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We introduce and evaluate the oblique random survival forest (ORSF).
The ORSF is an ensemble method for right-censored survival data that uses
linear combinations of input variables to recursively partition a set of training
data. Regularized Cox proportional hazard models are used to identify linear
combinations of input variables in each recursive partitioning step. Bench-
mark results using simulated and real data indicate that the ORSF’s predicted
risk function has high prognostic value in comparison to random survival
forests, conditional inference forests, regression and boosting. In an applica-
tion to data from the Jackson Heart Study, we demonstrate variable and par-
tial dependence using the ORSF and highlight characteristics of its ten-year
predicted risk function for atherosclerotic cardiovascular disease events (AS-
CVD; stroke, coronary heart disease). We present visualizations comparing
variable and partial effect estimation according to the ORSF, the conditional
inference forest, and the Pooled Cohort Risk equations. The obliqueRSF
R package, which provides functions to fit the ORSF and create variable and
partial dependence plots, is available on the comprehensive R archive net-
work (CRAN).

1. Introduction. Since Breiman (2001) introduced the random forest (RF), it
has become recognized as a flexible and accurate tool for classification, regression,
and right-censored time-to-event (i.e., survival) analysis (Strobl, Malley and Tutz
(2009)). RFs are characterized by an ensemble of decision trees, each of which

Received November 2018; revised April 2019.
1The REasons for Geographic and Racial Differences in Stroke (REGARDS) study is supported by

a cooperative agreement (U01 NS041588) from the National Institute of Neurological Disorders and
Stroke, National Institutes of Health, Department of Health and Human Service. Additional support
was provided by grant R01 HL080477 from the National Heart, Lung and Blood Institute. The Jack-
son Heart Study (JHS) is supported and conducted in collaboration with Jackson State University
(HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi State Depart-
ment of Health (HHSN268201800015I/HHSN26800001) and the University of Mississippi Medical
Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts from
the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute for Minority Health
and Health Disparities (NIMHD).

Key words and phrases. Random forest, survival, machine learning, penalized regression, cardio-
vascular disease.

1847

http://www.imstat.org/aoas/
https://doi.org/10.1214/19-AOAS1261
http://www.imstat.org


1848 B. C. JAEGER ET AL.

are grown through recursive partioning (Breiman (1984)). Recursive partitioning
is performed in steps, where each step involves splitting a set of data into two de-
scendant subsets, beginning with the full set. The data are split based on an input
variable X and a splitting value c such that one descendant set contains obser-
vations in the current data with X < c and the other set contains observations in
the current data with X ≥ c. The splitting variable and value are chosen to max-
imize the difference between the descendant sets in an outcome variable, and the
splitting variable can be either a single input variable or a linear combination of
input variables (LCIVs). Descendant data sets that are split into smaller sets are
referred to as “nonterminal nodes” in the tree. Descendant data sets that are too
small to split further (i.e., data sets with less than a prespecified minimum number
of unique observations or events) are not split any further and are referred to as
“terminal nodes” (i.e., leaves) of the tree.2 Predictions for a single test observation
are computed by determining which terminal node the observation falls to and then
aggregating the outcomes of participants in the training data who were mapped to
the same node.

Breiman (2001) showed that RFs often achieve lower generalization error when
LCIVs are used instead of a single variable (i.e., oblique splitting versus axis-based
splitting) to split the training data in each recursive partitioning step. Hothorn and
Lausen (2003) incorporated LCIVs by applying linear discriminant analysis to out-
of-bag data and using predicted values from the discriminant model for in-bag data
as a candidate splitting variable. Menze et al. (2011) introduced oblique RFs, and
showed that Breiman’s method of constructing LCIVs could be improved by fit-
ting regularized regression models (Hastie, Tibshirani and Friedman (2001), Sec-
tion 3.4) to the data in nonterminal nodes and synthesizing a splitting variable us-
ing the model’s predictions. Zhu, Zeng and Kosorok (2015) proposed to construct
LCIVs using the most important K variables, which they identified by fitting en-
sembles of extremely randomized trees (Geurts, Ernst and Wehenkel (2006)) to
the data in each nonterminal node. For classification and regression problems, RFs
with LCIVs have achieved excellent generalization error (Breiman (2001), Sec-
tion 5) for several data sets in public repositories (Dheeru and Karra Taniskidou
(2017)).

Random survival forests (RSFs) (Ishwaran et al. (2008)) and conditional infer-
ence forests (CIFs) (Hothorn, Hornik and Zeileis (2006)) extend Breiman’s RF to
right-censored survival data, but neither of these recursive partitioning algorithms
incorporate LCIVs. Additionally, to our knowledge, there are no studies exam-
ining the use of LCIVs for recursive partitioning in the context of right-censored
survival outcomes (Bou-Hamad, Larocque and Ben-Ameur (2011)). Therefore, we
developed and evaluated a method to incorporate LCIVs in binary decision trees

2The term “node” refers to a descendant data set in the decision tree. The term “splitting” a node
refers to partitioning the descendant data into two nonoverlapping subsets.



OBLIQUE RANDOM SURVIVAL FORESTS 1849

for right-censored survival data. Zhu (2013) found that extremely randomized sur-
vival trees did not produce optimal multiplicative coefficients for LCIVs. Thus,
we extended the approach of Menze et al. (2011) by using regularized (Zou and
Hastie (2005)) Cox proportional hazards (PH) (Cox (1992), Simon et al. (2011))
models to identify multiplicative coefficients for LCIVs in each recursive parti-
tioning step. Following the notation of Menze et al. (2011), we refer to our method
as the oblique RSF (ORSF).

The purpose of this article is to describe the ORSF and assess the prognostic
value of its predicted risk fucntion. After a brief summary of RSFs and CIFs in
Section 2, ORSFs are described in Section 3. Simulated and real data are used
in Sections 4 and 5, respectively, to assess performance of the ORSF in compar-
ison to the RSF, CIF, gradient boosted decision trees and Cox PH models. Per-
formance and mean time required for computation over the entire collection of
data from Sections 4 and 5 is assessed in Section 6. In Section 7, we apply the
obliqueRSF R package to conduct exploratory analyses using data from partic-
ipants in the Jackson Heart Study (JHS). Our analysis of the JHS data focuses on
atherosclerotic cardiovascular disease (ASCVD) and its dependence on four key
variables: age, systolic blood pressure, estimated glomerular filtration rate and left
ventricular mass. We conclude with a summary and discussion of our results in
Section 8.

2. Ensemble tree methods for right-censored survival data. Here we sum-
marize two separate implementations of ensemble tree methods for right-censored
survival data:

1. Random survival forest (RSF) (Ishwaran et al. (2008)).
2. Conditional inference forest (CIF) (Hothorn, Hornik and Zeileis (2006)).

We present an ad-hoc summary of the steps taken to grow ensembles of binary
decision trees for right-censored survival data (i.e., survival trees) in Section 2.1.
Section 2.2 contains notation to describe the framework of survival ensembles.
Last, we present summaries of the RSF and CIF in Sections 2.3 and 2.4, respec-
tively.

2.1. How to grow ensembles of survival trees.

Step 1 Draw B subsamples3 from the data: {D1, . . . ,DB}
Step 2 For b = 1, . . . ,B , grow a survival tree using Db:

(a) Initiate NG = {Db}, the set of “nodes to grow.”
(b) If NG = ∅, go to (c). Otherwise, for each node in NG, do the following:

3The RSF applies bootstrap sampling with replacement, whereas the CIF uses sampling without
replacement to achieve unbiasedness.
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(i) Define the set of candidate splitting variables for the current node
by selecting a random subset of the available predictor variables.4

(ii) 5If there is no evidence of statistical association between the sur-
vival outcome and any of the candidate splitting variables, then (1) remove
the current node from NG, (2) label the current node as “terminal,” and
(3) skip steps (iii) and (iv) below.

(iii) Split the current node into descendant nodes,6 A1 and A2, using the
candidate splitting variable that maximizes a log-rank statistic comparing
survival outcomes between A1 and A2.

(iv) Remove the current node from NG. If A1 has at least a minimum
number of unique observations (i.e., minsplit or nodesize), add A1

to NG. Otherwise, label A1 as “terminal.” Do the same for A2.

(c) Define a predicted survival or cumulative hazard function for each terminal
node based on the observed survival times in the node.

Step 3 Aggregate predicted survival7 or cumulative hazard functions from the B

survival trees to compute ensemble predictions.

2.2. Notation. Consider right-censored survival data from N participants:
(y1,x1, δ1), . . . , (yN,xN, δN). For participant i, 1 ≤ i ≤ N , yi represents survival
time if δi = 1 and time to censoring if δi = 0, xi is a length p vector of predictors:
(xi,1, . . . , xi,p). Denote the j th column of the matrix x = [x1, . . . ,xN ]′ as x(j). Let
t1 < · · · < tm denote the m unique event times (assume there are no ties). Denote
the bth survival tree as Tb, let Tb(xi ) identify the terminal node in Tb participant
i is mapped to, and let cib denote the number of times the data from participant
i occurs in the bth bootstrap sample. Following the counting process notation of
Andersen et al. (2012), define

(2.1) Ni(s) = I (yi ≤ s, δi = 1); Yi(s) = I (yi > s),

where 0 ≤ s ≤ tm and I (·) is the indicator function. Define

(2.2) N∗
b (s,x) =

N∑
i=1

cib · I (
xi ∈ Tb(x)

) · Ni(s)

4Software packages generally use the term mtry to denote the size of the random subset of pre-
dictors.

5This step only occurs in the CIF.
6For survival trees, descendant nodes must have at least nmin unique observations that are not

censored.
7The CIF applies a nearest neighbor aggregation scheme to aggregate predictions from each tree,

whereas the RSF weights all trees equally.



OBLIQUE RANDOM SURVIVAL FORESTS 1851

and

(2.3) Y ∗
b (s,x) =

N∑
i=1

cib · I (
xi ∈ Tb(x)

) · Yi(s)

as the number of uncensored events prior to and number of participants at risk at
time s, respectively, in Tb(x).

2.3. The random survival forest (RSF). The RSF extends the prescription de-
scribed by Breiman and Cutler (2003) to the context of survival analyses. The
log-rank statistic (Segal (1988), Section 3.2) is applied to determine which can-
didate variable and cut-point should be used. A Nelson–Aalen estimator of the
cumulative hazard function is formed in each terminal node based on the survival
times of observations in the node:

(2.4) Ĥb(t | x) =
∫ t

0

N∗
b (ds,x)

Y ∗
b (s,x)

.

In turn, the ensemble survival function is

(2.5) ŜRSF(t | x) = exp

[
− 1

B

B∑
i=1

Ĥb(t | x)

]
.

2.4. The conditional inference forest (CIF). The CIF avoids variable selection
bias (Breiman (1984), pg. 42) by applying permutation tests (Strasser and Weber
(1999)) to compare candidate splitting variables. During each recursive partition-
ing step, if there is no evidence of association between any of the candidate vari-
ables and the response, the current node is not split and is labeled terminal. For
ensemble prediction, the CIF applies a weighted Kaplan–Meier estimate (Hothorn
et al. (2004)) based on all training observations in the B leaves containing the new
observation:

(2.6) ŜCIF(t | x) = ∏
s≤t

[
1 −

∑B
b=1 N∗

b (ds,x)∑B
b=1 Y ∗

b (s,x)

]
.

3. The oblique random survival forest (ORSF). Here we describe the
ORSF, beginning with the use of regularized Cox PH models (Section 3.1) and
synthesis of candidate splitting variables using regularized Cox PH models (Sec-
tion 3.2). Additional details related to sampling and prediction are provided in
Section 3.3.

3.1. The regularized Cox PH model. The ORSF embeds regularized Cox PH
models into the nonterminal nodes of its survival trees. Suppose there are K obser-
vations in the current nonterminal node. The embedded Cox PH model assumes a
semi-parametric form for the hazard:

(3.1) hk(t) = h0(t)e
xT

k β ,
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where k = 1, . . . ,K , hk(t) is the hazard for observation k at time t , h0(t) is the
baseline hazard function, and β is a vector of mtry≤ p coefficients, where mtry
is the number of randomly selected predictor variables for the current node and p

is the total number of predictor variable. Estimation of β is carried out using the
partial likelihood,

(3.2) L(β) =
m∏

i=1

e
xT

j (i)β∑
j∈Ri

e
xT

j β
,

where Ri is the set of indices, j , with yj ≥ ti (i.e., those still at risk at time ti ), and
j (i) is the index of the observation for which an event occurred at time ti . Simon
et al. (2011) proposed to maximize (3.2) subject to the elastic net penalty (Zou and
Hastie (2005)):

(3.3) α

p∑
i=1

|βi | + (1 − α)

p∑
i=1

β2
i ≤ s,

where s ≥ 0 is a constant that controls shrinkage and has one-to-one correspon-
dence with the complexity parameter, λ ≥ 0. Setting α = 1 and α = 0 in (3.3) re-
sults in the classic “Ridge” and “Lasso” penalties, respectively (Hastie, Tibshirani
and Friedman (2001), Section 3.4). Each pair of values for α and λ corresponds to
a different solution for β . Notably, with a ridge penalty, every node will develop a
solution for β with nonzero regression coefficients for all mtry randomly selected
predictor variables. On the other hand, a lasso penalty will usually identify sparse
solutions that set most of the mtry coefficients in β to zero.

3.2. Linear combinations of input variables (LCIVs). LCIVs are synthesized
using embedded Cox PH models and used as splitting variables for internal nodes
in the ORSF. The LCIVs are synthesized using xT β̂ , where xT = {xT

1 , . . .xK
T } is

the stacked matrix of input vectors and β̂ is selected from a number of candidate
solutions given by the embedded Cox PH model. The maximum number of pre-
dictor variables with nonzero regression coefficients in these candidate solutions
is mtry. The process that identifies candidate solutions for β̂ is governed by (1)
whether cross-validation is applied, and (2) the value of α.

If cross-validation is applied (use.cv = TRUE in the ORSF function), then
5-fold cross-validation will be used in each nonterminal node to identify the fol-
lowing λ values:

λCV: The value of λ maximizing cross-validated partial likelihood (van
Houwelingen et al. (2006)).

λSE: The highest value of λ within one standard error of λCV.

The choice of α affects the candidate solutions identified by λCV and λSE. For
example, when α = 1, both λCV and λSE identify solutions that use all of the
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randomly selected candidate splitting variables; however, the solution identified by
λSE will impose a stronger penalty on regression coefficients. If α is set at a value
close but not equal to 1, for example, 0.90, then λCV and λSE will both identify
“ridge-like” solutions that estimate nonzero regression coefficients for nearly all
of the candidate splitting variables.

If the analyst chooses not to use cross-validation, a regularization path is fitted
to the current node’s data to identify λ1, . . . , λmtry, where λi is the maximum
value of lambda such that the model has i effective degrees of freedom (Efron
et al. (2004)). To ensure these values of λ can be found, we require α < 1 when
cross-validation is not used. In this context, the choice of α affects how quickly the
regularization path transitions from a minimally to maximally complex solution.
For example, when α is close to 0, the regularization path will be “lasso-like” and
identify more solutions with a small number of nonzero regression coefficients
compared to a “ridge-like” regularization path, where all or nearly all solutions
have nonzero regression coefficients for all candidate variables.

Regardless of whether or not cross-validation is used, each candidate solution
for β̂ is evaluated as follows:

1. η̂ = xT β̂ is computed for each observation in the current node.
2. nsplit candidate cut-points, c1 . . . , cnsplit are selected at random from

the unique values of η̂.
3. For i = 1, . . . ,nsplit, a log-rank statistic comparing survival curves be-

tween observations with xT
k β̂ ≤ ci and observations with xT

k β̂ > ci is computed.

When cross-validation is not applied, log-rank statistics are penalized by a scaling
factor of (1 + γ · df), where γ > 0 is a tuning parameter and df is the effective
degrees of freedom of the model that generated the candidate LCIV. Larger values
of γ will result in selection of less complex LCIVs with fewer variables. Setting
γ = 0 imposes no penalty on the complexity of LCIVs and will result in selection
of LCIVs with a larger number of variables. If the maximal log-rank statistic does
not exceed a prespecified threshold, early stopping is applied (i.e., the node is
not split and is labeled terminal). Otherwise, the cut-point and candidate solution
maximizing the log-rank statistic are used to split the node.

3.3. Additional details. The ORSF applies subsampling rather than bootstrap
sampling with replacement. Ensemble predictions from an ORSF are formed using
the same weighted aggregation scheme as in the CIF.

4. Simulation study. Here we describe and summarize results from a sim-
ulation study following the protocol described by Morris, White and Crowther
(2019). The primary aim of the simulation is to compare the prognostic value
of the ORSF’s predicted risk function with a variety of competing learning al-
gorithms in three general settings. Data generating mechanisms are summarized in
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Section 4.1. The primary estimands of the simulation study are described in Sec-
tion 4.3. Competing learning algorithms and their corresponding hyper-parameter
settings are introduced in Section 4.2. Tabular summaries of results are presented
in Section 4.5. Computational strategies are reported in Section 4.4. Source codes
for the current simulation study are available from the first author’s GitHub site
and Supplementary Material Jaeger et al. (2019).

4.1. Data generating mechanisms. We generated right-censored survival data
from three scenarios using a training sample of N = 500 and a testing sam-
ple of M = 1000. The number of predictor variables used to generate survival
outcomes, p, was set at 25 and 50 for each scenario. For i = 1, . . . ,N + M ,
xi = (xi,1, . . . , xi,p) was generated from a zero mean, unit variance multivari-
ate normal distribution with cov(xi,u, xi,v) = (1/3)|u−v|. Multiplicative coefficient
vectors (i.e., β) for variables 1 through p were generated as a uniform sequence
of length p, beginning from −1 and ending at +1. The three scenarios were as
follows:

A: The length p vector β contained one effect for each predictor. Simulated
outcomes followed a Weibull distribution.

B: The length 2p vector β contained one main effect for each predictor and,
additionally, each predictor was used in two bi-variate interaction terms. The mul-
tiplicative coefficients for interaction variables were generated as a uniform se-
quence of length p, beginning from −1 and ending at +1.8 Simulated outcomes
followed the same distribution as in scenario A.

C: The same β vector was used as described scenario B, and each (yi, δi) fol-
lowed one of three distinct Weibull distributions, depending on the value of xiβ .

Scenario A is designed to favor the PH model, whereas scenario B will favor sur-
vival tree ensembles. Scenario C is of particular interest as the proportional hazards
assumption does not hold.

4.2. Competing methods and tuning parameters.

4.2.1. Decision tree ensembles. ORSF, RSF and CIF ensembles were com-
posed of 1000 survival trees. The minimum number of unique observations needed
to split a node (i.e., minsplit or nodesize) was 10. For the ORSF and RSF,
the minimum number of events per terminal node was 1, splitting values were se-
lected by comparing 25 randomly selected cut-points, and the number of variables
tried at each node (i.e., mtry) was set to the smallest integer ≥ √

p. The CIF

8For example, consider p = 4. Variable 1 interacts with variable 2 (effect size: −1), variable 2
interacts with variable 3 (effect size: −1/3), variable 3 interacts with variable 4 (effect size: 1/3),
and variable 4 interacts with variable 1 (effect size: 1) giving four main effects and four interaction
effects, that is, 2p terms in β .
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used tuning parameters consistent with an unbiased recursive partitioning frame-
work (Hothorn et al. (2019), Strobl et al. (2007)). Two ORSF models were fitted
as follows:

ORSF: The ORSF algorithm is applied with α = 0.50 and without using
cross-validation to synthesize candidate splitting variables (i.e., setting use.cv=
FALSE as described in Section 3.2).

ORSFCV: The ORSF algorithm is applied with α = 0.05 (a ridge-like penalty)
and using cross-validation to synthesize candidate splitting variables (i.e., setting
use.cv = TRUE as described in Section 3.2).

Gradient boosted decision trees were fitted using cross-validation to determine
(1) the optimal number of boosting steps and (2) an optimal set of hyper-parameter
values (Chen and Guestrin (2016), Friedman (2001)). For (2), we generated 10
sets of hyper-parameter values randomly (i.e., values for tree depth, column sub-
sampling, row subsampling, minimum child weight and minimum loss reduction
required to make a further partition on a leaf node). The hyper-parameter set that
maximized cross-validated partial log-likelihood was used to fit an ensemble of
gradient boosted decision trees to the training data.

4.2.2. Cox proportional hazards (PH) models. Regularized Cox PH models
were fitted using Lasso-like (α = 0.90) and Ridge-like (α = 0.10) penalties, and
using the value of λ that maximized cross-validated partial likelihood (Friedman,
Hastie and Tibshirani (2010)). Unregularized Cox PH models were fitted using
stepwise variable selection based on Akaike’s information criteria (Burnham and
Anderson (2004)). Boosted Cox PH models were fitted using cross-validation to
determine the optimal number of boosting steps and penalized score statistics to
determine parameter updates in each boosting step (Tutz and Binder (2007)).

4.3. Prediction error. Predicted risk for right-censored survival outcomes can
be assessed using the time dependent concordance index and Brier score (Gerds
et al. (2013), Graf et al. (1999)). For t > 0, the inverse probability of censoring
weighted concordance index and Brier score are estimated using

Ĉ(t) =
∑M

i=1
∑M

j=1 I (ti < tj ) · I (Ŝ(t | xi ) > Ŝ(t | xj )) · I (ti < t) · δi · Ŵ−1
ij∑M

i=1
∑M

j=1 I (ti < tj ) · I (ti < t) · δi · Ŵ−1
ij

and

B̂S(t) = 1

M

M∑
i=1

{
Ŝ(t | xi )

2 · I (yi < t, δi = 1) · Ĝ(yi | xi )
−1

+ [
1 − Ŝ(t | xi )

]2 · I (yi > t) · Ĝ(yi | xi )
−1}
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respectively, where for participant i in the testing data, Ŝ(t | xi ) is the estimated
probability of survival at time t , xi is the input information, and Ĝ(yi | xi ) is the
estimated probability of censoring. Additionally, Ŵij = Ĝ(yi | xj ) · Ĝ(yi− | xi )

defines the probability of censoring weights for concordance.
The concordance index measures the probability at time t that a randomly se-

lected participant who has experienced an event has a higher model-based predic-
tion than a randomly selected subject who has not experienced an event. Concor-
dance indices of 1.00 and 0.50 correspond to perfect and worthless discrimination,
respectively. Gerds et al. (2013) demonstrated asymptotic bias of the concordance
index introduced by Harrell et al. (1982) and proposed a method to estimate a
time-dependent concordance index for models with covariate dependent censor-
ing (i.e., Ĉ(t)). Additionally, Blanche, Kattan and Gerds (2019) showed that the
time dependent area under the receiver operating characteristic curve rather than
the concordance index introduced by Harrell et al. (1982) should be used to assess
t-year predicted risk.

For a single observation at time t , the Brier score is the squared difference be-
tween observed survival status (e.g., 1 = alive at time t and 0 = dead at time t)
and a model-based prediction of survival at time t . The expected Brier score of
a prediction model which ignores all predictor variables (i.e., the Kaplan–Meier
estimate of survival calculated with all training samples) is a reference value that
can be used as a benchmark Brier score for prediction models. For clarity and ease
of interpretation, we tabulate both the unscaled and scaled Brier score estimates,
where the scaled Brier score is computed as 1 minus the ratio of the unscaled Brier
score to the reference Brier score. Similar to the R2 statistic, a scaled Brier score
of 1 and 0 indicate a perfect and worthless model, respectively.

4.3.1. Summary measures of prediction error. The concordance index pro-
posed by Gerds et al. (2013) uses survival time as response and differs concep-
tually from the the time-dependent receiver-operator characteristic curve proposed
by Heagerty, Lumley and Pepe (2000). The latter incident statistic measures a pre-
diction model’s ability to classify survival status at a given time point, while the
former cumulative statistic measures a prediction model’s ability to order the sur-
vival times. Heagerty and Zheng (2005) have established a formal relationship
between these two measures. Following the precedent of Ishwaran et al. (2008),
we define concordance error as Ĉe(t) = 1 − Ĉ(t).

As B̂S(t) is time dependent, integration from baseline to a specified follow-up
time provides a summary measure of performance that can be tabulated for direct
comparisons between competing learning methods. The integrated BS is defined
as

(4.1) B̂S(T ) = 1

T

∫ T

0
B̂S(t) dt,

where T is the specified follow-up time. In our results, we set T equal to the
median event time in the testing data. We also present values of B̂S(T ) and Ĉe(t)
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that are scaled by a factor of 100 to avoid an unnecessary amount of leading zeros
(i.e., we present 0.5 instead of 0.005).

4.4. Computational notes and software. All analyses were performed in
R version 3.5.0. Right-censored survival outcomes were generated using the
simsurv R package (Brilleman (2018)). We used the RandomForestSRC
(Ishwaran and Kogalur (2019)), party (Hothorn et al. (2019)), and obli-
queRSF (Jaeger (2018)) R packages to fit RSFs, CIFs, and ORSFs, respectively,
the xgboost (Chen et al. (2019)) package to fit gradient boosted decision trees,
the glmnet (Friedman, Hastie and Tibshirani (2010)) package to fit regularized
Cox PH models, the survival (Therneau (2015)) package to fit classical Cox
PH models, the MASS (Venables and Ripley (2002)) package to perform forward
stepwise selection using Akaike’s information criteria, and the CoxBoost pack-
age to fit boosted Cox PH models (Binder (2013)). To compute B̂S(T ) and Ĉ(t),
we used the pec package (Mogensen, Ishwaran and Gerds (2012)). Unadjusted
Kaplan–Meier estimates were used to estimate inverse probability of censoring
weights throughout (Mogensen, Ishwaran and Gerds (2012), Section 6.2).

4.5. Results. The mean rankings according to Ĉe(t) for ORSFCV and ORSF
were 2.17 and 2.67, respectively, out of the nine learning algorithms we applied
(Table 1). As expected, the ORSF and ORSFCV provided the lowest values of Ĉe(t)

in scenario B. Notably, the ORSF and ORSFCV also provided the lowest values of
Ĉe(t) in scenario C, despite the invalidity of the PH assumption. In comparison to
the RSF and CIF, both the ORSF and ORSFCV provided lower values of Ĉe(t) in
each of the six simulated analyses. The absolute (percent) reduction in the mean
value of Ĉe(t) from using the ORSFCV instead of the RSF and using the ORSFCV

instead of the CIF was 3.13 (9.62%) and 0.52 (1.58%), respectively.
The mean rankings according to B̂S(T ) for ORSFCV and ORSF were 4.67 and

4.17, respectively, out of the nine learning algorithms we applied (Table 2). In
comparison to the RSF and CIF, both the ORSF and ORSFCV recorded lower mean
values of B̂S(T ) in each of the six simulated analyses. The absolute (percent)
increase in the mean scaled value (see Section 4.3) of B̂S(T ) using the ORSFCV

instead of the RSF and using the ORSFCV instead of the CIF were 1.57 (42.39%)
and 0.45 (9.37%), respectively.

5. Application to real data. Here we describe and summarize results from
a resampling experiment using data from six independent studies. We summarize
each study, separately, in Section 5.1. We describe tuning parameters and the re-
sampling procedure we applied in Sections 5.2 and 5.3, respectively. We present
and summarize results in Section 5.5.



1858 B. C. JAEGER ET AL.

TABLE 1
Mean concordance errors for competing learning methods, aggregated over 100 simulations in

three scenarios. The minimum concordance error for each simulated analysis is written in bold text

Ensemble Survival Trees§ Proportional Hazards

Scenario† p‡ ORSF ORSFCV CIF RSF Xgboost CoxBoost Lasso Ridge Step

Concordance error: 100 · Ĉe(t)

A 25 30.79 30.69 31.45 33.90 31.32 30.35 30.31 30.13 30.68
B 25 31.32 31.14 31.92 35.69 32.41 31.65 31.32 30.90 32.10
C 25 29.88 29.86 30.49 32.52 30.64 31.87 31.87 31.63 32.35
A 50 31.00 30.97 31.33 34.06 31.60 33.06 32.90 32.43 33.64
B 50 35.13 35.20 35.71 37.75 36.02 38.35 38.39 38.01 38.98
C 50 37.36 37.39 37.44 40.11 38.15 39.71 39.80 39.14 40.49

Monte Carlo Standard Error of 100 · Ĉe(t)

A 25 0.103 0.106 0.107 0.103 0.106 0.116 0.118 0.119 0.111
B 25 0.098 0.102 0.104 0.093 0.104 0.115 0.118 0.114 0.108
C 25 0.057 0.063 0.068 0.072 0.097 0.081 0.077 0.081 0.080
A 50 0.099 0.087 0.082 0.090 0.100 0.091 0.092 0.096 0.088
B 50 0.085 0.088 0.081 0.061 0.098 0.093 0.093 0.096 0.088
C 50 0.069 0.070 0.063 0.095 0.076 0.101 0.096 0.086 0.104

Percent increase in Ĉe(t), relative to minimum (0.00)
A 25 2.2 1.9 4.4 12.5 4.0 0.8 0.6 0.0 1.8
B 25 1.4 0.8 3.3 15.5 4.9 2.4 1.4 0.0 3.9
C 25 0.0 0.0 2.1 8.9 2.6 6.7 6.7 5.9 8.3
A 50 0.1 0.0 1.2 10.0 2.0 6.7 6.2 4.7 8.6
B 50 0.0 0.2 1.7 7.5 2.5 9.2 9.3 8.2 11.0
C 50 0.0 0.1 0.2 7.4 2.1 6.3 6.5 4.8 8.4

Rankings based on Ĉe(t)

A 25 6 5 8 9 7 3 2 1 4
B 25 4 2 6 9 8 5 3 1 7
C 25 2 1 3 9 4 6 7 5 8
A 50 2 1 3 9 4 7 6 5 8
B 50 1 2 3 5 4 7 8 6 9
C 50 1 2 3 8 4 6 7 5 9

2.67 2.17 4.33 8.17 5.17 5.67 5.50 3.83 7.50

† Descriptions of Scenarios A, B and C are provided in Section 4.1.
‡ p represents the number of predictor variables in each simulated data set.
§ RSF = random survival forest; CIF = conditional inference forest; ORSF = oblique random
survival forest; ORSFCV = oblique random survival forest with internal cross-validation (see Sec-
tion 3.2).
‡ Apparent ties in concordance errors are a result of rounding errors.
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TABLE 2
Mean integrated Brier scores for competing learning methods, aggregated over 100 simulations in

three scenarios. The minimum Brier score for each simulated analysis is written in bold text

Ensemble Survival Trees§ Proportional Hazards

Scenario† p‡ ORSF ORSFCV CIF RSF Xgboost CoxBoost Lasso Ridge Step Reference∗

Integrated Brier score: 100 · B̂S(T )

A 25 8.89 8.89 8.93 9.07 8.82 8.73 8.73 8.71 8.78 9.48
B 25 8.93 8.93 9.02 9.17 8.87 8.81 8.78 8.74 8.93 9.43
C 25 8.91 8.92 8.96 9.00 8.78 8.93 8.93 8.94 8.95 9.67
A 50 9.15 9.16 9.24 9.27 8.99 9.13 9.11 9.09 9.22 9.73
B 50 11.15 11.16 11.16 11.31 11.14 11.32 11.33 11.31 11.37 11.61
C 50 11.38 11.39 11.40 11.58 11.38 11.47 11.48 11.45 11.61 11.68

Monte Carlo Standard Error of 100 · B̂S(T )

A 25 0.014 0.014 0.015 0.012 0.012 0.011 0.010 0.010 0.009 0.016
B 25 0.008 0.008 0.008 0.007 0.008 0.008 0.008 0.008 0.009 0.010
C 25 0.012 0.012 0.012 0.011 0.013 0.013 0.012 0.012 0.013 0.014
A 50 0.019 0.019 0.020 0.018 0.018 0.019 0.019 0.019 0.018 0.021
B 50 0.017 0.017 0.017 0.016 0.016 0.017 0.018 0.018 0.018 0.018
C 50 0.016 0.016 0.016 0.014 0.014 0.017 0.017 0.016 0.016 0.017

Scaled B̂S(T ) values: 100 · [1 − B̂S(T )/Reference]
A 25 6.26 6.28 5.80 4.37 6.93 7.88 7.91 8.07 7.35 0.00
B 25 5.31 5.35 4.42 2.84 5.97 6.61 6.94 7.33 5.38 0.00
C 25 7.91 7.81 7.35 6.92 9.24 7.64 7.65 7.61 7.45 0.00
A 50 5.96 5.85 5.05 4.71 7.62 6.17 6.40 6.62 5.30 0.00
B 50 3.95 3.85 3.85 2.54 4.03 2.45 2.42 2.53 2.04 0.00
C 50 2.60 2.50 2.46 0.84 2.61 1.78 1.74 1.96 0.65 0.00

Rankings based on B̂S(T )

A 25 7 6 8 9 5 3 2 1 4 10
B 25 7 6 8 9 4 3 2 1 5 10
C 25 2 3 8 9 1 5 4 6 7 10
A 50 5 6 8 9 1 4 3 2 7 10
B 50 2 4 3 5 1 7 8 6 9 10
C 50 2 3 4 8 1 6 7 5 9 10

4.17 4.67 6.50 8.17 2.17 4.67 4.33 3.50 6.83 10.00

† Descriptions of Scenarios A, B and C are provided in Section 4.1.
‡ p represents the number of predictor variables in each simulated data set.
§ RSF = random survival forest; CIF = conditional inference forest; ORSF = oblique random
survival forest; ORSFCV = oblique random survival forest with internal cross-validation (see Sec-
tion 3.2).
∗ The reference values are expected Brier scores of a prediction model that ignores all predictor
variables, that is, the Kaplan–Meier estimate calculated using the training data.
‡ Apparent ties in Brier scores are a result of rounding errors.
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TABLE 3
Data set summary

Follow-up times§

Data Event Type 25% 50% 75% % Censored N M p

A25 Simulated 3.9 10.0 10.0 55.4 500 1000 25
B25 Simulated 3.9 10.0 10.0 57.5 500 1000 25
C25 Simulated 2.8 10.0 10.0 50.6 500 1000 25
A50 Simulated 3.8 10.0 10.0 55.2 500 1000 50
B50 Simulated 3.5 10.0 10.0 56.2 500 1000 50
C50 Simulated 2.6 10.0 10.0 49.5 500 1000 50
PBC Death 3.0 4.7 7.2 61.5 209 209 17
GBSG2 Death or relapse 1.6 3.0 4.6 56.4 342 342 8
GEBC Death or relapse 1.8 2.8 4.1 78.2 307 307 1690
MBC Death or relapse 2.3 5.3 8.8 56.4 39 39 4707
JHS1 CHD or stroke 10.8 11.7 12.6 90.8 915 914 58
JHS2 Heart Failure 9.2 10.0 10.0 93.8 904 904 58
JHS3 Death 13.0 13.9 14.7 81.3 944 943 58
REGARDS1 CHD or stroke 5.2 8.1 9.9 92.2 4485 4485 67
REGARDS2 Heart Failure 5.0 8.1 9.9 97.3 4485 4484 67
REGARDS3 Death 6.0 8.4 10.0 87.2 4485 4485 67

§ All follow-up times are in years.

5.1. Data sets. For each of the data sets described in the following sections,
study participants who were lost to follow-up or died from causes unrelated to the
primary event(s) were censored at time of last contact or time of death, respec-
tively. Characteristics (e.g., number of participants, number of predictors, percent
censored) of each data set are tabulated and presented alongside the characteristics
of simulated datasets in Table 3.

5.1.1. Primary biliary cirrhosis (PBC) data. The PBC data and their descrip-
tion are taken from Appendix D of Fleming and Harrington (2011). PBC of the
liver is a rare and fatal disease of unknown cause. These data were collected for
the Mayo Clinic trial in PBC of the liver conducted between January 1974 and
May 1984 comparing the drug D-penicillamine with a placebo.

5.1.2. German breast cancer study group (GBSG2) data. The GBSG2 data
and their description are taken from Schumacher et al. (1994). In 1984, the GBSG2
started a multicenter randomized clinical trial to compare the effectiveness of three
versus six cycles of 500 mg/m2 cyclophosphamide, 40 mg/m2 methotrexate, and
600 mg/m2 fluorouracil on day 1 and 8 starting perioperatively with or without
tamoxifen (3 × 10 mg/d for two years).
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5.1.3. Gene expression breast cancer (GEBC) data. The GEBC data and their
description are taken from Gene Expression Omnibus database and the analy-
sis by Ternès et al. (2017), respectively, to identify treatment-effect modifiers
in 614 breast cancer patients (Desmedt et al. (2011), Hatzis et al. (2011)) re-
ceiving anthracycline-based adjuvant chemotherapy with (n = 507) or without
(n = 107) taxane. For the current analysis, we use preprocessed data from Ternès
et al. (2017), who applied frozen robust multiarray (McCall, Bolstad and Irizarry
(2010)) and cross-platform normalization (Shabalin et al. (2008)), and standard-
ized the remaining 1689 genes.

5.1.4. Microarray breast cancer (MBC) data. The MBC data and their de-
scription are taken from (Van’t Veer et al. (2002)). Gene expression profiling was
conducted on 78 sporadic lymph-node-negative patients to search for a prognostic
signature in their gene expression profiles. 44 patients remained free of breast can-
cer after their initial diagnosis for an interval of at least five years (good prognosis
group, mean follow-up of 8.7 years), and 34 patients developed distant metastases
within five years (poor prognosis group, mean time to metastases 2.5 years).

5.1.5. Jackson heart study (JHS) data. The JHS is a population-based
prospective cohort study designed to examine the etiology of cardiovascular dis-
ease (CVD) (i.e., stroke, coronary heart disease, heart failure) and related risk
factors among African Americans (Taylor Jr et al. (2005)). In brief, 5,306 nonin-
stitutionalized African-American participants aged ≥ 20 years were recruited from
the Jackson, Mississippi, metropolitan area between 2000 and 2004. For the cur-
rent analyses, we incorporated data from JHS participants who provided complete
records of age, sex, anthropometric measures, alcohol/smoking/dietary/exercise
habits, medication use, zip code, blood pressure, diabetes, cholesterol, high and
low density lipo-proteins, triglycerides, electrocardiograms, estimated glomeru-
lar filtration rate (eGFR) (Levey et al. (2009)), insurance, and history of CVD at
baseline. We conducted three separate analyses using these data; JHS1 considered
composite events of stroke or coronary heart disease, JHS2 considered heart failure
events and JHS3 considered all-cause mortality events.

5.1.6. The REasons for geographic and racial differences in stroke (RE-
GARDS) study. The REGARDS study was designed to investigate reasons un-
derlying the higher rate of stroke mortality among blacks compared with whites,
and among residents of the Southeastern US compared with other US regions
(Howard et al. (2005)). A total of 30,239 adults from the 48 contiguous US
states and the District of Columbia were enrolled between January 2003 and Oc-
tober 2007. For the current analysis, we incorporated data from 8,970 partici-
pants who provided complete records of age, sex, race, anthropomorphic mea-
sures, alcohol/smoking/dietary/exercise habits, quality of life, self-reported history
of CVD, echocardiogram, medication use, blood measures, blood pressure, urine

http://www.ncbi.nlm.nih.gov/geo
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albumin and creatinine, and eGFR. We conducted three separate analyses using
these data; REGARDS1 considered composite events of stroke or coronary heart
disease (Safford et al. (2012)), REGARDS2 considered heart failure events and
REGARDS3 considered all-cause mortality events.

5.2. Tuning parameters. We applied the same learning algorithms and corre-
sponding tuning parameter specifications as described in Section 4.2.

5.3. Resampling. Results from the current resampling experiment are based
on 250 replicates of bootstrap cross-validation (Mogensen, Ishwaran and Gerds
(2012), Section 4.2). In each replicate, for each analysis (e.g., PBC, GBSG2, JHS1,
etc.), we:

1. Randomly allocated roughly one half of the data to a training set, and used
the rest of the data for testing.

2. Trained each competing method using the training data set.
3. Computed B̂S(T ) and Ĉe(t) using each method’s predicted survival curves

for observations in the testing data.

5.4. Monte Carlo error relative to forest size. Using the PBC data, we as-
sessed the Monte Carlo error (seed effect) of the predicted survival curves relative
to the number of trees in the ORSF. We first identified three classes of patients us-
ing the protoclust package Bien and Tibshirani (2019). We identified one pro-
totype patient in each class, and used these three patients as a hold-out set. We de-
veloped an ORSF with 10, 100 and 1000 trees, and then predicted survival curves
for patients in the hold-out set. We replicated this step 250 times and plotted each
survival curve to visualize Monte Carlo error for the three separate forest sizes.

5.5. Results. The three methods that achieved the lowest values of Ĉe(t) were
the ORSFCV, the ORSF and the CIF (mean ranks of 1.70, 1.80 and 3.20, respec-
tively) (Table 4). Distributions of Ĉe(t) were consistent among competing learning
methods with the exception of the penalized Cox PH models, which had higher
variability of Ĉe(t) in analyses of JHS and REGARDS data (Figure 1). The dif-
ference in Ĉe(t) between the ORSFCV and the RSF was minimal in the GBSG2
analysis (27.86 and 28.71, respectively) and maximal in the GEBC analysis (25.08
and 31.19, respectively). The absolute (percent) increase in the mean value of Ĉe(t)

from using the RSF instead of the ORSFCV or the CIF instead of the ORSFCV was
1.79 (9.08%) and 0.16 (0.82%), respectively. The variability and overall shape of
time-dependent trajectories of Ĉe(t) were similar among the RSF, CIF and ORSF
(Figure 2).

The three methods that achieved the lowest values of B̂S(T ) were the ORSF,
gradient boosted decision trees and the ORSFCV (mean ranks of 2.30, 2.50 and
3.90, respectively) (Table 5). Distributions of B̂S(T ) were consistent among the



OBLIQUE RANDOM SURVIVAL FORESTS 1863

TABLE 4
Mean concordance index error for competing learning methods, aggregated over 250 replicates of
bootstrap cross-validation in five independent data sets. The minimum concordance error value for

each analysis is written in bold text

Ensemble Survival Trees§ Proportional Hazards

Scenario† ORSF ORSFCV CIF RSF Xgboost CoxBoost Lasso Ridge Step

Concordance error: 100 · Ĉe(t)

GEBC 24.98 25.08 25.79 31.19 27.08 28.62 28.59 26.47 –
GBSG2 28.10 27.86 28.40 28.71 28.09 30.24 30.30 29.99 29.88
JHS1 17.67 17.58 17.74 19.31 17.84 18.69 18.68 18.37 18.74
JHS3 17.61 17.57 17.91 18.40 17.63 18.54 18.90 19.66 18.07
JHS2 13.13 13.16 13.42 13.45 13.61 17.51 18.86 14.43 14.83
PBC 12.25 12.29 12.80 13.90 12.87 13.53 13.72 12.82 15.15
REGARDS1 21.81 21.83 21.84 22.69 22.15 22.68 22.57 22.35 24.58
REGARDS3 18.69 18.80 18.82 19.01 18.55 19.27 20.33 30.62 19.32
REGARDS2 13.91 13.86 14.21 16.08 14.01 15.64 17.87 29.38 16.93
MBC 29.41 29.27 27.99 32.47 31.28 40.62 39.79 35.14 –

Percent increase in Ĉe(t), relative to minimum (0.00)
GEBC 0.0 0.4 3.3 24.9 8.4 14.6 14.5 6.0 –
GBSG2 0.9 0.0 1.9 3.0 0.8 8.5 8.7 7.6 7.2
JHS1 0.5 0.0 0.9 9.8 1.5 6.3 6.3 4.5 6.6
JHS3 0.2 0.0 1.9 4.7 0.3 5.5 7.5 11.9 2.8
JHS2 0.0 0.2 2.2 2.5 3.7 33.4 43.7 10.0 13.0
PBC 0.0 0.3 4.5 13.5 5.1 10.5 12.0 4.7 23.7
REGARDS1 0.0 0.1 0.1 4.1 1.6 4.0 3.5 2.5 12.7
REGARDS3 0.7 1.4 1.5 2.5 0.0 3.9 9.6 65.0 4.2
REGARDS2 0.4 0.0 2.6 16.1 1.1 12.8 29.0 112.0 22.2
MBC 5.1 4.6 0.0 16.0 11.7 45.1 42.2 25.5 –

Rankings based on Ĉe(t)

GEBC 1 2 3 8 5 7 6 4 –
GBSG2 3 1 4 5 2 8 9 7 6
JHS1 2 1 3 9 4 7 6 5 8
JHS3 2 1 4 6 3 7 8 9 5
JHS2 1 2 3 4 5 8 9 6 7
PBC 1 2 3 8 5 6 7 4 9
REGARDS1 1 2 3 8 4 7 6 5 9
REGARDS3 2 3 4 5 1 6 8 9 7
REGARDS2 2 1 4 6 3 5 8 9 7
MBC 3 2 1 5 4 8 7 6 –
Mean 1.80 1.70 3.20 6.40 3.60 6.90 7.40 6.40 7.25

§ RSF = random survival forest; CIF = conditional inference forest; ORSF = oblique random
survival forest; ORSFCV = oblique random survival forest with internal cross-validation (see Sec-
tion 3.2).
† GEBC = gene expression breast cancer; MBC = microarray breast cancer; GBSG2 = German
breast cancer study group; PBC = primary biliary cirrhosis; JHS = Jackson heart study; RE-
GARDS = REasons for Geographic And Racial Differences in Stroke.
‡ Apparent ties in concordance errors are a result of rounding errors.



1864 B. C. JAEGER ET AL.

FIG. 1. Concordance error values, aggregated over 250 replications of bootstrap cross-validation,
for competing methods in ten analyses of data with right-censored time-to-event outcomes.
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FIG. 2. Concordance error values for the primary biliary cirrhosis analysis. Results from individ-
ual replications of bootstrap cross-validation are shown as grey trajectories. Smoothed estimates of
average values are colored. Error values are plotted from baseline to median event time.
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TABLE 5
Mean integrated Brier scores for competing learning methods, aggregated over 250 replicates of

bootstrap cross-validation in five independent data sets. The minimum Brier score for each analysis
is written in bold text

Ensemble Survival Trees§ Proportional Hazards

Scenario† ORSF ORSFCV CIF RSF Xgboost CoxBoost Lasso Ridge Step Reference

Integrated Brier score: 100 · B̂S(T )

GEBC 4.20 4.20 4.23 4.44 4.25 4.27 4.27 4.22 – 4.36
GBSG2 7.10 7.12 7.10 7.21 7.20 7.51 7.51 7.49 7.47 7.77
JHS1 2.31 2.31 2.33 2.32 2.31 2.35 2.36 2.34 2.35 2.49
JHS3 3.23 3.23 3.28 3.23 3.15 3.20 3.23 3.20 3.17 3.67
JHS2 2.30 2.30 2.33 2.29 2.31 2.41 2.41 2.37 2.38 2.55
PBC 5.71 5.82 5.79 5.77 5.73 6.08 6.12 5.92 6.45 8.09
REGARDS1 1.69 1.69 1.69 1.70 1.68 1.70 1.70 1.70 1.73 1.76
REGARDS3 2.21 2.22 2.23 2.20 2.16 2.18 2.21 2.26 2.21 2.43
REGARDS2 0.63 0.63 0.64 0.64 0.63 0.64 0.64 0.64 0.66 0.66
MBC 9.07 9.08 9.11 9.62 9.16 9.65 9.67 9.33 – 8.91

Scaled B̂S(T ) values: 100 · [1 − B̂S(T )/Reference]
GEBC 3.58 3.53 3.03 −1.94 2.51 1.96 1.95 3.20 – 0.00
GBSG2 8.60 8.36 8.68 7.18 7.33 3.40 3.29 3.55 3.82 0.00
JHS1 7.46 7.37 6.75 6.84 7.46 5.67 5.53 6.21 5.59 0.00
JHS3 12.12 12.05 10.79 12.01 14.27 12.84 12.10 12.95 13.80 0.00
JHS2 9.95 9.74 8.54 10.39 9.40 5.45 5.33 7.01 6.63 0.00
PBC 29.40 28.03 28.42 28.59 29.10 24.81 24.29 26.83 20.28 0.00
REGARDS1 3.99 3.79 3.58 3.11 4.27 3.20 3.23 3.43 1.41 0.00
REGARDS3 8.93 8.50 7.85 9.16 11.04 10.24 8.86 6.63 8.88 0.00
REGARDS2 4.38 4.14 3.55 3.78 5.31 3.74 2.97 2.47 0.76 0.00
MBC −1.76 −1.85 −2.27 −7.90 −2.73 −8.22 −8.49 −4.66 – 0.00

Ranks in each data set of competing methods based on B̂S(T )

GEBC 1 2 4 9 5 6 7 3 – 8
GBSG2 2 3 1 5 4 8 9 7 6 10
JHS1 2 3 5 4 1 7 9 6 8 10
JHS3 5 7 9 8 1 4 6 3 2 10
JHS2 2 3 5 1 4 8 9 6 7 10
PBC 1 5 4 3 2 7 8 6 9 10
REGARDS1 2 3 4 8 1 7 6 5 9 10
REGARDS3 4 7 8 3 1 2 6 9 5 10
REGARDS2 2 3 6 4 1 5 7 8 9 10
MBC 2 3 4 7 5 8 9 6 – 1
Mean 2.30 3.90 5.00 5.20 2.50 6.20 7.60 5.90 6.88 8.90

§ RSF = random survival forest; CIF = conditional inference forest; ORSF = oblique random
survival forest; ORSFCV = oblique random survival forest with internal cross-validation (see Sec-
tion 3.2).
† GEBC = gene expression breast cancer; MBC = microarray breast cancer; GBSG2 = German
breast cancer study group; PBC = primary biliary cirrhosis; JHS = Jackson heart study; RE-
GARDS = REasons for Geographic And Racial Differences in Stroke.
∗ The reference values are expected Brier scores of a prediction model that ignores all predictor
variables, that is, the Kaplan–Meier estimate calculated using the training data.
‡ Apparent ties in Brier scores are a result of rounding errors.
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competing learning methods with the exception of the penalized Cox PH models,
which had higher variability of B̂S(T ) in analyses of JHS and REGARDS data
(Figure 3). The difference in B̂S(T ) between the ORSF and the RSF was minimal
in the JHS3 analysis (3.228 and 3.232, respectively) and maximal in the GEBC
analysis (4.20 and 4.44, respectively). The absolute (percent) increase in the mean
scaled value (see Section 4.3) of B̂S(T ) using the ORSF instead of the RSF or
instead of the CIF was 1.54 (21.67%) and 0.77 (9.79%), respectively.

Monte Carlo error was adequate when 1000 trees were used to fit the ORSF
(Figure 4). The variability in predicted survival curves was noticeably higher when
10 or 100 trees were used to fit an ORSF.

6. Overall performance comparisons. Here we describe a formal compari-
son of the performance and computational requirements of each method that was
applied in Section 5, incorporating results from each of the real data sets described.
To assess the relative performance of each method, we ranked the methods in each
data set, separately, giving a rank of 1 to the method with the lowest error, a rank of
2 to the method with the second lowest error, and so on. We recorded the rankings
in this manner using both Ĉe(t) and B̂S(T ) as the metric for error. In Section 6.1,
we describe the procedure used to draw inferences from these rankings. We sum-
marize performance of the learning algorithms in Section 6.2 and the computa-
tional resources required to run each algorithm in Section 6.3.

6.1. Statistical comparisons of ranks. We applied a modification of Fried-
man’s nonparametric rank test (Friedman (1937)), which compares the average
ranks among a set of classifiers over a collection of data sets. Let r

j
i be the rank of

the j th of k classifiers on the ith of D datasets. Friedman’s test compares the aver-
age ranks of the competing classifiers, Rj = 1

D

∑D
i=1 r

j
i . Under the null hypothesis

of equivalent performance, each classifier will have a mean rank of (k +1)/2, with
variance (k2 − 1)/(12D) and

(6.1) FF = (D − 1)χ2
F

D(k − 1) − χ2
F

∼ Fk−1,(k−1)(D−1),

where Fp,q denotes an F distribution with p and q numerator and denominator
degrees of freedom, respectively, and

(6.2) χ2
F = 12D

k(k + 1)

[(
k∑

j=1

R2
j

)
− k(k + 1)2

4

]
.

Iman and Davenport (1980) derived FF to correct the overly conservative χ2
F

statistic (Demšar (2006)). If the null hypothesis of overall equivalent performance
is rejected, post-hoc pairwise comparisons can be conducted using

(6.3) z = Ri − Rj√
k(k + 1)/(6D)

to compare the average ranking of the ith and j th classifiers.
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FIG. 3. Integrated Brier score values, aggregated over 250 replications of bootstrap cross-valida-
tion, for competing methods in ten analyses of data with right-censored time-to-event outcomes.
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FIG. 4. Monte Carlo error (seed effect) for the primary biliary cirrhosis analysis. Results are
shown for three prototypical patients. Grey curves are individual predictions from an individual for-
est. Smoothed estimates of average values are drawn as black curves.
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FIG. 5. Overall performance comparison between oblique random survival forests and competing
learning methods for prediction of the data described in Sections 4 and 5.

6.2. Results. Among the nine learning algorithms we compared, the hypothe-
sis of equivalence in performance was rejected (FF = 74.1 [p < 0.001] and 17.2
[p < 0.001] for concordance error and integrated Brier scores, respectively) us-
ing the overall FF test statistic proposed by Iman and Davenport (1980). Figure 5
shows a color-coded comparison matrix. Diagonal cells are split in two, with the
mean rank according to B̂S(T ) printed in the upper left and the mean rank ac-
cording to Ĉe(t) printed in the lower right. The upper-left and lower-right sections
of the matrix show two sided p-values corresponding to pairwise comparisons
of the mean ranks between two methods using the rankings according to B̂S(T )

and Ĉe(t), respectively. For example, the mean rankings according to Ĉe(t) of the
ORSFCV and the CIF were 1.70 and 3.20, respectively, and the p-value corre-
sponding to a test of rank equivalence between these two methods was 0.121.

After ranking each method in each analysis according to Ĉe(t), the ORSFCV had
the lowest mean ranking: 1.70. The ORSF and CIF had the second and third lowest
mean rankings, 1.80 and 3.20, respectively. For all pairwise comparisons involving
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TABLE 6
Mean computation time, in seconds, required to fit each learning algorithm in each analysis

Analysis ORSF ORSF.CV CIF RSF Xgboost CoxBoost Lasso Ridge Step

GEBC 1265.7 5848.1 9.8 6.5 275.1 126.3 20.0 14.4 0.0
GBSG2 401.6 1033.3 6.0 1.9 234.4 24.9 0.3 0.3 0.8
PBC 204.0 693.1 2.1 0.8 276.5 8.2 0.2 0.3 4.2
MBC 101.8 291.9 19.2 0.8 316.7 27.7 3.7 4.0 0.0
JHS1 1621.8 5005.0 56.3 6.4 293.6 203.0 3.3 3.5 41.5
JHS3 2556.5 7592.1 62.2 10.6 431.6 413.3 2.9 3.1 49.5
JHS2 1291.9 4385.3 50.5 5.4 265.3 159.3 3.3 3.3 36.4
REGARDS1 1852.3 5142.9 132.4 11.8 533.6 267.7 8.4 8.0 52.6
REGARDS3 2655.5 6873.5 140.6 19.1 525.7 476.2 4.7 5.1 67.5
REGARDS2 909.3 3127.5 120.1 6.3 342.7 109.5 16.2 12.8 48.9
SIM3.25 1448.9 4316.8 8.5 7.1 239.7 79.8 0.3 0.3 5.6
SIM3.50 1593.7 5123.4 7.9 7.7 191.1 92.9 0.4 0.4 15.0
SIM2.25 1084.2 3605.3 6.7 4.4 158.1 56.8 0.3 0.3 6.1
SIM2.50 1311.2 4360.8 7.8 6.6 199.7 82.5 0.4 0.5 28.3
SIM1.25 1176.6 3735.7 7.8 5.8 242.5 68.7 0.3 0.3 9.6
SIM1.50 1342.1 4583.2 8.3 7.5 313.8 87.0 0.5 0.5 30.7
Overall 1301.1 4107.4 40.4 6.8 302.5 142.7 4.1 3.6 24.8

Ĉe(t) for the ORSFCV, excluding comparison with the ORSF (p = 0.918) and CIF,
a statistically significant (p < 0.05) difference in mean rankings was observed.

After ranking each method in each analysis according to B̂S(T ), the ORSF had
the lowest mean ranking (2.30) followed by gradient boosted decision trees (mean
rank of 2.50) and the ORSFCV (mean rank of 3.90). For all pairwise comparisons
involving B̂S(T ) for the ORSF, excluding comparisons with the ORSFCV (p =
0.098) and gradient boosted decision trees (p = 0.836), a statistically significant
(p < 0.05) difference in mean rankings was observed.

6.3. Computing time. We recorded the mean amount of time required to fit
each learning algorithm in each analysis using real and simulated data (Table 6).
As fitting an ORSF requires fitting regularized Cox PH models in each nonterminal
node, the mean time of computation for the ORSF was roughly 192 and 32 times
that of the RSF and CIF, respectively. When nested cross-validation was used, the
mean time of computation for the ORSF was roughly 605 and 102 times that of
the RSF and CIF, respectively.

7. Application to Jackson heart study. Here we apply the ORSF and the
CIF in a comparative example using data from the Jackson Heart Study (JHS).
A description of the JHS is given in Section 5.1.5. In the current example, we in-
cluded 5126 JHS participants who consented to provide follow-up information on
ASCVD events. We randomly split the baseline data from these JHS participants
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into a training set (N = 3000) and a testing set (M = 2126). We imputed miss-
ing values in both sets, separately, using a k-nearest neighbors algorithm (Kowarik
and Templ (2016)). Using the training data, we developed prediction rules based
on the ORSF and CIF, separately. These prediction rules were applied to com-
pute ten-year predicted risk of ASCVD events for JHS participants in the testing
data. Using these values of predicted risk, we created variable dependence and
partial dependence plots (Section 7.1) that directly compare expected predictions
from the ORSF and CIF without and with adjustment for confounding effects, re-
spectively (Friedman (2001)). For variable dependence plots, we included ten-year
predicted risk of ASCVD events according to the Pooled Cohort risk equations, a
well-known risk prediction equation that is recommended by Whelton et al. (2018)
for clinical assessment of ten-year predicted risk for ASCVD events. Last, we com-
pared predicted risk curves according to the ORSF and CIF for four individual JHS
participants from the testing data.

7.1. Variable dependence and partial dependence. Variable dependence plots
render the expected value of an outcome (y-axis) relative to the observed values
of an input variable (x-axis), using the unaltered training data. Although variable
dependence plots illustrate observed relationships, they do not account for vari-
ation in covariates of interest apart from the input variable. Partial dependence
plots show predicted risk as a function of the variables in a designated subset of
input variables by averaging effects of the designated variables over the observed
distribution of variables not in the designated set. Let

z{r} = {z(1), . . . ,z(r)} ⊂ {x(1), . . . ,x(p)}
denote the designated subset of r < p predictor variables. Define the complement
set of predictor variables z{s} such that

z{r} ∪ z{s} = {x(1), . . . ,x(p)}.
The predicted risk function, F̂ (x), depends on variables in both subsets. Friedman
(2001) shows that conditioning on the variables in z{s} allows F̂ (x) to be con-
sidered as a function of only the variables chosen in z{r}. Moreover, the partial
dependence of F̂ (x) on variables in z{r} can be computed by averaging over the
observed values of z{s}, that is,

(7.1) F̄ (z{r}) = E
[
F̂ (x | z{s})

] =
∫

F̂ (x)P (z{s}) dz{s}.

7.2. Results. We identified four explanatory variables to analyze for the cur-
rent application of the ORSF and CIF to data from the JHS: (1) left ventricular
mass (LVM) in g/m2, (2) age in years, (3) estimated glomerular filtration rate
(eGFR) (Levey et al. (2009)) in ml/min/1.73m2 and (4) systolic blood pressure
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TABLE 7
Descriptive statistics for four variables in the Jackson Heart Study

Percentile

Summary measures§ Min. 25% 50% 75% Max. Mean SD

Testing data
Age, years 20.60 45.10 55.20 64.40 93.10 55.04 12.77
eGFR, ml/min/1.73 m2 4.29 81.48 96.90 110.25 153.46 94.94 22.24
Left ventricular mass, g/m2 20.84 59.55 69.17 81.33 215.50 72.88 20.27
Systolic blood pressure, mm Hg 77.98 115.58 125.66 136.67 228.36 127.35 16.91

Training data
Age, years 21.00 45.70 56.10 65.20 95.50 55.58 12.93
eGFR, ml/min/1.73 m2 4.14 80.47 95.24 109.09 151.88 93.59 21.81
Left ventricular mass, g/m2 5.28 60.16 69.26 82.56 225.45 73.30 20.10
Systolic blood pressure, mm Hg 86.24 116.26 125.66 136.67 221.02 127.60 16.90

§ Min = minimum; Max = maximum; SD = standard deviation.

(SBP) in mm Hg, measured in a clinical setting. We performed routine descriptive
analyses of these variables in the training and testing datasets, separately (Table 7
and Figure 6).

We created variable and partial dependence plots for each explanatory variable
and ASCVD risk, separately, using the ORSF and the CIF. Variable dependence
plots indicated that predictions from the ORSF demonstrate stronger alignment
than the CIF with the Pooled Cohort Risk equations (Figure 7). Partial dependence
plots show that the ORSF’s predicted risk function generally differs from the CIF
in the upper or lower range of values for each explanatory variable (Figure 8).
This pattern of difference in predicted risk may explain the observed differences
(Figure 9, top row) and lack of differences (Figure 9, bottom row) in survival
curves for four JHS participants in the testing data.

8. Discussion.

8.1. Summary. In this article, we have introduced the ORSF and assessed
its predictive accuracy. The ORSF extends current implementations of ensemble
methods for right-censored time-to-event analyses by applying a recursive parti-
tioning algorithm that can incorporate LCIVs. Our results indicated that the ORSF
may provide substantial improvement in discrimination (i.e., lower concordance
error) and minor improvement in Brier scores compared to state-of-the-art learn-
ing algorithms. Using data from participants in the JHS, we compared dependence
plots from the ORSF and CIF using four explanatory variables, separately, for
ten-year predicted risk of ASCVD events. Our results demonstrated differences
between predicted risk for ASCVD according to the ORSF and CIF. Results also
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FIG. 6. Descriptive summary of left ventricular mass, age, systolic blood pressure and estimated
glomerular filtration rate. Data are from the Jackson Heart Study.

showed that, according to the four variables we analyzed, the ORSF’s predicted
risk function had stronger alignment with the Pooled Cohort Risk equations com-
pared to the CIF.

8.2. Why the ORSF works (and when it does not). In our application to real
data, we found that the ORSF’s predicted risk function may substantially lower
concordance error compared to the RSF and Brier score compared to the CIF.
Given the similarity in these three algorithms, the most likely explanation for the
differences we observed is the use of LCIVs, which has been shown to result in
additional accuracy and diversity of individual trees in the ensemble (Breiman
(2001), Menze et al. (2011), Rainforth and Wood (2015)). As an informal demon-
stration (not a comprehensive comparison), we computed predicted survival curves
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FIG. 7. Variable dependence plots for ten-year risk of stroke or coronary heart disease as a func-
tion of left ventricular mass, age, systolic blood pressure, and estimated glomerular filtration rate,
separately, according to data from participants in the Jackson Heart Study.

for one observation generated from Scenario C in our simulation study using the
ORSF and RSF. Figure 10 illustrates predicted survival curves for this observation
from each survival tree in the fitted ORSF and RSF ensembles, separately. In the
RSF, many trees give nearly identical survival curves for this participant. On the
other hand, there are many more types of survival curves in the ORSF ensemble
(diversity). Additionally, survival curves in the ORSF tend to be more aligned with
the true survival curve (accuracy). This figure shows one instance where predic-
tions from trees in the ORSF exhibit a clear increase in diversity and accuracy
compared to survival trees in the RSF ensemble. However, this is clearly not a
claim that this pattern holds in general.
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FIG. 8. Partial dependence plots for ten-year risk of stroke or coronary heart disease as a func-
tion of left ventricular mass, age, systolic blood pressure, and estimated glomerular filtration rate,
separately, according to data from participants in the Jackson Heart Study.

In our simulated trials, the ORSF recorded higher Brier scores than gradient
boosted decision trees. However, this pattern was reversed in the analysis of real
data. This is likely due to the invalidity of the proportional hazards assumption
in many of the real data problems we considered. These results suggest that in
analyses where the proportional hazards assumption is entirely valid, the ORSF
and other implementations of RFs for survival analyses may not be able to compete
with gradient boosted decision trees or penalized Cox PH models.

In addition to LCIVs, early stopping and class-specific shrinkage of categori-
cal predictors are important components of the ORSF that are based on the CIF
(Nasejje et al. (2017)). The protocol described by Breiman (1984) is known to re-
sult in overfitting and a selection bias towards covariates with many possible splits
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FIG. 9. Predicted survival curves for four JHS participants in the testing data.

(i.e., unordered categorical variables) (Hothorn, Hornik and Zeileis (2006)). The
ORSF and CIF each apply a mechanism for early stopping if a certain level of sta-
tistical association is not measured, and this may explain why both the ORSF and
the CIF provided relatively low concordance error. We speculate that early stop-
ping prevents these ensembles from growing decision trees that overfit the train-
ing data. However, the ORSF and CIF also provided relatively unimpressive Brier
scores in our simulation study and real data analysis compared to gradient boosted
decision trees. Therefore, we speculate that early stopping may prevent decision
trees in the ORSF and CIF from partitioning a training set with the same level of
granularity and accuracy as gradient boosting, especially when the proportional
hazard assumption is valid (i.e., scenarios A and B in our simulation study).
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FIG. 10. Tree and ensemble predicted survival functions for a single observation from simulated
data (Scenario C with p = 50; see Section 4.1). Estimates are from the random survival forest (left)
and oblique random survival forest (right).

8.3. Limitations and future research. The additional computational resources
required by the ORSF are a clear limitation. While future development and op-
timization of the C++ routines in the obliqueRSF package may alleviate this
limitation, there are several additional topics of interest. For example, the ORSF
could be extended to assess the importance of individual variables or clusters of
variables. Multiple imputation could be incorporated into the ORSF by imputing
missing values separately for each tree in the ensemble using a shared imputation
model or a shared set of imputation models. To generate additional diversity in
the ensemble, a stochastic error term could be added to the imputation model’s
predictions. Predictions from the the ORSF could also be linked to programs that
operate on the predicted values of a tree-based ensemble learning algorithm, such
as the method of conducting statistical inference introduced by Mentch and Hooker
(2016) or the efficient method to compute Shapley additive explanatory values dis-
cussed in Lundberg, Erion and Lee (2018). Last, a hybrid algorithm for ORSF that
applies cross-validation conditional on sufficient sample size in the current node
could be developed. In summary, the obliqueRSF R package offers a powerful
learning algorithm, the ORSF (and optionally, the ORSFCV), which may exceed
the performance of state-of-the-art learning methods for right-censored time-to-
event analyses.
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SUPPLEMENTARY MATERIAL

Source code for analyses presented in the oblique random survival forest
manuscript (DOI: 10.1214/19-AOAS1261SUPP; .zip). Provides scripts written
in R that were applied to generate the results presented in the manuscript. In par-
ticular, the scripts were applied to conduct the simulation/resampling study and
the application of oblique random survival forests to the Jackon Heart Study.
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