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Abstract. We consider a self-avoiding walk model (SAW) on the faces of the square lattice Z
2. This walk can traverse the same face

twice, but crosses any edge at most once. The weight of a walk is a product of local weights: each square visited by the walk yields a
weight that depends on the way the walk passes through it. The local weights are parametrised by angles θ ∈ [π

3 , 2π
3 ] and satisfy the

Yang–Baxter equation. The self-avoiding walk is embedded in the plane by replacing the square faces of the grid with rhombi with
corresponding angles.

By means of the Yang–Baxter transformation, we show that the 2-point function of the walk in the half-plane does not depend on
the rhombic tiling (i.e. on the angles chosen). In particular, this statistic concides with that of the self-avoiding walk on the hexagonal
lattice. Indeed, the latter can be obtained by choosing all angles θ equal to π

3 .

For the hexagonal lattice, the critical fugacity of SAW was recently proved to be equal to 1 + √
2. We show that the same is true

for any choice of angles. In doing so, we also give a new short proof to the fact that the partition function of self-avoiding bridges in
a strip of the hexagonal lattice tends to 0 as the width of the strip tends to infinity. This proof also yields a quantitative bound on the
convergence.

Résumé. On considère un modèle de marches auto-évitantes sur les faces du réseau carré Z
2. Ce type de marche peut traverser la

même face deux fois, mais traverse chaque arrête au plus une fois. Le poids d’une telle marche est le produit de poids locaux : chaque
face visitée contribue par un poids qui dépend de la façon dont la marche la traverse. Les poids locaux associés à chaque face sont
paramétrés par des angles θ ∈ [π

3 , 2π
3 ] et satisfont l’équation de Yang–Baxter. La marche est plongée dans le plan en remplaçant les

faces carrées du réseau par des losanges d’angles correspondant à leur poids.
À l’aide de la transformation de Yang–Baxter, on montre que la fonction à deux points de la marche dans le demi-plan ne dépend

pas des angles des losanges. En particulier, cette statistique coïncide avec celle de la marche aléatoire sur le réseau hexagonal – celle-ci
est obtenue en choisissant tous les angles θ égaux à π

3 .

La fugacité critique des marches auto-évitantes sur le réseau hexagonal a été calculée récemment : elle vaut 1 +√
2. Nous montrons

que la même chose est valable pour tout choix d’angles. A cette occasion, on donne une nouvelle preuve du fait que la fonction de
partition des ponts auto-évitants dans une bande du réseau hexagonal tend vers 0 quand la largeur de la bande tend vers l’infini. De
plus, on montre une borne quantitative sur le taux de convergence.
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1. Self-avoiding walk on Z
2 with Yang–Baxter weights

In spite of the apparent simplicity of the model, few rigorous results are available for two dimensional self-avoiding
walk. The main conjecture is the convergence of plane SAW to a conformally invariant scaling limit. The latter is shown
[13] to be equal to SLE(8/3), provided the scaling limit exists and is conformally invariant. A natural way to attack this
problem is via the so-called parafermionic observable (see below for a definition) and its partial discrete holomorphicity.
H. Duminil-Copin and S. Smirnov [6] used the parafermionic observable to prove that the connective constant for the

hexagonal lattice is equal to
√

2 + √
2, a result that had beed non-rigorously derived by B. Nienhuis in [14].
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Self-avoiding walk on the square lattice is not believed to be integrable, therefore it is not reasonable to expect any
explicit formula for the connective constant in this case,1 nor the existence of a well-behaved equivalent observable.
However, one may study natural variations of the model, such as the weighted version presented here, that render it
integrable. By integrability here we mean that the weights satisfy the Yang–Baxter equation. Similar integrable versions
exist for all loop O(n) models (see [7,10,15]), we limit ourselves here to n = 0, that is to self-avoiding walk.

These variations provide a framework to analyse the universality phenomenon, i.e. that the properties of the model
at criticality do not depend on the underlying lattice. Though believed to generally occur, the universality of critical
exponents on isoradial graphs was established only for the Ising model [3], percolation [8] and the random-cluster model
[4]. The current paper is the first step towards universality of the self-avoiding walk.

Here we address the natural question of comparison between the properties of regular self-avoiding walk on the hexag-
onal lattice and those of weighted self-avoiding walk on a more general rhombic tiling. We show that in the half-plane,
the 2-point function between points on the boundary is the identical in the weighted and regular models. A main tool in
our proof, as well as in [4,8], is the Yang–Baxter transformation discussed in Section 3.

Let us now define the model. Consider a series of angles � = {θk}k∈N, where θk ∈ [π/3,2π/3] for all k. Denote by
H(�) the right half-plane tiled with columns of rhombi of edge-length 1 in such a way that all rhombi in the k-th column
from the left have upper-left angle θk . We regard H(�) as a plane graph, and call edges the sides of each rhombus; we
will refer to such graphs as rhombic tilings. Embed H(�) so that the origin 0 is the mid-point of a vertical edge of the
boundary. Denote by StripT (�) the strip consisting of the T leftmost columns of H(�).

A self-avoiding walk on H(�) is a simple curve γ starting and ending at midpoints of edges, intersecting edges at
right angles and traversing each rhombus in one of the ways depicted in Figure 1. The weight w�(γ ) of a self-avoiding
walk γ is the product of weights associated to each rhombus; for a rhombus of angle θ the weight, depending on the
configuration of arcs inside it, takes one of the six possible values: 1, u1(θ), u2(θ), v(θ), w1(θ), w2(θ) (see Figure 1 for
the correspondence between the local pictures and the weights). These are explicit functions of θ , given below. When it
is clear which angles are considered, we will usually omit the subscript � and write w(γ ).

In 1990, Nienhuis [15] computed the set of weights that are coherent with the Yang–Baxter equation for this model
(see Section 3 for details). These are:

u1 = sin( 5π
4 ) sin( 5π

8 + 3θ
8 )

sin( 5π
4 + 3θ

8 ) sin( 5π
8 − 3θ

8 )
, u2 = sin( 5π

4 ) sin( 3θ
8 )

sin( 5π
4 + 3θ

8 ) sin( 5π
8 − 3θ

8 )
, v = sin( 5π

8 + 3θ
8 ) sin(− 3θ

8 )

sin( 5π
4 + 3θ

8 ) sin( 5π
8 − 3θ

8 )
,

w1 = sin( 5π
8 + 3θ

8 ) sin( 5π
4 − 3θ

8 )

sin( 5π
4 + 3θ

8 ) sin( 5π
8 − 3θ

8 )
, w2 = sin( 15π

8 + 3θ
8 ) sin(− 3θ

8 )

sin( 5π
4 + 3θ

8 ) sin( 5π
8 − 3θ

8 )
.

(1)

Notice that the weights above are all non-negative if and only if θ ∈ [π/3,2π/3]. To have a probabilistic interpretation of
the model, we limit ourselves to angles in this range. One may more generally define the model on any rhombic tiling, but
certain walks may have negative weights (namely w1 and w2 are negative when θ > 2π/3 and θ < π/3, respectively).

Henceforth, we always consider the weights listed above; the associated model will be referred to as the weighted
self-avoiding walk. Replacing θ by π − θ , effectively exchanges u1 with u2 and w1 with w2, but does not affect v. Hence,
there is no ambiguity about which angles parametrise the rhombi.

Fig. 1. Different ways of passing a rhombus with their weights and an example of a walk of weight u1(θ1)2v(θ2)u1(θ2)u2(θ2)w2(θ3) ×
v(θ3)u2(θ3)u1(θ4)u2(θ4) and length 3

π [2θ1 + 3(π − θ3) + 7].

1The most recent numerical estimate for the connective constant of the square lattice was obtained in [11] as 2.63815853032790(3); it does not allow
to conclude whether the connective constant is an algebraic number.
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Fig. 2. A rhombus of angle π/3 is split into two equilateral triangles. Any triangle contains at most one arc, in which case it contributes 1/
√

2 + √
2 to

the weight. If all angles are equal to π/3, all faces of the rhombic tiling (bold black) maybe split into equilateral triangles, and walks may be viewed as
regular self-avoiding walks on the hexagonal lattice (gray).

Fig. 3. Left: a path contributing to the 2-point funtion G�(a,b). Right: a bridge contributing to B6(�).

As explained in [7], if θ = π/3, then w2 = 0 and v = w1 = u2 = u2
1. Thus, any rhombus may be partitioned into two

equilateral triangles, whose intersections with any walk is either void or one arc (see Figure 2). The weight generated
by each rhombus may be computed as the product of two weights associated to the two triangles forming the rhombus,

each contributing 1/
√

2 + √
2 if traversed by an arc and 1 otherwise. Thus, if � is the constant sequence equal to π/3,

then each rhombus of H(�) may be partitioned into triangles, and H(�) becomes a triangular lattice (see Figure 2). The
self-avoiding walk model described above becomes that on the hexagonal lattice dual to the triangular one, with weight

1/(
√

2 + √
2)|γ | for any SAW γ (|γ | is the number of edges of γ ). We call this the regular SAW, as it is the most common

one.
In 2009, Cardy and Ikhlef [10] showed that for these weights, Smirnov’s parafermionic observable (defined later in

the text) is partially discretely holomorphic. Employing the original technics developed by Duminil-Copin and Smirnov
[6], the first author generalised the calculation of the connective constant to the weighted self-avoiding walk [7]. As a
consequence, the weights (1) may be considered critical for the weighted model.

Given two points a and b with integer coordinates on the boundary of the right half-plane, the 2-point function between
a and b, denoted by G�(a, b), is the sum of weights of all walks from a to b on H(�) (see Figure 3):

G�(a, b) =
∑

γ from a to b

w�(γ ).

By Gπ/3(a, b) we denote the 2-point function when � is constant, equal to π/3. As mentioned above, this is the two
point function of regular self-avoiding walk on a hexagonal lattice with edge-length 1/

√
3.

Theorem 1. Let � = {θk}k∈N, where θk ∈ [π/3,2π/3] for all k. Then G�(a, b) = Gπ/3(a, b) for any two points a and b

on the boundary of the right half-plane.

A bridge of width T is a SAW on StripT (�), starting at 0 and ending on the right boundary of StripT (�) (see Figure 3).
The partition function of bridges of width T is

BT,� =
∑

γ :bridge in StripT (�)

w�(γ ), (2)

where the sum is taken over all bridges of width T .
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For the SAW on the hexagonal lattice it was shown that the total weight of bridges in a strip tends to 0 as the width of
the strip tends to infinity [2, Thm. 10]. We give a new, short proof of this statement which also yields a quantitative bound
on the convergence.

Proposition 1.1. We have

∑
T ≥1

1

T
(BT, π

3
)3 < ∞. (3)

As a consequence, the partition function of self-avoiding bridges on the hexagonal lattice vanishes at infinity: BT, π
3

−−−→
T →∞

0. Moreover BT, π
3

< 1/(logT )1/3 for infinitely many values of T .

The conjectural decrease of BT is much quicker than that implied by the above. Indeed it is expected that BT ∼ T −1/4

as T → ∞. For up to date numerical estimates on the asymptotics of BT see [11, eq. (12)].
It is worth mentioning that the proof of Proposition 1.1 uses certain symmetries of the hexagonal lattice (most notably

the invariance under rotation by π/3). Hence this proof may not be applied directly to general rhombic tilings H(�).
Nevertheless, using Theorem 1, the part about convergence of BT to zero can be extended to weighted self-avoiding walk
on any rhombic tiling.

Theorem 2. Let � = {θk}k∈N, where θk ∈ [π/3,2π/3] for all k. Then BT,� −−−→
T →∞ 0.

Our third result refers to self-avoiding walk with fugacity. Weighted self-avoiding walk with surface fugacity may
be defined as was done in [2] for the regular model. In the half-plane, fugacity rewards (or penalises) walks whenever
they approach the boundary by multiplying the weight by some y ≥ 0. Depending on the value of y, a walk chosen with
probability proportional to its weight will be either attracted to the boundary or repelled from it. The critical fugacity is
the minimal y such that self-avoiding walk with fugacity y “sticks” to the boundary. This description is only illustrative,
in fact the total weight of all self-avoiding walks in H(�) is infinite [7, Lemma 4.4], and no probability proportional to
the weight exists. A precise meaning of critical fugacity will be given below.

In order to formally define critical fugacity, we deform the weight of a walk according to its length and its number
of visits to the boundary. Let � = (θk)k≥1 be a family of angles in [π/3,2π/3] with θ1 = π/3. For a self-avoiding walk
γ on H(�) define its length |γ | as the sum of lengths of each arc, where the lengths of an arc spanning an angle θ is
θ 3

π
and the length of any straight segment traversing a rhombus is 2. Notice that this definition is such that, when � is

constant equal to π/3, the length of a walk is the number of edges in its representation on the hexagonal lattice. Further
write b(γ ) for the number of times γ visits the leftmost column of rhombi as in Figure 4. More precisely, recall that each
rhombus of the first column may be split into two equilateral triangles, each contributing to w(γ ) separately. Then b(γ )

is the number of visits of γ to triangles adjacent to the boundary.
Given x, y ≥ 0, the x-deformed weight of a self-avoiding walk γ in H(�) with fugacity y is defined as

w�(γ ;x, y) = w�(γ ) · x|γ |yb(γ ). (4)

For x, y ≥ 0, the partition function of walks in H(�) with fugacity y is defined by:

SAW�(x, y) =
∑

γ starts at 0

w�(γ ;x, y).

Definition 1.1. The critical fugacity yc(�) is the positive real number defined by

yc(�) = sup
{
y ≥ 0 | ∀0 < x < 1,SAW�(x, y) < ∞}

. (5)

In [2] it was proven that the critical fugacity for the regular self-avoiding on the hexagonal lattice is equal to 1 + √
2.

We prove that the same is true for the self-avoiding walk with integrable weights, given that the rhombi in the first column
are of angle π/3.

Theorem 3. Let � = {θk}k∈N, where θ1 = π/3 and θk ∈ [π/3,2π/3] for k > 1. Then yc(�) = 1 + √
2.
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Let us briefly comment on the definition of the critical fugacity. As already mentioned, the partition function of all
walks with x = y = 1 is infinite. Let x = 1 and y >. Add one more column on the left and consider paths crossing only
one rhombus in it. The sum of their weights is equal to v · y times SAW�(1,1), i.e. it is infinite. This implies directly that
SAW�(1, y) = ∞ for all y > 0. For fixed y > 0, write

xc(y) = sup
{
x ≥ 0 : SAW�(x, y) < ∞}

.

This definition mimics that of the inverse connective constant for walks with fugacity.
When y = 1, that is when no fugacity is added, we have SAW�(x,1) < ∞ for all x < 1 (see [7, proof of Thm. 1.1]),

which is to say xc(1) = 1. The same is true for all y < yc(�). When y > yc(�), it follows directly from the definition of
the critical fugacity that xc(y) < 1.

Thus, a fugacity is supercritical if it affects the value of the “connective constant” of the model. This is exactly the
definition of critical fugacity used in [2]; we have avoided it here because the connective constant for the weighted model
does not appear naturally.

One may also define the critical fugacity yc(T ,�) for a strip StripT (�) in the same way, simply by replacing
SAW�(x, y) in (5) with the partition function of weighted self-avoiding walks in StripT (�):

SAWT ,�(x, y) =
∑

γ :walk in StripT (�)

w(γ ;x, y).

Define also the partition function of weighted bridges by

BT,�(x, y) =
∑

γ :bridge in StripT (�)

w(γ ;x, y).

We will consider the above for x = 1 as a series in y.

Proposition 1.2. Let � = {θk}k∈N, where θ1 = π/3 and θk ∈ [π/3,2π/3] for k > 1. Then yc(T ,�) is equal to the radius
of convergence of BT,�(1;y), and

yc(T ,�) −−−→
T →∞ yc = 1 + √

2.

2. Parafermionic observable

To analyse the behaviour of the self-avoiding walk we will use the parafermionic observable introduced by Smirnov in
[17] and its modification to incorporate fugacity introduced in [2]. The contour integral of this observable around each
rhombus vanishes everywhere except for the part of the boundary where the surface fugacity is inserted. This leads to
relations between the partition functions of arcs and bridges that are crucial for our proof.

2.1. Observable without fugacity

Fix a sequence � as before. The rows of rhombi of H(�) and StripT (�) may be numbered in increasing order by Z,
with the row 0 containing the origin on its left boundary. Let RectT ,L(�) be the rectangular-type domain consisting of
the rows −L, . . . ,L of StripT (�) (see Figure 4). Denote by V (RectT ,L(�)) the set of all midpoints of the sides of the
rhombi in RectT ,L(�) and by V (∂ RectT ,L(�)) the points of V (RectT ,L(�)) lying on edges of ∂ RectT ,L(�) (that is
edges of RectT ,L(�) which are only adjacent to one rhombus of RectT ,L(�)). Notice that the embedding ensures that
0 ∈ V (∂ RectT ,L(�)).

The parafermionic observable in the domain RectT ,L(�) (with no fugacity) is the function F defined on
V (RectT ,L(�)) by

F(z) =
∑

γ :0→z

w(γ )e−i· 5
8 ·wind(γ ) ∀z ∈ V

(
RectT ,L(�)

)
, (6)

where the sum runs over all self-avoiding walks γ contained in RectT ,L(�), starting at 0 and ending at z. Above, wind(γ )

denotes the winding of γ , i.e. the total angle of rotation of γ going from 0 to z (recall that a walk crosses the sides of
rhombi at right angles). For instance, the arc from zW to zN in Figure 4 has winding θ and the arc from zW to zS has
winding θ − π . Since RectT ,L(�) is a finite region, the sum in the definition of F is finite, hence well-defined.
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Fig. 4. Left: When θ1 = π/3, the rhombi of the first column may be split into two equilateral triangles. Only visits to the triangles adjacent to the
boundary (marked by dots) are counted in b(γ ). Here b(γ ) = 4. Middle: A rhombus of angle θ and mid-edges zE , zS , zN , zW . Right: The domain
Rect3,2(�) with the mid-points of boundary edges marked. In bold: a path starting at 0 and ending at a point in z ∈ δ; its winding is θ2, as for any path
ending at this point.

The value 5/8 is chosen to render the contour integrals of F null. It is specific to the self-avoiding walk model; similar
observables exist for other models, where 5/8 should be replaced with different values, see [10,16] and [5] for a survey.

The partial discrete holomorphicity stated in the next lemma is a crucial property of the parafermionic observable.
The word partial here refers to the fact that Eq. (7) below can be viewed as the property that the contour integral around
each rhombus vanishes, though the analogous property around each vertex does not hold. The parafermionic observable
was first introduced by Smirnov for the FK-Ising model [17], where it satisfies stronger relations and in particular the
contour integral around each face and around each vertex vanishes. In the FK-Ising model this observable used to prove
the convergence of interfaces to SLE curves. Later, partial discrete holomorphicity was proved in case of the loop O(n)

model [6] on the hexagonal lattice and for the more general loop O(n) model with integrable weights [10]. Here we state
the partial discrete holomorphicity in the form given in [7, Lemma 3.1].

Lemma 2.1. The parafermionic observable F satisfies the following relation for each rhombus of RectT ,L(�):

F(zE) − F(zW ) = eiθ
(
F(zS) − F(zN)

)
, (7)

where zE , zS , zW and zN are the midpoints of the edges of the rhombus, distributed as in Figure 4.

Equation (7) is reminiscent of the Cauchy–Riemann equations for holomorphic functions; it may also be written as
the contour integral of F around any rhombus being null. Summing the real part of (7) over all rhombi in a particular
domain yields a relation on the partition function analogous to that of [6][Lemma 2]. Denote the left, right, up and bottom
boundaries of RectT ,L(�) by α, β , δ and ε, respectively. We will use the following notation:

AT,L,� =
∑

γ :0→z∈α

w(γ ), BT,L,� =
∑

γ :0→z∈β

w(γ ), (8)

DT,L,� =
∑

γ :0→z∈δ

cos

(
3

8
wind(γ )

)
w(γ ), ET,L,� =

∑
γ :0→z∈ε

cos

(
3

8
wind(γ )

)
w(γ ). (9)

The sums run over all self-avoiding walks in RectT ,L(�) ending at a point in α, β , δ and ε, respectively. The paths
contributing to AT,L,� are called (self-avoiding) arcs.

Lemma 2.2 (Lem. 4.1 [7]). For any sequence � = {θk}k∈N of angles between π
3 and 2π

3 ,

cos
3π

8
AT,L,� + BT,L,� + DT,L,� + ET,L,� = 1. (10)

The factor 1 on the right-hand side of (10) comes from the contribution to F of the empty configuration, which is not
accounted for in any of the terms on the left-hand side. In [7, Lem. 4.1], the case of a constant angle is considered. Here
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we are dealing with a general case and thus the factor cos( 3
8 wind(γ )) appears in the definition of DT,L,� and ET,L,�.

However, the proof can be adapted mutatis mutandis and we do not give further details.
Write AT,� and BT,� for the partition functions of arcs and bridges, respectively, in StripT (�).

Corollary 2.3. For any sequence � = {θk}k∈N of angles between π
3 and 2π

3 and any T ≥ 1,

cos
3π

8
AT,� + BT,� = 1. (11)

Proof. Fix � and T as in the statement. First notice that AT,� = limL→∞ AT,L,� and BT,� = limL→∞ BT,L,�. Indeed,
any self-avoiding arc of StripT (�) is contained in a rectangle RectT ,L(�) for L large enough, and hence is accounted for
in AT,L,�. Since all terms contributing to AT,� are positive, the convergence is proved. The same holds for bridges.

In light of (10) and the above observation, it suffices to prove that DT,L,� → 0 and ET,L,� → 0 as L → ∞. We will
prove this for DT,L,�, the proof for ET,L,� is identical.

Observe that, any self-avoiding path γ contributing to DT,L,� may be completed by at most T steps (that is at most T

rhombi with arcs in them) to form a self-avoiding path on StripT (�), with endpoints (0,0) and (0,L + 1). Indeed, one
can obtain such path by adding one more row of rhombi at the top of RectT ,L(�) and linking the end of γ to the left side
of StripT (�) by steps in this column. Each rhombus in the completion affects the weight of γ by a factor bounded below
by some universal constant c > 0. Thus using that all angles θk ∈ [π/3,2π/3] and hence wind(γ ) ≥ π/3 we get

0 ≤ DT,L,� ≤ cT cos

(
π

8

)
GStripT (�)(0,L + 1).

Finally observe that

∑
L∈Z

GStripT (�)(0,L) = AT,� ≤
(

cos
3π

8

)−1

< ∞,

which implies that GStripT (�)(0,L + 1) converges to 0 as L → ∞. Since T is fixed, the two displayed equation above
imply that DT,L,� → 0 as L → ∞. �

2.2. Observable with fugacity

The parafermionic observable with fugacity on the boundary was introduced in [2] for the hexagonal lattice. It may be
adapted easily to our case; we do this below. The observable will be defined inside of rectangles and, for technical reasons,
the fugacity will be inserted on the right boundary, rather than on the left. To mark this difference, we add a tilde to all
quantities with fugacity on the right.

Let � = {θk}Tk=1, with θT = π/3 and θk ∈ [π/3,2π/3] for 1 ≤ k < T . Consider RectT ,L(�) and split the rhombi of
the last column into equilateral triangles (see Figure 2). For a SAW γ on RectT ,L(�), define its weight as w̃(γ ;1, y) =
w(γ )ybr (γ ), where br(γ ) is the number of visits of γ to the triangles adjacent to the right boundary of RectT ,L(�). For
z ∈ V (RectT ,L(�)), set

F̃ (z;y) =
∑

γ :0→z

w̃(γ ;1, y)e−i· 5
8 ·wind(γ ). (12)

It is easy to check (following the same procedure as in [7, Lemma 4.1]) that this observable satisfies the same Cauchy–
Riemann equation (7) for all rhombi r in columns 1, . . . , T − 1:

F̃ (zE;y) − F̃ (zW ;y) − eiθ
(
F̃ (zS;y) − F̃ (zN ;y)

) = 0.

However, for rhombi r in the rightmost column, a “defect” needs to be added to the relation (7), which thus becomes

Re
[
F̃ (zE;y) − F̃ (zW ;y) − eiθ

(
F̃ (zS;y) − F̃ (zN ;y)

)] = (y − 1)y∗

y(y∗ − 1)
· GRectT ,L(�)(0, zE),

where

y∗ = 1 + √
2.
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An analogous of Lemma 2.2 may be obtained by summing the real part of the equations above for all rhombi of
RectT ,L(�). The result is analogous to [2, Prop. 4]. We first introduce notation analogous to (8)–(9); recall that the sides
of RT,L(�) are α, β , δ and ε. Set

ÃT ,L,�(y) =
∑

γ :0→z∈α

w̃(γ ;1, y), B̃T ,L,�(y) =
∑

γ :0→z∈β

w̃(γ ;1, y),

D̃T ,L,�(y) =
∑

γ :0→z∈δ

cos

(
3

8
wind(γ )

)
w̃(γ ;1, y), ẼT ,L,�(y) =

∑
γ :0→z∈ε

cos

(
3

8
wind(γ )

)
w̃(γ ;1, y).

Lemma 2.4. Let � = {θk}1≤k≤T , where θT = π/3 and θk ∈ [π/3,2π/3] for 1 ≤ k < T . Then, for any y > 0,

cos

(
3

8

)
ÃT ,L,�(1, y) + y∗ − y

y(y∗ − 1)
B̃T ,L,�(1, y) + D̃T ,L,�(1, y) + ẼT ,L,�(1, y) = 1. (13)

The proof of this lemma is similar to that of [2, Prop. 4]; we will not detail it here. The only result of this section that
will be used outside of it is the following corollary.

Corollary 2.5. Let � = {θk}k∈N, where θ1 = π
3 and θk ∈ [π/3,2π/3] for all k ≥ 2. Assume that y < 1 + √

2. Then

BT,�(y) ≤
√

2y

1+√
2−y

.

Proof. Fix a sequence � = (θk) as above (with θ1 = π/3), a value T ≥ 1 and y < 1 + √
2. Write �̃ = (θT , . . . , θ1) and

B̃T ,�̃(y) for the partition function of bridges in StripT (�̃) with fugacity y on the right boundary:

B̃T ,�̃(y) =
∑

γ bridge in StripT (�̃)

w̃�̃(γ ;1, y)(γ ).

There is an obvious bijection between bridges in StripT (�̃) and those in StripT (�): do a symmetry with respect to a
vertical axis that exchanges the sides of the strip and shift it vertically so that it starts at row 0. The weight w(γ ) of any
self-avoiding bridge γ is equal to that of its reverse; moreover the winding of any bridge is 0, whether it is in StripT (�̃)

or StripT (�). Finally, if bridges in StripT (�̃) are weighted with fugacity y on the right boundary, that corresponds to
bridges in StripT (�) having fugacity on the left. Thus

B̃T ,�̃(y) = BT,�(y).

Next we bound the left-hand side of the above.
Fix some L > 0. All walks γ in RectT ,L(�̃) originating at 0 and with endpoint on δ and ε have winding in [π/3,2π/3]

and [−2π/3,−π/3], respectively. Thus, all terms in (13) are positive when y < y∗ = 1 + √
2. We find

B̃T ,L,�̃(y) ≤ y(y∗ − 1)

y∗ − y
=

√
2y

1 + √
2 − y

.

Now observe that B̃T ,�̃(y) = limL→∞ B̃T ,L,�̃(1, y). Indeed, any bridge contributing to B̃T ,�̃(y) has a finite vertical
span, and is therefore included in B̃T ,L,�̃(1, y) for L large enough. Moreover, all terms in the sum defining B̃T ,�̃(y) are
positive. Since the bound for B̃T ,L,�(y) above is uniform in L, it extends to B̃T ,�̃ and thus to BT,�. �

3. The Yang–Baxter equation

For this section only we will consider a slight generalisation of the model described above. First of all, we will consider
rhombi with any angles in (0,π). Secondly, we will consider walks on any rhombic tiling; rather than defining this
properly, we direct the reader to the examples of Figures 5 and 7. Finally, we consider also families of walks rather than a
single one. For γ1, . . . , γn a collection of (finite) self-avoiding walks such that all rhombi intersected by γ1 ∪ · · · ∪ γn are
in one of the settings of Figure 1, define the weight of the family as the product of the weights of each rhombus.
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Fig. 5. Left: A hexagon formed of three rhombi of different angles. Middle: The three rhombi may be rearranged to cover the same domain in a different
fashion. In the left image, the pairs of points x1, y1 and x2, y2 are connected in a single configuration; in the middle image, the same connections are
obtained in two distinct configurations. The weight of the left configuration is equal to the sum of the weights of the two middle ones. Right: In a
domain, changing three such rhombi does not alter the two point function between points a and b.

Proposition 3.1 (Yang–Baxter equation). Let H be a hexagon formed of three rhombi as in Figure 5, left diagram. Write
∂H for the six boundary edges of H. Let H′ be the rearrangement of the three rhombi that form H, as in Figure 5, middle
diagram. For any k ≤ 3 and any choice of distinct vertices x1, y1, . . . , xk, yk , on the edges of ∂H,∑

γ1,...,γk⊂H
γi : xi→yi

wH(γ1 ∪ · · · ∪ γk) =
∑

γ1,...,γk⊂H′
γi : xi→yi

wH′(γ1 ∪ · · · ∪ γk),

where the sum is taken over all disjoint paths γ1, . . . , γk . In other words, for any pairs of points on the boundary, the
weight of walks connecting these pairs is the same in H and H′.

The proof consists simply of listing for each choice of x1, y1, . . . , xk, yk (k is always smaller than 3) the weights for
all possible connections in the two tilings and explicitly computing their sum. The weights (1) were derived in [15] to
satisfy these equations. Cardy and Ikhlef [10] found the same weights based on discrete holomorphicity. The connection
between the two was explored in [1], where the Yang–Baxter equations are explicitly listed.

Equivalent relations may be obtained for any model with loop-weight between 0 and 2, with appropriate weight as
functions of n (see [7] for the exact formulae). All three papers quoted above deal with general loop-weight; we only treat
here the case of null loop-weight.

As a consequence, if a large rhombic tiling contains three rhombi as in Figure 5, they may be rearranged without
affecting the two point function for pairs of points outside of these three rhombi.

Corollary 3.2. Let � be a rhombic tiling containing a hexagon H formed of three rhombi as in Proposition 3.1. Denote
by �′ the tiling that coincides with � everywhere except for H, where the three rhombi are rearranged as H′. Then, for
any two vertices a, b of � that are not in H \ ∂H,∑

γ⊂�
γ : a→b

w�(γ ) =
∑
γ⊂�′

γ : a→b

w�′(γ ). (14)

Proof. We only sketch this. Write the sums in (14) as double sums. First sum over all possible configurations outside H

(and H ′ respectively), then over those inside H (or H ′) which lead to a single path connecting a to b. The inside sum
on the right and left hand side is equal due to Proposition 3.1; the outside weights are equal in � and �′, since the two
tilings are identical outside H and H ′, respectively. �

4. Self-avoiding bridges and the 2-point function

During the whole section we consider half-space rhombic tilings H(�). Write H(π/3) for the tiling with all angles equal
to π/3. Recall that SAW on H(π/3) is identical to that on the hexagonal lattice with the weight of a path γ given by

(
√

2 + √
2)−|γ |.
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In this section we prove Theorems 1 and 2. Theorem 1 is shown by means of the Yang–Baxter transformation, which
is used to gradually transform the lattice H(π/3) into an arbitrary lattice H(�). The relation (11) between the partition
functions of arcs and bridges in a strip together with Theorem 1 may be used to transfer the conclusion of Theorem 2
from the hexagonal lattice to any lattice H(�). Theorem 2 for the hexagonal lattice was proven in [2]; we provide below
a new, shorter proof relying only on the parafermionic observable (see Proposition 1.1), that also provides an explicit
(albeit weak) bound on BT .

4.1. Proof of Theorem 2 for the hexagonal lattice

We will only work here with H(π/3). Recall that weighted self-avoiding walk on H(π/3) may be viewed as regular self-
avoiding walk on a half space hexagonal lattice. We will write BT instead of BT, π

3
for the partition function of bridges to

simplify the notation.
Consider the strip Strip2L+1(π/3) with width of 2L + 1 hexagons and inscribe inside it an equilateral triangle TriL

of side-length 2L + 1 in such a way that the midpoint of its vertical side is 0 (see Figure 6). Let A�
2L+1 be the partition

function of walks starting at 0, contained in the triangle, and ending on its left side; write D�
2L+1 for the partition function

of walks ending on any of the two other sides of the triangle (see Figure 6).

Lemma 4.1. The partition function D�
2L+1 is decreasing in L and

B2L+1 ≤ cos

(
π

8

)
D�

2L+1. (15)

Proof. By summing the real part of (7) as in the proof of Lemma 2.2, we obtain:

cos

(
3π

8

)
A�

2L+1 + cos

(
π

8

)
D�

2L+1 = 1,

where we used that the winding of all paths contributing to D�
2L+1 is ±π/3.

All walks contributing to A�
2L+1 also contribute to A�

2L+3, which implies that A�
2L+1 is increasing in L. By the above

equation, D�
2L+1 is decreasing in L. Moreover, A�

2L+1 ≤ A2L+1 since the latter partition function is over a larger set of
walks. By eq. (11):

B2L+1 = 1 − cos

(
3π

8

)
A2L+1 ≤ 1 − cos

(
3π

8

)
A�

2L+1 = cos

(
π

8

)
D�

2L+1.

This provides the desired conclusion. �

We are in the position now to prove Proposition 1.1.

Fig. 6. From left to right, first: the strip of width T = 2L + 1 and the equilateral triangle TriL of side-length 2L + 1 inscribed in it. Second: the same
strip and three examples of walks: one arc contributing to AT (blue) and two bridges contributing to BT . Third: three examples of walks in TriL: one
arc contributing to A�

T
(blue) and two walks ending on the other sides of the triangle and contributing to D�

T
. The one ending on the top contributes

to Ang�
L,K

Fourth: the concatenation of (rotations and translations of) three walks contributing to Ang�
L,K1

, Ang�
K1,K2

and Ang�
K2,K3

, respectively,

forms an arc contributing to Gπ/3(−L,K3).
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Proof of Proposition 1.1. By (15) it suffices to show the conclusions of the proposition for D�
T instead of BT .

Recall the notation Gπ/3(a, b) for the 2-point function of walks on H(π/3). By (11), limT →∞ AT ≤ 1/ cos( 3π
8 ). The

limit above is the partition function of all arcs:

lim
T →∞AT =

∑
k∈Z

Gπ/3(0, k) = 2
∑
k≥1

Gπ/3(0, k).

For L > 0 and 0 ≤ K ≤ 2L, write Ang�
L,K for the partition function of walks in TriL, starting at 0 and ending on the

top boundary, K units from the left boundary (see Figure 6). Then, by vertical symmetry,

D�
2L+1 = 2

2L∑
K=0

Ang�
L,K. (16)

Fix L > 0. Using concatenations of walks contributing to Ang�
L,K we may construct arcs contributing to∑

b≥0 Gπ/3(−L,b) as follows. Divide the right half-plane H(π/3) using the lines arg(z) = ±π
6 into three π

3 -angles.
For 0 ≤ K3 ≤ 2K2 ≤ 4K1 ≤ 8L and walks γ (1), γ (2), γ (3) contributing to Ang�

L,K1
, Ang�

K1,K2
and Ang�

K2,K3
, respec-

tively, obtain a walk contributing to Gπ/3(−L,K3) by concatenating the translate of γ1 by (0,−L), the rotation by π/3
of the translate of γ (2) by (0,K1), and the rotation by 2π/3 of the translate of γ (3) by (0,K2); see also Figure 6. By
summing over all values of K1, K2, K3 we find

2L∑
K1=0

Ang�
L,K1

2K1∑
K2=0

Ang�
K1,K2

2K2∑
K3=0

Ang�
K2,K3

≤
9L∑

k=L

Gπ/3(0, k).

The sum on the right hand side goes from L to 9L since the span of the obtained arc is K3 + L, thus between L and 9L.
Now, by (16), the last sum on the left-hand side is equal to 1

2D�
2K2+1. This is a decreasing quantity in K2, thus

9L∑
k=L

Gπ/3(0, k) ≥ 1

2

2L∑
K1=0

Ang�
L,K1

2K1∑
K2=0

Ang�
K1,K2

D�
2K2+1

≥ 1

2

2L∑
K1=0

Ang�
L,K1

D�
4K1+1

2K1∑
K2=0

Ang�
K1,K2

.

By repeating this procedure for the other two sums, we find

9L∑
k=L

Gπ/3(0, k) ≥ 1

4

2L∑
K1=0

Ang�
L,K1

D�
4K1+1D

�
2K1+1

≥ 1

4
D�

8L+1D
�
4L+1

2L∑
K1=0

Ang�
L,K1

= 1

8
D�

8L+1D
�
4L+1D

�
2L+1 ≥ 1

8

(
D�

8L+1

)3
.

Summing the above over L = 9k we find

∞∑
k=1

(
D�

8·9k+1

)3 ≤ 8
∞∑

k=1

Gπ/3(0, k) < ∞.

Now, using the monotonicity in T of D�
T we may write

∞∑
k=1

(
D�

8·9k+1

)3 ≥
∞∑

k=1

1

64 · 9k

8·9k+1∑
T =8·9k+1

(
D�

T

)3 ≥ 1

8

∞∑
T =73

1

T

(
D�

T

)3
.

Thus we have proved that 1
T

(D�
T )3 is summable. This implies in particular that (D�

T (logT )1/3)T contains a subsequence
converging to 0. Finally, since D�

T is decreasing, this implies D�
T −−−→

T →∞ 0. The conclusions translate to BT using (15). �
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4.2. Proof of Theorem 1 via the Yang–Baxter equation

Now we are in the position to prove that the 2-point function is independent of the chosen tiling. First we show that the
2-point function in a strip does not depend on the order of the columns of rhombuses in the tiling. The strategy used here
is reminiscent of the use of the Yang–Baxter equation to prove the commutation of transfer matrices, and of the strategy
of [8].

Proposition 4.2. Let StripT (�) be a vertical strip tiled with T columns with angles θ1, . . . , θT . Then for any a, b on the
boundary of StripT (�) the 2-point function G(a,b) does not depend on the order of angles.

The above applies both when a, b are on the same side of StripT (�) as when they are on different sides. In the proof
below, we make no particular assumption on the position of a and b other than that they are on the boundary.

Proof. Let StripT (�) be a strip as in the statement of the proposition and a, b be two points on its boundary. For 1 ≤ i < T

denote by τi the transposition of i and i + 1 and by � ◦ τi the sequence with θi and θi+1 transposed:

� ◦ τi = (θ1, . . . , θi−1, θi+1, θi, θi+2, . . . , θT ).

In order to prove the proposition, it is sufficient to show that the partition function in G(a,b) in StripT (�) is equal to the
one in StripT (� ◦ τi).

This is done by means of the Yang–Baxter transformation, which transforms the rhombic tiling while preserving the
partition function (see Section 3 and references therein for more details).

Fix two points a and b on the boundary of StripT (�) and ε > 0. For the sake of this proof, if D denotes a simply
connected subset of faces of StripT (�) or StripT (� ◦ τi) that contains a and b on its boundary, then write GD(a, b) for
the two point function of walks in D from a to b:

GD(a, b) =
∑

γ from a to b;
γ⊂D

w(γ ).

First observe that there exists L > 0 such that

GStripT (�)(a, b) − ε ≤ GRectT ,L(�)(a, b) ≤ GStripT (�)(a, b) and

GStripT (�◦τi )(a, b) − ε ≤ GRectT ,L(�◦τi )(a, b) ≤ GStripT (�◦τi )(a, b).

(Above we used that the 2-point function is finite, which is the case due to (11).) Without loss of generality, we may
suppose θi < θi+1.2 Let D0 be the graph obtained by adding a rhombus r to RectT ,L(�) at the top of the columns i and
i +1. Precisely, the added rhombus has two sides equal to the top sides of the columns i and i +1; the condition θi < θi+1
ensures that r does not overlap with the rhombi of RectT ,L(�), and D0 is a rhombic tiling (see Figure 7). Then we have

GD0(a, b) − GRectT ,L(�)(a, b) =
∑

γ :a→b
γ uses r

w(γ ).

A path γ contributing to the above traverses r only as one arc, hence always has positive weight. In particular, GD0(a, b) ≥
GRectT ,L(�)(a, b).

On the other hand, to any γ as in the sum above, associate the walk γ ′ in RectT ,L+1(�) that connects a to b, obtained
by keeping the same configuration in RectT ,L(�) as in D0 and replacing the one arc in r by two arcs in the top row of
RectT ,L+1(�). Then the ratio of the weight of γ and γ ′ is bounded above by some universal constant c. Thus

GD0(a, b) − GRectT ,L(�)(a, b) ≤ c
(
GRectT ,L+1(�)(a, b) − GRectT ,L(�)(a, b)

)
< c · ε.

Apply the Yang–Baxter transformation to the added rhombus and the two rhombi adjacent to it (notice that these
indeed form a hexagon). This in effect slides the added rhombus one unit down (see Figure 7). Call D1 the resulting graph
and conclude that

GD0(a, b) = GD1(a, b).

2If θi > θi+1, the rhombus may be added at the bottom and will be slid to the top using Yang–Baxter transformations. If θi = θi+1 the result is trivial.
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Fig. 7. Leftmost: The domain D0 obtained by adding a rhombus r to the rectangle RectT ,L(�). Second from the left: The tiling D1 is the result of the
first Yang–Baxter transformation applied in the bold region of D0. Third from the left: After two Yang–Baxter transformations r is pushed down by 2
units and we obtain D2. Rightmost: After 2L repetitions, the rhombus r is pushed all the way to the bottom of RectT ,L(�) and the two columns of
rhombi are exchanged. The resulting tiling is D2L.

The operation may be repeated to slide the added rhombus one more unit downwards. Performing 2L such Yang–Baxter
transformations leads to

GD0(a, b) = GD2L
(a, b),

where D2L is the rhombic tiling RectT ,L(� ◦ τi) with the additional added rhombus at the bottom of columns i and i + 1.
By the same reasoning as above,

0 ≤ GD2L
(a, b) − GRectT ,L(�◦τi )(a, b) ≤ c · ε.

Thus, we conclude that

c · ε >
∣∣GD2L

(a, b) − GRectT ,L(�◦τi )(a, b)
∣∣

= ∣∣GD0(a, b) − GRectT ,L(�◦τi )(a, b)
∣∣

≥ ∣∣GRectT ,L(�)(a, b) − GRectT ,L(�◦τi )(a, b)
∣∣ − ∣∣GD0(a, b) − GRectT ,L(�)(a, b)

∣∣.
The last term above is also bounded by c · ε, and we find∣∣GStripT (�)(a, b) − GStripT (�◦τi )(a, b)

∣∣ ≤ ∣∣GStripT (�)(a, b) − GRectT ,L(�)(a, b)
∣∣

+ ∣∣GRectT ,L(�)(a, b) − GRectT ,L(�◦τi )(a, b)
∣∣

+ ∣∣GStripT (�◦τi )(a, b) − GRectT ,L(�◦τi )(a, b)
∣∣ ≤ (2 + 2c)ε.

Since ε may be chosen arbitrarily small, we find GStripT (�)(a, b) = GStripT (�◦τi )(a, b), which is the desired conclusion. �

Lemma 4.2 allows us to exchange columns of different angles but it does not permit to change the angles. Next lemma
deals with this question and tells us that the 2-point function in a strip decreases when one of the angles is replaced by
π/3.

Lemma 4.3. Let � = (θ1, . . . , θT ) be a finite sequence of angles with θk ∈ [π/3,2π/3] for all k. Then for any two points
a, b on the left boundary of StripT (�) we have

GStripT (�)(a, b) ≥ GStripT (θ1,θ2,...,θT −1,π/3)(a, b).

Proof. Let T , �, a, b be as in the statement. Write �̃ for the sequence (θ1, θ2, . . . , θT −1,π/3). We will show that
any self-avoiding walk γ from a to b in StripT (�) has either the same or larger weight than its correspondent walk in
StripT (�̃).

Indeed, consider any such walk γ in StripT (�). The intersection of γ with the rightmost column of StripT (�) is
formed of a family of disjoint arcs, as depicted in Figure 8. Write χ1, . . . , χ� for these arcs (take � = 0 if γ does not visit
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Fig. 8. An arc in StripT (�) (left) and the corresponding arc in StripT (�̃) (right). The difference in weight comes from three types of rhombi depicted
in the middle. The first two come in pairs and their combined weight is lowest when θ = π/3; the third one has lowest weight when θ = π/3.

column T ). The weight of each such arc only depends on θT : an arc χj is formed of a rhombus of type u1, a number
k ≥ 0 of rhombi or type v and one rhombus of type u2; its weight is then

wθT
(χj ) = sin( 5π

4 ) sin( 5π
8 + 3θT

8 )[sin( 5π
8 + 3θT

8 ) sin(− 3θT

8 )]ksin( 5π
4 ) sin( 3θT

8 )

[sin( 5π
4 + 3θT

8 ) sin( 5π
8 − 3θT

8 )]k+2
. (17)

Moreover, the difference of the weight of γ in StripT (�) and StripT (�̃) comes only from the arcs χ1, . . . , χ�:

w�(γ )

w�̃(γ )
=

�∏
j=1

wθT
(χj )

wπ/3(χj )
.

A direct computation shows that, for any k ≥ 0, the weight in (17) is minimised when θT = π/3. Thus, all terms in the
right-hand side of the above equality are greater than 1, and the conclusion is reached. �

Corollary 4.4. Let � = (θ1, . . . , θT ) be a finite sequence of angles with θk ∈ [π/3,2π/3] for all k. Then for any two
points a, b on the left boundary of StripT (�) we have

GStripT (�)(a, b) ≥ GStripT (π/3,θ1,θ2,...,θT −1)(a, b). (18)

Additionally,

GStripT (�)(a, b) ≥ GStripT (π/3)(a, b), (19)

where the right hand side is the strip of width T with all angles equal to π/3.

Proof. With the notation above, Lemma 4.3 states that

GStripT (�)(a, b) ≥ GStripT (θ1,θ2,...,θT −1,π/3)(a, b).

Apply Proposition 4.2 to deduce that

GStripT (π/3,θ1,θ2,...,θT −1)(a, b) = GStripT (θ1,θ2,...,θT −1,π/3)(a, b).

This proves the first bound (18). To obtain (19) it suffices to apply repeatedly (18). �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Recall (11): cos 3π
8 AT,� = 1−BT,� for any T and sequence �. Applying the above to the constant

sequence π/3 and keeping in mind Proposition 1.1, we find

AT,π/3 →
(

cos
3π

8

)−1

, as T → ∞.
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Now apply (19) to deduce that

AT,� =
∑
L∈Z

GStripT (�)(0,L) ≥
∑
L∈Z

GT,(π/3)(0,L) = AT,(π/3).

Thus limT →∞ AT,� ≥ (cos 3π
8 )−1. However, from (11) applied to �, we find AT,� ≤ (cos 3π

8 )−1 for all T . Thus

∑
L∈Z

G�(0,L) =
∑
L∈Z

lim
T →∞GStripT (�)(0,L) = lim

T →∞
∑
L∈Z

GStripT (�)(0,L) =
(

cos
3π

8

)−1

=
∑
L∈Z

Gπ/3(0,L).

Considering that

G�(0,L) ≥ lim
T →∞GT,�(0,L) ≥ lim

T →∞GT,(π/3)(0,L) ≥ Gπ/3(0,L) for all L ∈ Z,

we conclude that G�(0,L) = Gπ/3(0,L) for all L. Finally, using the invariance G�(a, b) = G�(0, b − a), we obtain the
desired conclusion. �

4.3. Proof of Theorem 2 for general tilings

Proof of Theorem 2. By (11)

BT,� = 1 − cos
3π

8
AT,�.

We have shown in the previous proof that AT,� → (cos 3π
8 )−1 as T → ∞, which implies BT,� → 0. �

5. Critical surface fugacity

In this section we discuss self-avoiding walks with surface fugacities and prove Theorem 3 and Proposition 1.2. We split
the proof into several steps. First we introduce a slightly different notion of critical fugacity for walks in a strip, denoted
y∗
c (T ,�); this is then shown to be equal to yc(T ,�) defined in the introduction. Using the Yang–Baxter transformation,

we show that the limit of y∗
c (T ,�) as T → ∞ does not depend on the sequence �; in particular it is equal to that when

� = π/3, which is known to be equal to 1 + √
2. Finally, it is shown that the critical fugacity of Theorem 3 is indeed

equal to limT →∞ y∗
c (T ,�).

5.1. Critical fugacity in the strip at x = 1

When defining the critical fugacity in a strip, one may consider partition functions of walks, arcs or bridges. Below we
show that the exact choice has little importance.

For � = (θk)1≤k≤T with θ1 = π/3 and all other angles in [π/3,2π/3], recall the notation (4)

w�(γ ;x, y) = w�(γ ) · x|γ | · yb(γ ), SAWT ,�(x, y) =
∑

γ starts at 0
γ⊂StripT (�)

w�(γ ;x, y).

where |γ | is the length of γ and b(γ ) is the number of visits of γ to the left half of the rhombi adjacent to the left
boundary of StripT (�).

The partition functions of arcs and bridges are defined in a similar way and denoted by AT,�(x, y) and BT,�(x, y).
Observe that for any self-avoiding walk γ (that is starting and ending at any points of StripT (�)), its weight w�(γ ;x, y)

may be defined as above.

Proposition 5.1. Let � = {θ1, θ2, . . . , θT }, where θ1 = π
3 and θi ∈ [π

3 , 2π
3 ] for i > 1. Then the following series (with

variable y) have the same radius of convergence:

AT,�(1, y),BT,�(1, y),SAWT ,�(1, y).

Write y∗
c (T ,�) for the radius of convergence of the series above.
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Fig. 9. Top Left: A walk γ in StripT (�) with rbot and rtop marked in gray. Top Right: The decomposition of γ in γ − and γ0; γ + is void. Bottom: The
further decomposition of γ into basic pieces. These are completed by the red paths to form bridges.

Proof. The set of walks starting at 0 includes the sets of arcs and bridges. Hence, for any y > 0, we have:

SAWT ,�(1, y) ≥ AT,�(1, y),BT,�(1, y).

Thus, the radius of convergence of SAWT ,�(1, y) is smaller than those of AT,�(1, y) and BT,�(1, y).
In order to obtain opposite bounds, we use the decomposition of walks into bridges that was introduced by Hammersley

and Welsh [9]. We prove the bound only for BT,�(1, y), as for AT,�(1, y) the proof is completely analogous. For T = 1
the statement is obvious, so below we assume that T > 1.

Consider a walk γ in StripT (�) starting at 0; γ will be split into subpaths γ−k, . . . , γ� as described below. The
decomposition is illustrated in Figure 9. Set the lowest (resp. highest) point of γ to be the non-empty rhombus with the
smallest (resp. largest) second coordinate, and if several such rhombi exists, it is the leftmost (resp. rightmost) among
them. Denote these rhombi by rbot and rtop and let γ0 be the subpath of γ that links rbot and rtop (γ0 includes rbot or rtop
only if these are endpoints of γ ). Then γ \ γ0 is either empty, or one walk, or a union of two walks, depending on how
many of the endpoints of γ are contained in γ0. If γ = γ0, the decomposition stops. Otherwise write γ − for the part of γ

preceding γ0 and γ + for the part following γ0. We continue by decomposing γ + and γ − in the same fashion: Suppose
γ + is not empty and consider its lowest and the highest points. Define γ1 as the segment between these points. Note that
now γ + \ γ1 is formed of at most one walk, not two. Continue decomposing γ + \ γ1 to obtain γ2 etc, until the remaining
walk is empty. Apply the same procedure to decompose γ − into γ−1, γ−2, etc.

Importantly, in this way γ gets split in at most 2T − 1 pieces. Indeed, the left-most points of γ0, γ1, . . . , γ� are each
strictly to the right of the preceding one. Thus � < T . Similarly, the right-most points of γ0, γ−1, . . . , γ−k are each strictly
to the left of the preceding one, and k < T .

In general, it is not true that the weight of γ is equal to the product of the weights of the pieces obtained above, because
the rhombi containing 2 arcs in different pieces contribute w1 (or w2) to the weight of γ and u2

1 (or u2
2) to the product

of the weights of the pieces. However, since u1(θ)2 ≥ w1(θ) and u2(θ)2 ≥ w2(θ) for any θ ∈ [π
3 , 2π

3 ], we obtain the
following inequality:

w(γ ;1, y) ≤
�∏

i=−k

w(γi;1, y). (20)

Now complement the walks γi to create bridges by adding straight lines in the rhombi lying to the left (resp. right)
of the lower (resp. upper) endpoint of γi and contained in the same rows as the endpoints (see Figure 9). Small local
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modifications may be needed to glue the added paths to γi . Denote the resulting bridges by γ br
i . Note that by the choice

of γi , the walks γ br
i do not have self-intersections. The walks γi and γ br

i differ by at most 2T rhombi, which are empty
for γi but contain straight lines for γ br

i . Thus

w(γi;1, y) ≤ 1

v(�)y
w

(
γ br
i ;1, y

)
,

where v(�) > 0 is some constant which depends on T and � only. Recall that there are at most 2T − 1 pieces γi . From
this, the previous inequality and (20), we obtain:

w(γ ;1, y) ≤ 1

[v(�)y]2T −1

∏
i

w
(
γ br
i ;1, y

)
.

Sum this inequality over all possible choices of γ . Using again that there are at most 2T − 1 walks in the decomposition,
the right-hand side can be bounded by the partition function of bridges:

SAWT ,�(1, y) ≤ 1

[v(�)y]2T −1

∑
γ :0→z,γ⊂�T

∏
i

w
(
γ br
i ;1, y

) ≤
[

4T

v(�)y

]2T −1(
1 + BT,�(1, y)

)2T −1
, (21)

where the additional factor 4T in the right hand side is due to the reconstruction cost of γ given (γ br
i )i∈[−k,�].

Hence, the radius of convergence of BT,�(1, y) and SAWT ,�(1, y) is the same.
The same strategy may be used to show that AT,�(1, y) and SAWT ,�(1, y) have the same radius of convergence. The

only difference is that this time the subpaths γi should be transformed into arcs rather than bridges. �

5.2. Critical fugacity in the strip: y∗
c (T ,�) = yc(T ,�)

Recall that the critical fugacity in a strip was defined in the introduction as

yc(T ,�) = sup
{
y | ∀0 < x < 1,SAWT ,�(x, y) < ∞}

.

We show now that the two notions of critical fugacity in a strip, namely yc(T ,�) and y∗
c (T ,�), coincide.

Proposition 5.2. Let � = {θk}Tk=1, where θ1 = π
3 and θk ∈ [π

3 , 2π
3 ] for k > 1. Then yc(T ,�) = y∗

c (T ,�).

We start by a technical lemma which in effect states that a walk in a strip has a positive density of points on the
boundary. Such a result is in the spirit of Kesten’s pattern theorem [12]. For completeness and simplicity, we provide a
proof with no reference to Kesten’s result.

Lemma 5.3. Let � = {θk}Tk=1, where θ1 = π
3 and θk ∈ [π

3 , 2π
3 ] for k > 1. Then there exists a constant C(T ) > 0 which

depends only on T , such that for any 0 < x ≤ 1 and y > 1

SAWT ,�(x, y) ≤ SAWT ,�(xy,1), (22)

SAWT ,�

(
x, x−Cy

) ≥ SAWT ,�(1, y). (23)

Proof. Inequality (22) follows from the fact that the length of a walk is greater than the number of times it visits the
boundary.

Inequality (23) is proven by altering arbitrary walks γ to form walks γ fug which have a positive density of points on
the left boundary. We describe the map γ �→ γ fug next.

Recall the indexing of the rows of StripT (�) by Z. Call a marked line of StripT (�) the collection of edges separating
rows (k + 1

2 )T and (k + 1
2 )T + 1 with k ∈ Z. Let γ be a walk on StripT (�) starting at 0. To define γ fug insert at each

marked line two rows of rhombi, containing arcs as described below. Fix a marked line �, the two rows of rhombi inserted
at � contain:

• for each point in γ ∩ � except the leftmost one, insert two straight vertical arcs of type v;
• for the leftmost point in γ ∩ �, insert a path contained in the two inserted rows that, when viewed from bottom to top,

travels left in the lower row, touches the first column turning upwards, then travels back right using the upper row (if
the left-most point is in the first column, complete the added rhombi as in the point above);

• all rhombi not affected by this procedure are void.
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Fig. 10. Left: A walk γ in StripT (�) crossing two marked lines (blue). Right: The associated walk γ fug; the added rows are marked in gray.

Perform this for all marked lines. Note that when marked lines are not crossed by γ , the added rows only contain empty
rhombi. It is easy to see that the result of this procedure is a self-avoiding walk on StripT (�), which we call γ fug. See
Figure 10 for an example.

The map γ �→ γ fug is injective. Indeed it suffices to delete the added rows (whose indices are deterministic) to retrieve
γ from γ fug. Thus

SAWT ,�

(
x, x−Cy

) ≥
∑
γ

w�

(
γ fug;x, x−Cy

)
, for all C > 0, (24)

since in the right hand side we only sum the weight of images of walks by the map defined above.
Now observe that, since the length of γ inside any rhombus is at most 4, γ crosses at least |γ |/(4T 2) marked lines.

Each marked line generates at least one contribution to the fugacity for γ fug, thus b(γ fug) ≥ |γ |/(4T 2). On the other
hand, γ visits at most 2|γ |/T marked lines and for each such line the added rhombi contain a total length of arcs of at
most 8T . Thus |γ fug| − |γ | ≤ 16|γ |. In conclusion

b(γ fug)

|γ fug| − |γ | ≥ 1

64T 2
=: 1

C
.

In particular

w�(γ fug;x, x−Cy)

w�(γ ;x, y)
= x|γ fug|−|γ |−Cb(γ fug)yb(γ fug)−b(γ ) ≥ 1,

since the exponents for x and y are negative and positive, respectively. Inserting this into (24) we find

SAWT ,�

(
x, x−Cy

) ≥
∑
γ

w�

(
γ fug;x, x−Cy

)

≥
∑
γ

w�(γ ;1, y) = SAWT ,�(1, y).
�

Proof of Proposition 5.2. First we show the inequality yc(T ,�) ≥ y∗
c (T ,�). Take y > yc(T ,�). Then for x < 1 large

enough, SAWT ,�(x, y) diverges. By Ineq. (22), one has that SAWT ,�(xy;1) diverges as well. Hence xy ≥ y∗
c (T ,�).

Since x may be arbitrarily close to 1, we proved that y ≥ y∗
c (T ,�). By choice of y this implies yc(T ,�) ≥ y∗

c (T ,�).
Let us now show the converse inequality y∗

c (T ,�) ≥ yc(T ,�). Take y > y∗
c (T ,�). Then SAWT ,�(1;y) diverges. Use

Ineq. (23) to see that SAWT ,�(x, x−Cy) diverges as well for any x < 1, where C = C(T ) > 0 is given by Lemma 5.3.
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Thus x−Cy ≥ yc(T ,�) for all x < 1, which implies that y ≥ yc(T ,�). Since y > y∗
c (T ,�) is arbitrary, we proved

y∗
c (T ,�) ≥ yc(T ,�). �

5.3. Critical fugacities in strips do not depend on �

Our next goal is to show that yc(T ,�) → 1 + √
2, i.e. that the critical fugacities on strips of rhombi converge to the

critical fugacity on the hexagonal lattice, which corresponds to the case when all rhombi have angle π/3.
By Proposition 5.2, yc(T ,�) is the radius of convergence of SAWT ,�(1, y). In the spirit of notation we introduced

before, we denote by yc(T ,π/3) the radius of convergence of the series SAWT ,π/3(1, y), i.e. in the case when all rhombi
have angle π

3 . In the next lemma, it is shown that yc(T ,�) can only increase, when the rightmost column of rhombi is
erased, or when all angles of the rhombi are changed to π

3 .

Lemma 5.4. Let � = (θk)k≥1 be such that θ1 = π
3 and θk ∈ [π

3 , 2π
3 ] for k > 1 and T ≥ 2. Then

(i) yc(T ,π/3) ≥ yc(T ,�);
(ii) yc(T − 1,�) ≥ yc(T ,�).

Proof. (i) By Proposition 5.1, it is enough to show that for any y ≥ 0 one has AT,�(1, y) ≥ Aπ/3,T (1, y). This inequality
was shown in Lemma 4.3 in the absence of surface fugacities. It is easy to check that the proof adapts straightforwardly
when fugacities are added on the left side. Indeed the proof is based on Yang–Baxter transformations that do not affect
the left-most column, since this one already has angle π/3.

(ii) The inequality AT,�(y) ≥ AT −1,�(y) is trivial, since all walks contributing to the right hand side also contribute
to the left hand side. The inequality on the radii of convergence follows readily. �

Now we are ready to finish the proof of Proposition 1.2 by showing that yc(T ,�) → 1 + √
2.

Proof of Proposition 1.2. In [2] it was shown that the critical surface fugacity on the hexagonal lattice is equal to 1+√
2.

In particular, Corollary 8 in [2] implies that y∗
c (π/3, T ) → 1+√

2. In Lemma 5.4 it is shown that y∗
c (π/3, T ) ≥ y∗

c (T ,�),
for any T . Hence,

lim
T →∞y∗

c (T ,�) ≤ 1 + √
2.

The existence of the limit above is ensured by the monotonicity of y∗
c (T ,�) in T .

The opposite inequality follows directly from Corollary 2.5. Indeed, suppose that limy∗
c (T ,�) < 1 + √

2. Then for
some T , one has y∗

c (T ,�) < 1+√
2. Consider a value of y between y∗

c (T ,�) and 1+√
2 and note that by Corollary 2.5,

BT,�(1, y) = BT (�)(y) ≤
√

2y

1+√
2−y

. This contradicts the assumption that y > y∗
c (T ,�), that is the radius of convergence

of BT,�(1, ·). �

5.4. Critical fugacity in half-plane: Proof of Theorem 3

In order to prove Theorem 3, it remains to show that yc = 1 +√
2. Recall that yc is defined as the supremum of all y such

that SAW�(x, y) is finite for all x < 1.

Proof of Theorem 3. We will proceed by double inequality. Let y > 1 + √
2. By Proposition 1.2, there exists T such

that y > yc(T ,�). Hence, by the definition of yc(T ,�), there exists 0 < x < 1 such that SAWT ,�(x, y) = ∞. Since
SAWT ,�(x, y) ≤ SAW�(x, y), the latter diverges as well. This implies that y ≥ yc. Recall that y was chosen arbitrarily
greater than 1 + √

2, thus, yc ≤ 1 + √
2.

The opposite inequality is based on the results obtained through the parafermionic observable with fugacity. Take
1 ≤ y < 1+√

2. By Corollary 2.5, BT,�(1, y) < c, where c is a constant that depends only on y. Note that all walks which
contribute to BT,�(1, y) have to cross at least T rhombi. Thus, BT,�(x, y) < xT · c, and

∑
T ≥1 BT,�(x, y) < c

1−x
< ∞

for all x < 1.
Fix x < 1. Let us now prove that SAW�(x, y) < ∞. Write �′ for the sequence (θ2, θ3, . . .). Let γ be a walk in H(�).

Write γ as the concatenation of two walks γ (a) and γ (w), where γ (a) ends at the last visit of γ of column 1. The walk
γ (w) is contained in columns 2,3, . . . and hence does not feel the effect of the fugacity. Thus it may be viewed as a walk
in H(�′) with weight w�′(γ (w);x,1).
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Further split γ (a) in two walks: γ (1) is the walk from the starting point to the first point of γ (a) in the right-most
column visited by γ (a) (write T for the index of this column); γ (2) is simply γ (a) \ γ (1). The endpoints of γ (1) and γ (2)

may be modified locally to create two bridges γ (b1) and γ (b2) in StripT (�). Due to the local modifications, there exists a
universal constant δ > 0 such that

w�

(
γ (a);x, y

) ≤ w�

(
γ (1);x, y

)
w�

(
γ (2);x, y

) ≤ δ w�

(
γ (b1);x, y

)
w�

(
γ (b2);x, y

)
.

Thus we associated to γ a triplet γ (b1), γ (b2), γ (w), the first two being bridges in a certain StripT (�) and the third being
a walk in HT (�′). This operation is clearly injective, and we find

SAW�(x, y) ≤
∑
γ

w�

(
γ (1);x, y

)
w�

(
γ (2);x, y

)
w�

(
γ (w);x, y

) ≤ δ
∑
T ≥1

BT,�(x, y)2 SAW�′(x,1)

≤ δ

[∑
T ≥1

BT,�(x, y)

]2

SAW�′(x,1) ≤ δ

(
c

1 − x

)2

SAW�′(x,1).

Finally, since x < 1, SAW�′(x,1) < ∞ which implies SAW�(x, y) < ∞. Since x < 1 is arbitrary, this shows that y < yc ,
and thus that yc ≥ 1 + √

2. �
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