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We show that if ∂R is the boundary of the range of super-Brownian
motion and dim denotes Hausdorff dimension, then with probability one, for
any open set U , U ∩ ∂R �=∅ implies

dim(U ∩ ∂R) =
⎧⎪⎨⎪⎩

4 − 2
√

2 ≈ 1.17 if d = 2,

9 − √
17

2
≈ 2.44 if d = 3.

This improves recent results of the last two authors by working with the actual
topological boundary, rather than the boundary of the zero set of the local
time, and establishing a local result for the dimension.

1. Introduction. We consider a d-dimensional super-Brownian motion (SBM), (Xt , t ≥
0), starting at X0 under PX0 with d ≤ 3. Here, X0 ∈ MF (Rd), the space of finite measures on
Rd with the weak topology, X is a continuous MF (Rd)-valued strong Markov process and
PX0 denotes any probability under which X is as above. We write Xt(φ) for the integral of φ

with respect to X, and take our branching rate to be one, so that for any nonnegative bounded
Borel functions φ,f on Rd ,

(1.1) EX0

(
exp
(
−Xt(φ) −

∫ t

0
Xs(f )ds

))
= exp(−X0

(
Vt(φ,f )

)
.

Here, Vt(x) = Vt(φ,f )(x) is the unique solution of the mild form of

(1.2)
∂V

∂t
= �Vt

2
− V 2

t

2
+ f, V0 = φ,

that is,

Vt = Pt(φ) +
∫ t

0
Ps

(
f − V 2

t−s

2

)
ds.

In the above, (Pt ) is the semigroup of standard d-dimensional Brownian motion. See Chap-
ter II of [15] for the above and further properties. Note that X has an a.s. finite extinction
time and, therefore, we can define the so-called total occupation time measure of the super-
Brownian motion as a finite measure,

I (A) =
∫ ∞

0
Xs(A)ds.

Supp(μ) will denote the closed support of a measure μ. We define the range, R, of X to be

R = Supp(I ).

A slightly smaller set is often used in the literature (see [3] or Corollary 9 in Chapter IV of
[12]) but the definitions agree under Pδx or the canonical measures Nx defined below, and
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also give the same outcomes for R ∩ Supp(X0)
c and ∂R ∩ Supp(X0)

c. Therefore, the two
definitions will be equivalent for our purposes. In dimensions d ≤ 3, the occupation measure
I has a density, Lx , which is called (total) local time of X, that is,

I (f ) =
∫ ∞

0
Xs(f )ds =

∫
Rd

f (x)Lx dx for all nonnegative measurable f.

Moreover, x 
→ Lx is lower semicontinuous, is continuous on Supp(X0)
c, and for d = 1 is

globally continuous (see Theorems 2 and 3 of [18]). From (1.1) and (1.2), it is easy to derive
(see Lemma 2.2 in [14])

(1.3) EX0

(
e−λLx )= exp

(
−
∫
Rd

V λ(x − x0)X0(dx0)

)
,

where V λ is the unique solution (see Section 2 of [14] and the references given there) to

(1.4)
�V λ

2
= (V λ)2

2
− λδ0, V λ > 0 on Rd .

Thus in dimensions d ≤ 3 we have

R = {x : Lx > 0
}
,

and R is a closed set of positive Lebesgue measure. In dimensions d ≥ 4, R is a Lebesgue
null set of Hausdorff dimension 4 (see Theorem 1.4 of [3]), which explains our restriction to
d ≤ 3 in this work.

Our main goal in this paper is to study properties of ∂R, the topological boundary of R,
and in particular to determine the local Hausdorff dimension of ∂R outside the support of
X0. The related question of the dimension of the boundary of the set where the local time is
positive, that is, the dimension of

(1.5) F = ∂
{
x : Lx > 0

}
,

was studied in [14]. To describe this latter result, we introduce

(1.6) p = p(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if d = 1,

2
√

2 if d = 2,

1 + √
17

2
if d = 3,

df = d + 2 − p, and

(1.7) α = α(d) = p(d) − 2

4 − d
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/3 if d = 1,√

2 − 1 if d = 2,√
17 − 3

2
if d = 3.

THEOREM 1.1 ([14]). With Pδ0 -probability one,

dim(F ) = df =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if d = 1,

4 − 2
√

2 ≈ 1.17 if d = 2,

9 − √
17

2
≈ 2.44 if d = 3.
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There were also versions of the above in [14] for more general initial conditions X0.
I. Benjamini’s observation that the boundary of the range exhibited interesting fractal prop-

erties in simulations was one motivation for the above. Although F may be a natural object
from a stochastic analyst’s perspective, the topological boundary of R, ∂R, is the more natu-
ral geometric object and of course was the set Benjamini had in mind. Clearly, ∂R and F are
closely related; it is easy to check that

(1.8) ∂R ⊂ F.

Thus, Theorem 1.1 gives an upper bound on dimension of ∂R. Whether or not F = ∂R
remains open for d = 2 or 3, but Theorem 1.7 in [14] shows that, if d = 1, there exist random
variables L,R such that

(1.9) F = ∂R = {L,R} where L < 0 < R Pδ0-a.s.,

and so we will usually assume d = 2 or 3. A point x in F will be in ∂R iff there are open sets
U approaching x s.t. L = 0 on U . Note that, for example, any isolated zeros of L will be in
F but not in ∂R, but we do not even know if such points exist in d = 2,3. It was conjectured
in (1.10) of [14] that in d = 2,3,

(1.10) dim(∂R) = dim(F ) Pδ0-a.s.

In this paper, we verify this conjecture, and prove the following stronger local version.

THEOREM 1.2. PX0-a.s. for any open U ⊂ Supp(X0)
c,

U ∩ ∂R �= ∅ ⇒ dim(U ∩ ∂R) = df .

The following corollary is immediate.

COROLLARY 1.3. PX0-a.s.

Supp(X0)
c ∩ ∂R �=∅ ⇒ dim

(
Supp(X0)

c ∩ ∂R
)= df .

The hypothesis in the above corollary is needed; see Proposition 1.5 of [14] for an example
where it fails with positive probability.

COROLLARY 1.4. Pδ0 -a.s. for any open set U ,

U ∩ ∂R �= ∅ ⇒ dim(U ∩ ∂R) = df .

In particular, dim(∂R) = df Pδ0 -a.s.

PROOF. By Theorem 1.4 and Theorem 1.6 of [7], in d = 2 and d = 3 we have Pδ0 -a.s.
that Lx → ∞ as x → 0. Therefore, we can conclude that Pδ0 -a.s. there is some δ > 0 such
that Lx > 0 for all |x| < δ and so 0 /∈ ∂R, which gives U ∩ ∂R �= ∅⇒ (U \ {0}) ∩ ∂R �= ∅.
Now we may apply Theorem 1.2 with U \ {0} in place of U to complete the proof. �

Note that besides confirming (1.10), the above shows that the dimension result holds lo-
cally on any open ball intersecting ∂R.

We also consider X and its local time under the canonical measures Nx . Recall from
Section II.7 of [15] that Nx is a σ -finite measure on the space of continuous finite length
MF (Rd)-valued excursion paths such that

(1.11) Xt =
∫

νt
(dν) for all t > 0 under PX0,
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where 
 is a Poisson point process with intensity NX0(·) = ∫ Nx0(·)X0(dx0). In this way,
Nx0 governs the “excursions” of X from a single ancestor at x0. The existence of local time
L under Nx follows easily from the above, in fact it is even globally continuous (see [7]). It
should not be surprising that Corollary 1.4 continues to hold under the canonical measure, in
fact, as we shall see, the proof is a bit easier.

THEOREM 1.5. N0-a.e. for any open set U ,

U ∩ ∂R �= ∅ ⇒ dim(U ∩ ∂R) = df .

We first say a few words about the argument leading to the proof of Theorem 1.1 in [14]. If
a small ball B intersects F , then B contains a point x such that Lx is positive but small. Thus,
to get the bounds on the Hausdorff dimension of F , it is useful to understand the asymptotics
of Pδ0(0 < Lx < ε), as ε ↓ 0. We write f (t) ∼ g(t) as t ↓ 0 iff f (t)/g(t) is bounded and
bounded away from zero for small positive t , and similarly for f (t) ∼ g(t) as t ↑ ∞. It was
shown in Theorem 1.3 of [14] that for p as in (1.6) and α given by (1.7),

(1.12) Pδ0

(
0 < Lx < ε

)∼ |x|−p εα as ε ↓ 0.

Not very difficult heuristics involving regularity properties of local time and a covering ar-
gument explains the upper bound on dimension of F : dim(F ) ≤ df (see the Introduction
of [14]). (1.12) was derived in [14] through a Tauberian theorem we now sketch. Let λ ↑ ∞
in (1.3) and (1.4) to see that V λ(x) ↑ V ∞(x) where

(1.13) Pδ0

(
Lx = 0

)= exp
(−V ∞(x)

)
.

One important simplification available for the analysis of F in [14] is that V ∞ is explicitly
known (see, e.g., (2.17) in [14]):

(1.14) V ∞(x) = 2(4 − d)

|x|2 .

In particular, V ∞ solves

(1.15)
�V ∞

2
= (V ∞)2

2
for x �= 0.

V ∞ sometimes is called the very singular solution to (1.15); see, for example, [2]. Applying
a Tauberian theorem, one can see that (1.12) can be reduced to verifying

(1.16) Eδ0

(
e−λLx

1
(
Lx > 0

))∼ |x|−p λ−α as λ ↑ ∞.

The left-hand side of the above behaves like dλ(x) := V ∞(x) − V λ(x), and so a substantial
part of the argument in [14] was devoted to finding a rate of convergence of V λ to V ∞, and
showing that it behaves like the right-hand side of (1.16).

The upper bound on dim(F ) in [14] also utilized Dynkin’s exit measures. For nonempty
subsets K1,K2 of Rd , we set

(1.17) d(K1,K2) := inf
{|x − y| : x ∈ K1, y ∈ K2

}
.

Define

OX0 ≡ {open sets D satisfying d
(
Dc, supp(X0)

)
> 0 and a Brownian

path starting from any x ∈ ∂D will exit D immediately
}
.

(1.18)

In what follows, we always assume that G ∈OX0 .
The exit measure of X from such a G under PX0 or NX0 is denoted by XG (see Chapter V

of [12] for a good introduction to exit measures). XG is a random finite measure supported
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on ∂G, which intuitively corresponds to the mass started at X0 which is stopped at the instant
it leaves G. The Laplace functional of XG is given by

EX0(exp
(−XG(g)

))= exp
(
−
∫

1 − exp
(−XG(g)

)
dNX0

)
= exp

(
−
∫

Ug(x)X0(dx)

)
,

(1.19)

where g : ∂G → [0,∞) is continuous and Ug ≥ 0 is the unique continuous function on G

which is C2 on G and solves

(1.20) �Ug = (Ug)2 on G, Ug = g on ∂G.

For this, see Theorem 6 in Chapter V of [12], and the last exercise on page 86 for uniqueness.
Let

(1.21) Gx0
ε = Gε(x0) = {x : |x − x0| > ε

}
and set Gε = Gε(0).

Similarly, B(x0, ε) = Bε(x0) is the open ball centered at x0 and Bε = Bε(0). B̄ε(x0) will
denote the closed ball centered at x0. Proposition 3.4 of [14] gives an upper bound on
Pδ0(0 < XGx

ε
(1) < ε) as ε ↓ 0 for x �= 0. This bound is refined to precise asymptotics in

Propositions 4.9 and 4.11 in Section 4 below. Intuitively, these asymptotics are related to
(1.12) since a small exit measure from Gx

ε suggests small values of the local time inside
Bε(x). Estimates for exit measures of small balls are also considered in [1]. There the inter-
est is in the exit measure from a fixed open set and how much mass it puts on a small ball
around an exit point on the boundary.

Consider next the ideas underlying Theorem 1.2, where exit measures play a more central
role. To show that a point x is near ∂R, it is not enough to show that the local time at x is
small and positive, or that the exit measure from some Gx

ε is small. In addition, there should
be balls B near x on which the local time is zero, or equivalently XB̄c = 0. To this end, we
will study the probability Pδ0(0 < XGx

ε
(1) ≤ Kε2,XGx

ε/2
(1) = 0) and show (see Theorem 4.1

and Proposition 4.9)

(1.22) Pδ0

(
0 < XGx

ε
(1) ≤ Kε2,XGx

ε/2
(1) = 0

)∼ εp−2 as ε ↓ 0.

The proof of (1.22) requires asymptotics for solutions to (1.20) with varying boundary con-
ditions, rather than solutions to (1.4). For ε > 0 and λ ≥ 0, we let Uλ,ε denote the unique
continuous function on {|x| ≥ ε} such that (cf. (1.20))

(1.23) �Uλ,ε = (Uλ,ε)2 for |x| > ε, and Uλ,ε(x) = λ for |x| = ε.

Uniqueness of solutions implies the scaling property

(1.24) Uλ,ε(x) = ε−2Uλε2,1(x/ε) for all |x| ≥ ε,

and also shows Uλ,ε is radially symmetric, thus allowing us to write Uλ,ε(|x|) for the value
at x ∈ Rd . By (1.19), we have for any finite initial measure satisfying Supp(X0) ⊂ Gε ,

(1.25) EX0(exp
(−λXGε(1)

))= exp
(−X0

(
Uλ,ε)).

Let λ ↑ ∞ in the above to see that Uλ,ε ↑ U∞,ε on Gε and

(1.26) PX0

(
XGε(1) = 0

)= exp
(−X0

(
U∞,ε)).

Proposition 9(iii) of [12] readily implies (see (3.5) and (3.6) of [14])

U∞,ε is C2 and �U∞,ε = (U∞,ε)2 on Gε,

lim|x|→ε,|x|>ε
U∞,ε(x) = +∞, lim|x|→∞U∞,ε(x) = 0.

(1.27)
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Clearly, a key step in deriving (1.22) are asymptotics for

Pδ0

(
0 < XGx

ε
(1) ≤ Kε2)∼ U∞,ε(x) − UK−1ε−2,ε(x) as ε ↓ 0,

where the above equivalence is by a Tauberian theorem. In Section 4.1, we show (see Corol-
lary 4.7)

U∞,ε(x) − UK−1ε−2,ε(x) ∼ εp−2.

This and a special Markov property (Propositions 2.2 and 2.3) then give (1.22). To get a lower
bound on ∂R, essentially by an inclusion-exclusion argument, in addition to the lower bound
in (1.22), we will also need an upper bound on (see Proposition 5.1)

(1.28) Pδ0

(
0 < X

G
x1
ε

(1) ≤ Kε2,0 < X
G

x2
ε

(1) ≤ Kε2).
Although involved, this argument is quite similar to the proof of Proposition 6.1 in [14] and
so is omitted (it can be found in Supplementary Material [9]). The above estimates allow us
to show that the lower bound on the dimension of ∂R holds with positive probability; see
Proposition 5.3. To conclude the proof of Theorem 1.2, we will show that the lower bound
on local dimension, in fact holds with probability one. This will be a consequence of the
following proposition.

PROPOSITION 1.6. Let x1 ∈ Rd , r0 > 0, satisfy B2r0(x1) ⊂ Supp(X0)
c. If r1 ∈ (0, r0),

then PX0-a.s.,

(1.29) X
G

x1
r1

(1) = 0 and X
G

x1
r0

(1) > 0 imply dim
(
Br0(x1) ∩ ∂R

)≥ df .

The main ingredient in the proof of Proposition 1.6 is a version under the canonical mea-
sure.

PROPOSITION 1.7. Let x1 ∈ Rd , r0 > 0, satisfy B2r0(x1) ⊂ Supp(X0)
c. If r1 ∈ (0, r0),

then NX0-a.e.

(1.30)

{
X

G
x1
r1

(1) = 0 and X
G

x1
r0

(1) > 0 imply

dim
(
Br(x1) ∩ ∂R

)≥ df for every r > r1 s.t. X
G

x1
r

(1) > 0.

The paper is organized as follows. In Section 2, preliminary results on super-Brownian
motion, Brownian snakes, exit measures and their special Markov property are presented. In
Section 3, we prove Theorems 1.2 and 1.5, assuming Propositions 1.6, 1.7.

In Section 4, left-tail asymptotics of exit measures are given. First, in Section 4.1 we
derive necessary bounds on solutions to the boundary value problems (1.23) and (1.27), and
then in Section 4.2 we prove (1.22) (see Theorem 4.1 and Proposition 4.9). In Section 5, we
show that the lower bound on the local dimension of ∂R holds with positive probability; see
Proposition 5.3 and Lemma 5.4.

In Section 6, in preparation for the proofs of Propositions 1.6 and 1.7, we analyze the pro-
cess of exit measures (XGr (1),0 < r ≤ r0) through the rescaled and time-changed process,
Z(t) = XGr0e−t (1)/(r0e

−t )2, t ≥ 0. We refer the reader to Section 6 for the precise definition
of a continuous state branching process (CSBP).

PROPOSITION 1.8. Assume X0 is a finite initial measure and let r0 > 0 so that B2r0 ⊂
Supp(X0)

c. Under NX0 , (Z(t), t ≥ 0) has a cadlag version with only nonnegative jumps,
which is a CSBP such that for 0 ≤ t1 < t2 and λ ≥ 0,

NX0

(
exp
(−λZ(t2)

)|Z(s), s ≤ t1
)= exp

(−Z(t1)u(t2 − t1, λ)
)
,

where u(t, λ) = e2tUλ,1(et ) for t, λ ≥ 0.
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This will follow from Proposition 6.2(c) in Section 6. The absence of negative jumps in
Z is important in the proof of Proposition 1.7, but we also believe that Z and its associated
measure-valued process are of independent interest. Some information about the associated
branching mechanism � of Z and its Lévy measure are given in Remark 6.3. This comple-
ments results on the exit measure process from balls (as opposed to their complements) in
[6].

The proofs of Propositions 1.6 and 1.7 are concluded in Section 7. For the proof of Propo-
sition 1.6, one shows that for r < r0 sufficiently small there is a single excursion of X (see
(1.11)) governed by NX0 that enters Br , and thus by the monotonicity of dimension, Proposi-
tion 1.6 follows from Proposition 1.7. Proposition 1.7 (with x1 = 0 without loss of generality)
is proved by studying the martingale

(1.31) Mr = Nx0

(
dim(Br0 ∩ ∂R) ≥ df |Er

)
, 0 ≤ r < r0, |x0| > 2r0,

where Er is the σ -field generated by the Brownian snake observed inside Gr0−r (see Section 2
for a careful definition). In particular, we analyze

Mr as r ↑ T0 = inf
{
r : XGr0−r (1) = 0

}
on {0 < T0 ≤ r0 − r1},

where r0, r1 are as in Proposition 1.7. The special Markov property and results from Sec-
tions 5 and 6 will show Mr ≥ q > 0, for r close to T0, and on the above set. The last step is
to show that {dim(Br0 ∩ ∂R) ≥ df } ∈ ET0− (see Lemma 7.3). Now let r ↑ T0 in (1.31) to see
that on {0 < T0 ≤ r0 − r1}, 1(dim(Br0 ∩ ∂R) ≥ df ) ≥ q > 0, as required.

Note that the methods used in [14] (see Theorem 1.4 and the ensuing discussion of that
work) would have required the stronger hypothesis Conv(X0)

c ∩ ∂R �= ∅ in Corollary 1.3,
where Conv(X0) is the closed convex hull of Supp(X0). This is because exit measures from
hyperplanes were used in [14], instead of the process of exit measure from the complements
of shrinking balls. This refinement also leads to the purely local result on dimension in The-
orem 1.2.

Convention on functions and constants.Constants whose value is unimportant and may
change from line to line are denoted C,c, cd, c1, c2, . . . , while constants whose values will
be referred to later and appear initially in say, Lemma i.j are denoted ci.j or ci.j or Ci.j .

2. Exit measures and the special Markov property.

NOTATION. Let K be the space of compact subsets of Rd equipped with the Hausdorff
metric; we add ∅ as a discrete point. That is, let Kε = {x : d(x,K) ≤ ε} where d(x,K) =
inf{|x − y| : y ∈ K} and for K1,K2 nonempty compacts, set

ρ(K1,K2) = inf
{
ε > 0 : K1 ⊂ Kε

2 and K2 ⊂ Kε
1
}∧ 1,

and ρ(∅,K) = 1 for K nonempty compact. (K, ρ) is then a complete separable metric space.
If U is an open set in Rd , we let C(U) be the space of continuous functions on U with the
compact-open topology.

We start with a measurability result requiring a bit of care; a proof is given in the Appendix.

LEMMA 2.1. (a) For any R > 0, we have ψa : K → K is a Borel map, where ψa(K) =
K ∩ BR .

(b) For any α,R > 0, ψb : K → R is a universally measurable map, where ψb(K) =
1(dim((∂K) ∩ BR) < α).
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We will use Le Gall’s Brownian snake construction of a SBM X, with initial state X0 ∈
MF (Rd). Set W =⋃t≥0 C([0, t],Rd) with the natural metric (see page 54 of [12]), and let
ζ(w) = t be the lifetime of w ∈ C([0, t],Rd) ⊂ W . The Brownian snake W = (Wt , t ≥ 0) is
a W-valued continuous strong Markov process and, abusing notation slightly, let Nx denote
its excursion measure starting from the path at x ∈ Rd with lifetime zero. As usual, we let
Ŵ (t) = Wt(ζ(Wt)) denote the tip of the snake at time t , and σ(W) > 0 denote the length
of the excursion path. We refer the reader to Chapter IV of [12] for the precise definitions.
The construction of super-Brownian motion, X = X(W) under Nx or PX0 , may be found in
Chapter IV of [12]. The “law” of X(W) under Nx is the canonical measure of SBM starting
at x described in the last section (and also denoted by Nx). If 
 =∑j∈J δWj

is a Poisson
point process on W with intensity NX0(dW) = ∫ Nx(dW)X0(dx), then by Theorem 4 of
Chapter IV of [12] (cf. (1.11))

(2.1) Xt(W) =∑
j∈J

Xt(Wj ) =
∫

Xt(W)
(dW) for t > 0

defines a SBM with initial measure X0. We will refer to this as the standard set-up for X

under PX0 .
Recall R = {x : Lx > 0} is the range of the SBM X under PX0 or NX0 . Under NX0 we have

(see (8) on page 69 of [12])

(2.2) R = {Ŵ (s) : s ∈ [0, σ ]}.
Let G ∈ OX0 . Then

(2.3) XG is a finite random measure supported on R∩ ∂G a.s.

Under NX0 , this follows from the definition of XG on page 77 of [12] and the ensuing dis-
cussion, and (2.2). Although [12] works under Nx for x ∈ G, the above extends immediately
to PX0 because as in (2.23) of [14],

(2.4) XG =∑
j∈J

XG(Wj) =
∫

XG(W)d
(W),

where 
 is a Poisson point process on W with intensity NX0 .
Working under NX0 and following [11], we define

SG(Wu) = inf
{
t ≤ ζu : Wu(t) /∈ G

}
(inf∅ = ∞),

ηG
s (W) = inf

{
t :
∫ t

0
1
(
ζu ≤ SG(Wu)

)
du > s

}
,

EG = σ(WηG
s
, s ≥ 0) ∨ σ({NX0 − null sets}),

where s → WηG
s

is continuous (see page 401 of [11]). Write the open set {u : SG(Wu) < ζu}
as countable union of disjoint open intervals,

⋃
i∈I (ai, bi). Clearly, SG(Wu) = Si

G < ∞ for
all u ∈ [ai, bi] and we may define

Wi
s (t) = W(ai+s)∧bi

(
Si

G + t
)

for 0 ≤ t ≤ ζ(ai+s)∧bi
− Si

G.

Therefore, for i ∈ I , Wi ∈ C(R+,W) are the excursions of W outside G. Proposition 2.3 of
[11] implies XG is EG-measurable and Corollary 2.8 of the same reference implies

(2.5)
{

Conditional on EG, the point measure
∑

i∈I δWi is a Poisson
point measure with intensity NXG

.



1176 J. HONG, L. MYTNIK AND E. PERKINS

If D is an open set in OX0 such that Ḡ ⊂ D and d(Dc, Ḡ) > 0 (recall (1.17)), then the
definition (and existence) of XD(W) applies equally well to each XD(Wi) and it is easy to
check that

(2.6) XD(W) =∑
i∈I

XD

(
Wi).

If U is an open subset of Supp(X0)
c, then LU , the restriction of the local time Lx to U , is

in C(U). Here are some simple consequences of (2.5).

PROPOSITION 2.2. (a) Let G1,G2 be open sets in OX0 such that G1 ⊂ G2 and
d(Gc

2,G1) > 0.

(i) If ψ1 : C(G1
c
) → [0,∞) is Borel measurable, then

NX0

(
ψ1(LG1

c )|EG1

)= EXG1

(
ψ1(LG1

c )
)
.

(ii) If ψ2 : MF (Rd) → [0,∞) is Borel measurable, then

NX0

(
ψ2(XG2)|EG1

)= EXG1

(
ψ2(XG2)

)
.

(b) If 0 < R2 < R1, d(Supp(X0),BR1) > 0, and ψ3 : K → [0,∞) is Borel measurable,
then

NX0

(
ψ3(R∩ BR2)|EGR1

)= EXGR1

(
ψ3(R∩ BR2)

)
,

where GR is as in (1.21).

PROOF. (a)(i) is Proposition 2.6(b) of [14]. (a)(ii) follows in a similar manner from (2.5),
(2.6) and (2.4).

(b) Define S : C(BR1) → K by S(f ) = Supp(f ) := {x : f (x) > 0}, where the closure is
taken in all of Rd . Then it is easy to see that S is Borel measurable, for example by consider-
ing the inverse images of closed balls in K. In addition the map K → BR2 ∩ K is measurable
on K by Lemma 2.1(a). Now observe that R ∩ BR2 = S(LBR1

) ∩ BR2 , and so by the above
observations is a measurable function of LBR1

. Therefore, (b) now follows from (a)(i) with
Gi = GRi

. �

We will need a version of the above under PX0 as well.

PROPOSITION 2.3. For X0 ∈ MF (Rd) and an open set G in OX0 , let � be a bounded
measurable function on C(G

c
) and �i , i = 0,1 be bounded measurable functions on

MF (Rd) and MF (Rd)n, respectively. Then:

(a) EX0(�0(XG)�(L)) = EX0(�0(XG)EXG
(�(L))).

(b) (i) Let Di be open sets in OX0 , such that d(Dc
i , Ḡ) > 0, ∀1 ≤ i ≤ n. Then

EX0

(
�0(XG)�1(XD1, . . . ,XDn)

)= EX0

(
�0(XG)EXG

(
�1(XD1, . . . ,XDn)

))
.

(ii) If 0 < R2 < R1 and d(Supp(X0)
c,BR1) > 0, then

EX0(�0(XGR1
)1(R∩ BR2 �= ∅)) = EX0

(
�0(XGR1

)PXGR1
(R∩ BR2 �=∅)

)
.

PROOF. (a) is Proposition 2.6(c) of [14]. (b)(i) follows by the same reasoning there, using
(2.5), (2.4) (the latter for each Di , as well as G), and Proposition 2.2(a)(ii), trivially extended
to accommodate (XD1, . . . ,XDn) in place of XG2 . (b)(ii) follows from (a), as in the proof of
Proposition 2.2(b). �
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3. Proofs of Theorems 1.2 and 1.5. We will see in this section that (using the upper
bound on dim(F ) in Theorem 1.1) Theorem 1.2 is a simple consequence of Proposition 1.6,
and similarly Theorem 1.5 can be derived from Proposition 1.7.

PROOF OF THEOREM 1.2. Let x1 ∈ Rd and let 0 < r1 < r0 ≤ 1 such that B2r0(x1) ⊂
Supp(X0)

c. From (2.3), we have PX0-a.s.,

(3.1) ∂Gx1
r1

∩R = ∅ ⇒ X
G

x1
r1

= 0.

Proposition 2.3(b)(ii) and translation invariance imply

PX0

(
X

G
x1
r0

= 0,R∩ Br0/2(x1) �= ∅
)

= EX0

(
1(X

G
x1
r0

= 0)PX
G

x1
r0

(
R∩ Br0/2(x1) �=∅

))= 0.

It follows that PX0 -a.s.,

(3.2) R∩ Br0/2(x1) �= ∅ ⇒ X
G

x1
r0

(1) > 0.

Fix ω outside a PX0 -null set so that (1.29) of Proposition 1.6, (3.1), and (3.2) all hold for all
x1 ∈ Qd and all rational numbers 0 < r1 < r0 ≤ 1 satisfying B2r0(x1) ⊂ Supp(X0)

c. Assume
U is an open set in Supp(X0)

c which intersects ∂R and choose x0 ∈ U ∩ ∂R. Pick a rational
r0 in (0,1] so that

B3r0(x0) ⊂ U ⊂ Supp(X0)
c,

then choose x1 ∈ Qd ∩ Br0/2(x0) ∩Rc, and finally select a rational r1 ∈ (0, r0) such that

(3.3) B2r1(x1) ⊂ Rc and so ∂Gx1
r1

∩R = ∅.

Clearly, we have

(3.4) B2r0(x1) ⊂ B3r0(x0) ⊂ U ⊂ Supp(X0)
c

and

(3.5) x0 ∈ Br0/2(x1) ∩ ∂R and so R∩ Br0/2(x1) �=∅.

Our choice of ω and (3.4) allow us to conclude from (3.1), (3.3), (3.2) and (3.5), respectively,
that

(3.6) X
G

x1
r1

(1) = 0 and X
G

x1
r0

(1) > 0, respectively.

By (3.4) and our choice of ω we may also apply Proposition 1.6 with (3.6) and conclude that

dim(U ∩ ∂R) ≥ dim
(
Br0(x1) ∩ ∂R

)≥ df ,

where we have used (3.4) in the first inequality. On the other hand, we know from Theo-
rem 1.4(a) of [14] and ∂R ⊂ ∂{x : Lx > 0} that

dim(U ∩ ∂R) ≤ dim
(
Supp(X0)

c ∩ ∂R
)≤ df ,

and the proof is complete. �

PROOF OF THEOREM 1.5. As in the above proof of Theorem 1.2 from Proposition 1.6,
we can derive from Proposition 1.7 that NX0 -a.e. for any open set U ⊂ Supp(X0)

c,

U ∩ ∂R �= ∅ ⇒ dim(U ∩ ∂R) = df .(3.7)

Now we turn to the N0 case in Theorem 1.5. By (4.4) in [8], we have N0-a.e. that L0 > 0.
Although the arguments in [8] were given for d = 1, they work in any dimension d ≤ 3.
Since Lx is globally continuous under N0 by Theorem 1.2 of [7], we can conclude that
N0-a.e. there is some δ > 0 such that Lx > 0 for all |x| < δ, and so 0 /∈ ∂R, which gives
U ∩ ∂R �= ∅ ⇒ U \ {0} ∩ ∂R �= ∅. Now we may apply (3.7) with U \ {0} in place of U to
complete the proof. �
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4. Lower bound on the exit measure probability. Throughout this section, we fix ε0 ∈
(0,1). As noted in the Introduction, the goal of this section, stated below, is a key estimate for
the lower bound on the dimension of ∂R. Although we are interested in d = 2,3, we assume
d ≤ 3 throughout this section as the arguments remain valid.

THEOREM 4.1. There are positive constants R4.1, K1(ε0) < K2(ε0) < ∞ and c4.1(ε0)

such that, for all ε0 ≤ |x| ≤ ε−1
0 ,

Pδx

(
K1 ≤ XGε(1)

ε2 ≤ K2,XGε/2(1) = 0
)

≥ c4.1(ε0)ε
p−2 ∀0 < ε < ε0/R4.1.

The next subsection is devoted to proving necessary bounds on solutions to the bound-
ary value problems (1.23), (1.27). These bounds will be used for proving Theorem 4.1 in
Section 4.2.

4.1. Bounds on solutions to some boundary value problems. Recall Uλ,R and U∞,R

from (1.23) and (1.27), respectively. A simple application of (1.27), (1.15) and the maximum
principle implies

(4.1) V ∞(x) ≤ U∞,1(x) ∀ |x| > 1.

We will need an upper bound on U∞,1 which shows this bound is asymptotically sharp for
large |x|. We briefly include d = 1 in our analysis. Recall that p is as in (1.6).

PROPOSITION 4.2. There exist constants C4.2 > 1 and c4.2 ≥ 0 such that

U∞,1(x) ≤ V ∞(x)
(
1 + c4.2 |x|2−p) ∀ |x| ≥ C4.2.

PROOF. We will write u(r) for U∞,1(r) and v(r) for V ∞(r).
Let

q(t) = u(et/4)

v(et/4)
= 1

4
u
(
et/4)et/2, t ≥ 0, in d = 2,

q(t) = u(et/3)

v(et/3)
= 1

2
u
(
et/3)e2t/3, t ≥ 0, in d = 3,

q(t) = u(et/5)

v(et/5)
= 1

6
u
(
et/5)e2t/5, t ≥ 0, in d = 1.

Consider first d = 2. A simple calculation gives

1

2
q ′′ − 1

2
q ′ + β

(
q − q2)= 0 on (0,∞),

q(0) = ∞, lim
t→∞q(t) = 1,

(4.2)

where β = 1
8 in d = 2 (similarly β = 3

25 in d = 1 and β = 1
9 in d = 3). Note that q(0) = ∞ by

the definitions of U∞,1 and V ∞. Also note that the last limit is derived the same way as (3.10)
in [14] by taking U∞,1 instead of Uδ0,1, ỹ(t) = y(t + 2) instead of y(t) and z̃(t) = z(t + 2)

instead of z(t) there.
Note that q(x) ≥ 1 for all x ≥ 0 by (4.1). Define

z = q − 1,
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and thus by the above z(x) ≥ 0 for all x ≥ 0. Then z satisfies the following equation:

(4.3)
1

2
z′′ − 1

2
z′ − βz(z + 1) = 0 on (0,∞), z(0) = ∞, lim

t→∞ z(t) = 0.

Let w be the unique solution to

1

2
w′′(t) − 1

2
w′(t) − βw(t) = 0, t > 1,

w(1) = z(1), lim
t→∞w(t) = 0.

(4.4)

By the comparison principle and using z + 1 ≥ 1, we get

(4.5) w(t) ≥ z(t), t ≥ 1.

We leave it for the reader to check that

w(t) = z(1)e−λeλt , t ≥ 1,

with

λ = 1

2
−
√

1

4
+ 2β < 0.

By the definition of β , we have λ = 1/2 − 1√
2

in d = 2 (similarly, λ = −0.2 for d = 1 and

λ = 1/2 −
√

17
6 for d = 3). This and (4.5) imply that for C = z(1)e−λ ≥ 0 we have

z(x) ≤ Ceλx, x ≥ 1,

and since λ < 0 we get that z decreases to zero exponentially fast. Recall the definition of q

to get

q(x) ≤ 1 + Ceλx, x ≥ 1.

Then (as d = 2) we have

u
(
et/4)≤ v

(
et/4)(1 + Ceλt ), t ≥ 1,

and so

u(s) ≤ v(s)
(
1 + Cs4λ)= v(s)

(
1 + Cs2−p), s ≥ e1/4.

Similar algebra shows the result in d = 1,3. �

Recalling (1.14) and that p > 2, we may immediately conclude the following.

COROLLARY 4.3. There are constants C4.3, c4.3 > 0 such that for all x ∈ Rd , with |x| ≥
C4.3, we have

U∞,1(x) ≤ V ∞(x) + c4.3

|x|p .(4.6)

In particular, there is some constant K4.3 > 2 such that

U∞,1(x) ≤ 3(4 − d) |x|−2 ∀ |x| ≥ K4.3.(4.7)
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If Dλ = U∞,1 − Uλ,1 ≥ 0 for λ > 0, then the Feynmann–Kac formula (as in (3.8) in [14])
easily gives

Dλ(x) = Dλ(R)Ex

(
1(τR<∞) exp

(
−
∫ τR

0

(
U∞,1 + Uλ,1

2

)
(Bs)ds

))
,

|x| ≥ R > 1,

(4.8)

where B denote a d-dimensional Brownian motion starting at x under Px and τR = inf{t ≥
0 : |Bt | ≤ R} for |x| ≥ R > 1.

We will frequently use the following lemmas. For γ ∈ R, let (ρt ) denote a γ -dimensional
Bessel process starting from r > 0 under P

(γ )
r . For R > 0, let τR = inf{t ≥ 0 : ρt ≤ R}. The

following result is from Lemma 5.3 of [14].

LEMMA 4.4. Assume 0 < 2γ ≤ ν2 and q > 2. Then

sup
r≥1

E(2+2ν)
r

(
exp
(∫ τ1

0

γ

ρ
q
s

ds

)∣∣∣τ1 < ∞
)

≤ c4.4(q, ν) < ∞.

LEMMA 4.5. Let q > 2, a ∈R, ζ ∈ [0,2(4−d)), νζ =
√

ν2 − ζ and pζ = νζ +μ, where

μ =

⎧⎪⎪⎨⎪⎪⎩
−1/2 if d = 1,

0 if d = 2,

1/2 if d = 3,

and ν =
√

μ2 + 4(4 − d).(4.9)

Then for all R < |x|,

Ex

(
1(τR < ∞) exp

(∫ τR

0

a

|Bs |q ds

)
exp
(
−
∫ τR

0

2(4 − d) − ζ/2

|Bs |2
ds

))

= E
(2+2νζ )

|x|
(

exp
(∫ τR

0

a

ρ
q
s

ds

)∣∣∣τR < ∞
)(

R/ |x|)pζ .

(4.10)

PROOF. The proof is based on arguments from [14] (see the proof of Lemma 5.4 there),
which in turn go back to Marc Yor [20], and is deferred to Appendix A.2. �

PROPOSITION 4.6. There are positive universal constants C4.6, c4.6 > 0, K4.6 > K4.3,
and R4.6 > 2 such that:

(a)

Dλ(x) ≤ Rp

|x|p Dλ(R) ∀ |x| ≥ R > 1, λ ≥ 2(4 − d).

(b)

Dλ(x) ≤ C4.6
Rp

|x|p Dλ(R) ∀ |x| ≥ R ≥ K4.6

λ
,0 < λ < 1.

(c)

Dλ(x) ≥ c4.6
Rp

|x|p Dλ(R) > 0 ∀ |x| ≥ R ≥ R4.6, λ > 0.
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PROOF. Recall μ, ν introduced in (4.9) so that for p = p(d) defined as in (1.6), we have

(4.11) p = μ + ν.

(a) For λ ≥ 2(4 − d), clearly we have Uλ,1(1) = λ ≥ 2(4 − d) = V ∞(1). As

lim|x|→∞Uλ,1(x) ≤ lim|x|→∞U∞,1(x) = 0

by (1.27), we may apply the maximum principle to get

Uλ,1(x) ≥ V ∞(x) = 2(4 − d)

|x|2 ∀ |x| > 1.(4.12)

Use (4.1) and the above to see that (4.8) becomes

Dλ(x) ≤ Dλ(R)Ex

(
1(τR<∞) exp

(
−
∫ τR

0

2(4 − d)

|Bs |2
ds

))
= Dλ(R)

(
R/ |x|)p,

the last by Lemma 4.5.
(b) Assume λ ∈ (0,1). Recall Proposition 3.3(b) in [14]:

∀δ ∈ (0,1),∃Cδ > 2,

so that Uλ,1(x) ≥ (1 − δ)V ∞(x) for all |x| ≥ Cδ/λ.
(4.13)

For any δ ∈ (0,1), let ζ = 2(4 − d)δ ∈ (0,2(4 − d)). Let μ and ν be as in (4.9). Define νζ =√
μ2 + 4(4 − d) − ζ and pζ = νζ + μ → p > 2 as ζ ↓ 0. Choose δ ∈ (0,1) small enough

so that pζ > 2. Let K4.6 ≡ Cδ + K4.3. Now use (4.1), (4.13) and Lemma 4.5 to see that for
|x| ≥ R ≥ K4.6/λ > Cδ/λ, (4.8) implies

Dλ(x) ≤ Dλ(R)Ex

(
1(τR < ∞) exp

(
−
∫ τR

0

2(4 − d) − (ζ/2)

|Bs |2
ds

))
= Dλ(R)

(
R/ |x|)pζ .

Let ξ(R) = Dλ(R)Rpζ /2. Then the above gives(
Uλ,1 + U∞,1

2

)
(x) ≥ U∞,1(x) − ξ(R)

|x|pζ
≥ V ∞(x) − ξ(R)

|x|pζ
for |x| ≥ R.

Use this in (4.8) and then Lemma 4.5 to see that for |x| ≥ R,

Dλ(x) ≤ Dλ(R)Ex

(
1(τR < ∞) exp

(∫ τR

0

ξ(R)

|Bs |pζ
ds

)
exp
(
−
∫ τR

0

2(4 − d)

|Bs |2
ds

))

= Dλ(R)E
(2+2ν)
|x|

(
exp
(∫ τR

0

ξ(R)

ρ
pζ
s

ds

)∣∣∣τR < ∞
)(

R/ |x|)p.

A scaling argument shows that the above equals

Dλ(R)
(
R/ |x|)pE

(2+2ν)
|x|/R

(
exp
(∫ τ1

0

ξ(R)R2−pζ

ρ
pζ
s

ds

)∣∣∣τ1 < ∞
)
.

To apply Lemma 4.4, we note that by (4.7), for R ≥ K4.6/λ > K4.3 we have

2γ ≡ 2ξ(R)R2−pζ ≤ U∞,1(R)R2 ≤ 3(4 − d) < ν2.

So Lemma 4.4 and the above bound show that

Dλ(x) ≤ Dλ(R)
(
R/ |x|)pc4.4(pζ , ν).(4.14)
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(c) Use (4.6) in Corollary 4.3 to see that for |x| ≥ R > C4.3, we have

U∞,1 + Uλ,1

2
(x) ≤ U∞,1(x) ≤ 2(4 − d)

|x|2 + c4.3

|x|p .

So (4.8) and Lemma 4.5 imply

Dλ(x) ≥ Dλ(R)Ex

(
1(τR<∞) exp

(
−
∫ τR

0

c4.3

|Bs |p ds

)
exp
(
−
∫ τR

0

2(4 − d)

|Bs |2
ds

))

= Dλ(R)E
(2+2ν)
|x|

(
exp
(
−
∫ τR

0

c4.3

ρ
p
s

ds

)∣∣∣τR < ∞
)(

R/ |x|)p,

with p = μ + ν. A scaling argument shows that the above equals

(4.15) Dλ(R)
(
R/ |x|)pE

(2+2ν)
|x|/R

(
exp
(
−
∫ τ1

0

c4.3R
2−p

ρ
p
s

ds

)∣∣∣τ1 < ∞
)
.

To apply Lemma 4.4, note that if R ≥ R4.6 for some constant R4.6 > 2,

2γ ≡ 2c4.3R
2−p < 2(4 − d) < ν2.

By Cauchy–Schwarz, we have

1 =
(
E

(2+2ν)
|x|/R

(
exp
(
−
∫ τ1

0

c4.3R
2−p

2ρ
p
s

ds

)
exp
(∫ τ1

0

c4.3R
2−p

2ρ
p
s

ds

)∣∣∣τ1 < ∞
))2

≤ E
(2+2ν)
|x|/R

(
exp
(
−
∫ τ1

0

c4.3R
2−p

ρ
p
s

ds

)∣∣∣τ1 < ∞
)

× E
(2+2ν)
|x|/R

(
exp
(∫ τ1

0

c4.3R
2−p

ρ
p
s

ds

)∣∣∣τ1 < ∞
)

≤ E
(2+2ν)
|x|/R

(
exp
(
−
∫ τ1

0

c4.3R
2−p

ρ
p
s

ds

)∣∣∣τ1 < ∞
)
c4.4(p, ν),

the last by Lemma 4.4. Hence

inf|x|≥R
E

(2+2ν)
|x|/R

(
exp
(
−
∫ τ1

0

c4.3R
2−p

ρ
p
s

ds

)∣∣∣τ1 < ∞
)

≥ c4.4(p, ν)−1 > 0,

and by (4.15) we are done. �

By using the scaling relations of U∞,ε and Uλε−2,ε from (1.24), the following is immediate
from the above.

COROLLARY 4.7. For all ε > 0, we have (a)

U∞,ε(x) − Uλε−2,ε(x) ≤ Rp

|x|p Dλ(R)εp−2 ∀ |x|/ε ≥ R > 1, λ ≥ 2(4 − d).

(b)

U∞,ε(x) − Uλε−2,ε(x) ≤ C4.6
Rp

|x|p Dλ(R)εp−2 ∀ |x|/ε ≥ R ≥ K4.6

λ
,0 < λ < 1.

(c)

U∞,ε(x) − Uλε−2,ε(x) ≥ c4.6
Rp

|x|p Dλ(R)εp−2 > 0 ∀ |x|/ε ≥ R ≥ R4.6, λ > 0.
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4.2. The left tail of the total exit measure and proof of Theorem 4.1.

PROPOSITION 4.8. For any |x| ≥ ε0 and ε ∈ (0, ε0/2), we have

Pδx

(
0 <

XGε(1)

ε2 ≤ 1

λ

)
≤ e

2p

|x|p Dλ(2)εp−2 ∀λ ≥ 2(4 − d).

PROOF. Apply Markov’s inequality to get

Pδx

(
0 <

XGε(1)

ε2 ≤ 1

λ

)
≤ eEδx

(
exp
(−λε−2XGε(1)

)
1
(
XGε(1) > 0

))
= e
(
exp
(−Uλε−2,ε(x)

)− exp
(−U∞,ε(x)

))
≤ e
(
U∞,ε(x) − Uλε−2,ε(x)

)
,

(4.16)

the equality by (1.25) and (1.26). Note we’ve assumed |x|/ε ≥ ε0/ε > 2 and λ ≥ 2(4 − d)

so that we can use Corollary 4.7(a) with R = 2 to bound the right-hand side of (4.16) by
e(2/|x|)pDλ(2)εp−2, as required. �

PROPOSITION 4.9. There is some c4.9(ε0) > 0 such that for all |x| ≥ ε0 and ε ∈ (0, ε0),

Pδx

(
0 <

XGε(1)

ε2 ≤ 1

λ

)
≤ c4.9(ε0)λ

−(p−2)εp−2 ∀0 < λ < 1.

PROOF. For λ ∈ (0,1) such that

|x|/ε ≥ ε0/ε ≥ K4.6/λ,

we apply Markov’s inequality as in (4.16) and use Corollary 4.7(b) with R = K4.6/λ to get

Pδx

(
0 <

XGε(1)

ε2 ≤ 1

λ

)
≤ e
(
U∞,ε(x) − Uλε−2,ε(x)

)
≤ eC4.6U

∞,1(R)
(
R/ |x|)pεp−2

≤ eC4.6
(
3(4 − d)/R2)(R/ε0)

pεp−2

≤ 9eC4.6ε
−p
0 K

p−2
4.6 λ−(p−2)εp−2,

the second last inequality by (4.7) with R = K4.6/λ > K4.6 > K4.3.
For λ ∈ (0,1) such that

ε0/ε ≤ K4.6/λ,

we have

Pδx

(
0 <

XGε(1)

ε2 ≤ 1

λ

)
≤ 1 ≤ (K4.6/ε0)

p−2λ−(p−2)εp−2.

The result follows by letting c4.9(ε0) = 9eC4.6ε
−p
0 K

p−2
4.6 + (K4.6/ε0)

p−2. �

For |x| ≥ ε0 and ε ∈ (0, ε0), we define

Fε,x(K) ≡ Pδx

(
0 <

XGε(1)

ε2 ≤ K

)
∀K > 0(4.17)

and

F̂ε,x(λ) ≡ Eδx

(
exp
(
−λ

XGε(1)

ε2

)
1
(
XGε(1) > 0

)) ∀λ > 0.(4.18)

The dependence on ε and x will at times be suppressed.
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LEMMA 4.10. There are constants R4.10 > 2 and c4.10(ε0) > 0 so that for any ε0 ≤ |x| ≤
ε−1

0 and ε ∈ (0, ε0/R4.10),

Eδx

(
exp
(
−λ

XGε(1)

ε2

)
1
(
XGε(1) > 0

))≥ c4.10(ε0)D
λ(R4.10)ε

p−2 ∀λ > 0.

PROOF. By (1.25) and (1.26), for F̂ = F̂ε,x defined as in (4.18) we have

F̂ (λ) = exp
(−Uλε−2,ε(x)

)− exp
(−U∞,ε(x)

)
≥ (U∞,ε(x) − Uλε−2,ε(x)

)
exp
(−U∞,ε(x)

)
.

(4.19)

Let R4.10 = K4.3 +R4.6 > R4.6. Then for ε ∈ (0, ε0/R4.10) we have |x|/ε > R4.10. Use Corol-
lary 4.7(c) with R = R4.10 to get

U∞,ε(x) − Uλε−2,ε(x) ≥ c4.6D
λ(R4.10)

(
R4.10/ |x|)pεp−2

≥ c4.6D
λ(R4.10)R

p
4.10ε

−p
0 εp−2.

Next, since |x|/ε ≥ ε0/ε > R4.10 > K4.3, we may apply (4.7) to get

exp
(−U∞,ε(x)

)= exp
(−ε−2U∞,1(x/ε)

)≥ exp
(−ε−23(4 − d)

(|x|/ε)−2)
≥ exp

(−9ε−2
0

)
.

So the lemma follows from (4.19) and the above inequalities. �

PROPOSITION 4.11. There are positive constants K4.11(ε0) and c4.11(ε0) such that, for
all ε0 ≤ |x| ≤ ε−1

0 we have

Pδx

(
0 <

XGε(1)

ε2 ≤ K4.11(ε0)

)
≥ c4.11(ε0)ε

p−2 ∀0 < ε < ε0/R4.10.

PROOF. Recall F = Fε,x and F̂ = F̂ε,x from (4.17) and (4.18), respectively. We have

F̂ (λ) =
∫ ∞

0
e−λy dF (y).

Let λ = 1 and K > 1. Use integration by parts and Proposition 4.9 to see that

F̂ (1) =
∫ ∞

0
e−yF (y) dy ≤ F(K) +

∫ ∞
K

e−yF (y) dy

≤ F(K) +
∫ ∞
K

e−yc4.9(ε0)y
p−2εp−2 dy

≤ F(K) + 1

2
c4.10(ε0)D

1(R4.10)ε
p−2,

where K = K(ε0) > 1 is large enough. Lemma 4.10, with λ = 1 and ε, x as in the proposition,
implies

F(K) ≥ c4.10D
1(R4.10)ε

p−2 − c4.10

2
D1(R4.10)ε

p−2 = c4.10

2
D1(R4.10)ε

p−2. �

PROOF OF THEOREM 4.1. Pick λ = λ(ε0) ≥ 2(4 − d) large enough so that

e
(
2p/ |x|p)Dλ(2) ≤ e2pε

−p
0 Dλ(2) ≤ 1

2
c4.11(ε0).
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So for K1(ε0) ∈ (0,1/λ(ε0)), Proposition 4.8 gives

Pδx

(
0 <

XGε(1)

ε2 ≤ K1

)
≤ 1

2
c4.11(ε0)ε

p−2.

Let K2 = K4.11 in Proposition 4.11 to see that for x, ε as in the Theorem and R4.1 = R4.10,

Pδx

(
K1 ≤ XGε(1)

ε2 ≤ K2

)
= Pδx

(
0 <

XGε(1)

ε2 ≤ K2

)
− Pδx

(
0 <

XGε(1)

ε2 ≤ K1

)
≥ 1

2
c4.11(ε0)ε

p−2.

(4.20)

Use Proposition 2.3(b)(i) with G = Gε and D1 = Gε/2 to see that for x, ε as above,

Pδx

(
K1 ≤ XGε(1)

ε2 ≤ K2,XGε/2(1) = 0
)

= Eδx

(
1
(
K1 ≤ XGε(1)

ε2 ≤ K2

)
PXGε

(
XGε/2(1) = 0

))
= Eδx

(
1
(
K1 ≤ XGε(1)

ε2 ≤ K2

)
exp
(
−
∫

U∞,ε/2(y)XGε(dy)

))
= Eδx

(
1
(
K1 ≤ XGε(1)

ε2 ≤ K2

)
exp
(−4ε−2U∞,1(2)XGε(1)

))
(by (1.24))

≥ Eδx

(
1
(
K1 ≤ XGε(1)

ε2 ≤ K2

)
exp
(−4K2U

∞,1(2)
))

≥ 1

2
c4.11(ε0)ε

p−2 exp
(−4K2U

∞,1(2)
)
,

the second equality by (1.26) with X0 = XGε and the last inequality by (4.20). So the theorem
follows. �

5. Preliminaries for the lower bound on the dimension. In this section, we will show
that the lower bound on the local dimension of ∂R holds with positive probability (see Propo-
sition 5.3). An extended version of this result, which is crucial for the later proof of Proposi-
tion 1.7, is given in Lemma 5.4. The next result is important for implementing our program:
it plays a role analogous to that of Proposition 6.1 in [14].

PROPOSITION 5.1. There is a λ > 0 such that for all ε0 > 0, there is some c5.1(ε0) > 0
so that for all |xi | ≥ ε0 and ε ∈ (0, ε0),

Eδ0

( 2∏
i=1

λ
X

G
xi
ε
(1)

ε2 exp
(
−λ

X
G

xi
ε
(1)

ε2

))
≤ c5.1

(
1 + |x1 − x2|2−p)ε2(p−2).

Given the results in Section 4, the proof then follows from that of Proposition 6.1 in [14],
but as there are some differences, it is included in Supplementary Material [9]. The reader
should note that the role of λ in [14] is now played by λε−2, where λ is chosen to be a fixed
large constant.

Recall that we are in the case d = 2 or 3. Let β > 0 and gβ(r) = r−β . For a finite measure
μ on Rd and Borel subset A of Rd , let

〈μ〉gβ =
∫ ∫

gβ

(|x − y|)dμ(x) dμ(y),
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and

I (gβ)(A) = inf
{〈μ〉gβ : μ is a probability supported by A

}
.

The gβ -capacity of A is C(gβ)(A) = (I (gβ)(A))−1. Set

β = p − 2 =
{

2
√

2 − 2 if d = 2,

(
√

17 − 3)/2 if d = 3,

and note β ∈ (1/2,1). Now we may use Theorem 4.1 and Proposition 5.1 to get the follow-
ing theorem. Although similar to the omitted proof of Theorem 6.2 in [14], there are some
important adjustments, and so this time the argument is included.

THEOREM 5.2. Assume d = 2 or 3. For every ε0 ∈ (0,1), there is some c5.2(ε0) > 0 such
that for any Borel set, A, of {x ∈ Rd : ε0 ≤ |x| ≤ ε−1

0 },
Pδ0(∂R∩ A �= ∅) ≥ c5.2(ε0)C(gβ)(A).

In particular, for any Borel subset A of Rd , C(gβ)(A) > 0 implies that Pδ0(∂R∩A �= ∅) > 0.

PROOF. Fix ε0 ∈ (0,1). Let � ⊂ {x ∈ Rd : ε0 ≤ |x| ≤ ε−1
0 } be compact and such that

(without loss of generality) C(�) = C(gβ)(�) > 0. If I (�) = I (gβ)(�), we may choose
{xN

i : 1 ≤ i ≤ N} ⊂ � so that (suppressing the superscript N ) as N → ∞ (see [19]),

IN ≡ 1

N(N − 1)

∑
i

∑
j �=i

|xi − xj |−β → I (�) = 1/C(�).(5.1)

Let

�̂ = {xN
i : 1 ≤ i ≤ N,N ≥ 1

}⊂ �.

For any fixed ε ∈ (0, ε0), we define ∂R(ε,�) ⊂ � to be

∂R(ε,�) := {x ∈ �̂ : K1ε
2 ≤ XGx

ε
(1) ≤ K2ε

2,XGx
ε/2

(1) = 0
}
,

where 0 < K1(ε0) < K2(ε0) < ∞ are as in Theorem 4.1. Note the exit measure XGx
ε

is
constructed up to a null set for each (x, ε), so the reader should note that we will only be
considering at most countably many values of (x, ε) at a time as is the case in the above
definition for a fixed ε. Let λ > 0 be as in Proposition 5.1. There is some δ = δ(λ, ε0) ∈
(0, e−1) such that

λ
XGx

ε
(1)

ε2 exp
(
−λ

XGx
ε
(1)

ε2

)
≥ δ ∀x ∈ ∂R(ε,�).(5.2)

Therefore, by translation invariance, inclusion-exclusion, Theorem 4.1, (5.2) and Proposi-
tion 5.1, for ε ∈ (0, ε0/R4.1),

Pδ0

(
∂R(ε,�) �= ∅

)
≥ Pδ0

(
N⋃

i=1

{
xi ∈ ∂R(ε,�)

})

≥
N∑

i=1

Pδ0

(
xi ∈ ∂R(ε,�)

)−∑
i

∑
j �=i

Pδ0

(
xi, xj ∈ ∂R(ε,�)

)

≥ Nc4.1(ε0)ε
p−2 −∑

i

∑
j �=i

δ−2Eδ0

( ∏
k=i,j

λ
X

G
xk
ε

(1)

ε2 exp
(
−λ

X
G

xk
ε

(1)

ε2

))
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≥ Nc4.1ε
p−2 − c5.1δ

−2ε2(p−2)
∑
i

∑
j �=i

(
1 + |xi − xj |2−p)

≥ c4.1Nεp−2 − C(ε0)
(
Nεp−2)2IN .

Now choose εN → 0 such that Nε
p−2
N = c4.1/(2C(ε0)IN). Therefore, for some c(ε0) > 0,

Pδ0

(
∂R(εN,�) �= ∅

)≥ c4.1

2C(ε0)IN

c4.1

2
→ c(ε0)C(�) as N → ∞.

This implies

Pδ0

(
∂R(εN,�) �= ∅, infinitely often

)≥ c(ε0)C(�).

Assume now that

ω ∈ {∂R(εN,�) �= ∅, infinitely often
}
.

So we may choose {zN } ⊂ �̂ ⊂ � such that zN ∈ ∂R(εN,�), where we have suppressed the
further subsequence of εN in our notation. The definition of ∂R(εN,�) gives X

G
zN
εN

(1) >

0 and X
G

zN
εN /2

(1) = 0. By Proposition 2.3(b)(ii) and translation invariance, X
G

zN
εN /2

(1) = 0

implies

(5.3) R∩ B(zN, εN/3) = ∅.

By (2.3), X
G

zN
εN

(1) > 0 implies

(5.4) R∩ ∂GzN
εN

is nonempty.

Combining (5.3) and (5.4) with an elementary argument in point set topology, we can choose
yN ∈ ∂R such that εN/4 ≤ |yN − zN | ≤ εN . The compactness of � implies there is some
x ∈ � such that zNk

→ x as Nk → ∞. Therefore, yNk
→ x and x ∈ ∂R since ∂R is closed,

which gives x ∈ � ∩ ∂R �= ∅, and so the proof is complete for A = � compact. Use the
inner regularity of capacity to extend the inequality to any Borel subset of {x ∈ Rd : ε0 ≤
|x| ≤ ε−1

0 }, and then conclude for any Borel subset A of Rd that C(gβ)(A) > 0 implies that
Pδ0(∂R∩ A �= ∅) > 0. �

PROPOSITION 5.3. For each nonempty open set B in Rd :

(a) Pδ0(dim(∂R∩ B) ≥ df ) > 0.
(b) N0(dim(∂R∩ B) ≥ df ) := p5.3(B) > 0.

PROOF. (a) is derived from Theorem 5.2 by taking A to be the range of an appropriate
independent Lévy process, exactly as in the proof of Proposition 6.5 of [14]. (b) then follows
easily from (a) by making trivial changes to the cluster decomposition proof of Corollary 6.6
in [14]. �

To help upgrade the lower bound in part (a) of the above to probability one, we need to
extend (a) to more general initial conditions through a scaling argument.

LEMMA 5.4. There is a constant q5.4 > 0 so that if X′
0 ∈ MF (Rd) is supported on {|x| =

r} and δ = X′
0(1) satisfies 0 < δ ≤ r2, then

PX′
0

(
dim
(
∂R∩ B

(
0, r −

√
δ

2

))
≥ df

)
≥ q5.4.



1188 J. HONG, L. MYTNIK AND E. PERKINS

PROOF. Define X
(δ)
0 (A) = δ−1X′

0(
√

δA), so that the support of X
(δ)
0 is on {|x| = r/

√
δ}

and has total mass one. By scaling properties of SBM (see, e.g., Ex. II.5.5 in [15]) and scale
invariance of Hausdorff dimension, we may conclude that

PX′
0

(
dim
(
∂R∩ B

(
0, r −

√
δ

2

))
≥ df

)
= P

X
(δ)
0

(
dim
(
∂R∩ B

(
0,

r√
δ

− 1

2

))
≥ df

)
.

(5.5)

Now work in our standard set-up for SBM with initial law X
(δ)
0 so that (by (2.1)), Xt =∑

j∈J Xt(Wj ) = ∫ Xt(W)
(dW) for all t > 0, where 
 is a Poisson point process with

intensity N
X

(δ)
0

. For r ≥ √
δ, define

τρ(Wj ) = inf
{
t ≥ 0 : ∣∣Ŵj (t)

∣∣≤ ρ
}
,

Uρ(Wj ) = inf
{
t ≥ 0 : ∣∣Ŵj (t) − Ŵj (0)

∣∣≥ ρ
}
, and

N1 =∑
j∈J

1
(
τ(r/

√
δ)−(1/2)(Wj ) < ∞) := #(Ir,δ).

Here as usual inf∅ = ∞. Then N1 is Poisson with mean

mr,δ := N
X

(δ)
0

(τ(r/
√

δ)−(1/2) < ∞) ≤N
X

(δ)
0

(
U1/2(W) < ∞)

= N0
(
U1/2(W) < ∞) := m < ∞,

(5.6)

where X
(δ)
0 (1) = 1 and translation invariance are used in the equality, and the finiteness of m̄

follows from Theorem 1 of [10].
Let R(Wj ) = {Ŵj (t) : t ≤ σ(Wj )} (recall (2.2)) be the range of the j th excursion, so that

R∩ B

(
0,

r√
δ

− 1

2

)
= ⋃

j∈J,τ
(r/

√
δ)−(1/2)

(Wj )<∞

(
R(Wj ) ∩ B

(
0,

r√
δ

− 1

2

))
.

We may assume (by additional randomization) that conditional on Ir,δ , we have {Wj : j ∈
Ir,δ} are i.i.d. with law N

X
(δ)
0

(W ∈ ·|τ(r/
√

δ)−(1/2) < ∞). Therefore, the right-hand side of

(5.5) is at least

P
X

(δ)
0

(N1 = 1)N
X

(δ)
0

(
dim
(
∂R∩ B

(
0,

r√
δ

− 1

2

))
≥ df

∣∣∣τ r√
δ
− 1

2
< ∞

)

= mr,δe
−mr,δ

mr,δ

Nx0

(
dim
(
∂R∩ B

(
0,

r√
δ

− 1

2

))
≥ df

)
,

(5.7)

where x0 = ( r√
δ
)e1 and e1 is the first unit basis vector. We also have used the fact that spheri-

cal symmetry shows we could have taken any x0 on the sphere of radius r/
√

δ. Now again use
translation invariance and spherical symmetry to see that the right-hand side of (5.7) equals

e−mr,δN0

(
dim
(
∂R∩ B

(
x0, |x0| − 1

2

))
≥ df

)
≥ e−mr,δN0

(
dim
(
∂R∩ B(e1,1/2)

)≥ df

)
≥ e−mN0

(
dim
(
∂R∩ B(e1,1/2)

)≥ df

)
≥ e−mp5.3

(
B(e1,1/2)

)
> 0,

(5.8)
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where the first inequality follows by B(e1,1/2) ⊂ B(x0, |x0| − 1/2), the second inequality
uses (5.6) and the first inequality in the last line holds by Proposition 5.3(b). We have shown
that the right-hand side of (5.8) is a lower bound for (5.5), and so have proved the lemma
with q5.4 = e−mp5.3(B(e1,1/2)). �

6. Exit measures and continuous state branching processes. Throughout this section,
we assume that r0 > 0 and the initial state X0 satisfy

(6.1) B2r0 ⊂ Supp(X0)
c.

To complete the proofs of Propositions 1.6, 1.7, we need to establish some properties of the
total exit measure process XGr0−r (1),0 ≤ r < r0. We will show below in Proposition 6.2

that, for any r0 > 0, the “time changed” process Zt = XGr0e−t (1)/(r0e
−t )2, t ≥ 0, is a time

homogeneous continuous state branching process (CSBP), and thus has no negative jumps.
A nonnegative function λ 
→ u(λ) on [0,∞) is completely concave iff for every y > 0,

λ → exp(−yu(λ)) is the Laplace transform of a probability measure on the half-line. (See
(4.1) in [17] for a Lévy–Khintchine representation of such functions). We recall the definition
of a continuous state branching process from Section 4 of [17].

DEFINITION. A (finite) continuous state branching process (CSBP) Z is a time-
homogeneous [0,∞)-valued Markov process with no fixed time discontinuities (if tn → t ,
then Z(tn) → Z(t) a.s.), and such that there is a family of completely concave functions
{u(s, ·) : s > 0} satisfying

E
(
exp
(−λZ(t2)

)|Z(s), s ≤ t1
)

= exp
(−Z(t1)u(t2 − t1, λ)

)
a.s. ∀t2 > t1 ≥ 0, λ ≥ 0.

(6.2)

The associated family {u(t, ·) : t > 0} is the log-Laplace transform of Z.

Recall that Uλ,R(x) = Uλ,R(|x|) is the unique continuous map on {|x| ≥ R} which is C2

on GR and satisfies

(6.3) �U = U2 on GR and U = λ on ∂GR.

A simple application of the comparison principle (e.g., Chapter V, Lemma 7 of [12]), using
the last part of (1.27), gives

(6.4) Uλ,R(x) ≤ λ ∀ |x| ≥ R.

Define

(6.5) u(t, λ) = e2tUλ,1(et ) for t ≥ 0.

NOTATION. For 0 ≤ r < r0, we define Y(r)(·) = XGr0−r (·) and let Er = EGr0−r ∨
σ({NX0 − null sets}). For t ≥ 0 set

Z(t) = XGr0e−t (1)
e2t

r2
0

= Y
(
r0
(
1 − e−t ))(1)e2t r−2

0 ; Gt = Er0(1−e−t ) = EGr0e−t .

It is not hard to show that Er is nondecreasing in r (the corresponding result for half-
spaces is noted prior to (7.2) of [14] and the observation made there applies to balls as well.)
By Proposition 2.3 of [11], Y is (Er )-adapted and Z is (Gt )-adapted. Let E+

r = Er+ denote
the associated right-continuous filtration. In addition to NX0 , we will also work under the
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probability QX0(·) =NX0(·|Y0(1) > 0), where (6.1) ensures that NX0(Y0(1) > 0) < ∞. Note
that

(6.6) for any r.v. Z ≥ 0, and any r ≥ 0, QX0(Z|Er ) = NX0(Z|Er ) QX0-a.s.

because {Y0(1) > 0} ∈ E0. When conditioning on Er under QX0 , we are adding the slightly
larger class of QX0 -null sets to Er , but will not record this distinction in our notation. Below
we will apply the definition of (CSBP) under the σ -finite measure NX0 as well as QX0 . We
write Qx0 for Qδx0

as usual.

LEMMA 6.1. (a) If 0 ≤ t1 < t2 and λ ≥ 0, then:

(i) QX0(e
−λZt2 |Gt1) = NX0(e

−λZt2 |Gt1) = exp(−Zt1u(t2 − t1, λ)).
(ii)

QX0

((
e−λZt2 − e−λZt1

)2)= QX0

(
exp
(−Zt1u(t2 − t1,2λ)

)
− 2 exp

(−λZt1 − Zt1u(t2 − t1, λ)
)

+ exp(−2λZt1)
)
,

(6.7)

and similarly for NX0 .

(b) For all t > 0, λ 
→ u(t, λ) is completely concave.
(c) (Zt , t ≥ 0) is a (time-homogeneous) (Gt )-Markov process under QX0 or NX0 .

PROOF. (a) (6.6) shows that for λ ≥ 0, the left-hand side of (i) equals the middle expres-
sion, which by Proposition 2.2(a)(ii) and then (1.25) equals

EXG
r0e−t1

(
exp
(−λe2t2r−2

0 XG
r0e−t2

(1)
))

= exp
(
−
∫

Uλe2t2 r−2
0 ,r0e

−t2
(x)XG

r0e−t1
(dx)

)
= exp

(−Uλe2t2 r−2
0 ,r0e

−t2 (
r0e

−t1
)
XG

r0e−t1
(1)
)

= exp
(−u(t2 − t1, λ)Zt1

)
,

where scaling (i.e., (1.24)) is used in the last line. This gives (i). It is then easy to derive (ii)
by expanding out the square, conditioning on Gt1 and finally using (i).

(b) Let y0 > 0 and t > 0. Let mr be the uniform distribution on {|x| = r} and set W =
e2t r−2

0 XGr0e−t (1). Apply (1.25) and then scaling ((1.24)) to see that for all λ ≥ 0,

Ey0r
2
0 mr0

(
exp(−λW)

)= exp
(−y0r

2
0Uλe2t r−2

0 ,r0e
−t

(r0)
)

= exp
(−y0r

2
0 r−2

0 e2tUλ,1(et ))
= exp

(−y0u(t, λ)
)
.

(c) This is immediate from (a)(i), (b) (to define the family of laws {Px : x ≥ 0}), and a
monotone class argument. �

Proposition 1.8 in the Introduction follows from part (c) of our next result.
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PROPOSITION 6.2. (a) Y is an inhomogeneous (Er )-Markov process under NX0 or QX0 .
That is, for any ψ : MF (Rd) → [0,∞) Borel measurable and for any 0 ≤ r1 < r2, we have

QX0

(
ψ
(
Y(r2)

)|Er1

)= NX0

(
ψ
(
Y(r2)

)|Er1

)= EY (r1)

(
ψ
(
Y(r2)

))
a.s.

(b) If 0 ≤ r1 < r2 < r0, then the total mass, Yr(1), of Yr satisfies

NX0

(
Yr2(1)|Er1

)=
⎧⎨⎩Yr1(1) if d = 2,

r0 − r2

r0 − r1
Yr1(1) if d = 3.

(6.8)

Under NX0 or QX0 , Yr(1) has a cadlag version on [0, r0) which is an (E+
r )-supermartingale

(an (E+
r )-martingale if d = 2), satisfies (6.8) with E+

r1
in place of Er1 , and has only nonnega-

tive jumps a.e.
(c) Under NX0 or QX0 , (Z(t), t ≥ 0) has a cadlag version with only nonnegative jumps

which is a CSBP with log Laplace transform given by {u(t, ·) : t > 0} in (6.5).

PROOF. (a) This is immediate from Proposition 2.2(a)(ii) and (6.6).
(b, c) Let B denote a d-dimensional Brownian motion starting at x under P B

x and

τr = inf
{
t ≥ 0 : |Bt | ≤ r

}
(inf∅= ∞).

Recalling (6.1), Proposition 3 in Chapter V of [12] shows that for 0 ≤ r < r0,

NX0

(
Yr(1)

)= ∫ P B
x (τr0−r < ∞) dX0(x)

=
⎧⎨⎩X0(1) if d = 2,∫

r0 − r

|x| dX0(x) if d = 3.

(6.9)

Return now to the probability PX0 , and use (2.4) and the above to see that

(6.10) EX0

(
Yr(1)

)= NX0

(
Yr(1)

)=
⎧⎨⎩X0(1) if d = 2,∫

r0 − r

|x| dX0(x) if d = 3.

Although we have assumed B2r0 ⊂ Supp(X0)
c, both (6.9) and (6.10) will apply if Supp(X0) ⊂

Gr0−r . This allows us to apply (6.10), with X0 = Yr1 and r = r2, and (a) to derive (6.8).
Turning to the second part of (b) and (c), we first work with Z. Let tn ↑ t > 0 (tn < t) and

set rn = r0(1 − e−tn) ↑ r0(1 − e−t ) = r ∈ (0, r0). By (6.8) and supermartingale convergence,
{Yrn} converges NX0 -a.e. to a limit we denote by Yr−(1) for now. (The σ -finiteness of NX0

is not an issue here, but the reader who prefers probabilities may work with QX0 and note
that on the complementary set, {Y0(1) = 0}, Yrn(1) = 0 NX0 -a.e. by (6.8) with r1 = 0 there.
Henceforth we will not make such arguments.) It follows that

(6.11) Ztn → e2t r−2
0 Yr−(1) := Zt− NX0-a.e.

By (6.7),

QX0

((
e−λZt − e−λZtn

)2)
= QX0

(
exp
(−Ztnu(t − tn,2λ)

)− 2 exp
(−(λ + u(t − tn, λ)

)
Ztn

)
+ exp(−2λZtn)

)
→ QX0

(
exp(−2λZt−) − 2 exp(−2λZt−) + exp(−2λZt−)

)
as n → ∞

= 0,
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where dominated convergence is used in the above convergence. This and (6.11) show that
Ztn → Zt QX0 -a.s. The fact, noted above, that Y0(1) = 0 implies Ztn = Zt = 0 NX0 -a.e.
allows us to upgrade this to

(6.12) Ztn → Zt NX0-a.e. if tn ↑ t > 0.

A simpler argument, now using reverse supermartingale convergence, shows that

(6.13) Ztn → Zt NX0-a.e. if tn ↓ t ≥ 0.

(6.12) and (6.13) imply Yr(1) is continuous in measure on [0, r0). Therefore, by (6.8) there
is a cadlag version of (Yr(1), r ∈ [0, r0)) under NX0 (we do not change the notation) which is
an (E+

r )-supermartingale (martingale if d = 2) satisfying (6.8) with E+
r1

in place of Er1 . This
gives a cadlag version of Z which satisfies the (Gt+) version of Lemma 6.1(a)(i), and so is
(Gt+)-Markov under NX0 or QX0 , just as for Lemma 6.1(c). Clearly, (6.12) and (6.13) imply
that Zt− = Zt NX0 -a.e., and so Z has no fixed time discontinuities. It follows from the above
and Lemma 6.1(b) that (Zt , t ≥ 0) is a (CSBP) with log Laplace transform {u(t, ·) : t > 0}
under NX0 or QX0 . A theorem of Lamperti (see. e.g., page 1044 of [17]) shows that (Zt , t ≥
0) has only nonnegative jumps a.e. and so the same applies to (Yr(1), r ∈ [0, r0]). �

REMARK 6.3. Although in this work we only use the above results, we briefly discuss
the processes Z· and Y·(1) in the general context of CSBPs. By Proposition 6.2(c) above and
Theorem 4 of [17], there is a Lévy measure π̃ on [0,∞) satisfying

∫
�2 ∧ 1dπ̃(�) < ∞ and

constants ã ∈ R, b ≥ 0, such that if

(6.14) �(u) = ãu − bu2 +
∫ ∞

0

(
1 − e−u� − u�e−�)dπ̃(�), u ≥ 0,

then t 
→ u(t, λ) is the unique solution of

(6.15)
du(t, λ)

dt
= �
(
u(t, λ)

)
, u(0, λ) = λ.

Z is often called a �-CSBP. (6.14) implies � is concave on [0,∞) and differentiable on
(0,∞). If

λd = 2(4 − d),

then a short calculation using (6.5) and (6.3) gives (primes denote derivatives with respect
to t)

(6.16) u′′(t, λ) = (6 − d)u′ + u(u − λd), t ≥ 0.

Differentiating both sides of (6.15) and using (6.16) on the resulting left-hand side, leads to
the first-order ODE for � ,

� ′�
(
u(t, λ)

)= (6 − d)�
(
u(t, λ)

)+ u(t, λ)
(
u(t, λ) − λd

)
, �(0) = 0.

Letting t → 0 and varying λ, we conclude that � is a solution of the ODE

(6.17) � ′�(u) = (6 − d)�(u) + u(u − λd), u > 0,�(0) = 0.

By using this equation to analyze the behavior of � near ∞, it is easy to see that in (6.14),
b = 0. The concavity of � implies that

lim
u↓0

�(u)

u
= lim

u↓0
� ′(u) ∈ (−∞,+∞].



BOUNDARY OF THE RANGE OF SBM 1193

If we divide both sides of (6.17) by u and let u ↓ 0, we conclude this limit, � ′(0) is in fact
finite and satisfies

� ′(0)2 = (6 − d)� ′(0) − λd,

that is, � ′(0) = 2 if d = 2, and � ′(0) = 1 or 2 if d = 3. It is not hard to see using (6.8)
that, in fact, � ′(0) = 1 if d = 3. The fact that this derivative is finite, already implies that∫∞

0 �dπ̃(�) < ∞ and (6.14) can be rewritten as

(6.18) �(u) = adu +
∫ ∞

0

(
1 − e−u� − u�

)
dπ(�),

∫ ∞
0

� ∧ �2 dπ(�) < ∞,

where now ad = � ′(0) = 4 − d , by the above. The ODE (6.17) can be used to study the tail
behaviour of � , and hence π , via Tauberian theorems. For example, it is not hard to show
that for some explicit c6.19 > 0,

(6.19) lim
ε↓0

ε3/2π
([ε,∞)

)= c6.19.

The process of total mass of the exit measure from Br (as opposed to Gr0−r ) is studied in
[6] as an inhomogeneous CSBP. The setting there is for general branching mechanisms, but
the ideas used above and in defining Z appear to be novel. It would be of interest to study the
detailed behavior of the measure-valued process r → XGr0−r .

In [14], we instead worked with the exit measure from half-spaces Hr = {x : x1 < r},
where the total mass process is a �-CSBP with �(u) =

√
6

3 u3/2 (see [6] and Proposition 4.1
of [14]; it is interesting to note that the same 3/2 stable branching mechanism appears in [13]
for subordinate trees). The CSBP analysis in [14] was simpler due to this explicit 3/2-stable
� , but half-planes were clumsier and led to less precise results. See the discussion at the end
of the Introduction. From the perspective of small jumps, the balls look like half-spaces and
so (6.19) is to be expected. We hasten to add, however, that �(u) has behavior near u = 0
(corresponding to π at ∞) which is quite different and dimension dependent. Again using
(6.17), one can show that ∀ε > 0,

u1+ε � adu − �(u) � u as u ↓ 0 if d = 2,

u2 � adu − �(u) � u2−ε as u ↓ 0 if d = 3.
(6.20)

7. Proof of Propositions 1.6, 1.7. We use the notation from Section 6. In particular, X0
and r0 > 0 are as in (6.1), Yr(·) = XGr0−r (·) for 0 ≤ r < r0, and QX0(·) = NX0(·|Y0(1) > 0).

In what follows, we always will work with the cadlag versions of Yr(1), and hence Zt ,
constructed in Proposition 6.2(b) above. We let W denote a generic snake under NX0 or QX0

with the associated “tip process” Ŵ (t) and excursion length σ . Define

T0(W) = inf
{
r ∈ [0, r0) : Yr(1) = 0

} ∈ [0, r0] where inf∅= r0

and

(7.1) T̂0(W) = inf
{∣∣Ŵ (t)

∣∣ : 0 ≤ t ≤ σ
}= inf

{|x| : x ∈ R
}
,

the final equality holding NX0 -a.e. by (2.2). Clearly, we have

QX0(·) =NX0(·|T0 > 0).

LEMMA 7.1. The sets {T0 > 0} and {T̂0 < r0} coincide NX0-a.e., and on this set, T̂0 =
r0 − T0 NX0-a.e.
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PROOF. For every rational q in [0, T0), XGr0−q (1) > 0 implies ∂Gr0−q ∩R is nonempty

(by (2.3)) and so by (2.2) T̂0 ≤ r0 − q . This proves that

(7.2) T̂0 ≤ r0 − T0 NX0-a.e. on {T0 > 0}.
Conversely, assume r0 > T0 and choose rationals q, q ′ so that T0 < q ′ < q < r0. Then
XGr0−q′ (1) = 0 and the special Markov property (Proposition 2.2(b)) at R1 = r0 − q ′ shows

that NX0(R∩ Br0−q �= ∅|Eq ′) = 0 a.e. on {T0 < q ′}. This proves that

(7.3) T̂0 ≥ r0 − T0 NX0-a.e. on {T0 < r0}.
The above is trivial if T0 = r0 and so we have shown (by (7.2) and (7.3))

T̂0 = r0 − T0 NX0-a.e. on {T0 > 0}.
Finally, note that (7.2) shows T0 > 0 implies T̂0 < r0, and (7.3) shows T0 = 0 implies T̂0 ≥ r0,
which in turn shows T̂0 < r0 implies T0 > 0 (all up to NX0 null sets). This proves the a.e.
equality of {T0 > 0} and {T̂0 < r0}, and completes the proof. �

LEMMA 7.2. (a) For 0 < r < r0,

NX0(0 < T0 ≤ r) =NX0(r0 − r ≤ T̂0 < r0)

=NX0

(
1
(
XGr0

(1) > 0
)

× exp
[−XGr0

(1)(r0 − r)2U∞,1(r0/(r0 − r)
)])

.

(b) NX0(T0 ∈ dr) � dr on {0 < r < r0} and NX0(T̂0 ∈ dr) � dr on {0 < r < 2r0}.
PROOF. (a) Using (1.25) and scaling ((1.24) with λ = ∞), we have for all 0 < r < r0,

PXGr0

(
XGr0−r (1) = 0

)= exp
(−XGr0

(
U∞,r0−r))

= exp
(−XGr0

(1)(r0 − r)−2U∞,1(r0/(r0 − r)
))

.
(7.4)

The special Markov property (Proposition 2.2(a)(ii)) shows for 0 < r < r0,

NX0(0 < T0 ≤ r) = NX0

(
1(T0 > 0)NX0

(
XGr0−r (1) = 0|E0

))
= NX0

(
1(T0 > 0)PXGr0

(
XGr0−r (1) = 0

))
= NX0

(
1
(
XGr0

(1) > 0
)

× exp
[−XGr0

(1)(r0 − r)−2U∞,1(r0/(r0 − r)
)])

,

where (7.4) has been used in the last line. This, together with Lemma 7.1, gives (a).
(b) The right-hand side of (a) is continuously differentiable in r ∈ (0, r0) because U∞,1

is C2 on G1 (recall (1.27)). Here, we note that it is easy to justify differentiation inside
the integral since NX0(XGr0

(1) > 0) < ∞ (recall (6.1)), NX0(XGr0
(1)) < ∞ (recall (6.9)),

and (U∞,1)′(r) is bounded on compacts away from {r ≤ 1}. This gives the first part of (b).
Lemma 7.1 now implies the absolute continuity of NX0(T̂0 ∈ dr) on {0 < r < r0}. But (6.1)
allows us to replace r0 with αr0 for any 1 < α < 2 in the above reasoning and so conclude
that NX0(T̂0 ∈ dr) is absolutely continuous on {0 < r < 2r0}. �

PROOF OF PROPOSITION 1.6 ASSUMING PROPOSITION 1.7. By translation invariance,
we may assume x1 = 0. Fix r0, r1 and X0 as in our hypotheses. We must show that

(7.5) XGr1
(1) = 0 and XGr0

(1) > 0 imply dim(Br0 ∩ ∂R) ≥ df PX0-a.s.
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Measurability issues are easily handled using Lemma 2.1 and will henceforth be ignored. We
work under PX0 in the standard set-up and so from (2.4) have for 0 < r ≤ r0 and J0 = {j ∈
J : T̂0(Wj ) ≤ r0},

XGr =∑
j∈J

XGr (Wj ) =∑
j∈J

XGr (Wj )1
(
T̂0(Wj ) ≤ r

)
= ∑

j∈J0

XGr (Wj )1
(
T̂0(Wj ) ≤ r

)
.

(7.6)

Here, we used the fact that T̂0(Wj ) > r implies XGr (Wj ) = 0 (e.g., by (2.3) and (2.2)). Recall
from (2.2) that the range of the j th excursion Wj is

Rj := R(Wj ) = {Ŵj (t) : t ≤ σ(Wj )
}
.

It follows easily from (2.1) (see (2.19) in [14]) that for x ∈ Br0 ,

Lx = ∑
j∈J0

Lx(Wj )

and, therefore,

R∩ Br0 = ⋃
j∈J0

(Rj ∩ Br0) and so

1R∩Br0
(x) = 1

(∑
j∈J0

1R(Wj )∩Br0
(x) > 0

)
.

(7.7)

We will frequently use the elementary topological result

(7.8) Br0 ∩ ∂F = Br0 ∩ ∂(Br0 ∩ F) = Br0 ∩ ∂(Br0 ∩ F) for any closed set F.

It follows easily from Lemma 7.1 that

(7.9) T0 = r0 − ∧
j∈J0

T̂0(Wj ) on {T0 > 0} =
{ ∧

j∈J0

T̂0(Wj ) < r0

}
PX0-a.s.

In view of the absolute continuity properties of T̂0 under N0 from Lemma 7.2 we see from
the above that if N0 = |J0|, a Poisson mean NX0(T̂0 ≤ r0) random variable, then

(7.10) T0 > 0 iff J0 �= ∅ iff N0 > 0 PX0-a.s.

By enlarging our probability space and randomizing the above Poisson points, we may
assume that there is an i.i.d. sequence {W̃j : j ∈ N}, independent of the Poisson variable
N0 = |J0| with mean NX0(T̂0 ≤ r0), and with common law

(7.11) NX0(·|T̂0 ≤ r0) =NX0(·|T̂0 < r0)

(the last equality by Lemma 7.2) and so that

(7.12)
∑
j∈J0

δWj
=

N0∑
j=1

δW̃j
.

Let ̂̃Wj denote the tip of the j th excursion and define

T̂ j = T̂0(W̃j ) < r0 (a.s. by (7.11)),

R̃j =R(W̃j ) = {̂̃Wj(t) : t ≤ σ(W̃j )
}
.
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Note that XGr1
(1) = 0 implies T0 < r0 − r1 a.s. and so, in view of (7.9),

XGr1
(1) = 0 and Y0(1) = XGr0

(1) > 0 imply T̂ j ≥ r1

∀j ≤ N0 PX0-a.s.
(7.13)

The independence of the T̂ j ’s and fact they have no positive atoms by Lemma 7.2 imply

(7.14) PX0

(
T̂ j = T̂ j ′

for some 1 ≤ j �= j ′ ≤ N0,XGr1
(1) = 0,XGr0

(1) > 0
)= 0.

So on {XGr1
(1) = 0,XGr0

(1) > 0} there is an a.s. unique j̃ ≤ N0 such that T̂ j̃ = min{T̂ j :
j ≤ N0}. (7.14) and (7.13) imply that (if an empty minimum is r0) PX0-a.s.,

T̃ := min
{
T̂ j : j �= j̃ , j ≤ N0

}
> T̂ j̃ ≥ r1 on{

XGr1
(1) = 0,XGr0

(1) > 0
}⊂ {N0 ≥ 1}.

(7.15)

Hence T̃ is the largest radius r ≤ r0 so that a single excursion W̃j enters Br (it exists on
{XGr1

(1) = 0,XGr0
(1) > 0}).

By the definition of j̃ and T̃ , we have from (7.15) and (7.7),

B
T̃

∩R = B
T̃

∩ R̃
j̃

on
{
XGr1

(1) = 0,XGr0
(1) > 0

}
a.s.

Therefore, using the above and (7.8) we obtain

PX0

(
dim(Br0 ∩ ∂R) ≥ df ,XGr1

(1) = 0,XGr0
(1) > 0

)
≥ PX0

(
dim(B

T̃
∩ ∂R) ≥ df ,XGr1

(1) = 0,XGr0
(1) > 0

)
= PX0

(
dim(B

T̃
∩ ∂R̃

j̃
) ≥ df ,XGr1

(1) = 0,XGr0
(1) > 0

)
≥ PX0

(
{N0 ≥ 1} ∩

( ⋂
j≤N0

{
dim(Br ∩ ∂R̃j ) ≥ df ∀r > T̂ j ≥ r1

}))
.

(7.16)

In the last line we have used N0 ≥ 1 iff XGr0
(1) > 0 (by (7.10)), and on this set, T̂ j ≥ r1 for

all j ≤ N0 implies T0 ≤ r0 − r1 (by (7.9)) and so XGr1
(1) = 0. We also use the fact (from

(7.15)) that if {0 < T0 ≤ r0 − r1} then T̃ > T̂ j̃ . The independence of the W̃j ’s and their joint
independence from N0 together with their common law in (7.11) imply that the right-hand
side of (7.16) equals

(7.17) EX0

(
1(N0 ≥ 1)

N0∏
j=1

NX0

(
dim(∂R∩ Br) ≥ df r > T̂0 ≥ r1|T̂0 < r0

))
.

By Proposition 1.7 and Lemma 7.1, each of the terms in the above product equals NX0(T̂0 ≥
r1|T̂0 < r0) and so (7.17) equals

EX0

(
1(N0 ≥ 1)1

( N0∧
j=1

T̂0(W̃j ) ≥ r1

))

= PX0(0 < T0 ≤ r0 − r1) = PX0

(
XGr1

(1) = 0,XGr0
(1) > 0

)
.

(7.18)

In the first equality we used (7.9) and (7.10). We have proved the left-hand side of (7.16)
exceeds the above, and we conclude that

XGr1
(1) = 0 and XGr0

(1) > 0 imply dim(Br0 ∩ ∂R) ≥ df PX0-a.s.,

thus proving (7.5). �
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Recall again that we always work with the cadlag version of Yr(1) from Proposition 6.2(b)
which only has nonnegative jumps and is an (E+

r ) supermartingale. Define a sequence of
(E+

r )-stopping times by

Tn−1 = inf
{
r ∈ [0, r0) : Yr(1) ≤ 1/n

}
(inf∅= r0).

Then

(7.19) on {0 < T0} (and so QX0 -a.s.) Tn−1 ↑ T0 and Tn−1 < T0,

where the last inequality holds since Yr(1) has no negative jumps. So under QX0 , T0 is a
predictable stopping time which is announced by {Tn−1} and so (see (12.9)(ii) in Chapter VI
of [16])

(7.20) E+
T0− =∨

n

E+
Tn

.

Let Dr = {dim(Br ∩ ∂R) ≥ df } for 0 < r ≤ r0. We assume E+
r is augmented by QX0 -null

sets throughout this section.
To complete the proof of Proposition 1.7, we need the following.

LEMMA 7.3. If X0 = δx0 where |x0| ≥ 2r0, then

(7.21) Dr0 ∈ E+
T0−.

For the proof of Proposition 1.7 below, it would suffice to show that Dr0 ∩{T0 < r0} ∈ E+
T0−,

and this latter result should be intuitively obvious, as we now explain. With Lemma 7.1 in
mind, we see that E+

T0− includes information generated by the excursions of W outside of its
minimum radius. If this minimum radius is positive (as is the case on {T0 < r0}), it is intu-
itively clear that this includes all the information generated by W . Even without intersecting
with {T0 < r0}, however, none of the mass that hits the origin will survive for any length of
time and so again all of W will have been observed. This last point stems from the fact that
points are polar for Brownian motion in more than one dimension and be more formally jus-
tified using a mean measure result for the integral of the snake (Proposition 2 in Chapter IV
of [12] with p = 1).

PROOF OF LEMMA 7.3. Following the derivation of (7.11) in [14], one sees that in order
to get (7.21), it is enough to show (cf. (7.18) of [14])

Nx0

(∫ ∞
0

1
(

inf
v≤ζu

∣∣Wu(v)
∣∣= T̂0

)
du

)
= 0.(7.22)

Next, follow the proof of (7.18) in [14] using the historical process and its Palm measure
formula, to bound the left-hand side of (7.22) by (cf. (7.22) of [14])∫ ∞

0
EB

x0

(
exp
(
−
∫ s

0

2(4 − d)

|Bt − ms |2
dt

))
ds.

Here, B denotes a d-dimensional Brownian motion starting at x0 under P B
x0

and ms =
infs′≤s |Bs′ |. A simple application of Lévy’s modulus for B shows that

∫ s
0

2(4−d)

|Bt−ms |2 dt is in-
finite a.s. and so proves (7.22) as required. More details may be found in Supplementary
Material [9] where the actual definition of Er is even used. �

PROOF OF PROPOSITION 1.7. Clearly, it suffices to fix x0 ∈ Supp(X0) and prove the
result with Nx0 in place of NX0 . By translation invariance, we may assume x1 = 0, and so
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|x0| ≥ 2r0. Fix 0 < r1 < r0. Assume 0 ≤ r < r0 and n ∈ N is large enough so that r + n−1 <

r0. By Lemma 2.1(b), there is a universally measurable map ψ :K → [0,1] such that

1(Dr0−r−n−1) = 1
(
dim
(
∂(Br0−r−n−1 ∩R) ∩ Br0−r−n−1

)≥ df

)
(by (7.8))

= ψ(Br0−r−n−1 ∩R).
(7.23)

Recall that conditional expectations with respect to Er , under Nx0 and Qx0 , agree Qx0 -a.s.,
and note that Proposition 2.2(b) can be trivially extended to universally measurable maps.
Therefore, up to Qx0 -null sets, on the event {4n−2 ≤ Yr(1) ≤ (r0 − r)2}(∈ Er ) we have

Qx0(Dr0 |Er ) ≥ Qx0(Dr0−r−n−1 |Er )

= PYr (Dr0−r−n−1) (by (7.23) and Proposition 2.2(b))

≥ PYr

(
dim(∂R∩ Br0−r−(

√
Yr (1)/2)) ≥ df

)
≥ q5.4,

where Lemma 5.4 and the assumed bounds on Yr(1) are used in the last inequality, and the
assumed lower bound on Yr(1) is used in the next to last inequality. Let n → ∞ and take
limits from above in r ∈ Q+ (recall Yr(1) is cadlag) to conclude that

Mr := Qx0

(
Dr0 |E+

r

)≥ q5.4 on
{
0 < Yr(1) < (r0 − r)2}

∀r ∈ Q∩ (0, r0) Qx0-a.s.
(7.24)

Here, Mr is a cadlag version of the bounded martingale on the left-hand side. Using right-
continuity, one can strengthen (7.24) to

Mr = Qx0

(
Dr0 |E+

r

)≥ q5.4 on
{
0 < Yr(1) < (r0 − r)2}

∀r ∈ (0, r0) Qx0-a.s.
(7.25)

On {0 < T0 ≤ r0 − r1}, we have from (7.19) and the lack of negative jumps for Yr(1),

for n large,

Tn−1 ∈ (0, r0 − r1) and YT
n−1 (1) = n−1 < (r0 − T1/n)

2 Qx0-a.s.
(7.26)

By Corollary (17.10) in Chapter VI of [16], (7.25) and (7.26), we have Qx0 -a.s. on {0 < T0 ≤
r0 − r1} ∈ E+

T0−,

(7.27) Qx0

(
Dr0 |E+

T0−
)= lim

n→∞M(Tn−1) ≥ q5.4.

Multiplying the above by 1({0 < T0 ≤ r0 − r1}), we see from Lemma 7.3 that

1
(
Dr0 ∩ {0 < T0 ≤ r0 − r1})≥ q5.41

({0 < T0 ≤ r0 − r1}) Qx0-a.s.

and, therefore, by Lemma 7.1,

r1 ≤ T̂0 < r0 implies dim(Br0 ∩ ∂R) ≥ df Qx0-a.s.

This remains true if we replace r0 by any r ∈ (r1, r0] since B2r ⊂ Supp(X0)
c still holds.

Therefore, we may fix ω outside a Qx0 -null set so that for any rational r ∈ Q such that
r ∈ (r1, r0], r1 ≤ T̂0 < r implies dim(Br ∩ ∂R) ≥ df . By monotonicity of the conclusion
in r , this means that {r1 ≤ T̂0 < r0} implies dim(Br ∩ ∂R) ≥ df for all r > T̂0. This gives
Proposition 1.7 under Qx0 . The result under Nx0 is now immediate from the definition of
Qx0 , and {Y0(1) > 0} = {T̂0 < r0} Nx0 -a.e. (by Lemma 7.1). �
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APPENDIX

A.1. Proof of Lemma 2.1. (a) Let K(ε) = {x : d(x,K) < ε}. If K0 ∈K and 0 < r ≤ 1
are fixed, it suffices to show that {K ∈K : ρ(K ∩ BR,K0) < r} is Borel. If rn ↑ r , this set is
equal to {

K : K ∩ BR ⊂ K
(r)
0

}∩ {K : K0 ⊂ (K ∩ BR)(r)
}

= {K : K ∩ BR ⊂ K
(r)
0

}∩ ( ∞⋃
n=1

{
K : K0 ⊂ (K ∩ BR)rn

})

:= S1 ∩
( ∞⋃

n=1

Sn
2

)
.

It is then not hard to show that S1 is open in K and Sn
2 is closed in K.

(b) This easily reduces to showing that for any fixed rationals q ∈ (0, α) and r ∈ (0,R),
the following describes an universally measurable subset of K ′s in K:

For any natural number N, there is a finite number of open balls

B1, . . . ,BM centered at points in Qd and with rational radii

r1, . . . , rM > 0 satisfying
M∑
i=1

r
q
i < N−1 so that ∂K ∩ Br ⊂

M⋃
i=1

Bi.

So fixing Bi and r as above, it suffices to show

A1 =
{
K ∈ K : ∂K ∩ Br ⊂

M⋃
i=1

Bi

}c

is an analytic set in K,

because this implies A1, and hence Ac
1, is a universally measurable set in K. Let K0 =

(
⋃M

i=1 Bi)c ∩ Br ∈ K, H0 = {(x,K) ∈ Rd × K : x ∈ K}, and for n ≥ 1, set Hn = {(x,K) ∈
Rd ×K : Bn−1(x) �⊂ K}. Then

A1 = {K ∈ K : K0 ∩ ∂K �= ∅}
= {K ∈K : ∃x ∈ K0 s.t. x ∈ K and ∀n ∈ N Bn−1(x) ∩ Kc �=∅

}
=
{
K ∈ K : ∃x ∈ Rd s.t. (x,K) ∈ (K0 ×K) ∩

( ∞⋂
n=0

Hn

)}
.

Using the well-known fact that the projection of a Borel subset of K0 × K onto K is an
analytic subset of K (see, e.g., Theorem 13 in Chapter III of [5] and note the argument goes
through with Rd in place of R), it then suffices to show each Hn is Borel. First one can check
that H0 is the countable intersection of the open sets HM

0 = {(x,K) : x ∈ K(1/M)}. Next, it is
not hard to see that Hn is open for n ≥ 1, and we are done. �

A.2. Proof of Lemma 4.5. For the proof, we will use the following lemma of Marc Yor
(see Proposition 2.5 of [14] and [20]). Recall that for γ ∈ R, (ρt ) denotes a γ -dimensional
Bessel process starting from r > 0 under P

(γ )
r , (Ft ) is the filtration generated by ρ and

τR = inf{t ≥ 0 : ρt ≤ R}.

LEMMA A.1. Let λ ≥ 0, μ ∈ R, r > 0 and ν =
√

λ2 + μ2. If �t ≥ 0 is Ft -adapted, then
for all R < r , we have

E(2+2μ)
r

(
�t∧τR

exp
(
−λ2

2

∫ t∧τR

0

1

ρ2
s

ds

))
= rν−μE(2+2ν)

r

(
(ρt∧τR

)−ν+μ�t∧τR

)
.
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Now we are ready to give the following.

PROOF OF LEMMA 4.5. We use Fatou’s lemma and then Lemma A.1 to get that for
a ≥ 0,

Ex

(
1(τR<∞) exp

(∫ τR

0

a

|Bs |q ds

)
exp
(
−
∫ τR

0

2(4 − d) − ζ/2

|Bs |2
ds

))

≤ lim inf
t→∞ E

(2+2μ)
|x|

(
1(τR≤τR∧t) exp

(∫ τR∧t

0

a

ρ
q
s

ds

)

× exp
(
−
∫ τR∧t

0

2(4 − d) − ζ/2

ρ2
s

ds

))

= |x|νζ −μ lim inf
t→∞ E

(2+2νζ )

|x|
(

1(τR≤τR∧t) exp
(∫ τR∧t

0

a

ρ
q
s

ds

)
ρ

μ−νζ

t∧τR

)

= (R/ |x|)μ−νζ E
(2+2νζ )

|x|
(

1(τR<∞) exp
(∫ τR

0

a

ρ
q
s

ds

))
(
since ρt∧τR

= R on {τR ≤ t})
= (R/ |x|)pζ E

(2+2νζ )

|x|
(

exp
(∫ τR

0

a

ρ
q
s

ds

)∣∣∣τR < ∞
)
,

where in next to the last line we use monotone convergence for a ≥ 0, and in the last line the
hitting probabilities for Bessel processes (e.g., (48.3) and (48.5) in Chapter V of [16]) as well
as pζ = μ + νζ . Note that for a < 0, by bounded convergence, we get equality in the second
line above (with lim inft→∞ replaced by limt→∞), and thus proceeding as above we get, by
using bounded convergence again in the next to the last line, that (4.10) holds for a < 0.

It remains to verify the lower bound in (4.10), for a ≥ 0. Fix T > 0. Then we have

Ex

(
1(τR < ∞) exp

(∫ τR

0

a

|Bs |q ds

)
exp
(
−
∫ τR

0

2(4 − d) − ζ/2

|Bs |2
ds

))

≥ E
(2+2μ)
|x|

(
1(τR<∞) exp

(∫ τR∧T

0

a

ρ
q
s

ds

)
exp
(
−
∫ τR

0

2(4 − d) − (ζ/2)

ρ2
s

ds

))

= |x|νζ −μ lim
t→∞E

(2+2νζ )

|x|
(

1(τR≤τR∧t) exp
(∫ τR∧t∧T

0

a

ρ
q
s

ds

)
Rμ−νζ

)

= (R/ |x|)μ−νζ E
(2+2νζ )

|x|
(

1(τR<∞) exp
(∫ τR∧T

0

a

ρ
q
s

ds

))

= (R/ |x|)pζ E
(2+2νζ )

|x|
(

exp
(∫ τR∧T

0

a

ρ
q
s

ds

)∣∣∣τR < ∞
)
,

where in the first equality we used bounded convergence and Lemma A.1, in the second
equality bounded convergence again, and in the last equality the hitting probabilities for
Bessel processes. Now let T → ∞, to get the required lower bound, and we are done. �
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SUPPLEMENTARY MATERIAL

Supplement to “On the topological boundary of the range of super-Brownian motion”
(DOI: 10.1214/19-AOP1386SUPP; .pdf). The supplementary material contains the proof of
Proposition 5.1 and gives more details of the proof of Lemma 7.3.
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