| > 1} and τ ∈ �∂V is any element
satisfying ηv = {τv} for all v ∈ ∂V \A. Thus, the following is a generalization of Theorem 4.1.

THEOREM 4.3. Let X be a translation-invariant Markov random field with specifica-
tion P . If for some finite set V ⊂ Z

d , some grand coupling π of (P τ
V )τ∈�∂V

and some ε > 0,

(33) λπ,ψ(η) ≤ 1 − ε

|∂V |
∑

v∈∂V

ψ(ηv) for all η ∈ (
2S)∂V such that �∂V,η �= ∅,

then X is ffiid with exponential tails.

PROOF. Let V , π and ε be as in the statement of the theorem. Recall the notation and
setup described in Section 2.3. Set �n := V , pn = 1/2 and πn := π for all n ≥ 1. In light of
Proposition 2.3, the theorem will follow once we show that Tv has exponential tails. Observe
that ωn = f1 ◦ · · · ◦ fn has the same distribution as fn ◦ · · · ◦ f1. Thus,

P(Tv > n) = P
(
ωn(·)v is not constant

) = P
(
(fn ◦ · · · ◦ f1)(·)v is not constant

)
.

Denote

Zn(v) := {
(fn ◦ · · · ◦ f1)(ξ)v : ξ ∈ �

}
and �n := ψ

(
Zn(0)

)
.

By (31), we have

P(T0 > n) = P
(∣∣Zn(0)

∣∣ �= 1
) = P(�n > 0).

Since ψ takes finitely many values, it remains to show that E[�n] decays exponentially in n.
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Let α := P(A′
v,n = 1) denote the probability that a vertex is chosen at any given time and

let β := P(Uv,n �= ∅) = α|V | denote the probability that it is updated at any given time. Let
Fn denote the σ -algebra generated by {Av,i,Bv,i}v∈Zd ,1≤i≤n. Then

E[�n+1 | Fn]
= E

[
E[�n+1 | U0,n+1,Fn] | Fn

]
= (1 − β)E[�n+1 | U0,n+1 = ∅,Fn] + α

∑
u∈V

E
[
�n+1 | U0,n+1 = {−u},Fn

]

= (1 − β)�n

+ α
∑
u∈V

π
[
ψ

({
ωτ

u : τ = (
(fn ◦ · · · ◦ f1)(ξ)w−u

)
w∈∂V for some ξ ∈ �

})]
.

Thus, by the definition of Zn and by (30),

E[�n+1 | Fn] ≤ (1 − β)�n + α
∑
u∈V

π
[
ψ

({
ωτ

u : τ ∈ �∂V,(Zn(w−u))w∈∂V

})]
.

Using that the distribution of Zn is translation-invariant, (32) and (33), we obtain

E[�n+1] = E
[
E[�n+1 | Fn]] ≤ (1 − β)E[�n] + βE

[
λπ,ψ(Zn|∂V )

]
≤ (1 − β)E[�n] + β(1 − ε)

|∂V |
∑

v∈∂V

E
[
ψ

(
Zn(v)

)]

= (1 − εβ)E[�n].
Thus, E[�n] decays exponentially in n. �

4.2. Ratio strong spatial mixing. Here, we prove that strong spatial mixing implies ratio
strong spatial mixing. The proof is essentially contained in [5], Theorem 3.3, where it is
shown (in a slightly more general setting than Markov random fields) that exponential weak
spatial mixing implies exponential ratio weak spatial mixing (see also [6], Theorem 3.10, and
[70]). We present a short proof with some simplifications.

We say that a Markov random field and its specification satisfy ratio strong spatial mixing
with rate function ρ if, for any finite sets U ⊂ V ⊂ Z

d ,

(34) max
ω∈�U

(
1 − P τ ′

V,U (ω)

P τ
V,U (ω)

)
≤ |U | · ρ(

dist(U,	τ,τ ′)
)

for any τ, τ ′ ∈ �∂V ,

where the maximum is only over those ω having P τ
V,U (ω) > 0, and 	τ,τ ′ was defined just

after (3). Let sr be the number of vertices v ∈ Z
d such that |v| = r , and note that sr = �(rd−1)

as r → ∞. Given a rate function ρ, define the rate function ρ∗ by

(35) ρ∗(r) :=
⎧⎪⎨
⎪⎩

∞ if r = 1,

3s�r/2� ·
√

ρ

(⌊
r

2

⌋)
if r ≥ 2.

Formally, ρ∗(1) is required to be finite, but this is clearly not important (it could instead be
taken to equal, say, max{1, ρ∗(2)}), and we write ∞ just to emphasize that (34) has no content
when dist(U,	τ,τ ′) = 1. This is not a mere artifact of the proof, and cannot be avoided in
general. Indeed, there are models with hard constraints (e.g., proper q-colorings with large q),
which satisfy strong spatial mixing with a rate function ρ with arbitrarily small ρ(1), and for
which the left-hand side of (34) equals 1 when dist(U,	τ,τ ′) = 1, due to the hard constraints.
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PROPOSITION 4.4. If a Markov random field satisfies strong spatial mixing with rate
function ρ, then it satisfies ratio strong spatial mixing with rate function ρ∗.

PROOF. Let U ⊂ V ⊂ Z
d be finite and let τ, τ ′ ∈ �∂V . Denote r := dist(U,	τ,τ ′) and

ε := |U | · ρ∗(r). Let ω and σ denote samples from P τ
V and P τ ′

V , respectively. We must show
that

P(σU = η) ≥ (1 − ε) · P(ωU = η) for all η ∈ �U.

To this end, it suffices to show that one may couple ω and σ so that

(36) P(ωU = σU | ωU) ≥ 1 − ε almost surely.

Let us explain how to construct such a coupling. Since (36) holds trivially when ε ≥ 1, we
may assume that ε < 1. In particular, we have that r∗ := �r/2� ≥ 1. Denote

B := {
v ∈ V : dist(v,U) = r∗

}
and W := {

v ∈ V : dist(v,U) < r∗
}
.

See Figure 2 for an illustration of these sets. Observe that

(37) U ⊂ W, ∂W ⊂ B ∪ (∂V \ 	τ,τ ′), dist(B,U ∪ 	τ,τ ′) ≥ r∗.

We first sample (ωB,σB) from an optimal coupling of P τ
V,B and P τ ′

V,B . Next, we sam-

ple (ωW ,σW) from an optimal coupling of P τ
V (ωW ∈ · | ωB) and P τ ′

V (σW ∈ · | ω′
B). Fi-

nally, we independently sample ωV \(B∪W) from P τ
V (ωV \(B∪W) ∈ · | ωB) and σV \(B∪W) from

P τ ′
V (σV \(B∪W) ∈ · | σB). It is straightforward to verify that this indeed yields a sample (ω,σ )

whose marginals are P τ
V and P τ ′

V .
It remains to check that this coupling satisfies (36). Note that, by construction and (37),

{ωB = σB} ⊂ {ωW = σW } ⊂ {ωU = σU }.
This is the only use we make of the optimality of the coupling chosen in the second step of
the construction. Thus, it suffices to show that

(38) P(ωB = σB | ωU) ≥ 1 − ε almost surely.

Denote

G := P(ωB �= σB | ωB).

FIG. 2. The set 	τ,τ ′ of vertices in ∂V where the two boundary conditions τ and τ ′ disagree is depicted in
dashed red, while the vertices of agreement are depicted in green. Strong spatial mixing allows one to couple
samples from P τ

V and P τ ′
V so that they agree on B with high probability. Since B is far from both U and 	τ,τ ′ ,

using strong spatial mixing again, one may deduce that the densities of Pτ
V,U and Pτ ′

V,U are similar as in (34).



1582 Y. SPINKA

Denote s := √
ρ(r∗) and note that s|B| ≤ ε/3, since |B| ≤ sr∗ |U |. By Markov’s inequality,

the first step in the construction of the coupling, and strong spatial mixing,

(39)
P(G ≥ s) ≤ E[G]

s
= P(ωB �= σB)

s
= ‖P τ

V,B − P τ ′
V,B‖

s

≤ |B| · ρ(r∗)
s

= s|B| ≤ ε/3.

Using again strong spatial mixing, and since s ≤ 1, we similarly obtain, almost surely,

(40)

∣∣P(G ≥ s | ωU) − P(G ≥ s)
∣∣ ≤ ∥∥P(ωB ∈ · | ωU) − P(ωB ∈ ·)∥∥
≤ s2|B| ≤ ε/3.

Note that, by construction, ωU and σB are conditionally independent given ωB . Indeed, this
follows from the fact that, given (ωB,σB), the distribution of ωW is almost surely P τ

V (ωW ∈
· | ωB). Thus, almost surely,

P(G ≤ s,ωB �= σB | ωU) ≤ P(ωB �= σB | G ≤ s,ωU)

= E[G | G ≤ s,ωU ] ≤ s ≤ ε/3.

Putting this together with (39) and (40) yields (38). �

4.3. Existence of a contracting grand coupling. Theorem 4.2 follows by taking r to be a
large multiple of logn in the next proposition. Recall the definition of ρ∗ from (35).

PROPOSITION 4.5. Let P be a specification satisfying strong spatial mixing with rate
function ρ. Then, for every 1 ≤ r ≤ n/4, there exists a grand coupling πn of (P τ

�n
)τ∈�∂�n

such that

(41) λπn(τ,A) ≤ ρ∗(r) + Cdrd · |A|
|�n| for all τ ∈ �∂�n and A ⊂ ∂�n,

where Cd is a positive constant depending only on the dimension.

PROOF. Fix 1 ≤ r < s ≤ 4r ≤ n and denote V := �n and U := �n−r . In order to ease
notation, we make the convention that whenever τ is used as an index with an unspecified
domain, it runs over all elements in �∂V .

Let L1,L2, . . . ,Lm ⊂ V \ U be disjoint (to be suitably chosen later). The main idea in the
construction of πn is to couple the configurations, in order, first on U , then on L1, then on
L2 and so on, and finally on each connected component of V \ (U ∪ L1 ∪ · · · ∪ Lm). See
Figure 3.

Set U0 := U and V0 := V \ U , and for 1 ≤ i ≤ m, denote

Ui := U ∪ L1 ∪ · · · ∪ Li and Vi := V \ Ui.

For 1 ≤ i ≤ m, denote

Ti := {
v ∈ ∂Vi−1 : dist(v,Li) < s

}
and, for each η ∈ �Ti

, denote

�∂Vi−1,η := {ξ ∈ �∂Vi−1 : ξTi
= η}.

Note that, for every 1 ≤ i ≤ m,

{�∂Vi−1,η}η∈�Ti
is a partition of �∂Vi−1 .
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FIG. 3. The set V \U is divided into small cubes having sides of length r or s ≤ s′ ≤ 10s (with s′ taken to be 6s

in the figure). The faces of the cubes correspond to the Li (except for those faces which are contained in U or ∂V )
and the numbers adjacent to them indicate their relative order (the order is irrelevant when d = 2). The elements
of A (the set of disagreement boundary vertices), along with circles of radius s around them, are depicted by ⊗.
We wish to couple samples (ωτ )τ from (P τ

V )τ , under all possible boundary conditions τ ∈ �∂V , in such a way
that, for the set T of boundary conditions which agree with a fixed configuration on ∂V \A, with high probability,
all samples in (ωτ )τ∈T coincide on the region of V that is far away from A. Furthermore, we wish to do this
in a manner which does not depend on T or A. We do so by first coupling (ωτ )τ on U , then on L1, then on
L2, and so forth, and finally on each of the remaining connected components. The Li for which i ∈ IA (i.e., for
which dist(Li,A) < s) are directly affected by the disagreement on A (these faces are depicted in red and are
precisely those that have a circle ⊗ touching them), and we cannot hope to successfully couple all samples there.
As this effect propagates, the Li for which i ∈ IA (i.e., for which i′ → i for some i′ ∈ IA) but i /∈ IA are also
indirectly affected by the disagreement on A (these faces are depicted in green). The connected components of Vm

that are contained in CA (i.e., components whose boundaries touch A or such an affected Li ) are also directly or
indirectly affected (these are depicted in pink). A well-chosen order of the Li ensures that the total effect of the
disagreement on A is not too large.

Let Q be an optimal coupling of (P τ
V,U )τ . For each 1 ≤ i ≤ m and η ∈ �Ti

, let Q
η
i be an

optimal coupling of (P
ξ
Vi−1,Li

)ξ∈�∂Vi−1,η
. Let Qi be any coupling of (P

ξ
Vi−1,Li

)ξ∈�∂Vi−1
with

marginals (Q
η
i )η∈�Ti

, e.g., the product coupling. Note that, by ratio strong (or weak) spatial
mixing (which follows from the assumption and Proposition 4.4),

(42) Q
(
ωτ

U = ωτ ′
U for all τ, τ ′) ≥ 1 − |U | · ρ∗(r),

and that, by ratio strong spatial mixing, for any 1 ≤ i ≤ m and η ∈ �Ti
,

(43) Qi

(
ω

ξ
Li

= ω
ξ ′
Li

for all ξ, ξ ′ ∈ �∂Vi−1,η

) ≥ 1 − |Li | · ρ∗(s).

The grand coupling πn is constructed as follows. First, we sample (ωτ
U )τ from Q. Next,

we sample (ωτ
Li

)τ , for each i = 1, . . . ,m, one after another, as follows. Let i ∈ {1, . . . ,m} and

suppose we have already sampled (ωτ
Ui−1

)τ . We then sample (ωτ
Li

)τ by setting ωτ
Li

:= σ
ωτ

∂Vi−1

for all τ , where (σ ξ )ξ∈�∂Vi−1
is sampled from Qi , independently of anything else previously

sampled. Thus, at the end of this process, we have sampled (ωτ
Um

)τ . To complete the con-
struction, for each connected component C of Vm, conditionally on (ωτ

Um
)τ , we independently

sample (ωτ
C)τ from an optimal coupling of (P τ

V,C(· | ωτ
Um

))τ . Define πn to be the distribution
of the sample (ωτ )τ thus obtained. It is straightforward to check that πn is a grand coupling
of (P τ

V )τ .
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Let us observe some simple properties that follow from this construction. First, by (42),

(44) πn(E) ≥ 1 − |U | · ρ∗(r) where E := {
ωτ

U = ωτ ′
U for all τ, τ ′}.

For T ⊂ �∂V , let 	T be the subset of ∂V on which some boundary conditions in T do not
agree, and let ET

i be the event that all boundary conditions in T are coupled on Li , that is,

	T := {
v ∈ ∂V : τv �= τ ′

v for some τ, τ ′ ∈ T
}
,

ET
i := {

ωτ
Li

= ωτ ′
Li

for all τ, τ ′ ∈ T
}
.

By (43), for any 1 ≤ i ≤ m and T ⊂ �∂V such that dist(Li,	T ) ≥ s,

(45)

πn

(
ET

i | (
ωτ

Ui−1

)
τ

)
≥ 1 − |Li | · ρ∗(s) a.s. on the event E ∩ ⋂

1≤i′<i
dist(Li,Li′ )<s

ET
i′ .

In addition, for any connected component C of Vm,

(46) ωτ
C = ωτ ′

C almost surely for any τ, τ ′ such that τ∂C = τ ′
∂C .

Equations (44), (45) and (46) summarize the properties we need from the construction of πn.
We claim that, for a suitable choice of L1, . . . ,Lm, πn satisfies (41). In fact, there are many
possible such choices, and any choice with, say, property (47) below will suffice.

For v ∈ ∂V , denote

I v := {
1 ≤ i ≤ m : dist(v,Li) < s

}
.

Say that i is a child of i′ if i > i′ and dist(Li,Li′) < s. Write i ′ → i if i is a descendant
(child, grandchild, etc.) of i ′ or if i = i′. Denote

Iv := {
1 ≤ i ≤ m : i ′ → i for some i′ ∈ I v}

.

We think of I v as indicating those Li which are directly affected by v, and Iv \ I v as those
which are indirectly affected (as the effect of v may propagate). Denote

Lv := ⋃
i∈Iv

Li.

Let Cv be the union of the connected components of Vm which are adjacent to Lv ∪{v}. Then
we shall show that the following suffices to ensure that πn satisfies (41):

(47)
∣∣Lv ∪ Cv

∣∣ ≤ Cdrd for all v ∈ ∂V .

Intuitively, this property implies that the total negative effect caused by a disagreement at
a single vertex v ∈ ∂V cannot be too large, since (47) provides a bound on the number of
vertices affected (via the propagation of failed coupling events) by any such disagreement.

A choice of L1, . . . ,Lm which satisfies this property can be obtained as follows (we give
an informal description; see also Figure 3). In each of the 2d directions, there is a “thick
(d − 1)-dimensional slab” (of side-length 2(n − r) and of thickness r) between the faces of
U and V in that direction. We divide each such slab into thick (d − 1)-dimensional cubes
of side-length between s and 10s (e.g., [0, r] × [0, s]d−1). We then continue to slabs of one
less dimension: there are

(2d
2

)
“thick (d − 2)-dimensional slabs” (of side-length 2(n − r)

in d − 2 of the dimensions and thickness r in the two other dimensions), each of which is
divided into thick (d −2)-dimensional cubes of side-length between s and 10s (e.g., [0, r]2 ×
[0, s]d−2). We continue this process to lower-dimensional slabs in a similar manner. At the
end of the process, we obtain a partition of V \ U into cubes of the form [0, r]k × [0, s′]d−k
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with 1 ≤ k ≤ d and s ≤ s′ ≤ 10s (up to translations and coordinate permutations). The (d −
1)-dimensional faces of these cubes (where, e.g., [0, r]k × [0, s]d−k−1 × {0} is such a face
of [0, r]k × [0, s]d−k) will be the {Li}i (except for those faces which are contained in U or
∂V ; i.e., we only consider faces which “connect” between U and ∂V ), chosen in a suitable
order. Such an order is, for instance, obtained as follows. Associate to each face the index
z ∈ {1, . . . ,2d} of the zero-length coordinate and the set J ⊂ {1, . . . ,2d} of coordinates in
which the face has side-length at least s (e.g., [0, s]k × [0, r]d−k−1 × {0} has z = 2d and
J = {1, . . . , k}). Note that the adjacency relation induced on the set of faces with a given J

and z is that of (disjoint copies of) a |J |-dimensional cube. We let p = (p1, . . . , p|J |) denote
the face’s position in this |J |-dimensional grid (e.g., if [0, s]2 ×[0, r]×{0} has p = (0,0) then
[s,2s] × [5s,6s] × [0, r] × {0} has p = (1,5)). The faces are then ordered first in decreasing
order according to |J | (i.e., in increasing order according to the number of sides of length r),
then in (say, increasing) order according to z and then in lexicographical order according to
(p1 mod 2, . . . , p|J | mod 2). We complete this partial order to a linear order in an arbitrary
manner. This choice of ordering ensures that i ′ → i implies that the “grid-distance” between
the faces Li and Li′ (i.e., the �1-distance between the p’s corresponding to the two faces)
is at most C′

d . In particular, since it is clear that |I v| ≤ C′′
d , we have |Iv| ≤ C′′′

d . Since the
faces have size at most r(10s)d−2 and the connected components of Vm have size at most
r(10s)d−1, we have |Lv ∪ Cv| ≤ Cdrd , as required.

The above construction is particularly simple (even somewhat degenerate) in two dimen-
sions (see Remark 11 below). However, writing it down precisely for d ≥ 3 is a bit cumber-
some and we omit the details.

We proceed to show that (47) implies that πn satisfies (41). Towards showing this, let
(ωτ )τ be sampled from πn, let τ ∈ �∂V and A ⊂ ∂V , and define

T := {
τ ′ ∈ �∂V : τ∂V \A = τ ′

∂V \A
}

and

W := {
v ∈ V : ωτ

v = ωτ ′
v for all τ ′ ∈ T

}
.

We must show that

E|W| ≥ |V | − |A| · Cdrd − |V | · ρ∗(r).

This will follow if we show that, for some W ⊂ V ,

(48) |W | ≥ |V | − |A| · Cdrd and P(W ⊂ W) ≥ 1 − |V | · ρ∗(r).

Denote IA := ⋃
v∈A Iv , IA := ⋃

v∈A Iv , LA := ⋃
v∈ALv and CA := ⋃

v∈A Cv . Let C1, . . . ,Ck

be the connected components of Vm which are not adjacent to LA ∪ A. Note that

k⋃
j=1

Cj = Vm \ CA.

Set

W := V \ (
LA ∪ CA)

and note that (47) implies the first part of (48). By (46), we have

E ∩ ⋂
i∈I

ET
i ⊂ {W ⊂ W} where I := {1, . . . ,m} \ IA.

Since P(Ec) ≤ |U | · ρ∗(r) by (44), the second part of (48) will follow if we show that, for
any i ∈ I ,

P
((

ET
i

)c | E occurs and Ei′ occurs for all i ′ ∈ I with i′ < i
) ≤ |Li | · ρ∗(s).
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Indeed, this follows from (45), since dist(Li,A) ≥ s and 	T ⊂ A, and since, if 1 ≤ i ′ < i

satisfies dist(Li,Li′) < s, then i′ ∈ I (otherwise i′′ → i ′ → i for some i ′′ ∈ IA, implying that
i ∈ IA). �

REMARK 11. In the two-dimensional case, the proof of Proposition 4.5 is slightly sim-
plified due to the fact that the constructed collection {Li}i satisfies dist(Li,Li′) ≥ s whenever
i �= i ′, except when Li and Li′ are both at one of the same four corners (see Figure 3a). In
fact, one may just as well remove the eight Li which are at the corners so that this holds for
all i �= i ′. Thus, regardless of the order in which (Li)i is chosen, we have i ′ → i if and only
if i ′ = i, and the event on the right-hand side of (45) is just E. On the other hand, although
these are convenient simplifications, they are not of significant importance. Instead, what is
more important in two dimensions is that in order to deduce (43), we only need exponential
strong spatial mixing for a restricted class of sets (U,V ) and boundary conditions (τ, τ ′);
that is, we only need to assume that (3) holds for certain (U,V ) and (τ, τ ′). Indeed, the
proof of Proposition 4.4 reveals that if one only assumes exponential strong spatial mixing
for (U,V ) = ({0} × Sr, Sr × Sr) and (τ, τ ′) for which 	τ,τ ′ ⊂ {−r − 1, r + 1} × Sr , where
Sr := {−r, . . . , r}, then one obtains as a consequence exponential ratio strong spatial mixing
for (U,V ) = ({0} × Sr, S2r+1 × Sr) and (τ, τ ′) for which 	τ,τ ′ ⊂ {−2r − 2,2r + 2} × Sr

(see Figure 2b). Finally, this is all that is needed to obtain (43), so that the conclusion of
Proposition 4.5 remains true under this weaker hypothesis.

5. An obstruction for ffiid. In this section, we prove Theorem 1.3.

PROOF OF THEOREM 1.3. Let X and X′ be as in the theorem. Denote the distributions
of X and X′ by μ and ν. We write ω for a generic random element of �. Let A be a cylinder
event satisfying μ(A) < ν(A), which is determined by the values of ω on a box �k . For
n > k, denote

Zn := 1

|�n−k|
∑

v∈�n−k

1A

(
(ωu+v)u∈Zd

)
.

Note that Zn is measurable with respect to ω�n . By the pointwise ergodic theorem,

(49) μ
(
Zn → μ(A) as n → ∞) = 1 and ν

(
Zn → ν(A) as n → ∞) = 1.

Assume towards a contradiction that X is ffiid. Then the random field W = (Wv)v∈Zd defined
by Wv := 1A((Xu+v)u∈Zd ) is also ffiid, so that the convergence in the ergodic theorem occurs
at an exponential rate for W [10] (see also [74, 105]). Hence, denoting a := 1

2(μ(A)+ ν(A)),

μ(Zn ≥ a) ≤ Ce−2cnd

for some C,c > 0 and for all n > k.

By Markov’s inequality,

P(X∂�n ∈ Tn) ≤ Ce−cnd

where Tn := {
τ ∈ �∂�n : P τ

�n
(Zn ≥ a) ≥ e−cnd }

.

Thus, since P(X′
∂�n

∈ Tn) = 1 − o(1) by (49), we have reached a contradiction to (7). �

Acknowledgements. I would like to thank Raimundo Briceño, Nishant Chandgotia,
Hugo Duminil-Copin and Jeff Steif for useful discussions. I am especially grateful to Matan
Harel for many discussions throughout the preparation of this paper.



FINITARY CODINGS FOR SPATIAL MIXING MARKOV RANDOM FIELDS 1587

REFERENCES

[1] ACHLIOPTAS, D., MOLLOY, M., MOORE, C. and VAN BUSSEL, F. (2005). Rapid mixing for lattice
colourings with fewer colours. J. Stat. Mech. Theory Exp. 2005 P10012.

[2] AIZENMAN, M., DUMINIL-COPIN, H. and SIDORAVICIUS, V. (2015). Random currents and continu-
ity of Ising model’s spontaneous magnetization. Comm. Math. Phys. 334 719–742. MR3306602
https://doi.org/10.1007/s00220-014-2093-y

[3] AIZENMAN, M. and FERNÁNDEZ, R. (1986). On the critical behavior of the magnetization in
high-dimensional Ising models. J. Stat. Phys. 44 393–454. MR0857063 https://doi.org/10.1007/
BF01011304

[4] AKCOGLU, M. A., DEL JUNCO, A. and RAHE, M. (1979). Finitary codes between Markov processes.
Z. Wahrsch. Verw. Gebiete 47 305–314. MR0525312 https://doi.org/10.1007/BF00535166

[5] ALEXANDER, K. S. (1998). On weak mixing in lattice models. Probab. Theory Related Fields 110 441–
471. MR1626951 https://doi.org/10.1007/s004400050155

[6] ALEXANDER, K. S. (2004). Mixing properties and exponential decay for lattice systems in finite volumes.
Ann. Probab. 32 441–487. MR2040789 https://doi.org/10.1214/aop/1078415842

[7] ANGEL, O., BENJAMINI, I., GUREL-GUREVICH, O., MEYEROVITCH, T. and PELED, R. (2012). Station-
ary map coloring. Ann. Inst. Henri Poincaré Probab. Stat. 48 327–342. MR2954257 https://doi.org/10.
1214/10-AIHP399

[8] ANGEL, O. and SPINKA, Y. (2019). Pairwise optimal coupling of multiple random variables. Preprint.
Available at arXiv:1903.00632.

[9] BLANCA, A., CAPUTO, P., SINCLAIR, A. and VIGODA, E. (2018). Spatial mixing and non-local Markov
chains. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
1965–1980. SIAM, Philadelphia, PA. MR3775916 https://doi.org/10.1137/1.9781611975031.128

[10] BOSCO, G. G., MACHADO, F. P. and RITCHIE, T. L. (2010). Exponential rates of convergence in the
ergodic theorem: A constructive approach. J. Stat. Phys. 139 367–374. MR2609444 https://doi.org/10.
1007/s10955-010-9945-4

[11] BRICEÑO, R. (2018). The topological strong spatial mixing property and new conditions for pressure
approximation. Ergodic Theory Dynam. Systems 38 1658–1696. MR3819997 https://doi.org/10.1017/
etds.2016.107

[12] BRICEÑO, R. and PAVLOV, R. (2017). Strong spatial mixing in homomorphism spaces. SIAM J. Discrete
Math. 31 2110–2137. MR3702862 https://doi.org/10.1137/16M1066178

[13] BRIGHTWELL, G. R., HÄGGSTRÖM, O. and WINKLER, P. (1999). Nonmonotonic behavior in hard-core
and Widom–Rowlinson models. J. Stat. Phys. 94 415–435. MR1675359 https://doi.org/10.1023/A:
1004573003122

[14] BRIGHTWELL, G. R. and WINKLER, P. (2000). Gibbs measures and dismantlable graphs. J. Combin.
Theory Ser. B 78 141–166. MR1737630 https://doi.org/10.1006/jctb.1999.1935

[15] BURTON, R. and STEIF, J. E. (1994). Non-uniqueness of measures of maximal entropy for subshifts
of finite type. Ergodic Theory Dynam. Systems 14 213–235. MR1279469 https://doi.org/10.1017/
S0143385700007859

[16] BURTON, R. and STEIF, J. E. (1995). New results on measures of maximal entropy. Israel J. Math. 89
275–300. MR1324466 https://doi.org/10.1007/BF02808205
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