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Rhythmic data are ubiquitous in the life sciences. Biologists need reli-
able statistical tests to identify whether a particular experimental treatment
has caused a significant change in a rhythmic signal. When these signals dis-
play nonstationary behaviour, as is common in many biological systems, the
established methodologies may be misleading. Therefore, there is a real need
for new methodology that enables the formal comparison of nonstationary
processes. As circadian behaviour is best understood in the spectral domain,
here we develop novel hypothesis testing procedures in the (wavelet) spectral
domain, embedding replicate information when available. The data are mod-
elled as realisations of locally stationary wavelet processes, allowing us to
define and rigorously estimate their evolutionary wavelet spectra. Motivated
by three complementary applications in circadian biology, our new methodol-
ogy allows the identification of three specific types of spectral difference. We
demonstrate the advantages of our methodology over alternative approaches,
by means of a comprehensive simulation study and real data applications,
using both published and newly generated circadian datasets. In contrast to
the current standard methodologies, our method successfully identifies differ-
ences within the motivating circadian datasets, and facilitates wider ranging
analyses of rhythmic biological data in general.

1. Introduction. Almost all species exhibit changes in their behaviour be-
tween day and night (Bell-Pedersen et al. (2005)). These daily rhythms (known
as ‘circadian rhythms’) are the result of an internal timekeeping system, in re-
sponse to daily changes in the physical environment (Vitaterna, Takahashi and
Turek (2001), Minors and Waterhouse (2013)). The ‘circadian clock’ enhances
survival by directing anticipatory changes in physiology synchronised with en-
vironmental fluctuations. When an organism is deprived of external time cues, its
circadian rhythms typically persist qualitatively but may change in detail; the study
of these changes can reveal the biochemical reactions underpinning the circadian
clock and, at a larger scale, can provide valuable insight into the possible conse-
quences of environmental and ecological challenges (McClung (2006), Bujdoso
and Davis (2013)).
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1.1. Motivation. In many scientific applications, the available data consist of
signals with known group memberships and scientists are interested in establish-
ing whether these groups display statistically different behaviour. Our work is mo-
tivated by a general problem: biologists need reliable statistical tests to identify
whether a particular experimental treatment has caused a significant change in the
circadian rhythm. If the changes are limited to period and/or phase then existing
Fourier-based theory may be adequate. However, when the changes to the circadian
clock are less straightforward, for example, involving nonstationarity or changes
at multiple scales (Hargreaves et al. (2018)), the application of these established
methods may be conducive to misleading conclusions. The value of our approach
is illustrated by three complementary examples, encompassing the effect of vari-
ous salt stresses on plants, the identification of mutations inducing rapid rhythms,
and the response of nematode clocks to pharmacological treatment, as described in
the following sections. The biological experimental details for each dataset appear
in Appendix A in the Supplementary Material (Hargreaves et al. (2019)).

1.1.1. Lead nitrate dataset (Davis Lab, Biology, University of York). This
dataset (henceforth referred to as the ‘Lead dataset’) is from a broad investigation
of whether plant circadian clocks are affected by industrial and agricultural pollu-
tants (Foley et al. (2005), Hargreaves et al. (2018), Senesil et al. (1998), Nicholson
et al. (2003)). Specifically, this experiment asks whether lead affects the Arabidop-
sis thaliana circadian clock and, if so, when and how? Figure 1 displays the lumi-
nescence profiles for both untreated A. thaliana plants, as well as for those exposed
to lead nitrate.

FIG. 1. Lead dataset: Luminescence profiles over time for untreated A. thaliana plants (Control)
and those exposed to lead nitrate (Lead). Left: Individuals in the control group (in grey) along with
the group average (bold). Right: Individuals in the lead treatment group (in grey) along with the
treatment group average (bold) and the control group average (dashed). Each time series has been
recentred around zero.
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FIG. 2. Ultradian dataset: Luminescence profiles over time for control and mutant A. thaliana
plants. Left: Individuals in the control group (in grey) along with the group average (bold). Right:
Individuals in the mutant group (in grey) along with the mutant group average (bold) and the control
group average (dashed). Each time series has been recentred around zero.

1.1.2. Ultradian dataset (Millar Lab, Biology, University of Edinburgh). In
order to understand the clock mechanism, a common approach is to mutate a gene
and examine the resulting behaviour in response to a variety of stimuli. Figure 2
depicts the luminescence profiles recording plant response to light for both the con-
trol and genetically mutated A. thaliana plants (Millar et al. (2015)). Researchers
are interested in establishing whether a specific genetic mutation induced high-
frequency behaviour (known as ‘ultradian rhythms’) in the laboratory model plant
A. thaliana.

1.1.3. Nematode dataset (Chawla Lab, Biology, University of York). The free-
living nematode Caenorhabditis elegans is an animal widely used in neuroscience
and genetics, but its circadian clock is still poorly understood. To increase under-
standing of the nematode clock, and potentially uncover rhythmicity not detected
by conventional approaches, researchers applied a pharmacological treatment to
C. elegans, based on evidence that it causes aberrant circadian rhythms in other es-
tablished mammalian and insect circadian models (Kon et al. (2015), Dusik et al.
(2014)). Figure 3 depicts the luminescence profiles for both untreated and treated
C. elegans.

On examining Figures 1 and 2, it is visually clear that changes in period and
amplitude between the control and test groups occur in both datasets. Figure 3 re-
veals apparently similar luminescence profiles for both untreated and treated C.
elegans. Nevertheless, in each experiment, less easily quantified or subtle differ-
ences between these groups may also exist.
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FIG. 3. Nematode dataset: Luminescence profiles over time for untreated C. elegans (Control) and
those subjected to a pharmacological treatment (Treatment). Left: Individuals in the control group
(in grey) along with the group average (bold). Right: Individuals in the treatment group (in grey)
along with the treatment group average (bold) and the control group average (dashed). Each time
series has been recentred around zero.

1.2. Aims and structure of the paper. Period estimation is central to the analy-
sis of circadian data, with the current standard achieving this using Fourier analysis
(Zielinski et al. (2014), Costa et al. (2011)) via software packages, such as BRASS
(Biological Rhythm Analysis Software System (Edwards et al. (2010))) or Bio-
Dare (Moore, Zielinski and Millar (2014)). The practitioner estimates the period
of the control and treatment groups respectively, and then tests for statistically
significant differences (see, e.g., Perea-García et al. (2015), Costa et al. (2011)).
Crucially, in all of our motivating examples, such established Fourier-based tests
found no significant difference between groups (see Table S1 in Appendix B.1 in
the Supplementary Material (Hargreaves et al. (2019))).

One obvious limitation of this analysis is that the employed methodology does
not typically evaluate the crucial underpinning assumption of data stationarity. In
the context examined here, assuming stationarity can be inappropriate (Hargreaves
et al. (2018), Leise et al. (2013)), a feature shared by many biological systems
(Zielinski et al. (2014)). For our motivating example datasets, we investigated
whether the individual time series are (second-order) stationary via hypothesis test-
ing. We employed two tests for stationarity—a Fourier-based test (the Priestley–
Subba Rao (PSR) (Priestley and Subba Rao (1969)) test) and a wavelet-based test
(Nason (2013)). The results (Table S2 in Appendix B.1 in the Supplementary Ma-
terial (Hargreaves et al. (2019))) show that, for each of our motivating example
datasets, over 80% of the time series provided enough evidence to reject the null
hypothesis of stationarity. This result suggests that the application of the current
methodology (which assumes data stationarity) would be inappropriate for our
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motivating datasets and highlights the urgent need for more statistically advanced
approaches.

In the specific context of circadian clock data, wavelets have been recognised
as ideally suited to identifying local time and scale features (Leise et al. (2013),
Harang, Bonnet and Petzold (2006)), with time-scale patterns known as indicative
of the organism response to external stimuli (Zielinski et al. (2014)). A substan-
tial body of circadian literature advocates the use of wavelet (Leise et al. (2013),
Zielinski et al. (2014), Harang, Bonnet and Petzold (2006)) and, in particular, spec-
tral representations (Price et al. (2008)) of circadian rhythms. This motivates our
choice to formally compare circadian signals in the wavelet spectral domain by us-
ing their time-scale signature patterns and thus accounting for their proven nonsta-
tionary features. Furthermore, we propose to adopt the locally stationary wavelet
(LSW) process model of Nason, von Sachs and Kroisandt (2000), which is capable
of accounting for data nonstationarity and crucially has previously demonstrated
utility for circadian analysis (Hargreaves et al. (2018)). Modelling nonstationary
data within the LSW framework has also proven successful across a wide vari-
ety of fields, from climatology (Fryzlewicz, Van Bellegem and von Sachs (2003))
and ocean engineering (Killick, Eckley and Jonathan (2013)) to medicine (Nason
and Stevens (2015)) and finance (Fryzlewicz (2005)) corresponding to a multi-
tude of tasks such as forecasting, change-point detection, spectral estimation and
modelling, respectively.

The primary contribution of this work is the development of novel wavelet-
based hypothesis tests that allow for circadian behaviour comparison while ac-
counting for data nonstationarity. This article is organised as follows. Section 2
reviews the theoretical wavelet-based framework we adopt for modelling nonsta-
tionary data and the relevant literature on hypothesis testing in the spectral domain.
Our new hypothesis testing procedures are introduced in Section 3. Section 4 pro-
vides a comprehensive performance assessment of our new methods via simula-
tion. Section 5 demonstrates the additional insight our techniques provide for the
motivating circadian datasets and Section 6 concludes this work.

2. Overview: Nonstationary processes and hypothesis testing in the spec-
tral domain.

2.1. Modelling nonstationary processes. Many of the statistically rigorous ap-
proaches to modelling nonstationary time series stem from the Cramér–Rao rep-
resentation of stationary processes that states that all zero-mean discrete time
second-order stationary time series {Xt }t∈Z can be represented as

(2.1) Xt =
∫ π

−π
A(ω) exp(iωt) dξ(ω),

where A(ω) is the amplitude of the process and dξ(ω) is an orthonormal incre-
ments process (Priestley (1981)). In the representation of stationary processes
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above, the amplitude A(ω) does not depend on time, that is, the frequency be-
haviour is the same across time. However, for many real time series, including our
circadian datasets, this is unrealistic (Price et al. (2008)) and a model where the
frequency behaviour can vary with time is needed.

The LSW paradigm provides precisely such a desired setup, and has also proved
to yield superior results when compared to competitor methods in useful tasks such
as classification (e.g., Krzemieniewska, Eckley and Fearnhead (2014) for aerosol
spray data) and clustering (e.g., Hargreaves et al. (2018) for circadian rhythms).
Fryzlewicz (2005) brings strong arguments for the utility of (linear) Gaussian LSW
models for financial data, typically modelled using (nonlinear) models, that allow
for time-dependent conditional variance.

In a nutshell, in the LSW framework, the Fourier building blocks in equation
(2.1) are replaced by families of discrete nondecimated wavelets and an LSW pro-
cess {Xt;T }T −1

t=0 , T = 2J ≥ 1 is represented as follows

(2.2) Xt,T =
J∑

j=1

∑
k∈Z

wj,k;T ψj,k(t)ξj,k,

where {ξj,k} is a random orthonormal increment sequence, {ψj,k(t) = ψj,k−t }j,k
is a set of discrete nondecimated wavelets and {wj,k;T } is a set of amplitudes, each
of which at a scale j and time k. Within each scale j , the amplitudes {wj,k;T }k are
regulated by a Lipschitz continuous function Wj(k/T ), which further fulfils some
technical assumptions in order to allow estimation. Appendix C in the Supplemen-
tary Material (Hargreaves et al. (2019)) provides the background details.

2.1.1. Practical considerations. In this paper, we assume the innovations
{ξj,k} to be normally distributed, resulting in modelling the data {Xt,T } as a
Gaussian LSW process. The normality assumption is typically employed for the
(Fourier) circadian testing methodology (Perea-García et al. (2015)). This assump-
tion is also commonly made in time series analysis in general and in LSW mod-
elling in particular (e.g., Oh et al. (2003), Van Bellegem and von Sachs (2008) and
Nason and Stevens (2015)), with Nason (2013) arguing for its nonlimiting charac-
ter in this context. In Appendix B.2 (in the Supplementary Material (Hargreaves
et al. (2019))) we show this assumption is tenable for our circadian datasets.

The properties of the random increment sequence {ξj,k} ensure that {Xt,T } is a
zero-mean process. In practice, for a process with nonzero mean, it is customary
to recentre it around zero (Nason (2008)) and this is our approach here, as the
quantity of our primary interest is the process spectral signature.

As is typical for wavelet representations, the data is often required to be of
dyadic length, T = 2J . In many practical applications, this is not realistic and there
are a number of approaches to address this situation (see, e.g., Ogden (1997)). Our
approach is to analyse a (dyadic length) segment of the data, with the truncation
decided upon careful consultation with the experimental scientists in order to en-
sure the time-frame of interest is represented.
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2.1.2. The evolutionary wavelet spectrum. Under the LSW framework, a
quantity analogous to the spectrum of a stationary process is the evolutionary
wavelet spectrum (EWS) Sj (z) := |Wj(z)|2, at each scale j ∈ 1, J and rescaled
time z = k/T ∈ (0,1). The EWS quantifies the power distribution in the process
over time and scale. We define the raw wavelet periodogram as Ij,k;T = |dj,k;T |2,
where dj,k;T = ∑T

t=0 Xt,T ψj,k(t) are the empirical nondecimated wavelet coeffi-
cients. In the remainder of this paper we drop the explicit dependence on T for the
wavelet coefficients and the periodogram.

The raw wavelet periodogram is an asymptotically unbiased estimator of the
quantity

(2.3) βj (z) =
J∑

i=1

Ai,jSi(z) = (AS)j (z),

where A = (Ai,j )
J
i,j=1 = (

∑
τ �i(τ )�j (τ ))Ji,j=1 is the autocorrelation wavelet in-

ner product matrix, with �j(τ) = ∑
k ψj,k(0)ψj,k(τ ) the autocorrelation wavelet

(Nason, von Sachs and Kroisandt (2000)). The quantity βj (z) was introduced by
Fryzlewicz and Nason (2006) and is often easier to work with theoretically than
the spectrum (Nason (2013)). An asymptotically unbiased estimator of the EWS is
the empirical wavelet spectrum:

(2.4) L(z) := A−1I(z),

for all z ∈ (0,1), where I(z) := (Ij,[zT ])Jj=1 is the raw wavelet periodogram vector.
The empirical wavelet spectrum is a collection of random variables that are not

independent, nor is their (joint or marginal) distribution easy to determine. As each
coefficient of the empirical wavelet spectrum is a sum of a (typically logarithmic)
number of terms (see equation (2.4)), a mechanism similar to the central limit the-
orem brings it closer to normality than the raw wavelet periodogram (Fryzlewicz
and Ombao (2009)), which is distributed as a scaled χ2

1 . As the individual raw peri-
odogram ordinates within each scale are correlated, Fryzlewicz and Nason (2006)
model the raw wavelet periodogram as approximately

Ij,k ∼ βj (z)Z
2
j,k,

where z = k/T and Z2
j,k ∼ χ2

1 , for j ∈ N, k = 0, . . . ,2J − 1 = T − 1.
A way to ‘correct’ these undesirable features is to employ a transform that

brings the raw periodogram ordinates closer to Gaussianity and decorrelates within
each scale. We adopt the Haar–Fisz transform (denoted F ), introduced (for spec-
tral estimation) by Fryzlewicz and Nason (2006), and apply it separately to each
scale j = 1, . . . , J of the raw wavelet periodogram, denoted Hj,k;T := FIj,k;T .
Proposition 4 in Fryzlewicz and Nason (2006) then suggests a potential model

Hj,k ∼ N
(
Bj (z), σ

2
j

)
,
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where Bj (z) = Fβj (z) with z = k/T and FZ2
j,k are approximately uncorrelated

N(0, σ 2
j ), again dropping the explicit dependence on T . This model, viewed as

a nonparametric additive regression model, was also employed by Nason and
Stevens (2015) in the context of Bayesian spectral estimation, where its viability
was demonstrated.

2.2. Spectral domain hypothesis testing. Assuming that the available data
consists of multiple nonstationary time series with known group memberships, to
the authors’ knowledge no hypothesis tests exist to determine whether two groups
are significantly different in terms of their associated (evolutionary) wavelet spec-
tra. Wavelet spectral comparison is closest framed as a (consistent) classification
method by Fryzlewicz and Ombao (2009), further improved by Krzemieniewska,
Eckley and Fearnhead (2014). Spectral comparison, framed as testing for spectral
constancy, also appears in connection with testing for time series stationarity and
white noise testing. In the Fourier domain, Priestley and Subba Rao (1969) de-
termined (as a hypothesis test) whether the spectrum is time-varying and, hence,
whether the process is nonstationary. von Sachs and Neumann (2000) introduced
the principle of assessing the constancy of the time-varying Fourier spectrum
by examining its Haar wavelet coefficients across time. In the wavelet domain,
Nason (2013) developed a test for second-order stationarity which examines the
constancy of a wavelet spectrum by also examining its Haar wavelet coefficients.
A similar approach is adopted by Nason and Savchev (2014) in the development
of white noise tests.

The problem of testing that involves curves is often posed in time series liter-
ature as a functional regression problem defined using a functional response and
categorical predictors (functional ANOVA; see the monograph of Ramsay and Sil-
verman (2005) for its introduction and the review of Morris (2015) for develop-
ments in the field). Functional regression problems are often treated by projec-
tion in the Fourier or wavelet domain, where the spectral time series representa-
tions become subject to modelling. Shumway (1988) compares groups of curves
(with stationary stochastic errors) by testing whether the mean curves have the
same Fourier spectrum at each given frequency. Fan and Lin (1998) developed this
method by applying the adaptive Neyman test to the (Fourier or wavelet) trans-
formed difference vector (the difference between the two group-average time se-
ries). Vidakovic (2001) introduces a wavelet-based functional data analysis, with
McKay et al. (2012) developing this as an approach for comparing neurophysi-
ological signals that are functions of time. This approach was also subsequently
adopted by Atkinson et al. (2017) to develop model validation using a test statistic
based on thresholded wavelet coefficients. Tavakoli and Panaretos (2016) com-
pare pairs of stationary functional time series by developing t-tests for the equal-
ity of their (Fourier) spectral density operators. However, these approaches fail to
account for potential nonstationarity in the data. This is mitigated by Guo et al.
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(2003), who propose a smoothing-spline ANOVA on the logarithm of the Fourier
spectrum of a locally stationary process that is specifically designed to discrimi-
nate between models that contain a linear trend, modulation, time and frequency
interaction terms, thus yielding global model comparisons, rather than time- and
frequency-specific ones. The closest methodology for spectral comparison while
allowing for a localised representation comes from Martinez et al. (2013) who
identify regional differences in (the Fourier spectrograms of) bat mating chirps.
The statistical modelling of windowed Fourier spectrograms as an image was first
proposed by Holan et al. (2010) in a study that aimed to classify animal communi-
cation signals. Martinez et al. (2013) apply the higher-dimension functional mixed
model of Morris et al. (2011) and use a Bayesian approach to fit a model that
incorporates localised chirp Fourier spectrograms as the functional response and
categorical regressors that identify bat location (fixed-effects) and independent bat
(random)-effects. The observed data is modelled in a (projected) wavelet-domain
with several distributional assumptions in place, for example, data Gaussianity,
spike Gaussian-slab prior distributions for the wavelet coefficients. However, while
their windowed Fourier spectrogram does offer a time-frequency representation of
the data, thus potentially capturing nonstationarity, it is sensitive to the choice of
kernel and crucially of window-width (Martinez et al. (2013)). In the context of
clustering circadian plant rhythms, Hargreaves et al. (2018) demonstrated the su-
periority of a principled model-based spectral estimator that, in the spirit of Holan
et al. (2010), was also used as an image in subsequent modelling. Additionally,
we note that our study aims to identify not only (i) time-scale (frequency) group
differences (conceptually a task close to Martinez et al. (2013)), but also (ii) to
detect global scale-level differences (while still allowing for a development that
incorporates potential nonstationarity) and (iii) to identify similar patterns within
each scale, rather than exact differences (the reader will find precise details in the
next section).

3. Proposed spectral domain hypothesis tests. Aligned to our motivating
examples, the key goals of our work are to develop novel hypothesis tests, each
capable of detecting one of three specific types of spectral differences between two
groups and to identify the scales and times (e.g., Lead and Nematode datasets—
Sections 1.1.1 and 1.1.3) or scales only (e.g., Ultradian dataset—Section 1.1.2) at
which these difference arise, as appropriate.

Formally, recall that we model the observed nonstationary circadian rhythms
as (Gaussian) LSW processes, using the framework of Nason, von Sachs and
Kroisandt (2000) (see Section 2.1 and Appendix C in the Supplementary Mate-
rial (Hargreaves et al. (2019)) for details). Within our motivating datasets, the data
naturally shared the same starting point (see Appendix A in the Supplementary
Material (Hargreaves et al. (2019))). As our methodological development is mo-
tivated by experimental data, we assume all signals are of a common length T .
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Thus denote each individual profile by {X(i),ri
t,T }T −1

t=0 with i = 1,2 corresponding to
one of two groups (e.g., control/ treatment) and potential replicates ri = 1, . . . ,Ni

(i.e., Ni circadian traces in the ith group). Note that when Ni = 1 we drop the ri
index for simplicity. Assume the signals in group i are underpinned by a common
wavelet spectrum and denote this by S

(i)
j (t/T ) for each group i = 1,2 at scales

j ∈ 1, J (J = log2 T ) and rescaled times z = t/T ∈ (0,1).

3.1. Lead dataset: Hypothesis testing for spectral equality (‘WST’ and ‘FT’).
Put simply, our soil pollutant example focussed on detecting whether the two plant
groups, ‘Control’ and ‘Lead’, display significant differences in the evolution of
their spectral structures and, if so, the particular scales and times at which such
differences occur. Mathematically we formalise our hypotheses as

(3.1) H0 : S(1)
j (z) = S

(2)
j (z) ∀j, z

versus the alternative HA : S(1)
j∗ (z∗) �= S

(2)
j∗ (z∗) for some scale j∗ and rescaled time

z∗. In the time domain, we visually note that differences in the circadian rhythms
of the two groups appear towards the end of the experiment (see Figure 1).

3.1.1. A naive wavelet spectrum test (‘WST’). Since in reality we do not know
the group spectrum S

(i)
j (z), we replace it with a well-behaved estimator, denoted

Ŝ
(i)
j (z). Assuming independent replicates are available for each group, we use the

group (i = 1,2) averaged spectral estimators

(3.2) Ŝ
(i)
j (k/T ) = 1

Ni

Ni∑
ri=1

L
(i),ri
j (k/T ),

where L
(i),ri
j (k/T ) is the empirical wavelet spectrum of the ri th series in group i

at scale j and time k. Assuming independence across the replicates and a Gaus-
sian distribution for the spectral estimates, because the LSW theory constructs
asymptotically unbiased spectral estimators, it follows that under the null hypoth-
esis Ŝ

(1)
j (k/T ) − Ŝ

(2)
j (k/T ) has an asymptotically normal distribution with mean

zero. Hence, should our spectral estimators satisfy the classical assumptions for
a t-test (which in our context amount to independence of the spectral estimates
across replicates and a Gaussian distribution), we propose a naive wavelet spec-
trum test (WST), centred on a test statistic of the form

(3.3) Tj,k = Ŝ
(1)
j (k/T ) − Ŝ

(2)
j (k/T )

((σ̂
(1)
j,k )2/N1 + (σ̂

(2)
j,k )2/N2)1/2

∼ tdf under the null hypothesis,

where (σ̂
(i)
j,k)

2 is an estimate of the variance of Ŝ
(i)
j (k/T ) for i = 1,2 across the Ni

observations in group i, obtained using the standard sum-of-squares sample vari-
ance formula (as in Krzemieniewska, Eckley and Fearnhead (2014)). Under the
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null hypothesis of spectral equality, Tj,k (asymptotically) follows a t-distribution
with the number of degrees of freedom (df ) directly related to the variance estima-
tion procedure we employ. Each test statistic is then compared with a critical value
derived from the t-distribution in the usual way.

When the variance of Ŝ
(i)
j (k/T ) is unknown but common to both i = 1,2 groups

(denoted (σj,k)
2 := (σ

(1)
j,k )2 = (σ

(2)
j,k )2), it can be estimated using the pooled esti-

mator:

(3.4) σ̂ 2
j,k = (N1 − 1)(σ̂

(1)
j,k )2 + (N2 − 1)(σ̂

(2)
j,k )2

N1 + N2 − 2
,

replacing (σ̂
(1)
j,k )2 and (σ̂

(2)
j,k )2 in equation (3.3). The number of degrees of freedom

in the t-distribution of the test statistic is then df = N1 + N2 − 2.
If there is no reason to believe the group variances are equal, then use a t-

distribution with degrees of freedom

df = ((σ̂
(1)
j,k )2/N1 + (σ̂

(2)
j,k )2/N2)

2

((σ̂
(1)
j,k )2/N1)

2

N1−1 + ((σ̂
(2)
j,k )2/N2)

2

N2−1

.

However, the test statistic does not exactly follow the t-distribution, since two
standard deviations are estimated in the statistic. Conservative critical values may
also be obtained by using the t-distribution with N degrees of freedom, where N

represents the smaller of N1 and N2 (Moore (2007)).
In practice, the spectral estimators in equation (3.2) may breach the Gaussianity

testing assumption, especially when only a low number of replicates are available.
The assumption of approximate normality for individual replicate spectral esti-
mates, cautiously used in Fryzlewicz and Ombao (2009), will be strengthened by
the presence of a higher collection of group replicates (N1, N2) (see Section 4 for
a discussion of WST’s features and caveats).

3.1.2. Raw periodogram F-Test (‘FT’). We now construct a testing procedure
that is not reliant on the Gaussianity assumption whose validity we challenged
above. Formally, for each scale j ∈ N and rescaled time z ∈ (0,1), the spectral
equality S

(1)
j (z) = S

(2)
j (z) is equivalent to β

(1)
j (z) = β

(2)
j (z) as the autocorrelation

wavelet inner product matrix A that links the two (see equation (2.3)) is invert-
ible. We therefore replace our initial collection of multiple hypothesis tests with
equivalent reframed versions

H0 : β(1)
j (z) = β

(2)
j (z) ∀j, z

against the alternative (HA) that there exist a scale j∗ and rescaled time z∗ such
that β

(1)
j∗ (z∗) �= β

(2)
j∗ (z∗). In order to construct our test statistic, we test for spectral

equality by examining the βj (z) quantities instead.
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In reality we do not know β
(i)
j (z) for i = 1,2 so we replace it by an asymptot-

ically unbiased estimator. As data are available consisting of multiple time series
with known group memberships, we replace β

(i)
j (z) with an estimate across the

group replicates. Specifically, if we have Ni independent time series replicates
from group i, we define

(3.5) NiĪ
(i)
j,k :=

Ni∑
ri=1

I
(i),ri
j,k ∼ β

(i)
j (k/T )χ2

Ni
.

The distribution above follows as the raw wavelet periodogram coefficient of
each ri th periodogram replicate I

(i),ri
j,k is approximately (scaled) χ2

1 distributed
(e.g., Nason and Stevens (2015)) and independent of all other raw wavelet pe-
riodogram coefficients across all other replicates from the same group (also see
Fryzlewicz and Ombao (2009) and the discussion in Section 2.1). Under the further
assumption of group independence, Ī

(1)
j,k and Ī

(2)
j,k are independent and distributed

as detailed in equation (3.5). Hence we propose the test statistic

(3.6) Fj,k = Ī
(1)
j,k

Ī
(2)
j,k

∼ FN1,N2 under the null hypothesis.

Each test statistic is then compared with a critical value derived from the FN1,N2 -
distribution in the usual way.

Discussion. An advantage of the FT, particularly as opposed to the WST, is
that its underlying distributional assumption is theoretically, as well as practically,
more reliable. We would therefore expect the FT to outperform the WST in many
applications, and this is indeed validated across a variety of simulation settings
(see Section 4).

As we wish to test many hypotheses of the type H0 : β
(1)
j (k/T ) = β

(2)
j (k/T )

for several values of j and k, we are in the field of multiple-hypothesis testing.
For all tests we develop, we use Bonferroni correction and, for a less conservative
approach, the false discovery rate (FDR) procedure introduced by Benjamini and
Hochberg (1995). Our simulations in Section 4 show that both these methods work
well. However, of course the tests themselves are related to one another, but just as
in Nason (2013) we do not pursue this topic further in this work.

The WST and FT developed above both report the time-scale locations of the
significant differences between the two group spectra. These can be visualised as
a ‘barcode’ plot, where a significant difference is represented by a black line at the
time-scale location of the rejection of the null hypothesis (see, e.g., Figure 4, right).
Alternatively, for all our proposed tests, practitioners can also be informed by the
number of rejections (as a dissimilarity measure), with larger values indicating a
greater departure from the null hypothesis (as discussed in Das and Nason (2016)
and in Section 4.2).
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FIG. 4. Lead dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre: Average
estimated spectrum of the ‘Lead’ group; Right: ‘Barcode’ plot for FT (with FDR).

3.2. Ultradian dataset: Hypothesis testing for spectral equality across scales
(‘HFT’). For certain biological applications, such as the Ultradian motivating
example, it is more important to identify spectral differences between groups at
scale-level and the time locations of spectral differences are of less interest. For
such situations, we replace the spectral comparison H0 : S

(1)
j (z) = S

(2)
j (z) of the

previous section, in general equivalent to H0 : β
(1)
j (z) = β

(2)
j (z), by the compari-

son of the respective Haar–Fisz transforms, that is, test for

H0 : Fβ
(1)
j (z) = Fβ

(2)
j (z) ∀j, z.

Equivalently, in the notation established in Section 2.1 we test

(3.7) H0 : B(1)
j (z) = B(2)

j (z) ∀j, z

versus the alternative (HA) that there exist some scale j∗ and rescaled time z∗ for
which the equality does not hold. We shall refer to this test as the Haar–Fisz test
(HFT). Intuitively, although the HFT identifies both scales and times at which the
null hypothesis of spectral equality in the Haar–Fisz domain does not hold, as the
Haar–Fisz transform essentially ‘averages’ within each scale of the raw wavelet
periodogram, potential differences ‘spread’ throughout the scale. This property
makes it ideal for identifying scale-level differences between group wavelet spectra
(see, e.g., Figure 5, right).

As we do not know B(i)
j (z), we replace it by its approximately unbiased esti-

mator H(i)
j,k at scale j and time k (with z = k/T ) for group i = 1,2. In applica-

tions which do not provide access to replicate data, we could adopt equation (3.3)
with Ŝ

(i)
j (k/T ) replaced by H(i)

j,k and estimate the variance across each scale as
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FIG. 5. Ultradian dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre: Average
estimated spectrum of the ‘Mutant’ group; Right: ‘Barcode’ plot for HFT (with FDR).

the Haar–Fisz transform stabilises variance (Nason and Stevens (2015)) (see Ap-
pendix D in the Supplementary Material (Hargreaves et al. (2019))). When repli-
cates are available, we use equation (3.2) with H(i)

j,k to obtain group averaged es-

timators of B(i)
j (z), denoted Ĥ(i)

j,k , and propose a test statistic as in equation (3.3)

with Ŝ
(i)
j (k/T ) replaced by Ĥ(i)

j,k . The variance estimation techniques and subse-
quent test statistic distribution follow as detailed in Section 3.1 and the results of
the HFT can also be visualised as a ‘barcode’ plot.

The rationale of this approach is also to bring the data (in this context, the Haar–
Fisz transform of the raw wavelet periodogram) closer to Gaussianity and to break
the dependencies across time. Consequently, the assumptions behind the t-test are
closely adhered to and the dependencies between the multiple tests we perform are
weak. In practice, due to its scale averaging construction, the HFT unsurprisingly
results in many more time-localised rejections than the actual number of differing
coefficients in the original spectra, and does sometimes have difficulty discrimi-
nating between spectra which differ by a small number of coefficients; however,
the HFT does correctly identify scale-level spectral differences (see Section 4 for
further investigations).

3.3. Nematode dataset: Hypothesis testing for ‘same shape’ spectra (‘HT’).
In applications such as the Nematode example, the focus may be on identifying
whether groups evolve according to spectra that have the same shape at each scale,
thus indicating that the same patterns are identified in the data, albeit with poten-
tially different magnitudes.
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Mathematically, for a scale-dependent (nonzero) constant denoted by Cj , we
formalise our hypotheses as

(3.8) H0 : S(1)
j (z) = S

(2)
j (z) + Cj ∀j, z

versus the alternative HA : S
(1)
j∗ (z∗) �= S

(2)
j∗ (z∗) + Cj∗ for some scale j∗ and time

z∗.
Denoting by C, the J ×1 vector that holds Cj as its j th component and recalling

equation (2.3), we can equivalently reframe the problem into testing whether

H0 : β(1)
j (z) = β

(2)
j (z) + cj or equivalently H0 : β(D)

j (z) = cj ∀j, z,

where cj is the j th entry of the vector c = AC and β
(D)
j (z) := β

(1)
j (z) − β

(2)
j (z).

In the spirit of the tests developed in Fan and Lin (1998), and as undertaken
by von Sachs and Neumann (2000) and Nason (2013), at each scale j we assess
the constancy through time of β

(D)
j (z) by examining its associated Haar wavelet

coefficients. Although, in principle, any wavelet system could be adopted, von
Sachs and Neumann (2000) note that the Haar wavelet coefficients are ideal for
testing the constancy of a function. Hence we employ these wavelets and refer to
the test developed in this section as the Haar Test (HT).

The underlying principle behind these tests is that the wavelet transform of
a constant function is zero, hence under H0 above, the wavelet coefficients of
β

(D)
j (z) are

v
j
�,p =

∫ 1

0
β

(D)
j (z)ψH

�,p(z) dz = cj

∫ 1

0
ψH

�,p(z) dz = 0,

where {ψH
�,p(z)}�,p denote the usual Haar wavelets at scale � and location p.

This suggests performing multiple hypothesis testing on the collection of hy-
potheses

H0 : vj
�,p = 0 ∀j, � and p

against the alternative (HA) that there exist j∗, �∗ and p∗ such that v
j∗
�∗,p∗ �= 0.

As the spectral and related quantities are unknown, and since the wavelet trans-
form is linear, we estimate each v

j
�,p by v̂

j
�,p = v̂

j,(1)
�,p − v̂

j,(2)
�,p , with the Haar wavelet

coefficients corresponding to each group i = 1,2 estimated in the spirit of Nason
(2013) as

(3.9) v̂
j,(i)
�,p = 2−�/2

(2�−1−1∑
r=0

I
(i)

j,2�p−r
−

2�−1∑
q=2�−1

I
(i)

j,2�p−q

)
,

at each (original) scale j and Haar scale � and locations p, q .
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With the availability of independent replicates within each group, we estimate
the group i Haar wavelet coefficients as

(3.10) v̂
j,(i)
�,p = 1

Ni

Ni∑
ri=1

v̂
j,(i),ri
�,p ,

where each v̂
j,(i),ri
�,p is obtained as in equation (3.9) for the ri th replicate.

Under a specific set of assumptions, Nason (2013) shows the asymptotic nor-
mality of the Haar wavelet coefficient estimator of the wavelet periodogram at
scale j . Thus, in our setting, each v̂

j,(i),ri
�,p for i = 1,2 is asymptotically normal

with mean v
j,(i),ri
�,p and variance (σ

j,(i)
�,p )2. Using the replicate independence, we

have that v̂
j,(i)
�,p is asymptotically normally distributed with mean v

j,(i)
�,p and vari-

ance (σ
j,(i)
�,p )2/Ni and note that its distributional closeness to the normal increases

via a central limit theorem argument with the increasing number of replicates.
The group independence assumption then leads to an asymptotically joint nor-

mal distribution for (v̂
j,(1)
�,p , v̂

j,(2)
�,p ). Following the continuous mapping theorem, we

obtain that v̂
j
�,p = v̂

j,(1)
�,p − v̂

j,(2)
�,p has an asymptotic normal distribution with mean

v
j,(1)
�,p − v

j,(2)
�,p and variance ((σ

j,(1)
�,p )2/N1 + (σ

j,(2)
�,p )2/N2).

In the presence of replicates, we propose a test statistic of the form discussed in
equation (3.3)

(3.11)
T

j
�,p = v̂

j
�,p

((σ̂
j,(1)
�,p )2/N1 + (σ̂

j,(2)
�,p )2/N2)1/2

∼ tdf under the null hypothesis,

where (σ̂
j,(i)
�,p )2 is an estimate of the variance of v̂

j,(i)
�,p for i = 1,2 across the Ni

observations in group i, obtained using the standard sum-of-squares sample vari-
ance formula and df denotes the degrees of freedom associated with the variance
estimation procedure (see Section 3.1.1). Each test statistic is then compared with
a critical value derived from the t-distribution in the usual way.

In order to control the asymptotic bias derivation, one of the assumptions under
which the distributional theory is derived consists of limiting the scales of the Haar
wavelet coefficients v

j
�,p to be sufficiently coarse, � = 0, . . . , (J − �J/2	 − 2).

Furthermore, as in Nason (2013), we only consider the wavelet coefficients of the
periodogram at levels j ≥ 3 in order to avoid the effects of a region similar to the
‘cone of influence’ described by Torrence and Compo (1998).

To aid the visualisation of the WST, FT and HFT results, we use a ‘barcode’
plot that indicates the time- and scale- locations where significant differences are
present. The HT can also indicate where the significant differences are located
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FIG. 6. Nematode dataset. Left: Average estimated spectrum of the ‘Control’ group; Centre: Aver-
age estimated spectrum of the ‘Treatment’ group; Right: ‘Barcode’ plot for FT (with FDR).

in the series and can plot the results in a manner similar to the wavelet test of
stationarity (see Nason (2013)). However, due to its construction, these locations
are more difficult to interpret than for the WST, FT and HFT (see Figure 6).

4. Simulation studies. The goals of the simulation studies were: (1) to evalu-
ate the empirical power and size of our new tests; (2) to consider the effect of sam-
ple size on the accuracy of the tests; (3) to investigate two approaches to multiple-
hypothesis testing: Bonferroni correction (denoted ‘Bon.’) and the false discovery
rate procedure (‘FDR’); (4) to investigate the performance of our proposed tests
when certain modelling assumptions are broken and (5) to evaluate the empirical
power and size of our new tests in comparison with the adaptive Neyman Test
(ANT) of Fan and Lin (1998) (see Section 2.2). This benchmark method performs
well in practice when the assumption that the data can be modelled as a functional
time series is valid.

In this section we briefly outline the basic structure of each simulated experi-
ment (a comprehensive description of the simulation studies can be found in Ap-
pendix D in the Supplementary Material (Hargreaves et al. (2019))). In each case,
we assumed that the signal was a realisation from one of i = 1,2 possible groups.
For each group, we generated a set of N1 = N2 = 1,10,25,50 signal realisations
of common length T = 256, the equivalent of a free-running period of four days.
For each realisation, we obtained the raw and corrected wavelet periodograms us-
ing (unless otherwise stated) the Haar wavelet (from the locits software pack-
age for R—available from the CRAN package repository) although, in principle,
any wavelet system can be used (see Section 4.3). The Haar–transformed and
Haar–Fisz transformed raw wavelet periodogram were subsequently obtained and
the spectral testing procedures carried out as described in Section 3. The results
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are compared with the known group memberships, and the procedure is then re-
peated 1000 times to obtain empirical size and power estimates as outlined in the
following sections.

4.1. Power comparisons. To explore statistical power we simulate a set of
N1 = N2 = 1,10,25,50 signal realisations from each group where the individ-
ual group spectra are defined such that there exists a scale j∗ and time t∗ such that
S

(1)
j∗ (t∗/T ) �= S

(2)
j∗ (t∗/T ). The empirical power estimates are obtained by count-

ing the number of times our tests reject the null hypothesis of spectral equal-
ity. The models we will use are denoted P1–P12 respectively and are briefly de-
scribed below (details can be found in Appendix D in the Supplementary Material
(Hargreaves et al. (2019))).

1. P1: Fixed Spectra. We follow Krzemieniewska, Eckley and Fearnhead
(2014) and design the spectra of the two groups to differ at the finest level (resolu-
tion level 7) by 100 coefficients.

2. P2: Fixed Spectra-Fine Difference. We modify the model P1 by fixing
‘Group 1’ but defining the spectrum of ‘Group 2’ such that the spectra of the two
groups now differ by only 6 coefficients.

3. P3: Fixed Spectra-Plus Constant. Modify the model P1 by fixing ‘Group 1’
but defining the spectrum of ‘Group 2’ such that the spectra of the two groups
differ by a constant in the finest resolution level.

4. P4/P5: Gradual Period Change. This study replicates a typical circadian
experiment with changes that cannot be captured by standard analyses assuming
stationarity and only reporting an average period value. We thus define 3 possible
groups, where each group represents a signal that gradually changes period from
24 to: 25 (Group 1), 26 (Group 2) and 27 (Group 3) over (approximately) two
days, before continuing with the relevant period for a further two days (also see
Hargreaves et al. (2018)). To determine which changes can be discriminated by the
methods, we perform two studies within this setting: simulations from Groups 1
and 2 (P4) and simulations from Groups 1 and 3 (P5).

5. P6/P7: AR Processes with time-varying coefficients. We simulate from an
important class of nonstationary processes—AR(2) processes with: abruptly (P6)
and slowly (P7) changing parameters (as in Fryzlewicz and Ombao (2009)).

6. P8–P12: Functional Time Series (Constant Period). This study follows
Zielinski et al. (2014) and generates each time series using an underlying cosine
curve with additive noise, which also coincides with the theoretical assumptions
of the ANT. We define time series as realisations from one of six possible groups,
each with a different (constant) period, relevant to our circadian setting. To de-
termine which period changes can be discriminated by the methods, we perform
five studies within this setting: simulations from a group with a period of 24 hours
versus a group with a period of 21, 22, 23, 23.5 and 23.75 hours (models P8–P12
respectively).
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TABLE 1
Simulated power estimates (%) for models P1–P7 with nominal size of 5% with N1 = N2 = 25

realisations from each group. Highest empirical power estimates are highlighted in bold

Model WST
(Bon.)

WST
(FDR)

FT
(Bon.)

FT
(FDR)

HFT
(Bon.)

HFT
(FDR)

HT
(Bon.)

HT
(FDR)

P1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
P2 39.3 48.0 100.0 100.0 29.1 31.8 86.2 86.4
P3 100.0 100.0 100.0 100.0 100.0 100.0 4.3 4.4
P4 1.0 2.7 45.5 54.5 33.2 36.5 100.0 100.0
P5 5.9 14.6 97.0 99.9 100.0 100.0 100.0 100.0
P6 100.0 100.0 87.5 92.6 44.8 89.1 66.5 67.7
P7 100.0 100.0 54.3 64.5 97.4 99.9 100.0 100.0

4.1.1. Discussion of findings. The empirical power values for N1 = N2 = 25
(this is the typical number of available replicates in circadian studies; see Ap-
pendix A in the Supplementary Material (Hargreaves et al. (2019))) for models
P1–P7 are reported in Table 1. We found that all tests perform well when the spec-
tra differ by a large number of coefficients (model P1). The FT (and, to a lesser ex-
tent, the HT) are able to discriminate between spectra that differ by a small number
of coefficients (model P2) whereas the HFT has lower empirical power. By con-
struction, the HT cannot differentiate between spectra that differ by a constant at a
particular resolution level (model P3), but we found that the HT performs well in
our synthetic circadian example of gradual small period change across many time-
scale locations (models P4 and P5). Due to the higher distributional reliability of
the FT, it unsurprisingly outperforms the WST when the times series are gener-
ated from a defined spectrum (models P1–P5). However, distributional properties
of the time-varying AR process ensure that the WST performs best when data are
generated using models P6 and P7, with the HT and HFT also performing well for
model P7.

Effect of Sample Size. The number of replicates in each group (N1,N2) is also
an important factor in achieved power. The results for the HFT with N1 = N2 = 1
are shown in Table S6 (Appendix D.2 in the Supplementary Material (Hargreaves
et al. (2019))), since we recall that the HFT is the only proposed test which can be
applied when replicate data is not available—see Section 3.2. The results for all
tests with N1 = N2 = 10 and 50 replicates are shown in Table S7 (Appendix D.2 in
the Supplementary Material (Hargreaves et al. (2019))). Increasing the number of
replicates should, and indeed does, increase the empirical power of all tests (with
the exception of the HT for model P3). For example, note the increase in empirical
power (particularly for models P2 and P4) as the number of replicates increases
from 10 to 25.

Approach to Multiple-hypothesis Testing. These studies show that the Bonfer-
roni correction provides a more conservative approach. The false discovery rate
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TABLE 2
Performance Comparison: Simulated power estimates (%) for models P8–P12 with nominal size of
5% with N1 = N2 = 25 realisations from each group and using the false discovery rate procedure

(FDR). Note: Control group period is 24 hours in each model

Model Test Group Period WST (FDR) FT (FDR) HFT (FDR) HT (FDR) ANT

P8 21 100.0 100.0 100.0 100.0 100.0
P9 22 100.0 100.0 100.0 100.0 100.0
P10 23 100.0 100.0 92.0 100.0 100.0
P11 23.5 100.0 100.0 31.8 100.0 100.0
P12 23.75 100.0 97.9 9.1 98.3 100.0

gives an empirical power greater than (or equal to) that of the Bonferroni correc-
tion (see, e.g., model P6 in Table 1).

Performance Comparison. We also report that the empirical power of the ANT
for model P5 (gradual period change, 25 replicates) was 10.7%, which is below the
results in Table 1 for our proposed tests. This is to be expected as the underlying
assumptions of the ANT are no longer met. (Similar results are obtained for models
P1–P7, hence we do not provide these here.)

Table 2 presents a selection of the performance comparison results for models
P8–P12 when N1 = N2 = 25. (The results for all tests with N1 = N2 = 10 repli-
cates are also shown in Table S8, Appendix D.2 in the Supplementary Material
(Hargreaves et al. (2019)).) As expected, the ANT performs extremely well in all
these studies since the underlying assumptions of the methodology are adhered to.
Nevertheless, it is encouraging that the WST, FT and HT also all have an empir-
ical power over 95% (25 replicates) showing that our methodology can also be
successfully applied to functional time series as designed for the ANT. However,
the HFT had difficulty discriminating between groups when the period difference
was less than two hours. This was no surprise as the HFT was constructed to detect
differences in scale only and, due to the lower frequency resolution of the wavelet
spectrum, the total power within each scale of the wavelet spectrum will be very
similar for both groups.

4.1.2. Power comparisons: Conclusions. In practice, the suitability of the test-
ing procedures is determined by a combination of factors, such as the practical
problem posed by scientists, the degree to which the data adheres to the underly-
ing theoretical assumptions and the number of available replicates. For example,
models P1–P3 all stem from a simulated LSW structure and thus would be subject
to a test for time-scale equality departure, carried out through an ‘FT’, as its the-
oretical assumptions are closely adhered to. Recall that the ‘WST’ was proposed
as a ‘naive’ variant and is heavily reliant on the number of replicates in order to
achieve the appropriate distributional properties; thus, its best results are obtained
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for models that have been simulated from time-varying AR processes. Meanwhile,
for data following models that exhibit a gradual period change (such as P4–P5)
one might be interested in identifying scale-dependent patterns or discrepancies,
carried out through the ‘HT’ or ‘HFT’.

4.2. Size comparisons. To explore statistical size, we simulate data from a
number of models and we asses how often our hypothesis tests reject the null hy-
pothesis of spectral equality (i.e., the time series are generated in the same way for
both test groups). The models we will use are denoted M1–M5 respectively and are
briefly described below (details can be found in Appendix D in the Supplementary
Material (Hargreaves et al. (2019)).

1. M1: Fixed Spectra. We simulate all data from the wavelet spectrum associ-
ated with Group 1 in models P1, P2 and P3, which we define as {S(1)

j (z)}Jj=1 in
equation (D.1).

2. M2: Gradual Period Change. We simulate all data from the wavelet spectrum
which corresponds to a time series that gradually changes period from 24 to 25
hours (over approximately two days), before continuing with period 25 hours for
a further two days (i.e., Group 1 from models P4/P5).

3. M3: AR Processes With Abruptly Changing Parameters. Each time series is
generated from the process defined by equation (D.5) with the abruptly changing
parameters as defined for group i = 1 in Table S4 (i.e., Group 1 from model P6).

4. M4: AR Processes With Slowly Changing Parameters. Each time series is
generated from the process defined by equation (D.6) with the slowly changing
parameters as defined for group i = 1 in Table S5 (i.e., Group 1 from model P7).

5. M5: Functional Time Series (Constant Period). All data are simulated (using
equation (D.7) from the model that corresponds to a time series with a constant
period of 24 hours (i.e., Group 1 from models P8–P12).

4.2.1. Discussion of findings. The empirical size values for models M1–M4
with N1 = N2 = 25 (this is the typical number of available replicates in circadian
experiments; see Appendix A in the Supplementary Material (Hargreaves et al.
(2019))) are reported in Table 3. The results for the HFT with N1 = N2 = 1 are
shown in Table S6, Appendix D.2 in the Supplementary Material (Hargreaves
et al. (2019)). (Recall: the HFT is the only proposed test which can be applied
when replicate data is not available—see Section 3.2). The results for all tests with
N1 = N2 = 10 and 50 replicates are shown in Table S9 (Appendix D.2 in the Sup-
plementary Material (Hargreaves et al. (2019))).

These studies show that the empirical size corresponding to all proposed tests
(apart from the FT for model M4 with N1 = N2 = 10 and 25) are less than the
nominal size of 5%. A close inspection of rejections for the FT for model M4 with
N1 = N2 = 10 and 25 and both multiple-hypothesis testing methods (Table S10 in
Appendix D.2 in the Supplementary Material (Hargreaves et al. (2019))) reveals
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TABLE 3
Simulated size estimates (%) for models M1–M4 with nominal size of 5% and N1 = N2 = 25

realisations from each group. Empirical size estimates over the nominal size of 5% are highlighted
in bold

Model WST
(Bon.)

WST
(FDR)

FT
(Bon.)

FT
(FDR)

HFT
(Bon.)

HFT
(FDR)

HT
(Bon.)

HT
(FDR)

M1 0.6 1.3 2.5 3.1 0.1 2.0 2.3 2.7
M2 0.3 0.6 3.0 3.9 0.4 3.3 2.5 2.7
M3 0.2 1.5 3.6 3.9 0.0 1.6 3.5 3.8
M4 0.4 0.9 4.6 5.2 1.0 2.4 3.4 3.8

that, for this particular example, the number of rejections is often 1. If we disregard
such situations, the empirical size of the FT also falls below the nominal size of
5% for all sample sizes and multiple-hypothesis testing procedures. In practice,
circadian scientists are mostly interested in the numbers of rejections and their
locations and often choose to disregard situations where very few coefficients are
significantly different. Indeed, this is also our approach in Section 5.

Effect of Sample Size. Note that the tests scale well with increasing sample size,
with the nominal size acting as an upper bound, a behaviour also present in other
related empirical size investigations; see, for example, Cho (2016).

Approach to Multiple-hypothesis Testing. These studies show that the Bonfer-
roni correction provides a more conservative approach, whereas the false discovery
rate (using the correction outlined above) is closer to the nominal size.

Performance Comparison. The results for model M5 with N1 = N2 = 10 and 25
are shown in Table S8 (Appendix D.2 in the Supplementary Material (Hargreaves
et al. (2019))). Note that the empirical size estimates for our proposed tests are all
lower than the nominal size of 5%, whereas for 10 replicates the empirical size of
the ANT is 7.9%.

4.2.2. Size comparisons: Conclusions. These studies show that the empirical
size corresponding to all proposed tests is less than the nominal size of 5% (apart
from the FT for model M4 with N1 = N2 = 10 and 25—where, in most cases,
the number of significant coefficients was less than 5). We thus recommend using
the less conservative FDR procedure (ignoring situations with very small num-
bers of rejections). Note this also yields better results for empirical power (see
Section 4.1.1) whilst also remaining below the nominal size.

4.3. Sensitivity analysis. In this section we investigate the sensitivity of our
proposed tests to certain modelling assumptions. We investigate: (1) departures
from the normality assumption and (2) impact of the choice of wavelet family used
within the spectral estimation procedures of each of our proposed tests. Through-
out this section, we use N1 = N2 = 25, since this is the typical number of available
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replicates in circadian experiments (see Appendix A in the Supplementary Mate-
rial (Hargreaves et al. (2019))).

4.3.1. Departures from normality. Recall the proposed statistical testing
methodology assumes the innovations {ξj,k} to be normally distributed. To in-
vestigate the impact of this assumption, we computationally assess the power and
size of the proposed tests within the settings outlined in Section 4 for models
P1–P5 and M1–M2 but simulated using non-Gaussian innovations (specifically
following a t-distribution with 5, and subsequently 3, degrees of freedom). The
results can be found in Table S11 (Appendix D.2 in the Supplementary Material
(Hargreaves et al. (2019))). Unsurprisingly, when the normality assumption is bro-
ken, the empirical power of all tests is less than (or equal to) the empirical power
when the innovations follow a standard normal distribution. The increasing distri-
butional departure from normality appears to be of little relevant influence when
testing data simulated from models P1 and P3 (across all tests), while the empir-
ical power drops for the HT corresponding to models P2 and P4/P5. The testing
procedures break for models P4/P5 with t3-distributed innovations as, intuitively,
the presence of heavier innovations make the gradual period change structure of
models P4/P5 very difficult to discriminate. We also note that the HT is heavily
reliant on the distributional assumptions (see Section 3.3) which explains its sen-
sitivity. Due to its construction (see Section 3.1.2), the FT appears to more readily
reject the null hypothesis, increasing the empirical size of the test. However, if
we disregard situations where there are a very low number of rejections (see Sec-
tion 4.2.1) the empirical size of the FT falls below the nominal size of 5% for both
multiple–hypothesis testing procedures and all studies (other than M1 with FDR).
We report here that the empirical power of the ANT for model P1 (fixed spectra)
with t-distributions with 5 degrees of freedom was 6.8%, which is below the re-
sults in Table S11 for all our proposed tests (which are all over 99.9%). This is to
be expected since, as in Section 4.1, the underlying assumptions of the ANT are
not valid. (Similar results are obtained for models P2–P7, hence we do not provide
these here.)

We also investigated the power and size for models P8–P12 and M5 (see Sec-
tion 4) simulated using non-Gaussian errors (specifically following t-distributions
with 5, and subsequently 3, degrees of freedom). The results can be found in Ta-
ble S12 (Appendix D.2 in the Supplementary Material (Hargreaves et al. (2019))).
The WST, FT and HT appear to share a good degree of robustness as they all
have an empirical power over 99% for models P8–P11, showing that our method-
ology can also be successfully applied to functional time series (as designed for
the ANT) with non-Gaussian error. Akin to the previous results for the gradual
period change models P4/P5, the distribution of the noise term does appear to have
an adverse effect in model P12, where the difference between the periods of the
two underlying signals is only 15 minutes. Across this study, the HFT was most af-
fected. A possible explanation is that the HFT was constructed to detect differences
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in scale only and, due to the lower frequency resolution of the wavelet spectrum,
the total power within each scale of the wavelet spectrum will be very similar for
both groups. This issue will have been compounded by the heavier tailed distribu-
tion of the noise term. We also report here that, in the settings of this study, the
performance of ANT was sustained as its underlying assumptions are adhered to.

4.3.2. Choice of wavelet. The wavelet system gives a representation for non-
stationary time series under which we estimate the wavelet spectrum and subse-
quently perform hypothesis testing. We investigated the sensitivity of our methods
to the wavelet choice. For models P1–P5, the Haar wavelet was used for spectral
estimation, but different, potentially mismatched wavelets were used to generate
the processes from the spectrum: Haar wavelets, Daubechies’ least-asymmetric
wavelets with four vanishing moments and Daubechies’ extremal phase wavelets
with ten vanishing moments. Models P6–P12 were not generated from LSW spec-
tra (see Section 4), hence we report the results when using a selection of wavelets
for the empirical wavelet spectrum.

The results in Tables S13 and S14 (Appendix D.2 in the Supplementary Ma-
terial (Hargreaves et al. (2019))) show that our methodology is fairly robust to
the wavelet choice. The empirical size estimates all fall below the nominal size.
The results indeed support the intuition that, as the scope of our work is to devise
tests that locally identify dissimilarities between pairs of spectra, the short sup-
port overlaps of Haar wavelets counterbalance their otherwise reduced capacity of
representing smooth signals.

4.4. Summary of findings. A summary of the hypothesis tests developed in
this manuscript detailing the test name, its acronym, strengths and weaknesses can
be found in Table S15 (Appendix E in the Supplementary Material (Hargreaves
et al. (2019))).

5. Real data analysis: Back to the motivating circadian datasets. We now
use our proposed methodology to analyse the motivating examples (Section 1).
Prior to analysis, we investigate whether the normality assumption is tenable for
each of our motivating datasets. The results (Appendix B.2 in the Supplementary
Material (Hargreaves et al. (2019))) show that, for each of our motivating datasets,
the normality assumption is appropriate. We then model each circadian trace as a
(Gaussian) LSW process, estimate its corresponding group wavelet spectral repre-
sentation and consequently construct the appropriate test statistic that aims to iden-
tify whether a departure towards a specific type of spectral difference is present or
not (as described in Section 3). For each dataset, the corresponding number of re-
jections can be found in Table S3 (Appendix B.1 in the Supplementary Material
(Hargreaves et al. (2019))), with corresponding representative ‘barcode’ plots in
Figures 4, 5 and 6.
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We also note here that the data naturally shared the same starting point and had
the same length (see Appendix A in the Supplementary Material (Hargreaves et al.
(2019))). Therefore, instances where these conditions are not satisfied are not the
focus of this paper and we leave these issues for future research.

5.1. Lead dataset. Section 1.1.1 outlined the scientific aims to determine
whether lead nitrate affects the circadian clock and, if so, to detect the times and
scales at which any significant differences arise between the ‘Control’ and ‘Lead’
exposure groups. Therefore, we are particularly interested in the results of the FT.
Table S3 shows the results for the FT and includes both the more conservative
Bonferroni correction and FDR. In order to visualise the areas of null hypothesis
rejection of spectral equality between the control and lead-exposure groups, both
group average estimated spectra as well as the ‘barcode’ plot for the FT (with FDR)
appear in Figure 4. Figure 4 indicates that the differences between the two spectra
lie in resolution levels 2–4, directly corresponding to a circadian rhythm, with the
number of rejections increasing with exposure time. We conclude that there is evi-
dence that exposure to lead does affect the circadian clock of A. thaliana, and this
change manifests itself after approximately three days of free-running conditions.

5.2. Ultradian dataset. Section 1.1.2 introduced this experiment and high-
lighted the need to detect whether any differences appear in the circadian and ul-
tradian components of the ‘Control’ and ‘Mutant’ groups. Hence we are interested
in the results of the HFT, specifically developed to identify the scales, rather than
the times, at which potential differences arise. Table S3 shows the results for the
HFT, including both the Bonferroni correction and FDR. The results indicate re-
jections of the null hypothesis of spectral equality between the control and mutant
plants across a range of scales. The group average estimated spectra and ‘barcode’
plot for the HFT (with FDR) can be found in Figure 5. Note that the differences
between the two spectra lie in the coarsest resolution levels 1–4, associated with
circadian rhythms, and higher-frequency levels 6 and 7, corresponding to an ultra-
dian rhythm. We conclude that there is evidence that the mutant plants have altered
circadian and ultradian rhythms within A. thaliana.

5.3. Nematode dataset. The experiment in Section 1.1.3 aimed to elucidate
the effect of a pharmacological treatment on the C. elegans clock. The average
estimated spectra of the ‘Control’ and ‘Treatment’ groups in Figure 6 share a com-
mon profile but with differences in magnitude, indicating that the HT would be
appropriate in this context. Table S3 shows that the HT found no significant differ-
ence between the shapes of the two spectra, but when tested for equality, the FT
(with FDR) found multiple rejections of the null hypothesis of spectral equality
between the ‘Control’ and ‘Treatment’ groups (refer to the ‘barcode’ plot in Fig-
ure 6). This provides evidence that the two spectra have the same profile within
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each scale up to an additive nonzero constant. We thus conclude that there is evi-
dence that the treatment significantly affects the intensity of the spectral behaviour,
but not its pattern. The spectral differences are present at the highest frequencies
(resolution levels 6–8) as an early response to the onset of treatment (prior to time
T = 48); see Figure 6.

5.4. Discussion of results. Overall, we recall that, for each of our motivating
datasets, the established Fourier-based tests currently adopted within the circa-
dian community found no significant difference between the groups (see Table S1
in Appendix B.1 in the Supplementary Material (Hargreaves et al. (2019))), even
though qualitative differences are easily noted (see Section 1.1). This methodology
assumes data stationarity, but for our motivating datasets we have shown that this
assumption is not appropriate (see Table S2 in Appendix B.1 in the Supplementary
Material (Hargreaves et al. (2019))). Our proposed methodology was able to detect
the visually apparent differences between the motivating datasets when the current
methodology could not (see Tables S3 and S1 in Appendix B.1 in the Supplemen-
tary Material (Hargreaves et al. (2019))). Due to the nonstationary character of
the proposed approach, it also additionally indicates precise times and/or scales at
which differences become manifest.

6. Conclusions and further work. This work was stimulated by a variety of
challenging applications faced by the circadian–biology community, which is be-
coming increasingly aware of the nonstationary characteristics present in much of
their data (Hargreaves et al. (2018), Zielinski et al. (2014), Leise et al. (2013)).
Our methodology fills the gap in the current literature by developing and test-
ing much needed tools for the formal spectral comparison of nonstationary data.
Our methods are developed as testing procedures, analogous to the period anal-
ysis techniques currently adopted within the circadian community. Motivated by
three complementary applications in circadian biology, our new methodology al-
lows the identification of three specific types of spectral difference. Table S15 in
Appendix E in the Supplementary Material (Hargreaves et al. (2019)), provides
a summary of the hypothesis tests developed in this manuscript detailing their
strengths and weaknesses.

The competitive performance of our methods was comparatively assessed in
an extensive simulation study (Section 4). Additionally, when compared to ex-
isting methods currently adopted within the circadian community, our proposed
tests were able to discriminate between real data sets (Table S3) where the current
methodology could not (Table S1).

In the applications provided, we illustrated the important implications in further
understanding the mechanisms behind the plant and nematode circadian clocks,
and the environmental implications associated with soil pollution. However, we
note that our methodology can readily be applied to other circadian datasets, as
well as to data originating in other fields, as long as the data share the same dyadic
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length (T ). This assumption is easily achievable for most experimental data, but
for other setups might necessitate further specific treatments depending on the dis-
crepancy between the number of observations.

In all of our proposed hypothesis tests, we wish to test many hypotheses of the
type H0 : S(1)

j (k/T ) = S
(2)
j (k/T ) for several values of j and k. In this manuscript

we tested the Bonferroni correction and, for a less conservative approach, the false
discovery rate (FDR) procedure. We recommend the use of the FDR procedure, as
this gave a higher empirical power and was closer to the nominal size in the sim-
ulation studies (see Section 4). However, the multiple-hypothesis testing methods
we use do not account for the dependence of the spectral coefficients. The hypoth-
esis tests developed in Sections 3.2 and 3.3 alleviate this problem by transforming
the data to produce coefficients that are approximately uncorrelated but, as nei-
ther method fully decorrelates the data, multiple-hypothesis testing methods that
take the dependence of the (transformed) spectral coefficients into account are an
interesting avenue of further work.

SUPPLEMENTARY MATERIAL

Appendix for “Wavelet spectral testing: Application to nonstationary cir-
cadian rhythms.” (DOI: 10.1214/19-AOAS1246SUPP; .pdf). The supplementary
material contains Appendices A–E which provide additional details throughout
this manuscript. In particular, Appendix A outlines the experimental details that
led to the datasets introduced in Section 1.1 and subsequently analysed in Sec-
tions 5.1, 5.2 and 5.3. Appendix B contains: a summary of the output of the anal-
ysis of the motivating datasets in BRASS; the results of the Priestley–Subba Rao
test of stationarity (for each time series) and the number of rejections for the rele-
vant proposed hypothesis testing procedure, for each motivating example dataset.
Appendix C provides the technical details that underline the LSW process model
introduced by Nason, von Sachs and Kroisandt (2000). Appendix D gives a more
detailed description of the simulation studies outlined in Section 4. Appendix E
provides a summary of the hypothesis tests developed in this manuscript detail-
ing the test name, its acronym, strengths and weaknesses for each of the proposed
tests.
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