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Building on the line of work (Ann. Appl. Probab. 25 (2015) 2096-2133;
Stochastic Process. Appl. 125 (2015) 2451-2492; Ann. Appl. Probab. 29
(2019) 89-129; Arch. Ration. Mech. Anal. 233 (2019) 643-699; Ann. Appl.
Probab. 29 (2019) 2338-2373; Finance Stoch. 23 (2019) 535-594), we con-
tinue the study of particle systems with singular interaction through hitting
times. In contrast to the previous research, we (i) consider very general driv-
ing processes and interaction functions, (ii) allow for inhomogeneous con-
nection structures and (iii) analyze a game in which the particles determine
their connections strategically. Hereby, we uncover two completely new phe-
nomena. First, we characterize the “times of fragility” of such systems (e.g.,
the times when a macroscopic part of the population defaults or gets infected
simultaneously, or when the neuron cells “synchronize”) explicitly in terms
of the dynamics of the driving processes, the current distribution of the par-
ticles’ values and the topology of the underlying network (represented by its
Perron—Frobenius eigenvalue). Second, we use such systems to describe a
dynamic credit-network game and show that, in equilibrium, the system reg-
ularizes, that is, the times of fragility never occur, as the particles avoid them
by adjusting their connections strategically. Two auxiliary mathematical re-
sults, useful in their own right, are uncovered during our investigation: a gen-
eralization of Schauder’s fixed-point theorem for the Skorokhod space with
the M1 topology, and the application of max-plus algebra to the equilibrium
version of the network flow problem.

1. Introduction. In this paper, we continue our investigation of the mean field parti-
cle systems with singular interaction through hitting times. The finite particle systems of
such type are characterized by the following feature. Whenever a particle (represented by
a stochastic process on the real line) hits a given barrier, it shifts the positions of all other
particles instantaneously in the direction of the barrier. As a result, a single initial hitting
time may cause an instantaneous “cascade” of jumps. It turns out that, unlike in classical
mean field systems, these cascades do not disappear as the population size increases to in-
finity, and they manifest themselves in the jumps of a representative particle. Such jumps
are often connected to important real-world phenomena (e.g., phase transitions); hence, their
presence in a model is necessary in order to analyze these phenomena. On the other hand,
such discontinuities are the main source of the associated mathematical challenges.

The particle systems of such type arise in a variety of contexts. In [18, 19], they are used as
neuron firing models with the purpose of capturing the synchronization phenomenon; namely,
a macroscopic number of neurons in a part of the brain firing simultaneously. The latter, in
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turn, has been found to be correlated with many cognitive functions. Other particle systems
interacting through hitting times are introduced in [21], followed by [20], and are motivated
by the earlier research [27-30] on supercooled liquids. Thereby, the goal is to describe the
rapid advancement of the liquid-solid boundary when the supercooled liquid is located next
to the warmer corresponding ice. In our article [38] and the papers [32, 33] that followed,
the interaction through hitting times represents the losses banks incur due to the defaults of
other banks, which may cause further defaults and potentially trigger a default cascade of
macroscopic size. The common feature of the three settings lies in the self-excitation on the
microscopic (particle) level that, under appropriate circumstances, leads to discontinuities on
the macroscopic level.

In addition to considering very general driving processes and interaction functions, the
main contribution of the present work is two-fold. First and foremost, we allow for an in-
homogeneous connection structure across particles. Recall that, in the mean field particle
systems described in the previous paragraphs, the hitting time of any particle has a direct and
equal effect on the positions of all other particles. This implies that any two particles are di-
rectly connected, and the strength of each connection is the same. Herein, on the contrary, we
model the connections via an infinite directed weighted graph, where the weight of an edge
indicates the strength of a connection. Specifying the weights of the graph, we can produce
systems with various connection structures. This generalization allows one to produce more
realistic models, for example, it is clear that not all neurons are directly connected to each
other, and that not all banks have equal exposures to each other. To the best of our knowl-
edge, the particle systems of such form have not been considered in the existing literature. It
is worth mentioning that the connection structures used herein appear as the limits of finite
random graphs in [10], and the particle systems with such connection structures are analyzed,
for example, in [8, 9, 11, 14, 39]. However, the latter systems are of a classical, smooth type,
without the singular interaction through hitting times. In Section 2, we discuss the proposed
particle systems in detail and show their existence (Theorem 2.3). As an auxiliary result,
we establish a generalization of Schauder’s fixed-point theorem (Theorem 2.6) for mappings
defined on the Skorokhod space with the M1 topology. Moreover, we investigate how the
topology of a network affects the occurrence of jumps of a representative particle. Since such
jumps may often be interpreted as the events of crises (e.g., a significant number of defaults
or infections occurring instantly), we refer to them as the times of fragility and analyze them
in detail in Section 3. Remarkably, the times of fragility turn out to be closely connected to
the Perron—Frobenius eigenvalue of the corresponding graph (see Theorem 3.3).

The second contribution of this work is in the analysis of the associated mean field games.
The literature on mean field games is vast (see, e.g., [15, 16, 36] and the references therein).
However, to date, only [17] has considered mean field games on graphs, using exogenously
given homogeneous (random) connection structures. Herein, we allow the particles to control
the weights of their connections, thus obtaining the connection structure endogenously, in
equilibrium. In Section 4, we present the general form of the proposed “resource-sharing”
game, which can be viewed as a multiagent version of the notorious “network flow” problem
in combinatorial optimization. In such a multiagent version, the weights of the network edges
(i.e., the “flow”) are not determined by optimizing a global criterion, but are obtained from
a Nash equilibrium in which every node optimizes its individual criterion locally. In order to
obtain concrete results, we focus on a more specific “credit network” game. There exists a
fairly large body of work on modeling equilibrium in credit networks or more generally, in
asset-liability networks; see, for example, [1, 4, 6, 24-26, 40, 44] and the references therein.
However, most of the existing models are either static or do not allow for the connections to be
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determined endogenously in equilibrium.! The model proposed herein does possess both of
these features. The output of such a model includes the equilibrium dynamics of the interest
rate and of the credit connections in the system, which are easy to compute numerically. It
turns out that the equilibrium connections are such that the system never exhibits a jump: each
particle decreases the strength of its connections to the particles that are close to the barrier,
eliminating the cascades. Thus, allowing the particles to act strategically has a regularizing
effect on the system. It is worth mentioning that our construction of an equilibrium relies upon
the existing results on linear systems in the max-plus algebra (Proposition 4.13), making an
interesting connection to a very different area of mathematics.

The rest of the paper is organized as follows. Section 2 introduces the mean field systems
with exogenously given connection structures and proves their existence (Theorem 2.3). It
also contains Theorem 2.6, which is a generalization of Schauder’s fixed-point theorem for
mappings defined on the Skorokhod space with the M1 topology. Section 3 is concerned
with the times of fragility of such particle systems. Namely, Theorem 3.3 provides necessary
and sufficient conditions for fragility in terms of the marginal distributions of the solution, the
topology of the network, and the dynamics of the driving processes. In Section 4, we consider
a game in which every particle is allowed to control the strength of its connections dynami-
cally, aiming to optimize its objective. The individual optimization problems and the notion
of equilibrium are introduced in Section 4.1. The approach for constructing an equilibrium
is described in Section 4.2. The construction is split into two steps: the dynamic problem
(Section 4.3) and the static problem (Section 4.4). The main theorem, showing the existence
of an equilibrium and describing its structure, is given in Section 4.4 (Theorem 4.16). The
Appendix contains technical proofs and auxiliary statements.

2. Definition and existence of mean field dynamics. Herein, we deal with a system of
particles characterized by their “level of healthiness” Y~*, taking values in [0, o) and by their
“type” x € X, with an abstract finite set X'. We assume that the type of each particle remains
constant, whereas the healthiness level changes stochastically over time. When the health-
iness level drops to zero, the particle “dies.” In addition, we consider a directed weighted
graph, whose nodes are the elements of X'. The connection structure of this graph is encoded
by a nonnegative function C and a stochastic kernel «, on X. The weight of the edge from
x to x’ is given by C(x)«k (x, {x'}). A weight of zero is interpreted as the absence of a con-
nection. The strength of the connection from a particle of type x to the particles of type x’
is determined by the weight of the associated edge of the graph. If a particle dies, it shifts
down the healthiness levels of all particles that are connected to it. The size of each shift
is given in terms of the corresponding connection strength and an interaction function g. In
the absence of such shifts, the healthiness level of a particle of type x evolves according to
a continuous stochastic process Z*, with Zj > 0. Thus, {Y*},cx are defined as a family of
stochastic processes satisfying, for each x € &,

Y =277+ C(x) fXg(IP’(tx/ >1))k(x,dx"), te€[0,t°AT],

2. YE=Y5, te(t"AT.T],
o* =inf{r € [0, T]: Y <0}

We impose the following conditions on the function g in (2.1) throughout.

IThe exceptions are [40, 44]. Nevertheless, the latter models do not include default risk, which is at the center
of the present analysis.
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ASSUMPTION 2.1. The function g : [0, 1] — [—o0, 0] is nondecreasing, on (0, 1] it is
continuous with values in (—o0, 0] and it is normalized to satisfy g(1) =0.

We point out that the dependence between the driving processes Z* across x € X is imma-
terial, as each pair (Y*, Z¥) can be defined on its own probability space. Note that, although
(X, {C(x)k (x, {x"D}x rex) is a finite graph, the actual network on which the particles evolve
is an infinite (directed, weighted) “dense” graph. Namely, if C(x)k (x, {x’}) > 0, then every
particle of type x is connected to all particles of type x’ that are still alive (and there is an infi-
nite number of them), with the weight of each connection being the same across all particles
of type x'.

The interpretation of the proposed system is as follows. The particles may represent cells,
individuals or organizations, having certain “exposures” to each other. For example, a neuron
in a human brain is physically connected to surrounding neurons, a computer in a network
allows other computers to upload data to it, and banks may lend funds to other banks and
households. The strength of each connection indicates the size of this exposure. When a
particle dies, it causes instantaneous shifts in the healthiness levels of the particles connected
to it. For example, when the membrane potential in a neuron exceeds a certain threshold,
the membrane potentials of the neurons connected to it rise. Once a computer gets infected
with a virus, the latter initiates attempts to spread to the connected computers. Similarly, if a
company defaults, it causes instantaneous losses to the companies that have lent funds to it.

The aforementioned applications to neural and lending networks have been discussed,
respectively, in [12, 13, 18, 19] and in [32, 38]. However, all of the existing models have been
limited to fully connected systems, with Brownian dynamics, homogeneous across particles.
In the present notation, it corresponds to

(2.2) X := {0}, 70 =70+ar+0B;, t€[0,T]k(0,-):=3d,

with @ € R, o > 0 and B being a standard Brownian motion. In [38], g¢ = log and Y? stands
for the logarithmic monetary reserve process of a representative bank in a large banking
system. The profits and losses that the bank makes are due to external investments (giving
rise to the Z° term) and to the defaults of other banks, who have borrowed funds from it
(giving rise to the C(0)logP(¢° > 1) term). For a more detailed explanation, we refer the
reader to [38], Theorem 2.3 and the paragraph preceding it, as well as the discussion in
the first part of Section 4. However, in reality, the borrowing and lending exposures are not
distributed uniformly over all members of a credit network. For example, the types x € X
may represent banks’ key characteristics such as the geographic region and the size. It is
then natural to choose the processes Z*, of returns from external investments, as well as the
credit exposures, given by (C(x), x (x, -)), to depend upon the type. Similarly, the connections
between neurons are established according to their physical proximity, or according to the
common role played by each cell group. This explains the need for models of the form (2.1),
with general X, {Z*}ycx, {C(X)}rex and «.

The main goal of this section is to establish the existence of a solution to (2.1). Note
that, herein, we do not address two important questions: the uniqueness of the solution and
the convergence of the associated finite particle systems. The question of uniqueness is a
very challenging one. It was only recently resolved by [20] in the simpler setting of (2.2),
with a single type and Brownian dynamics. Similarly, the convergence of the finite particle
systems has been established only in such a simple setting; see [19] and [38]. Nevertheless,
the methods used to establish the convergence in the latter papers extend to the multitype
setting in a straightforward way, provided that the driving processes {Z"},cx are Brownian
motions. Other types of driving processes may require adjustments in the arguments, or even a
brand new strategy of the proof. It is worth mentioning that [9, 11, 39] prove the convergence
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of mean field particle systems whose connection structures are given by a “dense” graph, as
the one proposed herein.> However, their systems are of a classical, smooth type, without the
singular interaction through hitting times. The latter feature makes the problem significantly
more complicated, and at the same time, its presence is necessary to be able to capture certain
real world phenomena, as discussed in the next paragraph.

Before we proceed to the existence result, it is important to emphasize the role of the
singular interaction through hitting times between the particles. Already in the special case
(2.2) with @ <0 and —C(0) fol g()dz > E[Zg], the paths of the solutions Y 0to (2.1) cannot
be continuous, as an adaptation of [32], proof of Theorem 1.1, reveals. Since the driving
process Z° is continuous, the discontinuity of Y is very surprising at the first glance, and
clearly must be due to the “self-excitation” term P(t% > ¢) in (2.1). Indeed, as a particle
dies, it causes instantaneous shifts in the healthiness levels of the particles connected to it,
potentially causing them to die as well. Thus, in a finite particle system (cf. [19, 38]), one may
observe a cascade, when several particles die at the same time. Even though, as the number
of particles grows, the effect of each single particle on the rest of the population does vanish,
these cascades do not disappear in the limit and the resulting solution Y° does jump (cf. [19,
38]). Note that the times of such jumps have a special meaning in the associated applications.
These are the times when, in a single instance, the neurons “synchronize,” a macroscopic
fraction of computers get infected, or a macroscopic fraction of firms default. As such times
are often the subject of practical interest (e.g., as the times of “crises”), it is important that (i)
the model does possess this feature, and (ii) that we are able to analyze it.

The above discussion makes it clear that, in the full generality of (2.1), we need to look
for solutions {Y*},cx with values in D([0, T], R)?, the product of the spaces of cadlag real-
valued paths on [0, T]. We equip D([0, T'], R)* with the product topology and each factor
D([0, T], R) with the topology induced by the inclusion

v iftelo,T],

23 D([0, T],R) < D([0, T + 1], R), Py 1=
(2.3) ([0, T1,R) (0, T+1LR), y ¥ b it (T 411,

where 15([0, T + 1], R) is the space of cadlag real-valued paths on [0, T + 1] left-continuous
at T + 1, endowed with Skorokhod’s M1 topology (see any of [19], Section 4.1, [42], [45],
Chapter 12, for a detailed discussion of the latter). Our first main result establishes the ex-
istence of solutions {Y*},cx to (2.1) with values in D([0, T], R)?* under the following as-
sumption.

ASSUMPTION 2.2.

(a) There exists a family {(7;; )hen}xex Of strictly positive sequences decreasing to O that
satisfies

X

(2.4) /X e(P(Z8 > n¥ )i (x, dx') > — C”& . reXneN.

(b) Forall x € X and s € [0, T'], the law of Z{ possesses no atoms.
(c) Forallx e X, ¢ € (0, T), and Z*-stopping times 6%, it holds

- X X X —
(2.5) P(Se[er%nx+£](zs —Z5) <O00" <T —&)=1

whenever P(6* < T —¢) > 0.

2Strictly speaking, [9] studies a sequence of finite particle systems on inhomogeneous random graphs, which
converges to a system whose connection structure is similar to the one proposed herein.
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(d) For all x € X and nonincreasing f € D([0, T], R) with fy =0, one has
(2.6) P(Z + f; >0,5€[0,T]) > 0.

The condition (2.4) ensures that initially not too many particles are about to die, that is,
the initial distribution of their healthiness does not have too much mass around zero. This
assumption is needed in order to ensure that ¥* does not jump at ¢+ = 0. Indeed, it is clear
intuitively that the jumps of ¥Y* occur when too many particles die and drag others with
them. The latter, in turn, occurs when too many particles are close to zero (this connection
is analyzed rigorously in the next section). And, in order to apply the appropriate fixed-
point theorem and to establish the existence of a solution, one needs to ensure that Y~ does
not jump at zero (and hence, Yy = Zj). To obtain an even clearer picture, let us consider
the special case of (2.2) and g = log. Indeed, inserting both into (2.4) and rearranging the
resulting inequality one gets

2.7) P(ZQ<n®) <1—eW/CO  ,eN,

provided (ng)neN is chosen to take values in the set of the continuity points for the cumulative
distribution function of 28 . At the same time, if the slightly weaker condition (note that

1 —e €O =p/C0) +o() asn | 0)

My

(2.8) M%f@<c@,

nelN
is violated, we know from [38], Proposition 2.5, that a solution Y 0 right-continuous at 0
cannot exist. The condition (2.4) is the network version of (2.7), for general g.

The parts (c) and (d) of Assumption 2.2 are fulfilled, for example, in the continuous semi-
martingale framework,

t t
2.9) zf:zg+/ afds—i—/ X dB;,, 1€[0,T]xeX,
0 0

with B being a Brownian motion (with respect to a filtration supporting (a*, %)), if every o*,
o lie between two constants (possibly depending on x) in R and (0, 00), respectively. This
can be deduced by means of the Dambis—Dubins—Schwarz theorem (see, e.g., [34], Chapter 3,
Theorem 4.6 and Problem 4.7) and elementary properties of the standard Brownian motion
(see, e.g., [34], Chapter 2, Theorem 9.23, for the part (c) and [34], Chapter 2, Proposition 8.1
and Theorem 5.12, for part (d)).

THEOREM 2.3. Under Assumption 2.2, the problem (2.1) admits a D([O0, T1,R)¥-
valued solution {Y*}yex, with {Yg}xex ={Zy}xex-

REMARK 2.4. Under Assumption 2.2, for any ¢ € (0, T'], Theorem 2.3 yields the ex-
istence of a solution {Y*},cy on the time interval [0, 7). Assume further that {Y*},cy is
such that the following time-7 version of Assumption 2.2(a) is satisfied: there exists a family
{(n; )nen}xex of strictly positive sequences decreasing to 0 such that

[ (@@ 0l = ) — @A) (x.dr) > - cﬁ)’

(2.10)
xeX,neN,

with A* = {t* >t} and x* =Y;*, x € X. Then the solution {Y*},cx can be extended from

[0, ¢) to [0, T'], so that the resulting solution is continuous at z. To see this, we first notice that
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the proof of Theorem 2.3 applies, essentially, without changes, to the following modification
of (2.1):

TE=Zi+ 0w [ (s 0 (7 > 5)) - (BA¥))e(x, dx),

2.1D) s€[0,T°AT],

Y=Y, se(@ AT, T], 75 =infls€[0,T]: ¥ <0},

T

yielding the existence of a solution {17 “}xex, taking values {Z{} cx at s = 0, for arbitrary
(fixed) events {A*}cx, provided (2.10) holds for these {A*} cx and {x*}rex = {Zj}rex,
and Assumptions 2.2(b)—(d) hold. Next, we choose an arbitrary positive random variable ¥
with an atomless distribution supported away from zero, and apply the latter observation to
obtain a solution {}~’ “Yxex to (2.11), with Z7 replaced by?

(Y Lz + Xl <) + 2055 — Z7'

and withNAx = {t* > 1}, x € X', where each t* is the hitting time associated with Y*. Recall-
ing that Y 1> =YX 17>, itis easy to see that

Y00 () + (Yl <y + Y Lpsg) oy (s), s €[0,T]xeX

is an extension of {Y*},cx to [0, T'], continuous at ¢. This observation becomes important in
the next section.

REMARK 2.5. Theorem 2.3 can be also used to obtain the existence of a solution to the
mean field system with common noise associated with (2.1). The latter arises if one intro-
duces a common continuous stochastic process Z, independent of {Z*},cx, and replaces Z*
by Z* 4+ Z and P(* > 1) by P(+* > 1|Z,;,0 < s < T) in (2.1). Indeed, by conditioning on a
path of Z the system with common noise reduces to (2.1), with each driving process being the
sum of Z* and the given path of Z. Then, provided the new driving processes satisfy parts (c)
and (d) of Assumption 2.2, for example, when Z*, x € X and Z are “nice” semimartingales
in the sense of (2.9), Theorem 2.3 yields conditional solutions to the mean field system with
common noise given almost every path of Z. Suppose further that there exists a sequence of
compact sets ¢; C C([0, T], R), j € Nincreasing to a set of full measure for Z, for example,
by the Lévy modulus of continuity theorem (see, e.g., [34], Chapter 2, Theorem 9.25) and
the Dambis—Dubins—Schwarz theorem (see, e.g., [34], Chapter 3, Theorem 4.6 and Problem
4.7) when Z is a “nice” semimartingale. Then the set Z in the proof of Theorem 2.3 can be
chosen independently of the path of Z on each ¢; and the correspondence sending paths in
a given ¢; to the compact range of the respective map F, o F therein is weakly measurable
by [3], Theorem 18.5, (in our case, the distance function in that theorem is upper semicon-
tinuous in the first argument and continuous in the second argument). Thus, one can apply
the measurable maximum theorem (see [3], Theorem 18.19) to make a measurable selection
of the conditional solutions, first on each %; and then on a set of full measure for Z, and
compose it with Z to find a solution to the mean field system with common noise.

The proof of Theorem 2.3 is given in Appendix A. It is based on a version of the Schauder—
Tychonoff fixed-point theorem for the space D ([0, 71, R)*. We emphasize that, even for X =
{0}, the addition operation in D([0O, T1], ]R)X is not continuous (see, e.g., [45], Section 12.7),
so that D([0, T],IR)* is not a topological vector space and does not fall under the scope of
the classical Schauder—Tychonoff fixed-point theorem in [43]. We believe that this auxiliary
result, established herein, is interesting in its own right.

3Mtis easy to see that Assumptions 2.2(b)—(d) continue to hold after such a replacement.
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THEOREM 2.6. Let S([0,T],R) C D([0, T], R) be the subspace of piecewise constant
functions with finitely many discontinuity points and 9 C D([0, T],R)* be convex, closed
and such that S([0, T],R)Y N 2 is dense in 9. Then every continuous map F : 9 — 9
whose range has compact closure possesses a fixed-point.

PROOF. The following is an adaptation of the proof of the Schauder—Tychonoff fixed-
point theorem for locally convex Hausdorff topological vector spaces in [41] to the space
D([0, T],R)*. For k € N, we denote by Uk (f) the open ball around an f € D([0, T], R)¥
of radius 1/k in the sup product metric associated with the strong M1-metric on D([0, T'], R)
(see, e.g., [45], Section 12.3). The open cover

(2.12) ran F C U uvwm
feS([0,T1.R)* N2

has a finite subcover ran F C UJJ-ZI Uk (£7%) due to the assumed compactness of ran F.

Hereby, we have relied.on the density of S([0, T], R)*NZin 2.
Next, we assign to Ik, j=1,2,...,J the sets

Ak = {fe2:F()¢ Ul/k(fj’k)} ﬂconv{fl’k,fZ’k,...,f]’k},
=121,

(2.13)

respectively, where conv stands for the convex hull of a set. We observe that each .o7/* is
closed in the Euclidean topology on conv{f'-* 2k . . £/¥} since a sequence in .«7/-¥ con-
verging in the Euclidean topology admits a common finite set of discontinuity points, so
that its componentwise convergence in the M1 sense is a consequence of the component-
wise pointwise convergence, and the set {f € 2 : F(f) ¢ UY/K#/%)} is closed in the prod-
uct M1 sense. Moreover, ﬂjj.zl /7% = & in view of ran F C UJJ':1 U'/*(§7k). Thus, the
Knaster—Kuratowski—Mazurkiewicz lemma (see [35]) demonstrates that, for some 1 < j; <
ja << jp <J and oK € conv{f/k, g2k $7Lk) it holds £OF ¢ (UL, o7itk ., In other
words, F(f%) e NL_, U*#/0*) and, by the triangle inequality, f/¢-* e NI_, U/ *(#iek),
¢=1,2,...,L.

Lastly, one can use fivk ¢ S([0, T, R)Y, ¢ =1,2,..., L and the definition of the strong
MI1-metric in terms of graph parameterizations to deduce that U 2/ k(fjl*k), £=1,2,...,L
are convex and, therefore, M_, U¥*(#/¢*) is convex as well. Putting this together with
0k ¢ conv{f/vk gk ik} we end up with £O% € ﬂgzl U?/*fie-k) hence, F(#%%) e
U3/ (f9k) thanks to the triangle inequality. Taking k — oo and appealing to the compactness
of ran F, we infer the existence of a subsequence of F (f>X), k € N converging to a f>> € 2.
But f%, k € N must tend to > along the same subsequence, and the continuity of F yields

0.0 = F(f%-). O

We conclude this section with a discussion of the uniqueness of the solutions to (2.1),
which also justifies the definition of the states of fragility given in the next section. The
solutions to (2.1) are not unique in general. For instance, consider the situation of (2.2)
with P(Z9 € [1,3]) = P(Z) € [z0 — 1,20 + 1]) = 1/2, where z9 > 1 — C(0)g(1/2) and
—C(0)g(1/2) = 3. Then Assumption 2.2 is satisfied, as follows from the discussion after the
assumption. Hence, Theorem 2.3 applies and yields the existence of a D([0, T'], R)-valued
solution to (2.1), with P(Y, V= Z8 > (0) = 1. On the other hand, we can obtain a different
D([0, T], R)-valued solution of (2.1) as described next. We set 28 = Zg + C(0)g(1/2), no-
tice that }P’(Zg > 0) = 1/2, choose an arbitrary positive random variable ¥ with an atomless
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distribution supported away from zero, and consider the following equations for ¥
Y = (281{?8>0} +X1z0-0) +at +0B
+C0)(g(P(Z)>0,7">1)) —g(1/2), te[0,7°AT],
P=v% te@AT.T],7=inf{te[0,T]:¥) <0}.

Since, in the present case, g(IP’(ZO > 0, Y0 > nn)) — g(IP’(Z0 > 0)) > —n, /C(O) for small
enough nn > 0, we conclude, as in Remark 2.4, that the proof of Theorem 2.3 applies, es-
sentially, without changes and yields the existence of Y0 solving the above equation, with
YOI (Z9>0) = Zol{Zg>0} Then it is easy to see that

50 =0
Zoliz00) + Yi'li70.)

is a solution to (2.1) with the initial value 28 . Note that the second solution constructed
jumps at t = 0 (more precisely, its time 0 value does not coincide with Zg which is to be

interpreted as the time 0— value) even though the distribution of Zg has no mass around
zero. Heuristically speaking, a solution may “jump when it does not have to.” In particular,
the jumps of {Y*},cx are not determined intrinsically by (2.1), and one can only hope for
the uniqueness of the solution under an extra condition that pins down the jump sizes. In [19]
and [38], which study systems of the simpler form (2.2), the authors choose to define every
jump size as follows:

(2.14) YP=v2 +CO)(g(P(z°=1, Y2 > D)) —g(P(z° > 1)), re[0,T],
where
D, :=inf{z>0:24+CO)(g(P(:* =1, Y" >2z)) — g(P(<° > 1)) > 0},
tel0,T]

(2.15)

This definition corresponds to choosing the minimal magnitude of a jump at any time ¢: this
is the smallest size of a jump that a solution to (2.1) may have at the given time. In the
simpler setting of (2.2) and with g(z) =z — 1 and g = log, respectively, it is shown in [19]
and [38] that such a choice corresponds to a natural definition of a cascade in the associated
finite particle systems, and that these particle systems converge to a solution of (2.1), with the
jump sizes given by (2.14)—(2.15). A direct analogue of the above jump size specification, in
the case of general X, reads

T —yr +C(x)/ P(r¥ =1, Y} > D,))
(2.16)

— g(P(rx >1)))k(x,dx"), t€[0,T],xeX,

= inf{z >0:z+ C(x)/ (g(]P’(rx/ >, thi > 7))
2.17) v
— g(P(r¥ = 1))k (x.dx) > 0,x € X}, r€[0,T].

However, unlike the case of X = {0}, for a general X, a heuristic analysis of the associated
finite particle systems reveals that other jump size specifications may be relevant. To wit, one
may treat the particles of different types asymmetrically when resolving a cascade. For this
reason, herein, we do not choose a particular specification of the jump sizes. Instead, for any
given {Z*}ycx, {C(x)}xex, & and «, we analyze the times when any solution to (2.1) has to
jump, which we refer to as the times of fragility (as a jump time is often interpreted as the
time of a crisis).
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3. Characterizing the states of fragility. In addition to Assumption 2.1, we assume
throughout this section that, on (0, 1], g is continuously differentiable with strictly positive
derivative, and that it is normalized to satisfy g’(1) = 1.* Motivated by the discussion at the
end of the previous section, herein, we aim to characterize the times of fragility of a given
system (Z, C, g, k). The first question we need to address is: in which form do we want to
describe these times? Recalling the relevant applications, we notice that it is reasonable to as-
sume that the distribution of every Y;"_1(;x>,) is observable at time #: indeed, it can be identi-
fied with the empirical distribution of the survived particles “right before” time ¢. In addition,
the results of [19] and [38], as well as the discussion at the end of the previous section (recall
(2.14)—(2.15)), indicate that the jump size of Y* at time ¢ is determined by the distributions

of the survived particles C(th_/l{TX/Zt}), across x’ € X. Thus, for a given (Z, C, g, k), we say

that a time ¢ € [0, T'] and a collection of probability distributions [,(Y,x_/l {rx/zz}) on [0, 00)
form a fragile state, if any solution to (2.1), with the given marginal distributions at time ¢,
has a nonzero jump at that time. In fact, it is easy to guess that only the asymptotic properties
of the normalized marginal distributions near zero determine whether a jump occurs or not.
Hence, for any £(Y;" 1{;v>}), we introduce the associated {c* > O},ex and {z* > O}yex,
such that

(3.1 P(t* >, Y €(0,2)8'(P(r* >1)) > c'z, z€[0,7],xeX.

Clearly, such {c*}yex, {z"}xex always exist, and there are typically infinitely many choices
of such constants. The larger ¢* and z* are, the more particles of type x are concentrated
around zero (i.e., the more fragile the state is). Indeed, if £(Y;* 1{zx>}) has a density p*
continuous at zero, then ¢* can be any number in (0, p*(0)g’(P(z* > ¢))), and the closer ¢*
is to p*(0)g'(P(z* > 1)), the smaller is z*. To develop a better intuition for the statements
that follow, it is convenient to interpret ¢* as p*(0)g’(P(t* > t)); indeed, ¢* is simply a
proxy for p*(0)g’(P(t* > t)) in the cases where the latter is not well defined.

In this section, for a general quadruple (Z, C, g, k), we formulate a sufficient condition for
a state to be fragile, expressed as the existence of associated families {c*, z*},cx satisfying
additional properties. We show how this sufficient condition can be used and that it is fairly
sharp. As a preparation for the upcoming Theorem 3.3, we supply the following assumption.

ASSUMPTION 3.1. For any r € [0, T) and any {z* > O},cx, there exist a constant 6 €
(0, T —t) and a random field étf,,z, t<ti<h<t+0,xeX,suchthat:

(a) forevery z € (—o0,z*],t <tj <th <t+0,andx € X,

(3-2) P(- min (Z§ = Z) 22127, s €0, 1) = P&, > 2),
(b) and, for at least one sequence s, | ?,
1 1 : X X
(3.3) Jim_ log()rcrg(l]E[fan’sn rz') = 0.

The first part of the above assumption states that the absolute size of the draw downs of
Z* can be dominated stochastically from above, uniformly over the paths of Z* up to time
t. The second part states that these draw downs do not decay too fast as the time horizon
decreases, so that the particles drop sufficiently below the initial level ¥;* 1{;x>}. It is shown
in the proof of Theorem B.2, in Appendix B, that Assumption 3.1 is satisfied by any Z in the
form

S S
(3.4) Z;(:Zg—i-/ afdr+/ o}dB,, s€[0,T],xe X,
0 0

4This normalization causes no loss of generality: it can always be achieved by adjusting {C (x)},cx -
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with o <@ and 0 < o* <7, for all x € X, with suitable @ € R and o, € (0, c0). On
the other hand, outside of the class of semimartingales with bounded characteristics, there
exist processes that do not satisfy Assumption 3.1. An example is presented at the end of this
section.

DEFINITION 3.2. Let the matrix (C(x)« (x, {x/})cx/)x,x/gx be irreducible. The limit

) 1 n—1
65 o= lim ~og [ TT(COme it dretar,dea) k(1. dr)
m=0

is referred to as its logarithmic Perron—Frobenius eigenvalue (see the Perron—Frobenius the-
orem in the form of [22], Theorem 3.1.1(e)).

To understand the purpose of the above definition, we need to recall the existing results
on fragility of single-type systems, developed in [19, 38]. Namely, assuming X = {0} and
g(z) =z—1or g =log, it is shown in the latter papers that a sufficient condition for fragility
of a given state is the existence of (®, 79, satisfying (3.1), such that C(0)c® > 1.° The inter-
pretation of this condition is also clear. Recall that ¢? is a proxy for the (normalized) density
of the particles that are about to hit zero. If this density reaches the critical level 1/C(0),
which is inversely proportional to the connectivity level C(0) among the particles, a cascade
occurs. It is also easy to notice that, in the single-type case, o = log(C(0)c"). Thus, the sign
of o determines the fragility of a given state. In a multitype setting, C (x)c* may exceed 1 for
some x € X, and it may be below 1 for other x. The Perron—Frobenius eigenvalue combines
the “loss intensities” {C(x)c*}yex with the topology of the network, represented by «, to
determine whether a given state is fragile.

THEOREM 3.3. Fix an arbitrary t € [0, T) and assume that {Z*}ycx satisfy Assump-
tions 2.2(b)—(d) and 3.1.

(a) Suppose that a solution {Y~}xex of (2.1) admits {c*, 7%} xex satisfying (3.1) and is
such that at least one closed irreducible component of the matrix (C(x)k (x, {x’ })cx,) x.x'eX
has a strictly positive logarithmic Perron—Frobenius eigenvalue 0. Then Y;* > Y;* for at least
onex € X.

(b) Suppose that a solution {Y*},cx of (2.1) admits {c*, z*},cx satisfying

(3.6) P(x*>1,Y" €(0,2)g (P(x*>1)) <c*z, z€[0,z],xe X,

and is such that every closed irreducible component of the matrix (C(x)k (x, {x'})c* ,) x.x'eX
has a strictly negative logarithmic Perron—Frobenius eigenvalue o. Then there exists a solu-
tion {Y*}rex of (2.1) coinciding with {Y*}ycx on [0, t) such that Yx = Yx foreveryx e X.

REMARK 3.4. If the distributions {L£(Y;" 1{¢x>4)}rex have densities {p*},cx con-
tinuous at zero, then the above theorem implies that: (a) this state is fragile if o >
0 for at least one closed irreducible component of (C(x)x(x, {x'}) px/(O) x g (}P’(t", >
1)))x.x'ex, and (b) this state is not fragile if o < O for every closed irreducible component

of (C(x)ke(x, (XD p* (0)g' (¥ > 1)y ver-

REMARK 3.5. The case ¢ = 0 is more subtle. Theorem B.2, in Appendix B, provides a
sufficient condition for fragility that covers this case. However, this condition is less explicit;
hence, we postpone it to the Appendix.

S1n fact, the affine choice of g(z) =z — 1 in the model of [19] allows the authors to show that this condition is
both necessary and sufficient.
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The proof of Theorem 3.3 is stated in Appendix B. It is worth mentioning that the proof is
based on the key Lemma B.1, which is a generalization of [19], Proposition 2.7.

Theorem 3.3 allows us to ignore the exact dynamics of Z (provided it is a “nice” con-
tinuous semimartingale) and to describe the states of fragility only in terms of the cur-
rent marginal distributions of the solution and the topology of the network. This leads to
very interesting observations, such as the following example. Consider two particle systems,
(Z,C,g,kYand (Z, C, g, k?), with arbitrary {C(x) > 0}ycx and g (the same for both mod-
els), with «'(x, dx’) = 8,(dx’), and with «2(x, dx’) = dx’/|X| (on X, we denote by “dx’”
the counting measure). We refer to the first system as the “completely clustered” network,
and to the second one as the “fully connected” one. The rationale behind these terms is clear:
the particles in the first system are only connected within the same type, while the particles
in the second system are connected to every other particle in the network, uniformly. Note
that the total strength of the out-going connections from each particle is the same in both
networks—only the distributions of the connections are different. Let us also assume that
Z*, x € X are the same for both systems and are “nice” semimartingales, so that Assump-
tion 3.1 is satisfied, and that {Z{ }xcx have densities { p*}xcx, continuous at zero. Thus, with
everything else being equal, we can compare the fragility of the two systems at time ¢ = 0 by
computing the associated Perron—Frobenius eigenvalues. For the first network, the associated
matrix (C(x)x!(x, {x'}) px/(O)) x.x’'ex 18 clearly reducible; hence, we analyze every closed
irreducible component {x} separately:®

1 : 1 X n by
¢ = lim —log(C(x)p*(0))" =log(C(x)p*(0)).

We conclude that the first system is in a fragile state if max,cx C(x)p*(0) > 1, and the
state is not fragile if max, ¢y C(x) p*(0) < 1. For any closed irreducible component X of the
second system, we have

1 n—1
02 = lim —1ogf~ [T (Cm) 1 (0))ic (dx1) . .1 (dxn)
X m=0

n—-oon

1 X
zlog(m Y Clp (0)).

xeX

Thus, the second system is in a fragile state if max 3 ﬁ > rex C(x)p*(0) > 1, and the state
is not fragile if max ﬁ > rex C(x)p*(0) < 1, where the maximum is taken over all closed

irreducible components X'. Since the average never exceeds the maximum, the above analysis
indicates that the fully connected system is more stable (up to the case o' = 0? = 0). Using
the existence result in Theorem 2.3, one can easily show that the fully connected network is
strictly more stable, that is, there exist states at which the first system is fragile, while the
second one is not.

We conclude this section by showing the sharpness of Assumption 3.1. Namely, we present
a (fairly simple) stochastic process Z that does not satisfy this assumption and for which
Theorem 3.3 does fail. Consider X’ := {0} and Z? = Zg + f; + By, t € [0, T] with a con-
tinuous function f : [0, T] — [0, 0o) satisfying 6 := liminf; jo(f;/ V1) > 0. It is straight-
forward to construct &, satisfying (3.2), as 70 has independent increments. Neverthe-

less, we claim that, regardless of the exact choice of Et’f’tz, (3.3) does not hold at r =0

6Stri(:tly speaking, {x} may not be irreducible if C* p*(0) = 0, but it is easy to see that our conclusion about
fragility remains valid even when such cases are taken into account.
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as long as é,’f’,z satisfies (3.2). Indeed, for any >0, any (sy)nen decreasing to 0, and
6, = inf,e(oysn](ft/\/?) >0, n € N, the estimates

E[g),, , AZ] <E[— min (fi+By)]

Sn+1-5n

Sn+1=8S=Sn
3.7) < —Ou/5n +E[- , min_ (65w =5 = By, + By)]

= —On/5u + V50 — a1 B — min On/1 + B))

reveal that either ]E[";‘S(:l AR 2%1<0 infinitely often or

92
(3.8) Sntl <8 (1 — - 1 )
T El-mingego 1)(04/1/2 4 BT
when n € N is sufficiently large. In the first case, it is immediate that (3.3) is violated, whereas
in the second case this can be seen from the fact that (s;,),cn decays exponentially fast and
0 0 .
Elg, 10 N2 = E[_ S 25 S5 6nv/s + BS)]
(3.9
< «/S_nE[—tgg}}](e“/;ﬂ +B)].

Let us show that, with such a choice of Z, even if ¢ > 0, the state may not be fragile. Indeed,
consider f; = —C(O)g(P(Zg + mingeo,s] Bs > 0)), t € [0, T'], and assume that Zg is inde-
pendent of B and satisfies IP’(Zg €(0,2)) > hz,z€10,¢e] forsome h > 1/C(0) and ¢ > 0. It
is easy to see that liminftw(f,/\/f) > 0. Choosing ¢t =0, ¥ = h and z° = ¢, we notice that
(3.1) is satisfied and that o = log(C (0)c%) > 0. Nevertheless, (2.1) does have a continuous
solution

Y= 270+ B, =70+ fi + B, + C(0)g(P(2) + min B, >0)),
(3.10) 5€[0,7]

tel0,T].

Intuitively, the solution ¥° does not jump at r = 0 because the driving process Z° has an
“infinitely” large positive drift at that time, which pushes the particles up very fast. Hence,
even though a sufficiently large fraction of the particles is concentrated around zero (which
would be enough to generate a jump if Z° was a “nice” continuous semimartingale), it does
not cause a nonzero fraction of them to die simultaneously.

4. Controlled mean field dynamics and equilibrium.

4.1. Model setup. In this section, we consider particle systems of the form (2.1), in which
the strength of connections across types, given by the kernel « (x, dx’), is controlled dynami-
cally by the particles. We choose natural objectives for the individual particles and analyze the
equilibrium connections that arise in the associated mean field game. Remarkably, we show
that there exists an equilibrium in which the particles manage to adjust their connections in
such a way that a cascade never occurs.

As in the previous sections, we consider an abstract (nonempty) finite set X'. We endow
X with a probability measure p such that pu({x}) > O for all x € X. We fix an arbitrary
function O : X2 — {0, 1}, which indicates the types that are “physically” connected to each
other, that is, x is physically (directly) connected to y if and only if O(x, y) = 1.” The pair

7In what follows, we drop the adverb “directly,” and say that two nodes are connected if they are connected by
a single edge of the graph (unless stated otherwise).



INTERACTION THROUGH HITTING TIMES 1533

(X, O) defines a directed graph, whose edges indicate the physical connections. As before,
we consider a system of particles characterized by their type x € X and their level of health-
iness Y* (the latter changes stochastically over time). We assume that there exist infinitely
many particles of each type. The value of w({x}) represents the total mass of all particles of
type x, and the initial distribution of particles across their characteristics, (x, y), is given by
P(Y* € dy) u(dx).

In what follows, we consider a resource-sharing dynamic network game with a continuum
of players. The proposed game can be viewed as a dynamic multiagent version of the network
flow problem (cf. [2]). In this version, instead of choosing a static network topology that
optimizes a given global objective, we search for the topology that arises in equilibrium,
when each node optimizes its own objective dynamically. More specifically, the proposed
model falls within the class of mean field games (see Section 1 for more on such games). In
this game, the edges of (X', O) indicate the opportunities for sharing a given resource, that is,
if x is connected to x’, then a particle of type x is allowed to give access to a certain resource
for the particles of type x’. In addition, the edges of (X', O) have weights, which indicate the
amount of resource shared between the particles of two types. The particles are allowed to
change these weights dynamically, in order to optimize their objective. In such a game, the
dynamics of a representative particle are given by

t
@.1) Y =27+ fX /0 Clvs () dg (6, (<) u(dx)), 1> 0,x € X,

where
Zf = Yg + UW[

+/ [x P(x,ct cl) - Cbrs(x)—i-/ Clrs(x")vs (x ’)u(dx/)]ds,

Y is independent of the Brownian motion W, g satisfies Assumption 2.1 and the following
consistency requirements hold:

(4.2)

=inf{r >0:Y} <0}, 0;(x) :=P(¢" >t)=IP’< inf Y} >O)
(43) s€[0,1]
O(x,x)=0 = v(x)=0, x'exX.

If the input elements (C' = L= l(x), v(-) = v(x, -)) are deterministic, constant in time and
the same within each type x (but possibly different across x), equations (4.1) and (4.3)
coincide with (2.1). The main difference in this part of the paper is that the quantities
(chb, ¢!, v(-), r(-)) are determined endogenously.

Let us discuss the general interpretation of the above dynamics. Recall that each parti-
cle can decide on how much of the resource it is willing to share with other types, thus,
creating the weights of the graph edges.® The number C,l denotes the overall amount of
resource that the given particle is willing to share at time . The probability measure
k;(dx") = v, (x")u(dx") denotes the distribution of the total amount C! among various neigh-
bors, !0 that is, the contribution of this particle to the weight of the edge from x to x’ is
C f v (x" ) (dx’). Similarly, C ;’ denotes the overall amount of resource it is willing to receive

8Ifa particle shares a unit of resource with a certain type, it is distributed uniformly across all particles of this
type.

9More precisely, as we consider a continuum player game (cf. [5]), C ,[ denotes the amount of resource per unit
mass of agents lent to by the particle. The same applies to other amounts (of resource or currency) related to an
individual particle.

10Tphe decomposition «; = vy makes it more convenient to formulate the market clearing condition (4.5).
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at time ¢.!! Gaining access to the resource is costly, that is, a particle of type x’ has to pay

r(x") units of currency for having access to one unit of resource per unit of time. Similarly,
the particles sharing the resource with a particle of type x’ receive r(x’). This explains the
last two terms on the right-hand side of (4.2). Having received C? and shared C! units of re-
source at time ¢ yields the profit or loss of P(x, C th ,C f) per unit of time, through an internal
mechanism of each particle (e.g., the business profits or losses).!?> We assume that the profits
and losses affect the healthiness of a particle through the function L (e.g., a company may
spend a fraction of its profits on improving its healthiness level), which explains the third
term on the right-hand side of (4.2). The Brownian noise in (4.2) represents the changes in
the healthiness of a particle that are due to external factors. Finally, the death of each particle
(occurring when Y hits zero) causes immediate damage to the healthiness of the particles that
share the resource with it. The magnitude of this damage is determined by the strength of the
connection and by the choice of function g, which explains the last term on the right-hand
side of (4.1) (see more on the interpretation of this term in the discussion following equation
(2.1)). When a particle dies, it leaves the system, in the sense that it can no longer be con-
nected to other particles. The value of 6, (x) indicates the fraction of particles of type x that
have not died by time 7. The processes (C?, C!, v) are controlled by the particle.

There are several concrete examples where such games arise naturally. For example, con-
sider a cybersecurity problem, where the particles represent companies. Each company may
allow others to gain access to its computer resources (e.g., servers, advertisement platforms
and so on), collecting a fee for this service. The other companies agree to pay the fee as this
service may generate additional profits for their business (e.g., increase the sales volume).
The process Y, in this case, represents the level of protection of a given company against
cyber attacks. When Y falls to zero, the company gets infected with a malicious software,
which spreads to other companies connected to it, instantaneously decreasing their level of
protection. Clearly, there exist many other examples. However, in order to obtain stronger re-
sults, we need to choose a specific interpretation of such a game, leading to a specific choice
of the functions L and P. In this section, we focus on the credit network game, in which

L(x,z)=z, P(x,c? )y =a' (x) +ax)(c? ), g =log,

with some o, & € [0, 00)!*!, fixed throughout the rest of the section. In this game, the par-
ticles represent individuals or organizations engaged in lending and borrowing of funds, and
Y* represents the logarithm of the capital!® of a representative particle of type x. When-
ever Y* drops to zero, the corresponding particle defaults (i.e., “dies”), causing immediate
losses to its neighbors. Note that the choice g = log causes no loss of generality: indeed, any
geC 10, 1]) with g’ > 0 would yield the same right-hand side in (4.1), provided (C LK)
are adjusted accordingly (recall that the latter are controlled dynamically by the particles).
The specific choice g = log is motivated by the model of [38], which shows that it is natural
when C’ is constant in time and X is a singleton. We assume that a regulator has imposed a
constraint on the maximum size of noncore liabilities, that is, the maximum size of C! — C?,
which represents each particle’s own funds lent within the system, measured as a multiple
of its capital, cannot exceed a given constant Ce (0, 00). Note that such a constraint, effec-
tively, limits the strengths of connections within the system. Our main goal is to determine
the connections and the interests rates arising in equilibrium.'*

11Of course, C? cannot be chosen arbitrarily—it depends on C! and v of other particles. In our definition of
equilibrium, we add such a “clearing” condition.

1211 the simplest case, P (x, Cf’ , Cf ) is proportional to C,b - Cll , but one can easily come up with other relevant
examples where the dependence is nonlinear.

13Strictly speaking, we normalize the capital of each particle so that its default barrier is at 1.

140ne may also add a constraint on the maximum value of C b, accompanied with a rule (endogenous or ex-
ogenous) for how the limited lending opportunities are shared among multiple particles lending to the same type.
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Let us introduce the mathematical conventions we use throughout the rest of the section.
We let Ry :=[0,00) and R_ := (—o0, 0]. For any p € [0, co] and any subsets A and B
of the Euclidean space, we denote by L”(A — B) the space of all measurable functions,
satisfying the associated integrability or essential boundedness conditions. By L” (A — B),
we understand the space of equivalence classes of the elements of L”(A — B). We also use
the shorthand notation, L”(A) and IL”(A), if the associated functions take values in R, as
well as LY (A), L (A), L (A) and L” (A), if the associated functions take values in R
and R_, respectively. Finally, we adopt the convention that all suprema and maxima over the
empty set are equal to —oo.

We assume that C?, C! € LQ(R+); RS (LQF(R+))|X| is such that [, v;(x) x pu(dx) €
{0,1}, for all # > 0; r € (LY. (R4 )]s and 6 € (LY (R}))I*! is such that, for all x € X,
0.(x) is a nonincreasing function with values in (0, 1], starting from 1. For convenience, we
introduce special notation for the spaces of possible 6 and v:

O={0e LO(R+ — (0, 1]|X|) :0.(x) is nonincreasing and 0y(x) = 1,
forall x € X},

Vo = {v elel :/ v(x")p(dx") = 1},
X
V={rel'Ry— ]lel) : v €V, for almost every 7 > 0}.

REMARK 4.1. Note that we have restricted 6; (x) to be strictly positive. We could easily
lift this restriction and allow for 6, (x) = 0 by making the notation slightly more complicated.
We choose not to do it, because in the equilibrium we construct 6;(x) does remain strictly
positive at all times.

Similarly, we could allow the controls of the particles to be random (e.g., depending on Y').
However, even then, there would still exist an equilibrium with deterministic optimal controls.
Hence, we a priori restrict the setting to deterministic controls, to simplify the notation.

DEFINITION 4.2. For a given pair (r,0) € (LS)F(RJF))'X' x ©, the control (C?, C!,v) e
(L(J)r (R4))? x V is admissible for a particle of type x, if:

(1) the integrals on the right-hand sides of (4.1) and (4.2) are finite for every ¢ > 0;
) Cf < C,b + C, for almost every ¢ > 0;
(3) for almostevery t > 0andall y € X, O(x, y) =0 implies v;(y) =0.

The second condition in the above definition represents the constraint on the non-core
exposure. The third condition ensures that the lending and borrowing occurs only between
the particles that are physically connected (according to the adjacency matrix O).

REMARK 4.3. Note that there is a certain asymmetry between lending and borrowing
reflected in the dynamics (4.1)—(4.2) and in the definition of admissibility of the controls.
Namely, we assume that the particles control both the size and the distribution of their lend-
ing, but they only control the size of their borrowing. Nevertheless, in equilibrium, the lend-
ing and borrowing distributions will be matched, so that the market “clears.” The asymmetry
between lending and borrowing is an intentional modeling choice we make, which persists

With such an extension, the particles could benefit from the deaths of others, as the latter may generate additional
lending opportunities. We thank the anonymous referee for this observation, but we do not pursue this direction
herein, as it would complicate the notation and derivations without providing significant new insights into the
main question of our analysis.
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throughout the remainder of the section. Intuitively, this choice corresponds to “dominant
lenders” (equivalently, “competitive borrowers”), that is, in any borrowing-lending deal, the
lender decides whom to lend (more precisely, to which type to lend), and the borrower accepts
the funds from whoever is willing to lend to it. We believe that this is a natural assumption,
and it allows us to narrow down the set of possible equilibria, as will be shown later in the

paper.

To emphasize the dependence of the state process ¥ on the market and on the controls,
we will often write Y*(r, 6; C?, C!,v). A particle with (initial) characteristics (x, y) aims to
maximize the following objective:

.[X

(4.4) J(x,y;r,0:CP, Clv) ::E[/
0

with a constant y > 0.

e VY (r, 0, ch, c!, v)dr ’ Yy :y},

REMARK 4.4. Recall that Y represents the logarithm of the (normalized) capital of a
particle. Hence, the integral in (4.4) can be interpreted as the cumulative (discounted) log-
arithmic utility from the dividend flow, since the dividends are typically proportional to the
capital. More importantly, the dynamics of ¥ and the objective J are such that any particle
will aim to maximize the drift of Y. The same would be true for almost any other (reason-
able) objective function, for example, we could replace Y;* inside the integral in (4.4) by any
nondecreasing function of Y;*, covering, in particular, the case when each particle aims to
maximize its expected lifetime. We view this (almost) independence of a specific choice of
objective as a strength of the proposed model.

In order to define the notion of equilibrium in this model, we introduce (C_' b ¢t V), rep-
resenting the collective controls of all particles. Following the standard methodology of con-
tinuum player games, we shall view the collective controls as a mapping from the set of par-
ticles’ characteristics, (x, y), to the space of individual controls. However, it turns out that,
in the present case, the optimal controls of each particle depend only on its type, x; hence, to
simplify the notation, we define: Ccb Cle (LE)|r (R+))|X l'and ¥ € V, where we introduce

Vor=1{0: X >R 5(x, ) e, forallx e X}, V=LY Ry — V).

The functions (r, 8, cb, !, v) are determined endogenously in equilibrium.

DEFINITION 4.5. For a given pair (r,0) € (L(J)r (R+))|X| x © and (initial) characteristics
(x,y) € X x (0, 00), the control (Ch, c!, v) is optimal if it is admissible, and

J(x,y37,0;CP,CLv) > J(x, y;r,0; CP, C1 D),

for any other admissible control (C‘b , C! , D).

DEFINITION 4.6.  (,60,C?, C',9) e (LY. R )M x © x (LY (R;)!¥)? x V form an
equilibrium if:

(1) forevery (x,y) € X x (0, 00), (C*(x), C!(x), v(x, -)) is optimal;
(2) the market clears: for every x € X and almost every ¢ > 0,

(4.5) Ch(x) =f B (x', x)CH(x" ) (dx');
X
(3) and the model is consistent: for every x € X and every t > 0,
_ . X Rl ~1 = .
(4.6) 0,(x) —P(self%)f:t] Y (r,0; C*(x), C'(x), b(x. ) > 0).

In the remainder of this section, we show how to construct such an equilibrium.
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4.2. Construction of equilibrium: General approach. We will construct an equilibrium
satisfying the following ansatz.

ANSATZ 1. There exists a default rate )\ € (LY (R+))|X| such that, for every x € X,
t
6;(x)=1 —i—f As(x)ds >0, ¢>0.
0

We let

) = Lloghy oy = 21 o
= BT T T E

The above ansatz implies that no cascades are possible in the equilibrium we construct.
The economic explanation of this is as follows. If the distribution of particles’ health levels,
within a given type, approaches a critical level, at which a cascade would be triggered by this
type, the lenders will simply stop lending to the particles of this type (i.e., the total weight of
the incoming edges for this node will vanish); thus, eliminating the possibility of contagion.
A side effect of such action, of course, is that the particles in distress are more likely to die
(as their drifts are reduced due to the lack of borrowing opportunities).!3 In the equilibrium
constructed herein, the above ansatz holds, and the particles act according to this principle.

REMARK 4.7. The above conclusions, and the entire model proposed herein, rely on the
following assumptions: (i) the particles are well informed about the default intensities at each
type, and (ii) they have a perfect control over their connections. In reality, of course, none of
these assumptions is satisfied fully, and one expects to observe systems whose behavior lies
somewhere in between the perfectly controlled and completely uncontrolled systems.

Under the above ansatz, the admissible dynamics of Y*, prior to default, can be rewritten
as follows:

(4.7) dY* = b(r(x), A;, CP, CL, v x) dt + o dW;,
where
b(ri(x), A, CP, CLovgs x) i= o/ (x) + (CP = Cla(x) — CPri(x)

0L [ ) () + 2 (@)

Our strategy for constructing an equilibrium is based on the following observation. Note
that the dynamics of {¥Y*},cx are coupled across x € X via the interest rates {r(x)},cx, the
collective controls {C_‘b(x), Cl(x), v(x, Yxex and the default rates {A(x)}rex. The former
two affect the dynamics of individual particles, as well as the optimality, market clearance and
consistency conditions, at time ¢ only through their values at that time, that is, the interaction
is completely local. In contrast, the interaction through A is not completely local: the past
values of A affect future dynamics of individual particles, and vice versa, to find the value of
A:(x), one has to know the dynamics of the system up to time 7. As a result, the equilibrium
conditions for (r, C?, C!,v) can be resolved for each time ¢ separately, leading to a static
fixed-point problem, which resembles the network flow problem. However, the equilibrium
conditions for A lead to a dynamic fixed-point problem. In the subsequent construction, we
separate the two problems.
To better explain our approach, let us first describe the optimal strategies of the particles.

4.8)

151t is natural to baptize our construction a “controlled-fire equilibrium,” by analogy with the common practice
in forest management. We thank Ronnie Sircar for suggesting this name.
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LEMMA 4.8. Consider any x € X, (r,0) € (L(_)i_(RJ,_))IX‘ x ® and (Cb,Clv) €
(Lg_(RJ,.))z x V. Assume that 0 satisfies Ansatz 1, with the associated X. Assume also that,
for almost every t > 0, we have

4.9) veloe,x)=0y =0,

(4.10) [ )0 ) + R (@) = R o),

(4.11) r(x) = a(x) vV Ry (x),

(4.12) C? =0, Cl=(C+C)lrw>am)
with

(4.13) Ri(x):= (x,:or(x}%zl(rt () + ?»;(x’)))+~

If, in addition, b(r;(x), At Ctb, C;, Vy; X) is locally integrable in t € Ry, then (Ct, Cl,v) is
optimal for any particle with (initial) characteristics (x, y), for any y > 0.

REMARK 4.9. The conditions (4.10) and (4.13) can be interpreted as follows. The
lenders lend everything to the neighbors that offer the best profit, that is, have the largest
r; + A; (provided it exceeds the profits from external investment), and borrowing generates
zero profits. This, in particular, implies that v; must be supported on the set on which this
maximum is attained, and it is consistent with the implicit assumption of “dominant lenders”
(or “competitive borrowers”), as discussed in Remark 4.3. Of course, this is an extreme
case—in practice, borrowing should result in some profit— but, as explained below, this as-
sumption allows for a tractable equilibrium, and more realistic equilibria can be constructed
as perturbations of the proposed one.

PROOF~. I~t is easy to see that (c?, ql, v) is admissible. Consider any other admissible
control (C?, C!, ¥) and denote by b and b the associated drifts. Notice that (4.10) and (4.13)

imply
[0 ) + R i) = Reo) = [ ) ) + 20 (D ().
In addition, (4.11) and (4.12) yield

(C,b, Cf) € argmax  (y(a(x) —rr(x)) +z(R (x) — a(x))).
(¥,2):y>0,0<z<C+y

ISeca}ling (4.8), we conclude that b > l;, and hence, J(x, y;r,0; chb, !, v) > J(x,y;r,0;
ch,clvy). O

Extending the above result in an obvious way, we obtain a sufficient condition for equilib-
rium.

COROLLARY 1. Consider any (r,0, C?, C',v) € (LL. (R1 ) x © x (LY. (R4))1*)? x
V. Assume that, for every x € X, the quadruple (1,0, C!, V) and the control (Cb =
Cbx), Cl:=Cl(x),v:=v(x, ") satisfy the assumptions of Lemma 4.8. If, in addition, (4.5)
holds for almost every t and every x, and (4.6) holds for every t and x, then (r, 0, chb, !, V)
form an equilibrium.
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To explain our solution approach, we point out that, for given ¢ and A,(-), the condi-
tions (4.5) and (4.9)—(4.13) can be viewed as a system of equations for {r;(x), C_'tb (%), C_‘f (%),
V:(x)}xex. Assume that we can solve the static problem, that is, we can find a function that
maps any A;(-) to a solution of this system. Then, to construct an equilibrium, we only need
to solve the dynamic problem, that is, find a fixed-point of the mapping from A to the time-
derivative of the logarithm of the right-hand side of (4.6), computed via the solution to the
static problem (r (1), C°(V), C' (L), v(1)). The solutions to the two problems are described in
the remainder of this section.

4.3. Solving the dynamic problem. In this subsection, we assume that the static problem
has been solved (in the next subsection, we construct such a solution).

ASSUMPTION 1. Assume that there exists a measurable mapping
S RY 5%, > (FG). CP ). CL00). D) € (R x Wy
such that:
(1) forevery A; € R and every x € &,
r=rR),  Cri=CP(y), CL:i=C'Gu), =00,
ct.=Cct), cl:=Clx), vi=D(x,)
satisfy (4.5) and (4.9)-(4.13);
(2) the mapping
R 5 7,
(x> bOu: x)
= b(F(h; X), Ay COOus x), CL s %), Dy x, ) x)) € RIA
with b given by (4.8), is Lipschitz and bounded absolutely by a constant.

In the next subsection, we construct S satisfying the above assumption. It is worth men-
tioning that the construction of such & is the main mathematical challenge resolved in the
present section. In this subsection, we assume that the desired S is given.

Notice that, for any measurable [0, T] > ¢+ A; € Rl_Xl, the mappings
(t, %, ") > F(Aes %), CO s %), Cl s %), D (A x, X)
are measurable, and (7, chb, !, V), defined in part 1 of Assumption 1, satisfies all assumptions
of Corollary 1, except possibly (4.6). B o
The main goal of this subsection is to construct A such that the associated (r, 6, Cb, Cl,p)

satisfies (4.6). To this end, we fix an arbitrary 7" € (0, co) and analyze the fixed-point problem
of the mapping D : L2([0, T] — Rl_Xl) — L0, T] > RE(‘) given by

_ d -
(4.14) D:idrs ((t,x) - log]P’(selE})’ft] YX(R) > 0)),
where
_ . _
(4.15) Y (L) =Yy +/ b(hs; x)ds + ' (x)t + 0 W,.
0

Note that the mapping D is well defined due to Assumption 1. Indeed, for any measur-
able [0, T] 31— A € RLX‘, the mapping (¢, x) — l;(it; x) is measurable. The latter and
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the boundedness of b imply that Y* () is well defined. In addition, for any two modifica-
tions A! and A2, for every x, we have: l;(itl; x) = I;(X%; x) for almost every ¢, and, in turn,
Y*(Ah, = YF(A?) for all 1.

Our analysis of the fixed-point problem for D is based on the associated system of PDEs
for p = {p(-, - x)}xex, where p(t,-; x) is the density of the restriction of the law of Y}*
to (0, 00). In accordance with the existing results (cf. [18, 38]), we expect p to satisfy the
following system of equations:

~A 1
t,yix)=—b;(As; x L,y x + 02 t,y;x),
(4.16) pe(t,y; x) r(As )py( y; Xx) 3 Pyy( Y5 X)

P, y;x) = po(y; x), p(t,0;x) =0,
2

(4.17) o) =-2 py(t,0; x)

2 [o°p@, y;x)dy’

The following proposition proves that there exists a unique solution to the above system, in
turn, proving the existence and uniqueness of the fixed point of D. It is based on the results
of [38]. In this proposition, and in its proof, we denote by W5 (R4) and W, ([0, T] x R})
the standard Sobolev spaces.

PROPOSITION 4.10. Consider a mapping S satisfying Assumption 1 and assume that,
for every x, Yy ~ po(y; x)dy with po(-; x) € Wzl (R4) and po(0; x) = 0. Then there exists a
unique fixed point of the associated mapping D.

PROOF. Let us fix an arbitrary A € L2([0, T] — Rl_Xl). Then, repeating steps 1 and 2 in
the proof of [38], Lemma 3.1, we prove the following statement. For every x € X', we have
that, for all ¢+ € [0, T'], the distribution of

Y2 OO g, 0, v Gy >0

restricted to (0, 00), has a density p(¢, -; x) (recall that Y~ (A) is defined in (4.15)). Moreover,
p(-,-; x) is the unique solution of (4.16) in Wzl’z([O, T] x Ry). Lemma 3.2 of [38] shows
that, for every x and almost every ¢, D[A](z, x) is given by the right-hand side of (4.17). In
addition, the last paragraph of step 1 in the proof of [38], Proposition 4.1, shows that, for
every x, D[A](-, x) € L2([0, T1); hence, the range of D is contained in L>([0, T] — R‘_Xl).

Next, step 3 in the proof of [38], Proposition 4.1, shows that there exists an increasing
function Cy : [0, T] — R4, converging to 0 at 0, such that, for any Az e ILZ([O, T] —
]R‘_X |), we have, for every x:

/OS(D[XI](;, x) — D[A%](t, x))*dr < Ci(s) /OS (A1, x) — 221, x))  dr,
se[0,T],

which yields the contraction property of D for sufficiently small T > 0. Then the Banach
fixed-point theorem yields the existence and uniqueness of the fixed point of D, for suffi-
ciently small 7 > 0. Step 4 in the proof of [38], Proposition 4.1, shows how to extend this
result to arbitrary T € (0, 00). U

Note that the domain of D can be extended in a straightforward way to the space of lo-
cally square integrable functions R4 — R Proposition 4.10 then implies that there exists
a unique fixed point of D in this space. Whenever we refer to a fixed-point A of D, we under-
stand it as an element of this space.
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Forany % € LRy — Ry, we let
P r_
0;(\; x) = exp(/ As(x) ds).
0

Notice that, if A is (a modification of) the fixed point of D, then 6 : (7, x) > 60;(x) := o, (A; x)
belongs to ®, and (r,0, C?, C!, v), with (r, C?, C!, b) defined in part 2 of Assumption I,
satisfies all assumptions of Corollary 1, including (4.6). Thus, we have proved the following
result.

COROLLARY 2. Consider a mapping S, satisfying Assumption 1, with the associated
(7, Cb, Cl, D). Assume that, for every x € X, Yy ~ po(y; x)dy with po(-; x) € WZI(R+) and
20(0; x) = 0. Let A be the fixed point of the associated mapping D, and let

r():=rfGsx), 60 :=60;x0),  Cl(x):=C"Cix),
Cl(x):=C G x), D (xx, x7) := D(Ar; x, X7).
Then (r, 0, Cb, C_’l, V) form an equilibrium.

4.4. Solving the static problem. Herein, we present a solution to the static fixed-point
problem, that is, we construct a mapping S satisfying Assumption 1. Consistent with the
initial formulation of the problem and with the equations (4.10)—(4.11) (cf. Remarks 4.3 and

4.9), the specific choice of the construction presented can be interpreted as the assumption of
“dominant lenders” (or “competitive borrowers”).

REMARK 4.11. Even under the implicit assumption of dominant lenders, the uniqueness
of the equilibrium is not clear. Nevertheless, certain characteristics of equilibria (such as the
interest rate) may be unique, as discussed in Remark 4.14. In any case, the (constructive)
proof of Proposition 4.13 shows that there exists a natural choice of such an equilibrium.

As the derivations in this subsection are performed for a fixed time ¢, for convenience,
we drop this subscript. Below we formulate a sufficient condition for S : x> (F, C‘b, él, D)
to satisfy Assumption 1 (i.e., to be a solution of the static problem). Assume that we are
given (r, A, C?, C!, ) € (LL Rp)IM x (LER N x (LY (R4))*)? x V and consider
the following conditions:

(1) r satisfies

(4.18) r(x)=a(x)Vv max (r(y)+i(y), xedX.
y:0(x,y)=1

(2) Forevery x € X,
(4.19) r(x)>ax) = vxx)=1awm(x)/n(Ax), x'eX,

where A(x) is a nonempty subset of
(4.20) A(x) = {z €EX:0(x,2)=1,r@)+r(z)= max (r(y)+ X(y))},
y:0(x,y)=1

if r(x) <a(x), then v(x, ) =0.
(3) Forall x € X, C? and C! satisfy

T

Cl(x) = (C + CP()) (R x)> (o))

4.21)
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where we recall (cf. (4.13))

/ kY / +
(4.22) R(x) = (x/;orﬁ?)?):l (r(x) +2(x) .
To explain the rationale behind equations (4.18)—(4.21), we recall the principle discussed in
Remarks 4.3 and 4.9 (compare (4.18)—(4.22) to (4.9)—(4.13)). Namely, in the equilibrium we
construct, the particles lend everything to the neighbors that offer the best profit, that is, have
the largest r; + A;, provided it exceeds their profits from external investment. Hence, v, must
be supported on the set on which this maximum is attained. Finally, we use the positive part
operator in the expression for R, as the latter is only relevant when it exceeds ¢, which is
nonnegative.

Notice that, once r and A are fixed, the above equations determine the network flow
(CP,C!, ) that maximizes the expected profit of each member of the network, provided
the other members do not deviate from these strategies. This is precisely the analogue of the
network flow problem in the presence of multiple agents (i.e., when the network optimization
is decentralized).

Notice that, if (4.18)—(4.21) are satisfied, we have

r(x) =a(x) Vv R(x),
and the associated drift, defined in (4.8), becomes
b(x) =b(r(x), », C’(x), C'(x), b(x, -); x)
=a'(x) + C* (D) (a(x) — r(x))

+ Cl<x)( fX 5, ) (r () + () ) — a(x>>

=a/(x) + C(R(x) —a(x))™.

It is easy to notice that conditions (4.18)—(4.22) are a special case of (4.5), (4.9)—(4.13).
This observation is formalized in the following lemma.

(4.23)

LEMMA 4.12.  Let (r, , C?, C!, D) € (L. (R )™ x (LO (R )X x (L. (R1))!¥1)? x
V satisfy (4.18)—(4.21). Then, for every x,

(rp:=r,Cl:=Cb C':=C!%,Cl:.=CP(x),Cl :=Cl(x), v, :=D(x, "))
satisfy (4.5) and (4.9)~(4.13).

PROOF. The lemma follows by direct verification. [

Finally, we present the main mathematical result of this section, which proves the existence
of a solution to (4.18)—(4.21) and its regularity with respect to A.

PROPOSITION 4.13.  There exists a mapping
S:RY s (R, CP ), €', D(3) € (R x
such that the associated
(r:=rF@), &, Ct:=CP(%), Ch:=C'(h), v :=D(X))

satisfy (4.18), (4.19), (4.21), for every . Moreover, for every x € X, the associated R(x),
given by (4.22), is Lipschitz and bounded in ).
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PROOF. For any given A, we need to construct (r, C?, C!, ) satisfying (4.18), (4.19),
(4.21). Without loss of generality, we assume X = {1, ..., n}.

Step 1: solving (4.18). Notice that the equation (4.18) is nothing else but a system of
linear equations in the max-plus algebra. Recall that the max-plus algebra is a semiring on
R U {—o0}, in which the addition is replaced by the maximum operator, denoted by @, and
the multiplication is replaced by the addition, ®:

x@yZmaX(X,)’), X®y=x+}’» X,yGRU{_OO}

Note that the matrix addition and multiplication in the max-plus algebra can be defined in the
usual way, via the above operations and they satisfy the usual associativity and distributivity
rules. Then (4.18) reads as

r=A®r®a, rac(RU{-o00})",Ae(RU {—oo})nxn,
where o; = (i), fori =1,...,n,and A is a square matrix, with
Aij =2 o =1y — 00 - Lo, jy=op, Bj=1,....n

and the convention oo - 0 = 0. Since the entries of A are nonpositive, [7], Theorems 3.20,
4.75 and Remark 4.80, imply that

(4.24) r=A"Qaqa,
where the Kleene star matrix
A =1QADA®---® A", Lj=—00 1z}

is the smallest solution to (4.18), in the sense that it solves (4.18), and r; < 7;, for all i, for
any solution 7. Note that the associated vector R, with R; := R(i), is given by

R=A®Rr®e=(A0A’® - - ®A")Rade,

where e is the vector of zeros. It is clea_r that R; < max; «, for all i. In addition, it is easy to
see that, if v is a Lipschitz function of A, with values in R", then A ® v is also Lipschitz in A.
The operator @ preserves the Lipschitz property as well. Thus, by induction, R is Lipschitz
in A.

Step 2: eliminating cycles. Let us show that there exists an optimal lending allocation,
denoted by v™, that satisfies (4.19) and produces no lending cycles. To this end, we define
veV:

5. 1= [LaoW/mAD) r@ >a.
= o r(i) = o),

where A:(i ) is given by (4.20). Note that ¥ satisfies (4.19). Next, consider the new adjacency
matrix O induced by v,

0(i, j) = L5, j)=0)-

and the associated directed graph. In the new graph (X, 0), let us pick a node xp € X and
denote by C the union of all cycles containing this node. We assume that there exists an
xo € X such that C is nonempty (otherwise, (X, O) contains no cycles, and we can skip this
step). We let C = (xq, x1, ..., Xk—1), with kK > 1. The set C has the following properties: (i)
C is connected, (ii) any two x, y € C are contained in at least one cycle and (iii) all cycles
containing at least one x € C are included in C.

Note that, for every cycle (x;, ..., x;_,;) C C, we have

R(xij) = r(xij) = y: max (”()’) +5~()’)) = r(xi(j+1)m(,d]) +X(xi(j+1)modl)~

0(xi; =1
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Since A <0 and any two points in C are contained in a cycle in C, the above implies

Mxg) =+ =A(xx—1) =0, r(xp) =---=r(x-1) =7 > maPCW(Xi) > 0.

Xi€
Next, for every x; € C, we define the “alternative profit”

a R Cc
R (x;) := yzo(xl_l?;gl,y%(r(y) +A(y) <r“.

Our next goal is to show that there exists an x; € C such that R%(x;) = r¢. Assume the
opposite: R*(x;) < r¢, forevery i =0, 1,...,k — 1. Consider a new graph (/'9, (5), which
only differs form (X', O) in that the set C is “collapsed” into a single state, denoted by X.
Setting a(x) = r€, A(x) =0, and r(x) = r¢, we note that r solves (4.18) for the new network
(23 , 0, «). On the other hand, choosing a constant

e <i:0r,r.1i)1i—1 R¥(x) Va(x), rc>
and setting @(x) := 7¢ (with the other values of & being the same as those of «), we can
find the minimal solution 7 to (4.18) for the network (2? , é, a). It is clear from (4.18) that
F(x) > &(x) = r°. In addition, from the minimality of 7 and the monotonicity of the right-
hand side of (4.24) with respect to «, we conclude that 7(x) < r(x), for every x € O. This
observation, along with our assumption and the choice of 7¢, imply that

max  (F(y) +A(y)) <7 =a(x).
y:O0(x,y)=1

This, in turn, yields that f()?) = a(x) = 7¢ < r°. Finally, we turn back to the network
(X, O,a) and, expanding 7 in an obvious way (i.e., setting 7(x) = 7¢ for all x € C), we
obtain an 7 that solves (4.18) for (X, 0, a). Since 7 =7 <r¢ =r on C, we arrive at a
contradiction to the minimality of r.

Thus, there must exist an x!' € C such that R%(x!) = r¢. The latter equality implies that
A(x") contains at least one element outside of C. Then we can modify ¥ by creating

0, x=x! yeC,
71, ) = 1 Ligo e /AW N\ C), x=x',y¢C,
v(x,y), otherwise.

Note that D! satisfies (4.19). Thus, we define 0! via v!, and construct the new set C! in the
same way as C was constructed above, but in the new graph (X O"). Note that any cycle
in (X, 0! ) is also a cycle in (X, 0) In addition, the node x! is contained in at least one
cycle in (X 0) and is not contained in any cycle in (X, 0! ). These observations imply that:
x! ¢ Cl, 9(x,) = D(x, ) for all x € C!, and the number of cycles in (X, 0! ) is strictly
smaller than the number of cycles in (X, 0). Thus, the above arguments can be applied
inductively, terminating in a finite number steps, when the resulting graph (X, O™) contains
no cycles. The resulting v satisfies (4.19).

Step 3: solving both (4.19) and (4.21). Finally, let us construct (CP, CL,v) satisfying (4.19)
and (4.21). As (X, Om) has no cycles, there must exist at least one node x € X that has no
outgoing edges (i.e., does not lend within the network), so that V" (x,-) = 0. Denote the
collection of all such nodes by X°. We define

CPx) =0,  CM:=Clirp=a)(=0),

b(x, ) =" (x, ), xeXO
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Since the nodes within X 0 are not directly connected to each other, it is easy to notice that
(CP0, CLO D) satisfy (4.19) and (4.21), with X replaced by X°. Next, we define

A= {x e X:3y € X0 such that 9" (x, y) > 0},

and, forevery x € X I we set V(x, -) to be proportional to V" (x, -) on X 0. and to be zero on
X\ X°. We define

=0, CMw=C, xed!
and update

Chlx)y =Y 5.0 C u((y))

yeX!
Cl’l = (é + C_'b’l(x))l{R(x)>a(x)}, X € XO.

Since the nodes within X/ are not direc_tly connected to each other, for j =0, 1, it is easy to
see that X0 N X! = @ and that (C»!, Cl'1, ¥) satisfy (4.19) and (4.21), with X replaced by
XU X!, We repeat this procedure iteratively. Namely, in the ith step, we define

i—1 i—1

Xt = {xeX\ J &7 :3y e | A/ such that 9" (x, y) > O,
j=0 j=0

for every x € X%, we set v(x, -) to be proportional to 7" (x, -) on U;;lo X/, and to be zero on

X\ Uy X, define

Cchix) =0, Clix)y=C, xeXi,
and update, iterating over k =i,i —1,...,1,

Chiy =Y 5y 0C u(ly)),

yeXxk
~Li . (o ~b,i 1 Xk*l
ch' = (C +C (x)) (R)>a(x)), XE .

It is easy to see, by induction, that, for every i, the nodes within X'/ are not directly con-
nected to each other, for j =0,1,...,1, that (U;_:}) X7y N X' = @, and that (CP, Cl, b)
satisfy (4.19) and (4.21), with X replaced by Ui‘;lo X/ . The construction stops after the pth
step, where p is the smallest integer such that there are no nodes in X\ U?:o X7 directly
connected to Uf:o X7, according to 7. As there are no cycles in (X, O™), we must have:
X = Ui'):o X7 Letting C? := C»P and C! := Cl? we complete the proof. [J

REMARK 4.14. Theorem 3.17 in [7] shows that the solution to (4.18) is unique if all en-
tries of A are strictly negative, which is expected to hold at almost every time #.'® Therefore,
typically, one may expect to have a unique interest rate r in all “dominant lenders” (or “com-
petitive borrowers”) equilibria, even though the sizes and allocations of credit exposures may
not be unique.

16This fact can be proven easily by comparing Y* to a Brownian motion with drift and noticing that the drift b,
given by (4.8), is bounded absolutely in equilibrium.
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REMARK 4.15. Note that it is important to find the smallest solution r to the max-plus
linear system (4.18), in order to avoid cycles and, in turn, to satisfy the market clearing con-
dition. To see why, consider, for example, X = {1,2,3}, « =0, A=0,0(1,2)=0(2,3) =
0(3,1) =1, with all the other entries of O being zero. Note that r(1) =r(2) =r(3) =z,
with any constant z > 0, solve (4.18). However, if z > 0, it is easy to see that the market
clearing condition (4.21) cannot be satisfied. Indeed, this situation reminds of a credit bub-
ble, in which no particle can make positive returns on external investment, but the interest
rate is strictly positive; hence, each particle aims to lend to the ones it is connected to. Since
the network is a circle, the initially lent funds reach the creditor, thus encouraging him to lend
more. It is clear that this problem can be easily fixed by choosing z = 0, which is the smallest
solution, and also the only economically meaningful solution, in this case.

Collecting the results of the last two subsections, we can describe an equilibrium of the
proposed network game.

THEOREM 4.16. Assume that, for every x € X, Yy ~ po(y;x)dy with po(-;x) €
W21 (R4) and po(0; x) = 0. Denote by S the mapping constructed in Proposition 4.13, with

the associated (7, Ct, C, D), and by X the unique fixed point of the associated mapping D.
Then (r, 0, C?, C, v), with

r(x):=Fsx),  6,(x) =60, x),  CP(x):=Cl(h;x),
Cl(x):= Cl(a,: %), D (x, x7) := D(As; x, X)),

form an equilibrium.

PROOF. The theorem follows by collecting the established results. First, we consider S
from Proposition 4.13 and use Lemma 4.12, equation (4.23), as well as the Lipschitz and
boundedness properties of the associated R;, to conclude that S satisfies Assumption 1. Fi-
nally, we consider the fixed-point A from Proposition 4.10 and use Corollary 2 to conclude
that (r, 6, C?, C!, ) form an equilibrium. [

It is important to note that the results of this section are not limited to proving the exis-
tence of an equilibrium: the existence proof provided herein is, in fact, constructive, and it
also produces a computational algorithm. Indeed, the proof of Theorem 4.16 shows that the
equilibrium quantities (r, 6, C?, C!, b) are computed through the associated S and A. The
mapping S can be easily implemented (i.e., programmed) via the algorithm described in the
proof of Proposition 4.13. Finally, the fixed-point A can be obtained by the Picard iteration
described in the proof of Proposition 4.10, which, in turn, can be computed numerically using
S and an approximation scheme for the associated linear parabolic PDEs.

APPENDIX A

PROOF OF THEOREM 2.3. Step I. Notice that the theorem amounts to the existence of a
family {A"},cx of (“loss”) processes satisfying the fixed-point constraints

(A1) _C(x)/ P(min (27 + ) > 0))e(v.dv), re(0.T]xeX

and converging to zero as ¢ | 0. We aim to employ Theorem 2.6 and, to this end, start with
the construction of a domain & as therein.
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Notice that Assumption 2.2(a) and the continuity of Z*, x € X yield the existence of
a family {(5;;, 7}, )nen}xex Of positive sequences, satisfying &;,, n; | 0, as n — oo, for all
x e X, and

n)C
A2 P Zx ,dx’) > — =2, eX,neN.
(A2) /Xg( (se%“;q Yo ) )e(x, de) > Coy YEX
We define 2 C D([0, T], R)? as the set of families {A*},cx of cadlag nonincreasing func-
tions on [0, T], with A =0, for all x € X, and

(A.3) A =—m,, t€[8,,1.8,), neNxek.

Clearly, 2 C D([0, T],R)* is convex. In addition, since every convergent sequence in
D([0, T],R) converges pointwise on a dense subset of [0, 7] which includes O (see, e.g.,
[45], Theorem 12.5.1(iv)) and each function ¢ — >"7 ”nl[‘sxﬂ 5X)(t) is right-continuous

on [0, §7), the set Z is also closed. Moreover, S([0, TT], R)* N 2 is dense in 2, as can be
inferred from the definition of the strong M1-metric in terms of graph parametrizations (see,
e.g., [45], Section 12.3).

Step 2. Next, we factor the map associated with the right-hand side of (A.1) into a compo-
sition F; o F of two auxiliary maps F; and F». The components of the map

(A4) F1: 92 — (2(D(10, T1,R)*)™
send each family {A*},cx € Z to the joint law of the pair (Z*, A®), where

~ A7 if t €[0,7° AT),
(A5) Aro A el A T)
—Z; ifte(@ AT, T].
Here, Z(D([0, T], ]R)2) is the space of Borel probability measures on D([0, T], R)? with
the topology of weak convergence, and (Z(D([0, T], R)?))? is the corresponding product
space with the product topology. The two key properties of F7 are

. X A X _ X X
(A.6) P(srel}(l)rylt](Zs +A%)>0)= ]P’(srer%(l)nt](z +AY)>0), 1€[0,T]xex,
(A7) ZX+Af =0, te(t"AT,Tl,xeX.

In particular, with

Fy :ran F| —> D([0, T],R)*
(A.8) (L(Z*, A"} ex

{C(x)/ min ( (2 + AY) > 0) e (x, dx'), 1 € [0, T]} ,

se[ xeX
the composition F; o Fj is given by the rlght—hand side of (A.1).

Step 3. The goal of this step is to show that the range of F; in (£ (D([0, T], R)?)¥ is
compact. Since each component F;' of Fj is defined in terms of A* and Z* only, the range of
F1 is of product form and, by Tychonoff’s theorem, it is enough to verify the compactness of
the range of each F} in Z2(D([0, T1], RR)?). By Prokhorov’s theorem, the latter is precompact
if, for any ¢ € (0, 1), one can find a compact subset of D([0, T], R)? which is assigned a
probability of at least 1 — ¢ by all the probability measures in the range of Fj'. In view
of the compactness criterion for subsets of D([O T1,R) (cf. [45], Theorem 12. 12 2) such is
possible thanks to the first marginal of Fy' ({Ax }xex) being the law of Z* for all {Ax }rex €
2, the inequalities

(A9) 0>Af> min (-=ZY), t€l0,T]
s€l0,T]



1548 S. NADTOCHIY AND M. SHKOLNIKOV

(see the definition of A* in (A.5)), the estimates
(A.10) Af =AY >—n', tel0,85) on [t >5")

for all n € N (cf. (A.3)), and the monotonicity of A~
It remains to prove that the range of F}" is closed in Z(D([0, T, R)?), and thus, compact.
Consider a sequence £(Z*, A¥¥), k € N in the range of F " converging weakly to some

L(Z¥, A e P (D([0, T1, R)?). Due to the Skorokhod representation theorem in the form

of [23], Theorem 3.5.1, there exist (Z°%, A™*) £ (z¥, Axk), k e N and (2" AT °°) 4

(Z*, A***) on some probability space (2, F, P) such that (Z%X, A ) — (Z5°, A ) as
k — o0 on Q\ Q2 for some P-null set 2g. For any w € 2\ 2, the sequence

(A1) () i=inflr € [0, T]: 2 (@) + A" (@) =0} AT, keN

has a subsequence converging to a limit %*°(w) € [0, T']. In the rest of this step, we fix an
w € 2\ and take all limits k — oo along the subsequence associated with that .

One has Af’k(a)) — Af’oo(a)) on a dense subset of [0, T'] that includes 0, which together
with the definition of A* in (A.5) implies

. AP t€[0, 5% (w)),
(A.12) A () = _tl- z5k (W) tGE x’_°°( ) T)]
koo STk @)\ S

where A¥* is the M1-limit of A** on a suitable sequence of closed intervals increasing to
[0, 75°°(w)), and A*¥ belongs to the preimage of L£(Z*, A% under Fi". The closedness
assertion now follows from
er (o) (@) + Afx o) (@) = z¢rlxu£(w) lim ( *(w) + A (a)))
(A.13)
= lim lim ( Z5k(
15 (w) k—

©) = Z2L @) =
with the last equality being a result of the uniform convergence Z*: k(a)) = 75 (w) (see,
e.g., [19], Theorem 4.2).

Step 4. Next, we argue that the map F; is continuous. Combined with the step 3 this yields
the compactness of the range of F,. To deduce the continuity of F>, we pick a sequence
(L(ZF, A"F) ) rer = Fi{A ) iex), k € N converging to some (L(Z*, A¥®) ) er =
F 1({A ®}rex). For any x € X and any continuity point ¢ € [0, T] of A*°, the pro-
cess A% is continuous at 7, so that one can infer limg_ o £(Z¥, A%*) = £(Z*, A*)
in 2(D([0, 1], R)?) from the Skorokhod representation theorem and the characterizations
of M1-convergence for continuous and monotone functions (see, e.g., [19], Theorem 4.2).
Hence, limy_, o0 £(Z* + A¥*) = £(Z* + A¥*®) in 2(D([0,1],R)) (see, e.g., [45], The-
orem 12.7.3). A subsequent application of the Skorokhod representation theorem and the
definition of the strong M 1-metric in terms of graph parametrizations gives the convergences
in distribution

. : X AXky . X A X,00
(A.14) Jim min (Z9+ AT = min (Z + A7)
for all continuity points ¢ € [0, T] of A***° and all x € X. The latter argument shows (A.14)
alsoforr =T and all x € X.
Further, we claim that, for any x € X,

(A15) kgn;og<P<ggE(l)r§](ZX —+ Ax k) > O)) g<]P><TI€I%(1)nt](Zx + Ax oo) > O))
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at all continuity points ¢ € [0, T] of A**° and at t = T. By (A.14), the convergence of the
probabilities in (A.15) can be reduced to

. X A X,00\ __ _
(A.16) ]P’(srerg(l)flt](zs—f-As )=0)=0.

The identity (A.16) holds, since the intersection of the events ming¢(o,/1(Z7 + 1~\§ ) =0and
(A.17) inf{s € [0,1]: Z¥ + AY® <0} =1

is contained in the zero probability event Z¥ = —A;"™ (see Assumption 2.2(b)), and the
intersection of the events mingeqo,/1(Z5 + A}*°) =0 and

(A.18) inf{s € [0,1]: Z¥ + AT * <0} <t

has a probability of zero by Assumption 2.2(c). At this point, (A.15) is readily obtained from
the convergence of the probabilities involved and the positivity of the probability on the right-
hand side of (A.15) (recall (A.6) and Assumption 2.2(d)).

Step 5. Lastly, for any sequence { A* *ex,keNin 2 converging to some {A¥®}, ey €

2, we proceed as in the step 4 to conclude that (Z¥ + A% k) $Z¥ + A¥®in D([0,7],R)
almost surely for all x € X" and all continuity points ¢ € [0, T] of A*°° and ¢ = T. As in the
step 4, this leads to

(A.19) Jim SIEIE(i)nt](Zf + ATK) = sIeIE(i)nt](Z;( + AY®)  almost surely,
. . X x’k _ . X X,00
(A20)  lim g(P(sgégl(zs +AFF) > 0)) = g(IP’(SIEl%(l)g](ZS +AF®) > 0)),

for all ¢t and x as described. We can therefore infer from the M1-convergence criterion for
monotone functions in [19], Theorem 4.2, that the map

Fyo Fy: 9 —> D([0, T],R)™
(A.21) {Ax}xeX
{C(x)/ mm (25 + AY) > 0) ) (x, dx'), 1 € [0, T]} :

xeX

is continuous.
In addition, for any {A*},cx € Z, it holds

C(x)/ mln ZX —I—Ax) 0>>/<(x,dx’)
(A.22) > C(x)f m1n VAN ))K(x, dx’) > —n3,

teld,,1.8,).,neN

thanks to (A.2), so that the compact ran(F o F1) = ran F> (see the step 4) is a subset of Z.
In summary, F> o F; maps the convex closed set &, in which S([0, T], R)* N 2 forms a
dense subset, continuously onto a compact subset of &. Thus, F; o Fj has a fixed point by
Theorem 2.6. [



1550 S. NADTOCHIY AND M. SHKOLNIKOV

APPENDIX B

LEMMA B.1. Fixanarbitraryt € [0, T) and suppose that Assumptions 2.2(b) and 3.1(a)
hold. Assume, in addition, that a solution {Y*}xcx of (2.1) admits {k* > O}xcx such that, for
eachx € X,

(B.1) gP(r* > 1)) — g(x) = k" (P(r* > 1) — 2)

for all z in a left neighborhood of P(t* > t), and {¢*}xex, {z* }xex satisfying (3.1) and such
that

cXm+1 fXm+1 )

Z/ H <C(x’")g )

(Bz) — Xm Xm Xn Xn
1_[ Sm-H Sm — < Z —& )]E[ Sn+1,5n NZ ]

x Kk (x0, dx1)k (x1, dx2) ...k (xXp—1, dx,) = 00,
for some xg € X, (sp)pen | t,and e* € (0,2%), x € X. Then Y;* > Y} for at least one x € X.
PROOF. Assume the opposite, that is, there exist #, {Y* }yex, {k* }rex, (¢ }rex, {25} xex,

X0, (Sn)nen and {e* }ycx satisfying the assumptions of the lemma and such that ¥;* =Y} for
all x € X. Then Assumption 2.2(b) gives

P(z* >1,Y" €(0,2)g'(P(x* > 1))
=P(r*>1,Y" €(0,2)g'(P(z* >1))>c"z, z€[0,z],xeX.
At this point, we let

(B.3)

(B.4) —C(x)/ Je(x, dx'), s €[0,T],x € &,
P(z*>1t, Y e")

B.5 ()= L , xeAX.

(B.5) & () P(er > 1) x

We assume without loss of generality that

(B.6) Af—Aflfex, xekX,

since (B.2) remains valid for any (s,),>n in place of (s,),en. Next, we employ (B.1), the
monotonicity of { A*},cx, the inequality (3.2), the stochastic dominance in (B.3), the formula
fooo P(R > z) dz = E[R] for nonnegative random variables R, and the elementary bound (z; +
22) A23 > 21 AN 23 + 2217 42,<23)> 215 22, 23 € R in conjunction with (B.6), consecutively, to
obtain

X0 _ AXO
AS1 Al‘

< C(x0) /X KIP(rM > 1)

X (P( min (¥;"' + Z5 = Z7' + AT — AYY) > 077 > t) - I)K(X(),dxl)

s€lt,s1]

Z
< —C(xo)/ '/0 ]P’(’;‘s2 o 2+ A — AT (d)P(T > 1)k ke (xp, dxy)
1

- - OB Al —AY)d dx
( 0)/ xg (]P)(Txl > t)) (532 S1 >z+ — 1\ ) ZK(XO, 1)
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XX
=—Ck 0)/ x g Pt > t))E[( s T A7 = A?ﬁ) A 2 ke (x0, dxy)

X1 JeX1 0
= _C(XO)/X m [ T TRAY ]K(xo,dm)
xlkXI X1 X1 X1 X1 X1
+C(X0)AW(ASZ _At )]P( 52,51 <z -—¢ )K(XO,dX]).

To conclude, we repeat the estimates of (B.7) mutatis mutandis for the term Ay — A;!
inside the last expression in (B.7) to find

X0 _ AYO
AT — A

x1 kxl
C(x o)f x g (P(z¥1 > t))E[ész o A2 K (xo, dxy)

Xlkxl N R )
- C( 0)/ X g (P(‘L’xl > t))]P)(SSzl,sl =z I—¢ 1)

X2 k*2
(B.8) X C(xl)/ B> t))E[g% 5 A 72K (x1, dx2)k (xo, dx1)
Tk X1 X] _ X
o) fx g Py > t))P(S”*“ sz =et)
2k X2 X X X
* C(’”)/ B =y M T AP 52 —e)

x Kk (x1, dx2)k (xp, dx1).

Iterating N € N times and dropping the term involving A5y, — A;" <0, we arrive at

SN+1
A — A
N n—1 X, X
c m+lk m+1
<-— C
- 2/ H ( Cn) o B = r)))

(B.9)

nel
X, X, X, X X,
X 1_[ ]P)(SSanHasm =z "—e m)E[gsnn+l7S" NZ n]
m=1
X K (x0, dxp)i (x1, dx2) ...k (xXp—1, dxy).

We now take N — oo and end up with A;? — A;° < —oo (recall (B.2)), which is the desired
contradiction. [

Using the above lemma and making a somewhat stronger assumption on Z, we obtain
a sufficient condition for fragility that is, in some sense, sharper than Theorem 3.3 (i.e., it
covers the case o = 0).

THEOREM B.2. Fix an arbitrary t € [0, T') and suppose that, for each x € X,
(B.10) gP(z* >1) —g(2) = ¢'(P(x* > 1))(P(x* > 1) —2)

for all 7 in a left neighborhood of P(t* > t) and that {Z*}xcx satisfy (3.4), with the asso-
ciated @ € R and o, € (0, 00). Assume that a solution {Y*}ycx of (2.1) admits {c*}rxex,
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{z%}xex satisfying (3.1) and such that

Z(’V Sn — Sp41 + o (Spg1 — t))

n=1

/n l:[ (C(xpm)c™*1)

x ]:[ (1 —46< g — e+ asm —1) ))
m=1 V250 = $mi1) + 52 Smrt — 1)

X Kk (xg, dx1)x(xq,dx2) ...k (xp—1, dx,) =00

(B.11)

for some (sy)pen 4 t, @ < —/m/20/0, xg € X and e* € (0,z), x € X. Then Y;* > Y}, for
at least one x € X. Hereby, ® is the standard normal tail cumulative distribution function.

PROOF. We note that Assumption 2.2(b) holds in the setting of (3.4) thanks to [37], in-
equality (3), in conjunction with Girsanov’s theorem (see, e.g., [34], Chapter 3, Theorem 5.1
and Corollary 5.13). Let us show that Assumption 3.1(a) holds. To this end, we write, for any
0eO0,T—1t),t<ti<p<t+0,andxe X,

(B.12) min (Zg — Z{)=Z; — Z; + min (Z7 — Z3,),

H<s<ty H<s<t)

infer from [31], inequality (1.5), that, conditionally on Z7, s € [0, 1],

ﬂtl ot :311 —t

(B.13) Z} —ZF <@ -1 +o >

with (possibly dependent) standard Brownian motions 8%, *, and dominate the conditional
law of min;, <5<, (Z7 — Zfl) given Zfl — Zf and Z}, s € [0, t] stochastically by a(t> — 1) +
ming<g<g (tr—1) /§s for a standard Brownian motion ;§ by relying on the Dambis—Dubins—
Schwarz theorem (see, e.g., [34], Chapter 3, Theorem 4.6). Thus, Assumption 3.1(a) holds
with

IBtl t+ﬂ11 —t i 3
(B.14) 5& t2 Ol(l‘z - t) - f B Ofsfrgl(g—tl)ﬂs’

where ,5 is a standard Brownian motion independent of all 8*, *.
In view of the estimates,

Py, =7 —¢")
B B _
=1 —P(-O’% + |IBQ(t2_tl)| >z5—¢&t +o(t) — I))

(B.15)

7‘2
o1 / (Z —&' taty—1) — Z) T30 4y
- G«/zﬂ(l‘l—l‘ o/t —h

-t 4u(tr—1) )
Jolt — )+ —1)

:1_46<
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and
E[gl‘):,tz A Zx]
] ~
= SE[(-2a(1 =) =T (B + By -)) A ']
1 _ . o X
+ 5E[<—2(x(z‘2 —1) — Zofsfrgl(g_tl)ﬁs) ANZ ]
=—a(r—1) +g,/ M
T
1 ~
®.16 + SB[ + 2@ — ) +5 (B, + Bi—))

N aat -y + 021

+1E[(ZX+2a(z2—z1)+2 min ,és)

2 0<s<o(t—t1)

x 1

{—28(tr—11)—2Ming <y =g (1y—1) B >Z"}]

=—u(y —t)—i—g,l@ +o(t1 —t)+o(tr — 1)

asty, 1y 0,

the divergence of the series in (B.11) implies the same for the series in (B.2), with the selec-
tion of k* = ¢’(P(t* > t)) and of & 1, in (B.14). The result now follows from Lemma B.1.
In addition, (B.16) shows that Assumption 3.1(b) holds with s, :=t + n/n, for sufficiently
small n > 0. O

PROOF OF THEOREM 3.3. (a) The continuity of Z*, x € X and the defining equation
(3.2) for St’l"tz imply that, for any {&* > 0},cx and (sy),eN | 7, We have

lim minP <eg¥)=1
n—00 xe X (S+1Sn— )

and, in turn,

1 n—1
(B.17) lim —log [T (minP(&} ,, ,, <&*))=0.

n—oon - xeX

In view of (3.5), (B.17) and (3.3), for any {c*, z"}xcx as in Theorem 3.3(a), any {¢* €
(0,29 }rex, and any xq that belongs to a closed irreducible component of (C(x)k (x,
{x’Dc™ )y xex with o > 0, we have

Xm 1
l}ln_l)loréfnlog<f ]‘[ C (X)) m+
X l_[ Sm+l Sm - xm - 8xm)E[ ;i:;lssn /\an]

(B.18) xK(xo,dxl).../c(xn_l,dxn)>
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n—0oo n xeX xeX

1 n—1
> liminf — log< I1 (min P&, <2 — gx)) minE[£7 | AZ"]

n—1
X / 1_[ (C(xm)c™ )k (x0, dx1) .. .k (Xp—1, dxn)) >0>0.
" m=0

Consequently, with {k*},cx obeying min,cy (k* /g (P(t* > t))) > e~ ", the summands in
the series of (B.2) grow exponentially and the result readily follows from Lemma B.1.

(b) The assumptions of Theorem 3.3(b) imply the existence of an eigenvector v = (V") e x
of the matrix A = (C(x)k (x, {x’ })cx/) x.x’ex With strictly positive entries such that Av < v
(see, e.g., [22], Theorem 3.1.1(c)). Then 7;, := v*/n satisfy (2.10) for all large enough n.
Hence, Theorem 2.3 and Remark 2.4 imply the existence of a solution to (2.1), with the
prescribed distribution at t— and continuous at r. [
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