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Multiview data, which represent distinct but related groupings of vari-
ables, can be useful for identifying relevant and robust clustering structures
among observations. A large number of multiview classification algorithms
have been proposed in the fields of computer science and genomics; here,
we instead focus on the task of merging or splitting an existing hard or soft
cluster partition based on multiview data. This article is specifically moti-
vated by an application involving multiomic breast cancer data from The
Cancer Genome Atlas, where multiple molecular profiles (gene expression,
microRNA expression, methylation and copy number alterations) are used
to further subdivide the five currently accepted intrinsic tumor subtypes into
distinct subgroups of patients. In addition, we investigate the performance of
the proposed multiview splitting and aggregation algorithms, as compared to
single- and concatenated-view alternatives, in a set of simulations. The mul-
tiview splitting and aggregation algorithms developed here are implemented
in the maskmeans R package.

1. Introduction. Multiview data, also called multiblock or multiway data in the litera-
ture, refer to distinct but related sets of features; multiview data have become widely available
in a variety of biological applications, including genomics (e.g., where gene expression, copy
number alterations and methylation are measured on the same individuals; Chao, Sun and
Bi (2017)) and neuroinformatics (e.g., functional magnetic resonance imaging; Fratello et al.
(2017)). One of the underlying assumptions in exploiting these data is that multifaceted and
heterogeneous views of the same problem can be useful in identifying or refining relevant
and robust structures, as they may reflect different aspects of complex structures. The in-
tegrative analysis of multiview data is, thus, a major challenge and represents a large area
of research. Multiview learning falls under the broader umbrella of so-called intermediate
integrative analyses in which, rather than being simply concatenated together or analyzed
in isolation, each view is permitted to “speak for itself” using weights, transformations or
model-based approaches to combine results across views (see, e.g., Hamid et al. (2009), Acar
and Yener (2008), Xu, Tao and Xu (2013), for a general survey).

Multiview classification algorithms have been the focus of an extensive amount of re-
search in the field of computer science in recent years; see Yang and Wang (2018) and Chao,
Sun and Bi (2017) for reviews and discussion of the current state-of-the-art. Dimensionality
reduction is a common feature of such algorithms, due to the high dimensionality of data,
and potentially different dimensionality among views. One notable example of such an ap-
proach is an integrative method called Joint and Individual Variation Explained (JIVE) (Lock
et al. (2013)), for which several extensions are available (see, e.g., Yu et al. (2017), Feng
et al. (2018)). Similarly, Dueck, Morris and Frey (2005) addressed the problem of multiview
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clustering using a probabilistic sparse matrix factorization, and Gaynanova and Li (2019)
formulated a linked component model that directly incorporates partially-shared structures.
Existing clustering methods make use of a variety of approaches, including spectral clustering
(Kumar, Rai and Daume (2011), Kumar and Daumé (2011), Liu et al. (2012)), biclustering
(Koutsonikola and Vakali (2009), Pensa, Robardet and Boulicaut (2005)) and density-based
clustering of multiview data (Kailing et al. (2004), Taskesen et al. (2016)). Cai, Nie and
Huang (2013) proposed the multiview K-means algorithm as a robust and computationally
efficient method to cluster large-scale heterogeneous multiview datasets; Chen et al. (2013)
extended this idea to incorporate weights on both views and variables. Multiview clustering
techniques have also been specifically developed in the context of multiple high-throughput
molecular assays; see Rappoport and Shamir (2018) for a detailed review. For example, Serra
et al. (2015) proposed the MVDA approach in which membership matrices from individual
omics are integrated into a single robust patient subtype; Yang and Michailidis (2016) used
nonnegative matrix factorization to jointly decompose multiview omics data. The iCluster+
approach (Shen, Olshen and Ladanyi (2009), Mo et al. (2013), Shen et al. (2012)) uses a joint
latent-variable model to cluster multiomic data, while SNF (Wang et al. (2014)) combines
omic information using a network-based approach to identify patient subtypes.

To our knowledge, these multiview classification techniques focus on either de novo unsu-
pervised clustering or supervised clustering of a multiview dataset; here, we instead focus on
the task of merging or splitting an existing hard or soft cluster partition based on multiview
data. Merging/splitting can address the question of selecting the ideal number of clusters or
can be of interest when an initial overly simplistic or complex clustering is available. For in-
stance, to address the overestimation of the number of clusters in a Gaussian mixture model,
as determined by the Bayesian information criterion, Baudry et al. (2010) proposed a method
to hierarchically aggregate components using an entropy criterion to obtain a soft clustering
for each number of clusters less than or equal to the initial number. The recently proposed
clustree R package (Zappia and Oshlack (2018)) takes a different approach by providing a
graphical approach to visualize different clustering resolutions.

This paper focus on the specific problem of aggregating or splitting an existing initial data
partition in the multiview framework; the initial partition of data may represent a clustering
of a single data view or, alternatively, can represent a preexisting grouping of individuals.
This article is specifically motivated by an application involving multiomic breast cancer
data, where multiple omics profiles are used to further subdivide intrinsic tumor subtypes
into distinct subgroups of patients. In particular, rather than focusing on a de novo clustering
of patients, we instead seek to further subdivide a preestablished grouping of individuals. The
remainder of this article has been organized as follows: the multiomic breast cancer data that
are the focus of our study are described in Section 2. The multiview K-means algorithm, as
well as the multiview splitting and aggregation approaches, are described in detail in Sec-
tion 3. In Sections 4 and 5, the proposed methods are benchmarked on simulated data, and
results on the multiomic breast cancer data are described in detail. Finally, a discussion and
some conclusions are provided in Section 6.

2. Multiomic breast cancer data. In women, breast cancer is the most commonly diag-
nosed cancer and is the leading cause of cancer death worldwide; according to the GLOBO-
CAN 2018 estimates of cancer incidence and mortality, there were about 2.1 million newly
diagnosed cases worldwide in 2018 alone (Bray et al. (2018)). Multiple distinct forms or
subtypes of the disease, corresponding to both morphological and clinical heterogeneity as
well as significantly different reactions to treatment and prognosis, have been identified.
In particular, molecular profiling, typically based on gene expression data, may be used to
characterize breast tumors beyond classifiers such as clinical prognosis, grade, histology and
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immunohistochemical analysis of estrogen and progesterone receptors (ER/PR) and human
epidermal growth factor receptor-2 (HER2) over-expression (Perou et al. (2000)). One well-
known method for subtyping breast cancer is the PAM50 gene set which was developed on
microarray and quantitative reverse transcriptase polymerase chain reaction data (Parker et al.
(2009)). Similarly, a robust and stable classification of intrinsic breast cancer subtypes can be
inferred from gene expression profiles using the AIMS approach (Paquet and Hallett (2000)),
leading to the five commonly accepted intrinsic subtypes of Luminal A and B, Basal-like,
HER2-enriched and Normal-like tumors. However, significant phenotypic heterogeneity has
been observed even within these subtypes; for example, The Cancer Genome Atlas Network
(2012) found that ER+ tumors (Luminal A and B) were the most heterogenous in terms of
gene expression, mutation spectrum, copy number changes and patient outcome.

The Cancer Genome Atlas (TCGA) represents a vast and valuable resource for pancancer
genomic studies, including multiomic molecular profiles of tumor samples and, in some
cases, matched normal samples for over 30 different cancer types and over 11,000 indi-
viduals (The Cancer Genome Atlas Network et al. (2013)). The public availability of the
open-access tier of TCGA data has led to an explosion of research in cancer informatics and
methodological developments for multiomic data. In this paper we focus on the multiomic
profiles (gene expression, microRNA expression, promoter methylation and copy number
alterations [CNA]) measured for 20,179 genes in 506 breast cancer patients in the TCGA
database. Details about TCGA data acquisition and preprocessing may be found in Rau
et al. (2018). Briefly, gene and miRNA expression were measured in tumor samples using
RNA-seq and miRNA-seq, and normalized abundance estimates were log transformed after
adding a constant of one. Promoter methylation in tumor samples for each gene was mea-
sured using an Illumina Infinium Human Methylation450 BeadChip array, and probe values
were logit-transformed. Somatic copy number gains and losses were quantified by compar-
ing Affymetrix 6.0 probe intensities in matched normal and cancer tissue and aggregating
measures to gene level. Intrinsic breast cancer subtypes were inferred from the RNA-seq data
using the AIMS Bioconductor package (Paquet and Hallett (2000)), corresponding to 61, 38,
228, 136 and 43 individuals for the Basal-like, Her2-enriched, Luminal A, Luminal B and
Normal-like subtypes, respectively.

Our method aims to determine whether the use of multiview cluster splitting of the inferred
intrinsic breast cancer subtypes, based on RNA-seq, miRNA-seq, promoter methylation and
copy number alterations, can lead to robust and clinically meaningful subclusterings of pa-
tients. To this end, we focus on a subset of 226 genes that play an important role in breast
carcinogenesis, corresponding to the TP53 and MKI67 genes (resp., a tumor suppressor and
a cellular marker for proliferation), those in the estrogen signaling and ErbB signaling path-
ways from the KEGG database (Kanehisa et al. (2016)) and those in the SAM40 DNA methy-
lation signature (Fleischer et al. (2017)). Of these, 226, 199 and 222, respectively, had gene
expression, methylation and CNA measurements available. In addition, we retained only the
149 miRNAs for which the average normalized expression across all 506 patients was greater
than 50.

3. Multiview clustering algorithms. To build up to our proposed multiview aggrega-
tion and splitting procedure, the latter of which we will ultimately seek to apply to the TCGA
breast cancer data, we first introduce the framework with some notation. Because the algo-
rithm can be defined for both soft and hard initial clusterings, we restrict our description in
the manuscript to the former as it represents a generalization of the latter.

3.1. Framework and data scaling. In the clustering setting we consider a data matrix Z ∈
R

n×d with n individuals described by d quantitative measures, decomposed into V views,

Z = (
Z(1), . . . ,Z(v), . . . ,Z(V )),



MULTIVIEW CLUSTERING AGGREGATION AND SPLITTING 755

where Z(v) ∈ R
n×dv and d = ∑V

v=1 dv . As in Cai, Nie and Huang (2013), the data here are
assumed to have been mean centered and scaled to unit variance. Moreover, in order to avoid
problems due to the potentially different dimensionality for each view, each scaled variable
is also divided by the size of its corresponding view,

X(v) = Z(v)

dv

.

We assume that an initial clustering of the n individuals, obtained with an arbitrary clus-
tering algorithm on external data or one of the V views, is available. This initial clustering
may be either a hard partition or a soft clustering. In the latter case we have an initial matrix
�[0] = �Kinit = (π

(0)
i,k ), where π

(0)
i,k is the “probability” (weight) that the ith individual be-

longs to the kth cluster and
∑K(0)

k=1 π
(0)
i,k = 1 for each individual i. In the hard-clustering case,

�Kinit is a 0 − 1 matrix with a single 1 in each row.
The aggregation and splitting procedures presented hereafter are, respectively, based on

the minimization of a criterion that is inspired by the one used in the multiview soft K-means
algorithm (Wang and Chen (2017)):

(3.1)
n∑

i=1

K∑
k=1

V∑
v=1

(αv)
γ (πi,k)

δ
∥∥X(v)

i − μ
(v)
k

∥∥2
,

where γ > 1, δ > 1 and μ = (μ1, . . . ,μK) is the vector of cluster centers such that μk =
(μ

(1)
k , . . . ,μ

(V )
k ). The vector α = (α1, . . . , αV ), with

∑V
v=1 αv = 1, contains the weight of

each view that allows more or less importance to be attributed to each view in the clustering
process. The δ parameter tunes the weights on the soft classifications �K with larger values
yielding larger weights for large probabilities of cluster membership; similarly, the γ parame-
ter tunes the per-view weights with larger values flattening out the view-specific contributions
to the criterion value.

3.2. Multiview splitting. In this section the aim is, starting from an initial soft clustering
matrix �[0], to successively split clusters in order to minimize the following criterion:

(3.2) Split(�K,α,μ) =
n∑

i=1

K∑
k=1

V∑
v=1

(αk,v)
γ (πi,k)

δ
∥∥X(v)

i − μ
(v)
k

∥∥2
,

under the constraints ∀i,
∑K

k=1 πi,k = 1 and ∀k,
∑V

v=1 αk,v = 1. We remark that minimizing
this criterion, given �K , leads to μ = (μ1, . . . ,μK) with μk = ∑n

i=1(πi,k)
δXi/

∑n
i=1(πi,k)

δ .
Note that Criterion (3.2) is identical to Criterion (3.1), where the per-view weights αv have
been replaced here with per-cluster and per-view weights αk,v; this allows views to be up-
or down-weighted for a specific cluster when they contain only partially relevant information
about the underlying cluster structure. By default, we set both γ and δ to be equal to 2 here.

In order to minimize Criterion (3.2), we propose an iterative algorithm described in Algo-
rithm 1. At each step we must identify the cluster C

k̂
such that

k̂ = arg max
1≤k≤K

n∑
i=1

V∑
v=1

(αk,v)
γ (πi,k)

δ
∥∥X(v)

i − μ
(v)
k

∥∥2
.

Subsequently, this cluster must be split into two clusters, C̃k1 and C̃k2 , which minimize

∑
�=k1,k2

V∑
v=1

n∑
i=1

(α
k̂,v

)γ (πi,�)
δ
∥∥X(v)

i − μ̃
(v)
�

∥∥2
,
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Algorithm 1 Description of the soft multiview splitting algorithm

• Step t = 0: Let �Kinit = (π
[0]
i,k )i,k be the initial soft clustering matrix.

– Initialization of the centers: for all k = 1, . . . ,Kinit,

μk,[0] =
n∑

i=1

(
π

[0]
i,k

)δ
Xi

/ n∑
i=1

(
π

[0]
i,k

)δ

– Initialization of the weight matrix α[0] = (α
[0]
k,v):

for all v = 1, . . . , V and k = 1, . . . ,Kinit,

α
[0]
k,v = (

∑n
i=1(π

[0]
i,k )δ‖X(v)

i − μ
(v)
k,[0]‖2)

1
1−γ

∑V
v′=1(

∑n
i=1(π

[0]
i,k )δ‖X(v′)

i − μ
(v′)
k,[0]‖2)

1
1−γ

.

• Step t ≥ 1:
– Update the soft clustering matrix �[t] , centers and the weight matrix α[t]:

split cluster C
k̂

into two clusters, where

k̂ = arg max
k

V∑
v=1

n∑
i=1

(
α

[t−1]
k,v

)γ (
π

[t−1]
i,k

)δ∥∥X(v)
i − μ

(v)
k,[t−1]

∥∥2
.

under the constraint πi,k1 + πi,k2 = π
i,k̂

for each i = 1, . . . , n. This step provides a new

soft clustering matrix �̃K+1 and the associated vector of cluster centers μ̃. It is detailed in
the Supplementary Material (Godichon-Baggioni, Maugis-Rabusseau and Rau (2020) Sec-
tion E). Then, one can obtain the weight matrix α̃ associated with this split, defined for all
k = 1, . . . ,K + 1 and for all v = 1, . . . , V ,

α̃k,v = (
∑n

i=1(π̃i,k)
δ‖X(v)

i − μ̃
(v)
k ‖2)

1
1−γ

∑
l=1,...,K+1(

∑n
i=1(π̃i,l)δ‖X(v)

i − μ̃
(v)
l ‖2)

1
1−γ

.

PROPOSITION 3.1. Let K be a positive integer, and let �K be a soft clustering matrix
with K clusters. Let k̂ ∈ {1, . . . ,K} and �̃K+1 be the soft clustering matrix obtained by
splitting the cluster C

k̂
. Then, for any weight matrix α,

Split(�K,α,μ) ≥ Split(�̃K+1, α̃, μ̃).

The proof is given in the Supplementary Material (Godichon-Baggioni, Maugis-Rabusseau
and Rau (2020) Section C).

REMARK 3.1. Note that a version of this algorithm with common weights per cluster
(αk,v = αv for all k) as well as a version for hard clustering matrix can immediately be
derived from that described here.

3.3. Multiview aggregation. Starting from an initial clustering matrix �[0] = �Kinit , we
now wish to construct a hierarchical aggregation while accounting for the information avail-
able in the different data views. At each step the aim is to aggregate the pair of clusters that
corresponds to a minimal increase of the following criterion:

(3.3) Agg(�K,α,μ) =
K∑

k=1

n∑
i=1

V∑
v=1

(αv)
γ πi,k

∥∥X(v)
i − μ

(v)
k

∥∥2
,

with μk = ∑n
i=1 πi,kXi/

∑n
i=1 πi,k . Given a soft clustering matrix �K =

(πi,k)i=1,...,n,k=1,...,K , we aggregate two clusters, Ck and Ck′ (k �= k′), into a new cluster,



MULTIVIEW CLUSTERING AGGREGATION AND SPLITTING 757

Algorithm 2 Description of the soft multiview aggregation algorithm

• Step t = 0: Let �Kinit = (π
[0]
i,k )i,k be the initial soft clustering matrix.

– Initialization of the centers: for all k = 1, . . . ,Kinit,

μk,[0] =
n∑

i=1

π
[0]
i,k Xi

/ n∑
i=1

π
[0]
i,k .

– Initialization of the weight vector: α[0] = (α
[0]
1 , . . . , α

[0]
V ) where for all v = 1, . . . , V ,

α[0]
v = (

∑Kinit
k=1

∑n
i=1 π

[0]
i,k ‖X(v)

i − μ
(v)
k,[0]‖2)

1
1−γ

∑V
v′=1(

∑Kinit
k=1

∑n
i=1 π

[0]
i,k ‖X(v′)

i − μ
(v′)
k,[0]‖2)

1
1−γ

.

• Step t ≥ 1:
– Update the clustering matrix �[t] and the centers μ[t]:

Determine the two clusters Ck1 and Ck2 such that

(k1, k2) = arg min
k �=k′

nknk′
nk + nk′

V∑
v=1

(
α[t−1]

v

)γ ∥∥μ(v)
k,[t−1] − μ

(v)

k′,[t−1]
∥∥2

,

and update �[t] and μ[t] .
– Update the weight vector α[t] = (α

[t]
1 , . . . , α

[t]
V ):

for all v = 1, . . . , V ,

α[t]
v = (

∑Kinit−t
k=1

∑n
i=1 π

[t]
i,k‖X(v)

i − μ
(v)
k,[t]‖2)

1
1−γ

∑V
v′=1(

∑Kinit−t
k=1

∑n
i=1 π

[t]
i,k‖X(v′)

i − μ
(v′)
k,[t]‖2)

1
1−γ

.

Ck∪k′ , by constructing a new clustering matrix (�̃K−1,k∪k′) with K − 1 clusters, such that
π̃� = π� when � �= k, k′ and π̃k∪k′ = πk + πk′ . The algorithm is detailed in Algorithm 2. By
setting δ = 1, the following proposition enables us to ensure and quantify the decrease of
Criterion (3.3) when two clusters are aggregated:

PROPOSITION 3.2. Let K be a positive integer, �K = (πi,k)i=1,...,n,k=1,...,K be a soft
clustering matrix and set δ = 1. Let k, k′ ∈ {1, . . . ,K}, such that k �= k′. If two clusters Ck

and Ck′ are aggregated, then for all weight vectors α = (α1, . . . , αV ),

(3.4) Agg(�K,α,μ) − Agg(�̃K−1,k∪k′, α, μ̃) = − nknk′

nk + nk′

V∑
v=1

(αv)
γ
∥∥μ(v)

k − μ
(v)
k′

∥∥2 ≤ 0,

where nk = ∑n
i=1 πi,k and μ = (μ1, . . . ,μK) and μ̃ = (μ̃1, . . . , μ̃K−1) are, respectively, as-

sociated with �K and �̃K−1.

The proof is given in the Supplementary Material (Godichon-Baggioni, Maugis-Rabusseau
and Rau (2020) Section D). Then, the multiview aggregation algorithm consists of aggregat-
ing at each step the two clusters for which the minimal increase is obtained.

Compared to the usual aggregation algorithm using the Ward distance, the primary novelty
here is that we directly account for the quality of the initial clustering in each view via the
weight vector α. For example, in the case where γ = 2, the weights correspond to the ratio
of the inverse sum of squared errors in one view to that summed across all views; as such,
if the clustering pattern of one view is in complete disagreement with the others, it will tend
to have a messy clustering and will thus be down-weighted with respect to the other views.
Similarly, using an initial clustering constructed on one specific view typically yields larger
weights for that view (and smaller weights for highly dissimilar views) in early stages of the
aggregation algorithm.
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REMARK 3.2. The hard clustering version of this algorithm consists of taking an initial
hard clustering matrix (0 − 1 values with a single 1 for each observation); the remainder of
the procedure is similar to the soft version here.

3.4. maskmeans R package. The multiview hard and soft aggregation and splitting al-
gorithms described above have been implemented in an open-source R software package
called maskmeans, freely available at https://github.com/andreamrau/maskmeans. A package
vignette provides a full worked example and description; the primary functions of this pack-
age are as follows:

• maskmeans, which itself calls either mv_aggregation or mv_splitting. Note
that this algorithm allows either fixed multiview weights across clusters (aggrega-
tion and splitting) or cluster-weighted multiview weights (splitting) via perClus-
ter_mv_weights = FALSE or TRUE, respectively.

• mv_simulate to simulate data as described in the following section.
• Two main plotting functions: mv_plot, which provides an overview visualization of mul-

tiview data (see Supplementary Material Figure 1 for an example), and maskmeans_
plot, which provides several visualization of the results of the maskmeans function.
The plotting functions notably make use of the ggplot2 (Wickham (2016)) and clustree
(Zappia and Oshlack (2018)) visualization packages. Several examples of output from the
maskmeans_plot function may be seen in Figures 1–4.

4. Simulation study. In our simulation study we wish to evaluate our proposed multi-
view aggregation and splitting algorithm to the alternative naive approaches of either con-
catenating all views into a united view, thus effectively ignoring the multiview structure
of the data, or using only a single view, thus ignoring the additional data views. To this
end, we define the following general framework to generate data arising from six views,
Z = (Z(1), . . . ,Z(6)) where Z(v) ∈ Mn,dv (R). Specifically, to start the set of observations
{1, . . . ,Kn} is partitioned into K = 2K̃ + 1 equally sized clusters (Ck)k of n observations.
The first and second views are then simulated as follows:

∀i ∈ Ck, Z
(1)
i ∼ N

(
β

(
cos(θk), sin(θk)

)′1
k∈{1,...,2K̃}, I2

)
and

∀i ∈ Ck, Z
(2)
i ∼ N

(
β

(
cos(θ̃k), sin(θ̃k)

)′1
k∈{1,...,2K̃}, σ

2I2
)
,

where σ 2 represents the per-cluster variance, θk = πk/K̃ , θ̃k = (θ2p + θ2p−1)/2 if k =
2p or k = 2p − 1,p ∈ {1, . . . , K̃} and β is a multiplicative factor that controls the spread
of clusters around the origin. The first view is thus simulated to have 2K̃ equally spaced clus-
ters in a circular pattern, with an additional cluster centered at the origin; in the second view,
pairs of adjacent clusters from the first view have been merged, yielding K̃ clusters similarly
evenly spaced in a circle in addition to the central cluster at the origin. For the third view,
a random permutation τ of {1, . . . ,Kn} is used to permute the clustering; this intentionally
creates a noisy view with no clustering coherence with respect to the other views. The fourth
and fifth views are unidimensional (dv = 1), where

Z
(4)
i ∼ N

(
sign

(
Z

(1)
i1

)
μ,σ 2)

and Z
(5)
i ∼N

(
sign

(
Z

(1)
i2

)
μ,σ 2)

.

Finally, the clustering structure in the sixth view aggregates the clusters of the first view into
four,

Z
(6)
i ∼ N

(
1.5β

(
cos(θk), sin(θk)

)′1k∈τ̃ , σ
2I2

)
,

where τ̃ corresponds to a random selection of three elements among {1, . . . ,2K̃}. Note that,
by construction, there are 2K̃ +1 clusters in view 1, K̃ +1 clusters in view 2, three clusters in

https://github.com/andreamrau/maskmeans
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TABLE 1
Benchmarking on simulated data for the aggregation and splitting algorithms using different strategies

(cluster-weighted multiview, multiview, concatenating all views into one and using only the first view) and
different clustering types (hard and soft). Average values (standard deviation) for the ARI and misclassification
rate across 100 independent simulations are indicated. Boldface font is used to indicate the best performer in

each category

Algorithm Cluster type Strategy ARI Misclassification

Aggregation Hard Multiview 0.770 (0.038) 0.107 (0.020)
Concatenated 0.754 (0.049) 0.118 (0.031)
Single-view 0.763 (0.043) 0.111 (0.023)

Soft Multiview 0.804 (0.028) 0.089 (0.014)
Concatenated 0.798 (0.034) 0.092 (0.017)
Single-view 0.801 (0.030) 0.091 (0.015)

Splitting Hard Cluster-weighted multiview 0.628 (0.066) 0.206 (0.061)
Multiview 0.668 (0.057) 0.179 (0.057)
Concatenated 0.630 (0.047) 0.198 (0.045)
Single-view 0.638 (0.039) 0.235 (0.046)

Soft Cluster-weighted multiview 0.553 (0.043) 0.221 (0.035)
Multiview 0.579 (0.034) 0.199 (0.028)
Concatenated 0.551 (0.047) 0.220 (0.035)
Single-view 0.667 (0.038) 0.185 (0.057)

views 4 and 5 and four clusters in view 6; the spread of clusters around the center is increased
in this view by 50% with respect to views 1 and 2. As such, the simulation depends on a set
of parameters including the number of observations n, the number of clusters K = 2K̃ + 1,
β (the spread of values around the origin for the first, second and sixth views) and σ 2 (the
variance of the noise added to views 2, 4, 5 and 6). In the following, we set n = 100, β = 4,
K = 7 and σ = 1.5, and simulated data were generated using the mv_simulate function
in maskmeans; a graphical representation of a representative simulated data set is included in
Supplementary Material Figure 1. Simulations were repeated 100 independent times.

Initial hard and soft cluster partitions were respectively obtained using the K-means or
the soft K-means algorithms (Bezdek (1981)), where the latter was performed using the
fclust R package (Ferraro and Giordani (2015)) with default parameters. For the splitting
algorithms, the initial clustering was obtained using data from view 2, with Kinit = 4; for
the aggregation algorithms, the initial clustering was obtained using data from view 1, with
Kinit = 20. Subsequently, all aggregation and soft algorithms were iterated until a total of
K = 7 final clusters were obtained. In all multiview splitting and aggregation algorithms, γ

was set to 2. The “true” data partition used for benchmarking was that corresponding to the
first data view, as partitions in all other views (with the exception of the third) were based on
aggregations of the first view. All approaches were evaluated using the misclassification error
rate and the adjusted Rand index (Hubert and Arabie (1985)), a corrected-for-chance measure
of similarity between two data clusterings, where values close to 1 indicate close agreement.

The multiview aggregation and splitting algorithms were compared to: (1) concatenated
view aggregation and splitting algorithms, where data from all views were combined into a
single data view; and (2) a single view aggregation and splitting algorithms, where only data
from the first view was used. Results are presented in Table 1. We first note that for both
hard and soft aggregation algorithms, the proposed multiview approach has the best average
ARI and misclassification values, closely followed by the single-view and concatenated-view
strategies (note, however, that all approaches are within a standard deviation of one another).
This is, perhaps, unsurprising, as the concatenated-view strategy is somewhat perturbed by



760 A. GODICHON-BAGGIONI, C. MAUGIS-RABUSSEAU AND A. RAU

FIG. 1. Visualization of results from the multi-view aggregation algorithm (with hard clustering) applied to a
single simulated data set. (A) Dendrogram indicating successive cluster aggregations. (B) Plot of the value of
Criterion (3.3) with respect to the total number of clusters. (C) Per-view weights at each successive step of the
aggregation algorithm. Plots were produced using the maskmeans package.

the inclusion of the noisy view; the single-view strategy, on the other hand, benefits from the
targeted use of view 1 alone which is the view used to evaluate the clustering partition. By
making use of all available views, however, the multiview approach is able to balance the
contributions of each view, successfully down-weighting views 3, 4 and 5 to accord more im-
portance to the more informative views (Figure 1(C)). The dendrogram of successive cluster
aggregations as well as the evolution of Criterion (3.3) may also be visualized for a simulated
dataset using the plotting capabilities of maskmeans (Figure 1(A)–(B)).

Regarding the splitting algorithms, we first remark a worse overall performance compared
to the aggregation algorithms, particularly for soft clustering; this reflects the fact that, in
this simulation scenario, splitting clusters appears to be more difficult than aggregating them.
However, it is not of particular interest to compare the aggregation and splitting algorithms
to one another, as generally in practice one strategy or the other would be more natural. For
hard splitting, the multiview strategies are more variable than the concatenated or single-view
approaches (and, as above, all methods are within a standard deviation of each other), but the
multiview approach has a slight advantage in uncovering the true clustering structure of view
1. However, for soft splitting there is a very clear advantage in using only the data from view
1; this reflects the pronounced fuzziness (i.e., the overall relatively small values of maximum
membership degree values) of the initial clustering used as a point of departure and suggests
that multiview splitting approaches for soft clustering are not particularly useful for very soft
initial clusterings.

Although the cluster-weighted multiview approach has a lower average ARI and higher
average misclassification rate than the standard multiview approach, it does have the advan-
tage of contributing additional information for the interpretation of cluster splits. A visual-
ization of the cluster-weighted multiview splitting algorithm (with hard clusters) is shown in
Figure 2. The per-cluster per-view weights (Figure 2, right) represent a useful tool for iden-
tifying the views that play a determinant role in splitting clusters. We first note that views 3,
4 and 5 are attributed relatively small weights for each iteration of the algorithm; in addition,
the weights of the remaining views change according to the choice of cluster that is split. To
further illustrate this point, in Figure 3(A) a selection of the views from a simulated data set
are plotted, with observations colored according to cluster membership in the initial parti-
tion (where Kinit = 4; top panel) and following the initial split (where cluster 1 is split into
clusters 1 and 5; bottom panel) indicated in the splitting tree in Figure 2. We note that prior
to the split, the second view had the largest weight for the original cluster 1 (Figure 3(B));
subsequently, views 1 and 6 are up-weighted for the newly created clusters 1 and 5. As can be
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FIG. 2. Visualization of results from the cluster-weighted multi-view splitting algorithm (with hard clustering)
applied to a single simulated data set. (left) Splitting tree illustrating the order of cluster splits identified by the
algorithm. The initial clustering partition contained 4 clusters; in the first iteration, the first cluster was split into
clusters 1 and 5, and so on. (right) Corresponding heatmap of per-cluster per-view weights at each step of the
algorithm. Only clusters involved in splits are shown. Plots were produced using the maskmeans package.

seen in examining the scatter plots in Figure 3(A), this up-weighting of views 1 and 6 is quite
logical, as the newly split clusters 1 and 5 are very clearly separated in these views; however,
view 2, where the newly formed clusters largely overlap, is now down-weighted.

Based on these results, we can conclude that the multiview aggregation and splitting proce-
dures are able to successfully up- or down-weight views according to their informative value
for clustering observations, which leads to improve clustering partitions when compared to
naive single-view or concatenated-view strategies (with the exception of splitting for soft
clusterings). In particular, these per-view weights provide valuable information about which
views contribute the most to splits or aggregations at different stages in the algorithm; al-
though the cluster-weighted multiview algorithm for hard clustering can slightly penalize the
final cluster quality, it provides a more detailed interpretation of how each view contributes
to each cluster individually.

FIG. 3. Visualization of results from the cluster-weighted multi-view splitting algorithm (with hard clustering)
applied to a single simulated data set. Panel A: (top) Scatterplots of simulated data for views 1 (left), 2 (middle),
and 6 (right), with points colored by the initial partition into Kinit = 4 clusters. (bottom) Scatterplots of the same
data views, with points colored by the partition after splitting cluster 1 (grey from the top panel) into two clusters
(blue and yellow). Cluster colors are comparable across all graphs, and plots were produced using the maskmeans
package. Panel B: Per-cluster per-view weights for cluster 1 from the original panel (grey), and for the clusters 1
and 5 (blue and yellow) after splitting.
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FIG. 4. Visualization of results from the cluster-weighted multi-view splitting algorithm (with hard clustering)
applied to the TCGA multiomic breast cancer data, up to K = 10 clusters. (left) Splitting tree illustrating the order
of cluster splits identified by the algorithm. The initial clustering partition contained the five intrinsic subtypes:
Basal, HER2+, Luminal A, Luminal B, and Normal-like. (right) Corresponding heatmap of per-cluster per-view
weights at each step of the algorithm. Only clusters involved in splits are shown. Plots were produced using the
maskmeans package.

5. Results on multiomic breast cancer data. In this section we apply the multiview
hard splitting algorithm with per-cluster and per-view weights described in Section 3.2 to
further subdivide the five intrinsic subtypes inferred from 506 patients with breast cancer on
the basis of gene expression, miRNA expression, promoter methylation and copy number
alterations in the TCGA breast cancer data.

In Figure 4 the splitting tree and corresponding per-cluster per-view weights at each split
(up to K = 10) are provided. Strikingly, cluster splits preferentially occur within the Lumi-
nal A and B subtypes, while Basal, HER2+ and Normal-like subtypes are left intact, suggest-
ing that, on a molecular level (based on the selected genes of interest), each of these groups
may be more homogenous than the Luminal subtypes. Basal-like breast cancer (also called
triple-negative) is hormone-receptor (PR/ER) and HER2 negative and tends to be aggressive,
difficult to treat and more common among younger women and women of African descent,
while HER2+ breast cancer is hormone-receptor negative but HER2 positive, grows faster
than Luminal tumors but typically responds well to treatment. Normal-like tumors, similarly
to Luminal A tumors, are hormone-receptor positive and HER2 negative but typically resem-
ble normal breast profiling and have poor outcomes. On the other hand, hormone receptor
positive (Luminal A and B) tumors are the most prevalent and diverse form of breast cancer,
and have been previously observed to be characterized by the most variability in survival and
highest risk of late mortality (Ciriello et al. (2013)); this appears to be in agreement with the
fact that cluster splits occur uniquely within the Luminal tumors. We note that these prefer-
ential splits among Luminal tumors may in part be driven by a larger available sample size
compared to the other subtypes. To evaluate this, we reran the maskmeans analysis 500 times
after down-sampling the data so each subtype was equally represented (n = 38). After count-
ing the number of splits per subtype for K = 10 clusters, we found that each subtype was split
a similar number of times (2.06, 2.63, 1.91 and 2.41 average nested clusters for Basal-like,
Her2-enriched, Luminal A and Luminal B, resp.) with the exception of Normal-like tumors
which were never subdivided. This suggests both that unbalanced sample sizes may have
some effect on the number of observed splits described above and that this is not the only
determining factor driving cluster splits.

The per-cluster per-view weights in Figure 4 (right) highlight the variable contributions
of each omic source to the cluster splits. For example, the first split dividing the Luminal A
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FIG. 5. Heatmaps of significantly differential variables (linear model: Bonferroni-adjusted P < 0.01) between
pairs of subgroups identified for the Luminal A and B subtypes. (A) Z-scores for differential variables for each
omic data source in the Luminal A sub-clusters 6 and 3. (B) Z-scores for differential variables for each omic
data source in the Luminal B sub-clusters 4 and 7. Rows and columns are clustered with hierarchical cluster-
ing (Euclidean distance, complete linkage). For reference, genes belonging to the estrogen signaling pathway,
ErbB pathway, or SAM40 list are highlighted as black annotations. Figure produced using the ComplexHeatmap
package (Gu, Eils and Schlesner (2016)).

group in two is largely driven by gene expression and copy number alterations, while the first
split of the Luminal B group is primarily due to gene expression. miRNA expression does
not appear to play a major role in cluster splits, while promoter methylation only intervenes
at the secondary split of the Luminal B group. By examining the multiomic data for each of
these newly identified subgroupings (Figure 5), we can also visualize how each molecular
source contributes to the cluster splits. For example (with K = 7), in the first split dividing
the Luminal A group in two, we note that a fairly large number of genes have striking dif-
ferences in expression between clusters 3 and 6; in addition, cluster 6, which had a relatively
large weight for CNAs, tends to include individuals with large copy losses in a handful of
genes (Figure 5(A)). On the other hand, the subclusters of the Luminal B subtype, which
were characterized by large weights on the RNA-seq view, appear to feature marked over
expression of SAM40 genes in cluster 4 compared to cluster 6.

It is also of interest to identify whether the newly identified subclusters are clinically mean-
ingful; for this purpose we consider the subgroupings obtained for K = 7 clusters and ana-
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lyze differences between clusters 3 and 6 (the initial split of the Luminal A subtype) and
between clusters 4 and 7 (the initial split of the Luminal B subtype). We focus in particular
on differences between progression-free interval survival, age at initial pathologic diagnosis,
menopause status, number of lymph nodes and pathologic tumor stage. Due to the relatively
small number of deaths, no significant differences in progression-free interval (Liu et al.
(2018)) are detected between these two pairs of clusters (log-rank test: P = 0.855 for the Lu-
minal A splits and P = 0.165 for the Luminal B splits, with a total of 24 out of 228 and 24 out
of 136 total progression-free interval events, resp.). However, a significant difference in age at
diagnosis (linear model Wald statistic: P = 1.32 × 10−6 for Luminal A; P = 0.14 for Lumi-
nal B) and in menopause status (χ2 test statistic: P = 3.65×10−4 in Luminal A; P = 0.7936
in Luminal B) was observed between Luminal A subclusters 3 and 6. In addition, a signifi-
cant difference in number of lymph nodes was observed for Luminal B subclusters 4 and 7
(Poisson GLM Wald statistic: P -value = 0.571 in Luminal A; P -value = 5.41 ×10−12 in Lu-
minal B). No significant differences among pairs of subclusters were observed for pathologic
tumor stage (χ2 test statistic: P = 0.5831 in Luminal A; P = 0.07632 in Luminal B).

Taken together, these results suggest that the subclusters of the Luminal A subtype rep-
resent distinct groups, where cluster 6 skews toward older postmenopausal patients, while
subclusters of the Luminal B subtype represent groups with varying severity of the disease,
where individuals in cluster 7 had significantly fewer lymph nodes affected by the disease.

6. Discussion. We have presented a novel pair of algorithms to aggregate or split an ex-
isting hard or soft cluster partition based on a set of multiview data. A set of simulations
demonstrated the satisfactory performance of the multiview splitting and aggregation algo-
rithms (with the exception of soft splitting), as compared to the single- and concatenated-view
strategies; in addition, we illustrated how graphical outputs from the maskmeans package
can provide useful interpretation for the contribution provided by each view globally, or by
each view per cluster, at each successive iteration. Using a set of multiomic data (gene ex-
pression, miRNA expression, methylation and copy number alterations) from breast cancer
patients from the TCGA project, we illustrated how the cluster-weighted multiview splitting
algorithm can subdivide intrinsic cancer subtypes into more homogeneous, clinically rele-
vant subgroups. In particular, the algorithm split the two ER+ subtypes (Luminal A and
Luminal B) into groups with significant differences in age of initial diagnosis and number
of affected lymph nodes, respectively. In future work it would be of great interest to apply
the multiview splitting and aggregation algorithms to other TCGA tumor types beyond breast
cancer, particularly those including survival data with adequate follow-up time and sufficient
sample sizes.

For the cluster-weighted multiview splitting algorithm, we observed that, in cases where
the initial cluster partition was in near perfect agreement with one of the data views, initial
weights tend to be very large (>0.5) for one or more clusters in that view; this phenomenon
then tends to become increasingly amplified for subsequent iterations, leading to a series of
splits that are driven uniquely by that view. In such cases, if this behavior is not desired, the
γ parameter can be used to moderate the multiview influence on cluster splits at early stages
of the algorithm, as larger values tend to impose a greater balance in view contributions.

In practice, the choice of the initial clustering partition to be used largely depends on the
context; for example, in some cases it may be natural to obtain the initial partition from
one of the data views (this was the case for the TCGA breast cancer data presented here, as
the AIMS intrinisic subtypes were inferred from the RNA-seq data), while in other cases an
external dataset may be used for this purpose. Another key issue is the choice of the final
number of clusters to be used following cluster aggregations or splits; currently, the multi-
view aggregation and splitting algorithms allow users the flexibility to choose the ultimate
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number of desired clusters. One possibility to determine the “optimal” number of clusters
is to examine the plot of the evolution of the criterion value (e.g., Figure 1(B)) and identify
the so-called elbow of the curve. It is also possible that model selection approaches, such as
the slope heuristics (Baudry, Maugis and Michel (2012)), could be useful for identifying the
optimal number of clusters, but additional research is needed on this point. Finally, an impor-
tant area of future work is the extension of the methods implemented in maskmeans to data
types beyond continuous measures, particularly binary data; this will be of great interest for
genomics applications, as it would facilitate the additional use of data on somatic mutations
which play a large role in cancer development and disease progression.
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SUPPLEMENTARY MATERIAL

Multiview cluster aggregation and splitting, with an application to multiomic breast
cancer data: Supplementary file (DOI: 10.1214/19-AOAS1317SUPP; .pdf). In this Supple-
mentary Material, some additional figures are given as well as proofs of Propositions 3.1 and
3.2.
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