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MODELING WILDFIRE IGNITION ORIGINS IN SOUTHERN CALIFORNIA
USING LINEAR NETWORK POINT PROCESSES
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This paper focuses on spatial and temporal modeling of point processes
on linear networks. Point processes on linear networks can simply be defined
as point events occurring on or near line segment network structures embed-
ded in a certain space. A separable modeling framework is introduced that
posits separate formation and dissolution models of point processes on linear
networks over time. While the model was inspired by spider web building ac-
tivity in brick mortar lines, the focus is on modeling wildfire ignition origins
near road networks over a span of 14 years. As most wildfires in California
have human-related origins, modeling the origin locations with respect to the
road network provides insight into how human, vehicular and structural den-
sities affect ignition occurrence. Model results show that roads that traverse
different types of regions such as residential, interface and wildland regions
have higher ignition intensities compared to roads that only exist in each of
the mentioned region types.

1. Introduction. One of the most pressing, large-scale disasters affecting the State of
California and other parts of the country are wildfires. California is specifically prone to
high-intensity fires due to its dry summers and vegetation. Southern California also faces
high-speed winds, called the Santa Ana winds, that originate inland and bring hot, dry air with
them which further create critical fire conditions. The California Wildland Fire Coordinating
Group reports that “approximately 95% of all wildfires in California have human-related
origins.” Balch et al. (2017) analyze 1.5 million government records of wildfires between
1992 to 2012 and report that about 84% of all U.S. wildfires have human-related origins;
humans are also extending the length of fire seasons. Human-related origins of wildfires
include equipment use, vehicular fire, campfire, debris burning, smoking, children and arson.

Wherever a human-related wildfire originates, an individual needed to have access to the
area, most likely through a network of roads, paths and trails. Moreover, there has been a
rapid expansion of the wildland-urban interface (WUI) regions in the country, increasing
the chances of harmful human activity near fuel-rich areas (fuel rich indicates low-moisture
vegetation). Given the high frequency of human-related ignitions and growing WUI regions
in the country, it is useful to understand how human density and movement affect the spatial
and temporal distributions of wildfire ignitions. The separable temporal linear point process
model (STLPPM) introduced in this paper is ideal for modeling wildfire ignition locations
with respect to road and trail networks. It would be immensely useful if we could identify
wildfire ignition hot spots that are highly correlated with human and vehicular traffic.

Following the precedence of Syphard and Keeley (2015), the Santa Monica Mountains re-
gion (Los Angeles County, California) is used as the study area in this paper, and the wildfire
ignition locations between the years 2000 and 2013 are shown on the road network plot in
Figure 1.
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FIG. 1. Locations of 2000–2013 wildfire origins in the Santa Monica Mountains region.

2. Background. While spatial point process theory is well established, spatial analysis
of events along networks is not common. A large portion of this analysis has been spear-
headed by Okabe and collaborators, with applications to boutique openings along Tokyo
streets and acacia tree populations along road networks (Okabe and Okunuki (2001), Spooner
et al. (2004)). The only textbook that addresses this area, by Okabe and Sugihara (2012), in-
troduces multiple examples and expands on computational methods appropriate to network
processes.

Current work extends the point process theory to network processes with applications to
street crimes in Chicago and spine formation on dendrite networks of neurons (Ang, Badde-
ley and Nair (2012), Baddeley, Jammalamadaka and Nair (2014)). Ang, Baddeley and Nair
(2012) expand on the (empirical) “network K function,” introduced by Okabe and Yamada
(2001), to incorporate network generality resulting in a more interpretable network K func-
tion. The geometrically corrected empirical K function weights the shortest path distance
between a pair of points (xi, xj ), with the reciprocal of the number of points on the network
situated at the same distance from xi as xj is. The corrected network K function is

(2.1) K̂L(r) = |L|
n(n − 1)

n∑
i=1

∑
j �=i

1{dL(xi, xj ) ≤ r}
m(xi, dL(xi, xj ))

,

where n is the total number of points in the process, |L| is the total length of the network,
dL(xi, xj ) denotes the shortest path distance and m(xi, dL(xi, xj )) is the number of points
on L lying at the exact distance dL(xi, xj ) away from point xi . This reciprocal weighting is
similar to Ripley’s isotropic edge correction, as it considers the number of neighbors on the
ball of radius dL(xi, xj ) centered on xi . These results are further extended to an “inhomoge-
neous” network K function and the pair correlation function. Ang, Baddeley and Nair (2012)
fit the network K function and the inhomogeneous version to a single quadrant of spider
data (see Appendix A for details); both reveal only insignificant clustering at larger scales,
attributable to spatial inhomogeneity.

Ang, Baddeley and Nair (2012) also apply the methods to street crime data from an area
close to the University of Chicago. The inhomogeneous network K function showed no evi-
dence of clustering; however, the authors believe there is confounding of inhomogeneity and
clustering at short distances and suggest further study.
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Baddeley, Jammalamadaka and Nair (2014) apply the corrected network K function to
spines on dendrite networks of neurons resulting in an extension to multitype points. The
data used in the paper is of an observed spine pattern on dendrite network of a rat neuron.
At a specific resolution, the spines can be categorized into three types based on their size.
It is necessary to study the spatial distribution of spines to understand normal function and
disease processes. Since the spines occur only on a dendrite network, event analysis along
linear networks is a natural choice. Fitting the inhomogeneous network K function did not
reveal significant clustering, but the authors present numerous caveats to interpreting these
results in a biological context.

3. Motivation. Thus far, the existing literature presents computational and descriptive
methods complementary to the point process literature adapted to linear networks. There has
been little work that consciously models the spatial and temporal progression of point pro-
cesses on network structures. Given the advent of this new data structure, the methodology
presented in this paper is an effort to adapt and to integrate spatial analysis and network struc-
ture and to produce a compounded modeling framework. The motivation is to harness insights
from spatial geometry imposed by network structures to better understand the distribution of
event occurrence.

The original motivation for this model was derived from the spider-web data (outlined
in Appendix A) that provides the locations of webs made by the small Oecobius navus in
the crevices of mortar lines on brick walls. The indented mortar lines provide the perfect
structural support for web building, while the overall network of lines delineate and guide
web formation over the whole wall. Initially pursued as a curious application, the spider-web
data was used as a guide to build a spatial and temporal model of point processes on linear
networks. The idea was to produce a modeling framework that incorporated the brick mortar
line’s spatial influence on the web building activity. This dataset’s influence is more apparent
in the presentation of the separable temporal framework in Section 5. Besides this spider
data, many processes that are analogous to this data structure include events along stream
networks, events along Interstate high-tension wires, water and gas pipeline networks, etc.

The two applications that have caught attention that can largely benefit from such model-
ing, with extensions to prediction, are street crimes and human related wildfires originating
near road and trail networks. Mapping and predicting “hot spots” for street crimes and hu-
man related wildfire origins could greatly aid police and firefighter efforts on ground. Crimes
in cities follow a categorical, spatial pattern depending on the type of target and crime; the
distribution of residential and commercial areas naturally influence crime occurrence, and
spatial temporal modeling of crimes over city road networks is the logical next step (Hering
and Bair (2014)).

In the case of wildfires, the vast majority of California wildfires have human related ori-
gins; as most wildfire origins are in nonurban settings, we want to map and understand their
interaction with the extensive road and trail network that exists in most park and forest areas
of California. With the right and sufficient covariate information, mapping wildfire origins
with respect to the road network could reveal high-intensity network regions that require
greater fire management. The various types of roads also act as the perfect proxy for human,
vehicular and structural density in the surrounding region; this provides information on road
accessibility and fuel availability that further affect fire spread. The methodology presented
below is a step toward achieving greater insight into such areas that require a rigorous amal-
gamation of both point process and spatial network theories.

The next section defines point processes on linear networks, and the following section out-
lines the separable temporal model and inference. Section 6 presents the model’s application
to the wildfire ignition locations, and Section 7 covers model assessment through comparison
to a simpler Euclidean model and residual analysis.
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4. Point processes on linear networks. A point process is a set of unordered points
x = {x1, . . . , xi, . . . , xn}, such that n ≥ 0 and xi ∈ W where W is a spatial window in d-
dimensional space Rd , d ≥ 1. The window W is assumed to have finite positive volume |W |.

A line segment in a plane with endpoints u and v is written as [u,v] = {tu + (1 − t)v : 0 ≤
t ≤ 1}. A linear network L is defined as a union L = ⋃n

i=1 �i of a finite collection of line
segments �1, . . . , �n in the plane. The total length of all the line segments in L is denoted by
|L|. Another way to represent a linear network L is by a set of vertices v1, . . . , vn and edges
eij = [vi, vj ], such that the intersection of two different edges occurs at only one point.

A point process on a linear network is a point process that occurs on or near a linear
network, generally in a two-dimensional space. The linear network L occurs within a specific
window W . The occurrence of the point process on/near the linear network could be due to
the structural limitations of the point generating process, such as road accidents on a street
network, or due to a contextual relationship between the point process and the environment
in which it occurs. For instance, the occurrence of human settlements near and around river
networks demonstrates the synergic interaction between a point process and a preexisting
linear network structure. While the majority of the examples illustrated in the present paper
are physical and social events occurring on a plane, the occurrence of such data structures is
not limited to these fields. The occurrence of spines on a neuron dendrite network is one such
case.

4.1. Papangelou conditional intensity. The first established step in understanding a point
process (on a linear network or otherwise) is estimating an intensity function (first moment
measure) for the points. The intensity function λ(x) is proportional to the probability of a
point occurring at infinitesimal space around x; otherwise, it is the expected infinitesimal
rate of a point in the observed window W . For a marked or unmarked point process, the
ideal case is to estimate an inhomogeneous intensity function λθ (u) to capture the spatial
trend. Ideally, this can be done through formulating a likelihood function and estimating the
parameters through maximum likelihood. However, formulating and evaluating a likelihood
function comprising individual intensities of the points P(X|�), where X = {x1, . . . , xn}, is
highly intractable. A convenient approximation to this is the pseudolikelihood function that
is a product of conditional intensity at each point.

The first step in formulating the pseudolikehood function is to estimate the (Papangelou)
conditional intensity at every location u ∈ x ∩ W as

(4.1) λ(u;x) = f (x ∪ {u})
f (x \ {u}) .

The Papangelou conditional intensity (Papangelou (1973/74)), loosely speaking, is the con-
ditional intensity of observing a point at u, given the rest of the process x in the window W .

In this paper, we assume a general Gibbs point process model with the Papangelou con-
ditional intensity taking a log linear form (Baddeley and Turner (2000)). Using the covariate
information on point locations, one way to model the Papangelou conditional intensity is

(4.2) λθ(u;x) = exp
(
θT S(u;x)

)
,

where S(u;x) is a matrix of spatial and network covariates defined at each point u ∈ x ∩ W ,
while θ ∈ � is the vector of parameters to be estimated.

5. Separable temporal model on linear networks. While the Papangelou conditional
intensity function is informative, it does not capture the temporal progression and death of
the point process. To understand and capture the various factors that affect the evolution of a
point process on a linear network, we introduce the separable temporal model of point pro-
cesses on linear networks. The goal of this model is to capture the dynamic action of new
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and existing points entering and exiting the process. As in the case of the spider web build-
ing data, such modeling is apt, as over time, new webs are built while existing webs persist
and disintegrate over time. The primary concept is to estimate separable (conditionally inde-
pendent) formation and dissolution intensity functions that capture the change in the point
process over a single time step. Conditioned on time step t , the product of the formation and
dissolution models estimates the point process at time step t +1. The idea is that, conditioned
on the previous time step, the point formation and dissolution models are independent and
might have different factors influencing them. The formation intensity captures the rate of
new point events forming after each time step, and the dissolution model captures the rate
of persistence of an existing point into the next time step. The model can be extended to be
conditioned on all the previous time steps, allowing for generalized formation and dissolution
models that could be used for prediction.

The impetus for this separable temporal model was gained from the separable temporal
exponential random graph model (STERGM) framework for dynamic networks developed
by Krivitsky and Handcock (2014).

5.1. Model specification. Given an observed point process on a linear network xt at time
step t , the formation point process X+ includes the new points along with the existing points
at t , and the dissolution point process X− includes only the points that persisted on from
time t . The realized counterparts of these processes are x+ and x−. Given x+, x− and xt , the
point process xt+1 can be evaluated as follows:

xt+1 = x− ∪ (
x+\xt ),

where x+ = xt ∪ xt+1 and x− = xt ∩ xt+1. As X+ is conditionally independent of X− given
Xt , then

P
(
Xt+1 = xt+1|Xt = xt ; θ) = P

(
X+ = x+|Xt = xt ; θ)

P
(
X− = x−|Xt = xt ; θ)

.

Here, separability is defined as X+ being conditionally independent of X− given Xt , such
that the parameter space θ is a product of the individual parameter spaces θ+ and θ−. This
indicates that the point formation and the dissolution processes do not interact, once the point
process at the beginning of the time step is observed.

Continuing from (4.2), we use a log-linear model to estimate the Markovian Papangelou
conditional intensity for the formation and dissolution models. That is, we are estimating a
Papangelou conditional intensity of a process (x+ and x−) that is also conditioned on the
previous time step (xt ). As a result, the point formation model is

P
(
x+|xt ) = ∏

u∈W

λ
(
u;x+) = ∏

u∈W

exp
{(

θ+)T
S+(

u;x+,xt )},
and the point dissolution model is

P
(
x−|xt ) = ∏

u∈W

λ
(
u;x−) = ∏

u∈W

exp
{(

θ−)T
S−(

u;x−,xt )},
where u indicates every point on the whole window W on which the linear point process
was observed. S+(u;x+,xt ), and S−(u;x−,xt ) represent the sufficient statistics, based on
Xt = xt , which attempt to capture the formation and tenacity of point events over time.
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5.2. Pseudolikelihood inference. The conditional intensity of the separable model for a
single time step can be written as follows:

λθ

(
xt+1|xt ) = ∏

u∈W

λ
(
u;x+) ∏

u∈W

λ
(
u;x−)

= ∏
u∈W

exp
{(

θ+)T
S+(

u;x+,xt )} ∏
u∈W

exp
{(

θ−)T
S−(

u;x−,xt )}

= exp
{ ∑

u∈W

((
θ+)T

S+(
u;x+,xt )) + ∑

u∈W

((
θ−)T

S−(
u;x−,xt ))}.

Given the conditional intensity at a single time step, the pseudolikelihood function of the
separable temporal linear point process model at a single time step (Besag and Diggle (1977))
is

PL
(
θ |xt+1) =

( ∏
xi∈W

λθ

(
xt+1|xt )) exp

(
−

∫
W

λθ

(
xt+1|xt )du

)
.

Assuming a first order Markov property, the pseudolikelihood function of the complete sep-
arable temporal linear point process model, over all the k time steps is

(5.1) PL(�|x1, . . . ,xk) =
k−1∏
t=1

PL
(
θ |xt+1)

,

and the corresponding log pseudolikehood function is

log PL(�|x1, . . . ,xk) =
k−1∑
t=1

log PL
(
θ |xt+1)

=
k−1∑
t=1

(
n∑

i=1

logλθ

(
xt+1
i |xt ) −

∫
W

λθ

(
xt+1|xt )du

)
.

(5.2)

The numerical solution to the above expression needs iterative algorithms. Instead, we use
the estimation method used by Baddeley and Turner (2000) in R’s spatstat package; it is
an adaptation of a technique introduced by Berman and Turner (1992). The Berman–Turner
method, with the help of a quadrature rule, discretizes the integral calculation to a weighted
poisson likelihood. We approximate the integral in (5.2) using the following quadrature rule:

∫
W

λθ

(
u|xt , θ

)
du ≈

m∑
j=1

λθ

(
uj |xt , θ

)
wj ,

where uj , j = 1, . . . ,m, are quadrature points in W and wj > 0 are quadrature weights
summing to |W |. This produces an approximation to the log-pseudolikelihood in (5.2) as

(5.3) log PL(�|x1, . . . ,xk) ≈
k−1∑
t=1

(
n∑

i=1

logλθ

(
xt+1
i |xt ) −

m∑
j=1

λθ

(
uj |xt , θ

)
wj

)
.

Here, consider that the list of quadrature points {uj , j = 1, . . . ,m} subsume all the observed
data points {xi, i = 1, . . . , n}. Then, (5.3) can be rewritten as

(5.4) log PL(�|x1, . . . ,xk) ≈
k−1∑
t=1

(
m∑

j=1

(yj logλj − λj )wj

)
,
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where λj = λθ (uj ) and yj = zj /wj , and

zj =
{

1 if uj is a data point, uj ∈ x,

0 if uj is a dummy point, uj /∈ x.

The expression in (5.4) is similar to the log likelihood of independent poisson variables
Yk with means λk taken with weights wk . As a result, a GLM framework software that is
capable of handling weighted likelihoods and noninteger response values was used to fit
the seperable temporal linear point process model (STLPPM) framework. However, as the
GLM setup assumes independent poisson variables, which is not the case here, the standard
errors produced by the software are invalid. As an alternative, moving block bootstrap (MBB)
standard errors are presented. For more details on MBB standard errors, see Appendix B.

6. Application to wildfire ignitions.

6.1. Current literature on wildfire modeling. Most work in wildfire literature focusses
on modeling burn area centroidal locations and not wildfire ignition origin locations. How-
ever, since the majority of California wildfires have human-related origins, it is important to
understand the spatial and temporal distribution of human-related wildfire ignitions. Besides
Balch et al. (2017), Syphard and Keeley (2015) is one of the few papers that focusses on
modeling wildfire ignition locations. The paper aims to identify whether different ignition
sources cause distinct spatial or intraannual temporal patterns of wildfires. The authors use
ignition data from 2006 to 2010 and focus on two subregions of Southern California (Santa
Monica Mountains and southwestern region of San Diego County). They model each igni-
tion type separately with a maximum entropy model and conclude that, while equipment fires
were the most frequent, arson and power line ignitions caused the most area burned in the
Santa Monica Mountains region. They also identify that the distance to roads and structures
predominantly affects ignition probability.

While our goal is similar to Syphard and Keeley (2015), we do not model ignition types
separately nor do we use the ignition type as a point covariate in our model. This is because
we want to map and model original ignition locations with respect to the road network and
capture if and to what degree different road types affect ignition intensities. The idea is that
different road types act as proxy for the amount of human and structural density in that
region. Our goal is to fit a formation model to 13 years of wildfire ignition location data, so
as to understand the spatial and temporal distributions of high ignition intensity roads in the
Santa Monica Mountains region.

6.2. Data: Road network. To aid comparison with Syphard and Keeley (2015), the Santa
Monica Mountains region is chosen to model the wildfire origins near the road network. The
linear network was extracted using the “osmar” R package (Schlesinger and Eugster (2010))
from OpenStreetMap1 (https://www.openstreetmap.org). The different road types have been
consolidated into five broad categories depending on the vehicular and foot activity, and
whether they are commercial or residential.1 These five road types can be seen in Figure 2 and
their relative proportions in Table 1. Road1 represents the major motorways, trunk, primary
and their link roads. Road2 represents the secondary, tertiary, service and link roads. Paths
represents cycleways, footways, paths, bridleways, tracks and pedestrian paths. Residential
and path road types make up most of the linear network at 39% and 30%, respectively.

1It is assumed that the road network over the Santa Monica Mountains region has remained the same over the
13 years of the model. It is also assumed that the road classification in this region has not drastically changed for
the broad categories used in the present paper to be affected.

https://www.openstreetmap.org
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FIG. 2. Road type in the Santa Monica Mountains region.

6.3. Data: Wildfire ignition data. The wildfire ignition data is sourced from Short (2015),
and subsetted to the Santa Monica Mountains region. This resulted in 175 unique wildfires
in the region between 2000 and 2013. The database provides discovery date, final fire size,
ignition cause and an origin point location. The ignition cause breakdown for the 175 fires
is shown in Table 2. Despite the availability, the ignition cause variable is not used in model
fitting as the main goal of the linear networks methodology is to understand and measure
the effect of human activity (including vehicular and structural density) on where wildfire
ignitions are occurring.

As the methodology requires the point events to occur on the linear network, the 175
wildfire origin locations are projected to the nearest network road and are shown in Figure 4.
The mean projected distance for the 175 wildfires is 66 meters and 150 (85%) of the 175
wildfires are within 100 meters to the nearest road on the network. All projection lengths for
the 175 wildfires are under a mile in length, and a histogram of the distances can be seen in
Figure 3.

6.4. Data: RAWS data, elevation and wildland-urban interface. Following the lead of
Xu and Schoenberg (2011), we extract daily meteorological variables from the nearest four
remote automated weather stations (RAWS shown in Figure 4 in blue) around the region to
use as covariates in the model. Daily values of total precipitation, average humidity, average
temperature and average wind speed from 2000 to 2012 were extracted and spatially and

TABLE 1
Breakdown of road types in the Santa Monica Mountains region

Road type % of Road type by length in the network

Paths 29.73
Residential 38.69
Road1 5.42
Road2 23.89
Unknown 2.24
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TABLE 2
Santa Monica Mountains 2000–2013 wildfire ignition cause breakdown

Ignition Cause # of Fires between 2000–2013 Acres burned

Arson 10 26.51
Campfire 4 4916.2
Children 4 42.21
Debris Burning 4 13.3
Equipment Use 36 109.66
Fireworks 3 3.1
Lightning 1 0
Miscellaneous 23 134.91
Missing/Undefined 69 4732.33
Powerline 12 904.9
Smoking 8 1.81
Structure 1 2

temporally smoothed using generalized additive models (Hastie and Tibshirani (1990)) over
the linear network window. Elevation (from USGS’ https://nationalmap.gov) and change in
elevation are additional covariates included in the model as they affect the presence of roads,
infrastructure and human activity.

Finally, the road network was tagged by wildland-urban interface (WUI) categories
sourced from Radeloff et al. (2017).2 A WUI region is an area where houses meet or in-
termingle with wildland vegetation, and these regions provide large amounts of fire fuel. The
WUI categories used to tag the road network are “Interface, Intermix” and “Non-WUI.” It is
important to note that the non-WUI category refers to both structurally dense and vegetation
dense regions as they are neither interface or intermix regions. So an urban region and a forest
land would both be categorized as non-WUI. The WUI regions over Santa Monica Mountains
region can be seen at silvis.forest.wisc.edu/data/wui_change/.

6.5. Results: Formation model of wildfire ignition origins. The 14 years of wildfire igni-
tion data result in 13 formation point processes that form the basis of the formation model.

FIG. 3. Projection distance in meters of the 2000–2013 wildfire origin locations to the nearest road.

2We have looked closely at the change of WUI from 2000 to 2010 and given the minute differences in the
region, decided to use to 2010 WUI data for all the years of the formation model in the paper.

https://nationalmap.gov
http://silvis.forest.wisc.edu/data/wui_change/
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FIG. 4. Remote automated weather stations in blue in the Santa Monica Mountains region and the projected
locations of 2000–2013 wildfires in red.

For example, the formation point process between the years 2000 and 2001 is:

(6.1) x+
2000−01 = x2000 ∪ x2001.

Each formation point process is assigned with dummy points that are placed equidistantly
on the linear network and weighted accordingly. The data points (wildfire origin locations)
are also assigned weights based on the length of the network segment on which they lie.
Through the Berman–Turner device (Berman and Turner (1992)) introduced in Section 5.2,
the weighted data and dummy points along with their corresponding spatial covariate values
(meteorological and network) produce the following estimate to the wildfire ignition forma-
tion model (conditional intensity of ignition occurrence), seen in Table 3.

TABLE 3
Formation intensity of wildfire ignitions on the Santa Monica Mountains region. Roadtype-Residential, August

and Intermix are the reference levels

Parameter Coefficient Estimate MBB SE MBB 95% CI

(Intercept) 0.127 2.407 (−4.535,3.565)

Roadtype-Paths 0.410 0.193 (0.290,0.813)

Roadtype-Road1 2.013 0.080 (2.001,2.233)

Roadtype-Road2 0.808 0.228 (0.612,1.291)

Roadtype-Unknown 1.244 0.284 (0.694,1.564)

January −1.005 0.636 (−2.331,0.047)

February −1.736 0.640 (−3.518,−0.924)

March −1.072 0.637 (−2.802,−0.805)

April −1.158 0.518 (−2.213,−0.344)

May −0.470 0.443 (−1.387,0.205)

June −0.074 0.422 (−0.952,0.394)

July 0.298 0.100 (−0.069,0.296)

September −0.178 0.268 (−0.969,0.075)

October −0.441 0.326 (−1.255 − 0.162)

November −0.671 0.539 (−1.579,0.368)

December −1.845 0.479 (−2.473,−0.460)

Total Precipitation −0.143 0.085 (−0.305,−0.038)

Ave. Temperature −0.011 0.068 (−0.128,0.113)

Ave. Humidity −0.011 0.004 (−0.012,0.003)

Ave. Wind Speed −0.016 0.230 (−0.470,0.220)

Elevation −0.0002 0.001 (−0.002,0.002)

Slope 0.009 0.002 (−0.001,0.007)

Interface 0.861 0.182 (0.726,1.285)

Non-WUI 0.282 0.200 (0.164,0.749)
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6.6. Discussion. The estimates for all roadtypes, compared to the residential road type,
indicate higher ignition intensities than the residential roads in the network. This is apparent
as most human-related wildfires would not spread to become wildfires if originating in high
density residential areas. “Paths, Road1” and “Road2” categories are all likely to increase
wildfire ignition intensity by at least a factor of 1.5 when compared to residential roads.
“Road1,” which represents that high traffic highways and motorways, has the largest effect
on ignition intensity at a factor of 7.5. This is possibly due to drier fuels along the high-traffic
highways. The “Unknown” road type also has a relatively high effect on ignition intensity. As
they indicate the associated human activity and structural density in that area, the road-type
categories are crucial to understanding wildfire origin distribution.

If we reconsider the roadtype map in Figure 2, “Paths” are generally in areas of higher
elevation and mostly experience foot traffic in this region. Residential roads frame a large
part of the region and generally lead into highly urbanized areas, reducing the likelihood of
wildfire ignitions. “Road1” and “Road2” types generally traverse the whole window, cover-
ing urban and interface/intermix regions in the window. This indicates that roads that see a
varying levels of human activity (vehicular and otherwise) and structures, like “Road1” and
“Road2,” have higher ignition intensities than the mostly foot trafficked paths and densely
residential areas.

The monthly effects of ignition intensity vary over the year, with August as the reference
month. August is a relatively dry month in Southern California that also receives the dry,
high-speed Santa Ana winds from the east, making it a high fire hazard month. Compared to
August, almost every other month has a lower ignition intensity at varying degrees. December
has the lowest rate of ignition intensity while July has the highest rate of ignition intensity
over the year. Overall, the late summer and early fall months, June to September, indicate
higher ignition intensities. Despite the monthly effect, there has been a sustained expansion
in the length of fire seasons due to increase in human-related causes (Balch et al. (2017)).
While this expansion in the fire season is not captured due to the time inhomogeneity of the
model, the inclusion of the road network as a human proxy does account for the consistent
human involvement in wildfire ignition intensity over the 14 year time period.

The meteorological variables, elevation and slope have modest effects on wildfire ignition
intensity. While the main goal of the separable temporal linear point process (STLPP) model
is to understand human involvement and contribution to ignition occurrence, the meteoro-
logical variables account for the highly fire prone climate of Southern California. The dry
summer and fall seasons, dense highly-flammable chaparral vegetation and seasonal Santa
Ana winds all combine to produce high fire hazard conditions (Xu and Schoenberg (2011))
in this region.

Finally, the wildland-urban interface regions are 2.3 times more likely to have higher ig-
nition intensities than the intermix regions. The non-WUI regions are also more likely than
intermix regions, to experience higher ignition intensities. However, as previously mentioned,
non-WUI regions include densely urbanized and purely wildland regions. The next step
would be to categorize these regions separately, to isolate intensities on wildland regions.
Once again, WUI regions have been systematically growing in the United States, increasing
fire risk. This has mostly been due to increase in housing in these regions in the past three
decades (Mann et al. (2014), Radeloff et al. (2018)).

While the results in Table 3 only provide indications on how network and weather covari-
ates affect ignition intensity, the great benefit of the STLPP model is that we can study the
spatial distribution of the estimated ignition intensities on the road network. Figure 5 shows
the conditional ignition intensities for the last three formation years over the Santa Monica
Mountains region.

The plotted intensities fall into five different quantiles with the lowest 20% quantile rep-
resented by the darkest color and the top 20% quantile represented by the lightest color; the
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FIG. 5. Estimated conditional ignition intensities over the Santa Monica Mountains region.

lighter the color, the larger the conditional ignition intensity estimate. An initial glance indi-
cates that the intensities (from 2010 to 2013) have stayed relatively similar over the region.
The highly urbanized regions in the south (Malibu), southeast (Pacific Palisades), and the
north/northeast (Woodland Hills, Tarzana and Encino) have consistently lower ignition in-
tensities. These regions are predominantly residential and are also categorized as interface
and non-WUI regions (Radeloff et al. (2017)). Even though the model indicates high-ignition
intensities for interface regions, the stated regions are highly residential or central urban lo-
calities possibly leading to lower consistent ignitions over the 14 years. The model would
probably disentangle the urban vs. wildland effects better if the non-WUI category was bro-
ken down to identify them separately.
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Intensities begin to grow as we move inward into the mountainous areas of the network.
This region is a mix of non-WUI vegetated and WUI-intermix regions, the roads here are
also mostly “Road2” and “Paths;” this indicates that houses and building structures are in-
termixed with large swaths of wildland areas. This makes this region highly prone to fast
spreading fires due to the availability of vegetation and increasing elevation. Interestingly
enough, the model estimates varying and increasing ignition intensities in this region. The
smaller, nonresidential roads and paths act as a perfect proxy for the sparser amount of hu-
man and structural presence in the nonurbanized region; such regions are more wildfire prone
than highly urbanized regions due to the availability of burn fuel.

6.7. 2017–2018 Southern California wildfires. Southern California has experienced
some of the largest, most damaging fires in its history in the years 2017 and 2018. The
Woolsey fire of November 2018 burned through most of the network window but has its
origin location above it. The Skirball fire of December 2017 has its origin location within
the current window. We focus in on this region to observe how the ignition intensities have
changed over the last three years of data. The Skirball fire origin is shown in red, and the
neighboring region can been seen Figure 6.

The Skirball fire in Los Angeles occurred in December 2017 and originated due to illegal
cooking at a homeless encampment beside the high traffic 405 freeway. The origin location
(in the northeast corner of our study window) is away from the residential roads but relatively
close to the city’s main traffic artery and some other narrower dirt roads and paths. The area
of the origin location is also categorized as wildland-urban intermix, where the ratio of wild-
lands to structural density is higher. The STLPP model’s estimates are generally consistent
and only slightly variable over the last three years. A closer look reveals that regions with
higher density of residential roads have consistently lower ignition intensities, while WU in-
termix regions with a variety of road types have higher, more variable ignition intensities.
This reiterates the point that nonurbanized regions that flank urbanized regions are prone to
higher ignition intensities due to human activity and vegetation availability.

The more recent Woolsey fire of November 2018 originated on a laboratory complex that
is in a vegetated region with very low to no housing density. While the origin cause is being
investigated, a circuit outage was reported in the area. The region is relatively inaccessible
and, due to the nearby Hill fire, fire fighter response was delayed. The confluence of all
these factors along with the Santa Ana winds and the surrounding vegetated canyons led the

FIG. 6. Ignition location of Skirball fire of December 2017 and estimated ignition intensities around the Skirball
fire location from 2011 to 2013. (Colors correspond to the legends seen in Figures 2 and 5.)
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Woolsey fire to spread very quickly. A close look at the final burn area reveals that most of
the areas burned through are vegetation rich WUI regions that are also relatively inacces-
sible. This is still consistent with our model outlook that low structural density, vegetated,
interface/intermix regions have high ignition intensities and increasing construction in these
regions only adds to the fire risk.

7. Model assessment.

7.1. Comparison to the Euclidean distance model. To better understand the benefits of
the STLPPM framework of modeling point processes on linear networks, a comparison to a
simple Euclidean distance model is presented. The spatial model takes into account the near-
est distance to different road types from each point (including the wildfire locations) in the
window as spatial covariates. Elevation over the window is also included into the model as a
spatial covariate. This model presents the original (nontemporal) Papangelou conditional in-
tensity, and the main goal is to discern how distance to different roadtypes affects the ignition
intensity. The spatial model presented in Table 4 is

(7.1) logλθ (u) = θ0 +
5∑

i=1

θidi(u,R) + θ6S(u),

where di(u,R) is the nearest distance from point u to the ith type road and S(u) is the
elevation at point u.

The results from the Euclidean distance model indicate that “Unknown, Residential” and
“Road1” types have the highest effect, that is, the lower the distance to these roads, the higher
the ignition intensity. Alternatively, “Road2” and “Path” types have extremely low effects on
ignition intensities. Elevation has about the same effect as it did in the STLPPM. While the
model is too simplistic and does not include many important weather and land classification
variables, it is difficult to gain satisfactory insight from this model. However, despite the
obvious improvements to the Euclidean model, a direct contrast with the STLPPM framework
does reveal a few drawbacks that are absent in the STLPPM framework.

A major drawback with the Euclidean model is that it adopts a purely isotropic view of
the land’s geography while the separable temporal model is geographically responsive as
it models along the linear network. The Santa Monica Mountains region is geographically
variable, with many canyons and hills. While the Euclidean model adopts a straight line
distance to road types, the STLPPM framework is geographically aware of how many of the
road types, especially “Road1, Road2” and “Paths,” traverse different terrains in the region.
This possibly explains the contradictory effects of “Road2” and “Unknown” roadtypes in the
Euclidean model and STLPPM.

TABLE 4
Euclidean distance model

Parameter Coefficient Estimate MBB SE MBB 95% CI

(Intercept) 9.098 13.804 (−20.302,9.055)

Distance to Paths −92.409 548.844 (−74.331,55.264)

Distance to Road1 −9.784 313.218 (−62.257,7.795)

Distance to Road2 −169.766 174.700 (−386.5,4.15e−12)

Distance to Residential −5.937 78.495 (−71.06,1.40e−12)

Distance to Unknown −2.157 382.801 (−32.104,17.055)

Elevation 0.00115 0.014 (−6.76e−05,0.021)



WILDFIRE IGNITION NEAR ROAD NETWORKS 353

Another drawback of the Euclidean model is that the spatial trend plot does not provide the
same level of granularity that the STLPPM does. The STLMMP identifies specific roads that
exhibit higher ignition intensities and knowing specific lengths of roads is more beneficial to
land management solutions. Overall, while we do agree that the presented Euclidean distance
model can be improved upon, the comparison was mainly to reiterate STLPPM’s ability to
present a more nuanced view of ignition distribution, which is implicitly dependent on human
and vehicular activity.

7.2. Residual analysis. Aside from the moving block bootstrap standard errors provided
with the model estimates, residual analysis, outlined in Baddeley et al. (2005), was per-
formed. While the residuals were relatively small, they were not very informative in terms of
model improvement. Another technique by Clements, Schoenberg and Veen (2012), called
super-thinning, was also employed to assess the fit of the seperable temporal model. Super-
thinning is a combination method of thinning and superposition that produces a homogeneous
poisson process with a certain rate k if and only if the estimated intensity (λ̂) is equal to the
actual intensity (λ) almost everywhere. The super-thinned process is then examined for ho-
mogeneity to assess the goodness of fit of λ̂.

The mean of the estimated conditional intensity from the formation model is around 0.66.
For the first attempt of super-thinning, the tuning parameter k = 1 was chosen. Figure 7
shows the original wildfires and the super-thinned residuals over the Santa Monica Mountains
region.

In general, there are more super-thinned residuals than there are original wildfires. To as-
sess the goodness-of-fit of the formation model, the super-thinned residual wildfires should
be similar to a homogeneous poisson process with rate k = 1. It is important to note that
super-thinning was limited to the linear network over the Santa Monica Mountains region,

FIG. 7. The original and super-thinned residual wildfires over the Santa Monica Mountains region with tuning
parameter k = 1.
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and the uniformity of the super-thinned process should be assessed with respect to the net-
work density. As a result, the super-thinned residual fires are much more common in high-
density network regions of Santa Monica and along the 101 Freeway in the north. Visually,
the super-thinned residuals seem to be fairly uniform given the linear network density around
them; that is, high network density regions have more fires than low network density regions;
this is in keeping with a homogeneous poisson process on a linear network. This indicates
that, in general, the estimated formation model has captured the wildfire origin intensity de-
cently well.

8. Conclusion. This paper presents a new approach to modeling point process data com-
bined with linear networks. We present a novel and critical application to the modeling of
wildfire origin locations on road networks. Aside from the novelty of using linear network
data, most of the current wildfire research models wildfire burn area centroids rather than
origin locations. The presented seperable temporal model not only models origin locations
but also models their relationship to road networks. This provides a more nuanced look at
how human movement and activity affect wildfire ignitions in Southern California. The tem-
poral aspect of the model also provides a medium to long term spatial view of where most
of the ignitions have occurred, allowing greater insight into handling and running fire man-
agement programs. The model, combined with burning and fire hazard indices, can aid and
direct park rangers and fire fighters to better implement programs such as park closures, fuel
management etc.

The model’s strongest suit is in providing a spatial distribution of conditional intensities
dependent on the density and type of roads. This feature has also brought to light the impor-
tance of wildland-urban interface and intermix (WUI) areas and their high proclivity to fire
ignitions (due to high fuel abundance and volatile human activity).

APPENDIX A: SPIDER WEB LOCATIONS ON BRICK MORTAR LINES

This data was identified by entomologist Sasha Voss of University of Western Australia
and manually digitized by Mark S. Handcock. The dataset records the Oecobius navus spider
web positions in the mortar lines of brick walls. The dataset consists of weekly recordings
from multiple sites, observed over a six week period from May to July 1999. In Figure 8 is a
view of a single quadrant’s data with covariate information.

APPENDIX B: MOVING BLOCK BOOTSTRAP FOR SPATIAL DATA

As the Papangelou conditional intensity of web or wildfire occurrence (on a linear net-
work) is spatially dependent, one cannot draw random samples from the dataset to produce
bootstrap samples. As an alternative, the moving block bootstrap (MBB), introduced inde-
pendently by Künsch (1989) and Liu and Singh (1992), is employed here to produce boot-
strapped standard errors. The idea of applying moving block bootstrap to spatial data was
also introduced by Hall (1985).

Assume that X1,X2, . . . is a sequence of stationary random variables, and let Xn =
(X1, . . . ,Xn) denote the observations. In the wildfires case, Xn represents the complete set
of data and dummy points from the window. Given the data, blocks of size l are defined as
Bj = (Xj , . . . ,Xj+l−1), j = 1, . . . ,N where N = n − l + 1 denotes all the possible over-
lapping blocks in Xn. The bootstrap blocks are obtained by selecting a random sample of b

blocks from the full set of overlapping blocks {B1, . . . ,BN }.
For the standard errors in Table 3, the MBB method was implemented with a block size of

1.3 million data points taken from the full set of 2.3 million points.
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FIG. 8. Site D, Quadrant Q2 on 10 June 1999. A—Adult spider, J—Juvenile spider, WA—Web with Adult spider,
WJ—Web with Juvenile spider.
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