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Abstract. In this paper, for μ and ν two probability measures on R
d with finite moments of order � ≥ 1, we define the respective

projections for the W�-Wasserstein distance of μ and ν on the sets of probability measures dominated by ν and of probability measures
larger than μ in the convex order. The W2-projection of μ can be easily computed when μ and ν have finite support by solving a
quadratic optimization problem with linear constraints. In dimension d = 1, Gozlan et al. (Ann. Inst. Henri Poincaré Probab. Stat. 54
(3) (2018) 1667–1693) have shown that the projection of μ does not depend on �. We explicit their quantile functions in terms of
those of μ and ν. The motivation is the design of sampling techniques preserving the convex order in order to approximate Martingale
Optimal Transport problems by using linear programming solvers. We prove convergence of the Wasserstein projection based sampling
methods as the sample sizes tend to infinity and illustrate them by numerical experiments.

Résumé. Soient μ et ν deux mesures de probabilité sur Rd ayant un moment d’ordre � ≥ 1 fini. Dans ce papier, nous définissons
respectivement les projections de μ et ν pour la distance de Wasserstein W� sur l’ensemble des probabilités dominées par ν et sur
l’ensemble des probabilités dominant μ pour l’ordre convexe. Pour � = 2, la projection de μ peut facilement être calculée lorsque μ

et ν ont un support fini en résolvant un problème de minimisation quadratique avec des contraintes linéaires. En dimension d = 1,
Gozlan et al. (Ann. Inst. Henri Poincaré Probab. Stat. 54 (3) (2018) 1667–1693) ont montré que la projection de μ ne dépend pas
de �. Nous donnons ici l’expression de la fonction quantile de cette projection à l’aide des fonctions quantiles de μ et ν. La motivation
de cette étude est de fournir une méthode d’échantillonage permettant de préserver l’ordre convexe. Cela permet ensuite d’approcher
les problèmes de transport optimal martingale en utilisant un solveur de programmation linéaire. Nous prouvons la convergence des
méthodes d’échantillonage basées sur la projection Wasserstein lorsque la taille des échantillons tend vers l’infini, et illustrons cette
convergence par des exemples numériques.
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1. Introduction

For μ, ν in the set P(Rd) of probability measures on R
d , we say that μ is smaller than ν for the convex order and

denote μ ≤cx ν if
∫
Rd φ(x)μ(dx) ≤ ∫

Rd φ(y)ν(dy) for each convex function φ : Rd → R non-negative or integrable
with respect to μ + ν. Let us note that when ν has a finite first order moment, this implies the same for μ and that∫
Rd xμ(dx) = ∫

Rd yν(dy) by taking φ(x) = |x| for the first claim and φ(x1, . . . , xd) = ±xi for the second. Up to our
knowledge, few studies consider the problem of preserving the convex order while approximating two such probability
measures. We can mention the one-dimensional method based on the quantile functions proposed by David Baker in his
PhD thesis [6] (see the beginning of Section 2.2 for more details). The dual quantization introduced by Pagès and Wilbertz
[23] gives another way to preserve the convex order in dimension one (see the remark after Proposition 10 in [23]). This
is unfortunately no longer true for higher dimensions. Take for example the case of the probability laws μ = δ(0,0) and
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ν the distribution on (U,0) with U uniform on [−1,1]. We have μ ≤cx ν. We calculate their dual quantizers μ̄ and
ν̄ on the two triangles T1 and T2 with vertices {(−1,0), (0,−1), (0,1)} and {(0,−1), (1,0), (0,1)}. We easily obtain
μ̄ = 1

2 (δ(0,−1) + δ(0,1)), ν̄ = 1
4 (δ(0,−1) + δ(0,1) + δ(−1,0) + δ(1,0)). Thus, we have

∫
x2μ̄(dx, dy) = 1,

∫
x2ν̄(dx, dy) = 1

2 ,
which proves that the convex order is not preserved. However, the quantization and the dual quantization give a possible
way to approximate μ and ν in the convex order. Precisely, the quantization of μ gives a probability measure μ with
finite support such that μ ≤cx μ while the dual quantization of ν gives a probability measure ν̄ with finite support such
that ν ≤cx ν̄. We therefore have μ ≤cx ν̄. Though being general, this construction has several drawbacks. First, to define
the dual quantization, ν and therefore μ must have a compact support. This is a very restrictive assumption. Second,
the calculation of the quantization of μ and of the dual quantization of ν is in general not obvious in dimension d ≥ 2
and may require an important computation time. This is why one usually pre-calculates the quantization for standard
distributions, see [22] for the Gaussian case. Third, this method only works for two measures and does not generalize to
design approximations of μ,ν,η ∈ P(Rd) preserving the convex order when μ ≤cx ν ≤cx η.

To avoid the curse of dimension, it is natural to look at the Monte-Carlo method and to consider the empirical measures
μI = 1

I

∑I
i=1 δXi

and νJ = 1
J

∑J
j=1 δYj

, where X1, . . . ,XI (resp. Y1, . . . , YJ ) are i.i.d. random variables with distribution

μ (resp. ν). Clearly, there is no reason to have 1
I

∑I
i=1 Xi = 1

J

∑J
j=1 Yj (a necessary condition for the convex order

from the choices φ(x1, . . . , xd) = ±xk with k ∈ {1, . . . , d}) and even more to have μI ≤cx νJ . In dimension d = 1,
according to Kertz and Rösler [19,20], the set of probability measures with a finite first moment is a complete lattice for
the increasing and decreasing convex orders. The present paper stems from our preprint [1] (Sections 3 and 4), where,
in Section 2 devoted to the one-dimensional case, we also investigate the approximation of μI by μI ∧ νJ (resp. νJ by
μI ∨ νJ ) defined as the infimum of μI and νJ for the decreasing convex order when 1

I

∑I
i=1 Xi ≤ 1

J

∑J
j=1 Yj and for

the increasing convex order otherwise so that μI ∧ νJ ≤cx νJ (resp. μI ≤cx μI ∨ νJ ). Unfortunately, this approach does
not generalize to dimension d ≥ 2, where, according to Proposition 4.5 [21], even the set of probability measures with a
constant expectation is no longer a lattice for the convex order. In the present paper, still looking for modifications of μI

smaller than νJ in the convex order, we introduce the following minimization problem where � ≥ 1{
minimize 1

I

∑I
i=1 |Xi − ∑J

j=1 rij Yj |�
under the constraints ∀i, j, rij ≥ 0, ∀i,

∑J
j=1 rij = 1 and ∀j,

∑I
i=1 rij = I

J
.

(1.1)

For � = 2, this is a quadratic optimization problem with linear constraints which can be solved efficiently numerically
(see Section 5). In general, this is the minimization of a continuous function on a compact set and there exists a minimizer
r�. We then define

μ
�,�

I,J = 1

I

I∑
i=1

δX�
i
, with X�

i =
J∑

j=1

r�
ij Yj .

By construction, we have μ
�,�

I,J ≤cx νJ . In the next section, we generalize this problem by considering, in place of the point

measures μI and νJ , general elements of P�(Rd) = {η ∈ P(Rd) : ∫
Rd |x|�η(dx) < ∞} with � ≥ 1 denoted (with a slight

abuse of notation) by μ and ν. This leads us to define the projection μ
�

P(ν)
of μ on the set P(ν) = {η ∈ P(Rd) : η ≤cx ν}

of probability measures dominated by ν in the convex order for the Wasserstein distance with index �:

W�(μ,η) = min
π∈	(μ,η)

(∫
Rd×Rd

|x − y|�π(dx, dy)

)1/�

,

where 	(μ,ν) the set of probability measures π on R
d × R

d with marginal laws μ and ν, i.e. π(A × R
d) = μ(A) and

π(Rd × A) = ν(A) for any Borel set A ⊂ R
d . We show that this projection is well defined for � > 1 and study some of

its properties. Notice that after our preprint [1], Gozlan and Juillet [13] and Backhoff-Veraguas et al. [5] have recently
considered the projection for � = 2. In dimension d = 1, according to Gozlan et al. [14] Theorem 1.5, the projection
does not depend on �. We explicit its quantile function in terms of the quantile functions of μ and ν so that it can be
computed by efficient algorithms when μ and ν have finite supports. In Section 3, we prove that, when μ ≤cx ν, then
W�(μ, (μI )

�

P(νJ )
) ≤ 2W�(μ,μI ) + W�(ν, νJ ) and deduce that (μI )

�

P(νJ )
converges weakly to μ as I, J → +∞. More-

over, we extend the construction to the sampling of several probability measures ranked in the convex order. Section 4 is
devoted to the projection ν

�

P̄(μ)
of ν on the set P̄(μ) = {η ∈ P(Rd) : μ ≤cx η} of probability measures larger than μ in

the convex order for the Wasserstein distance with index �. Last, in Section 5, we illustrate by numerical experiments the
Wasserstein projection based sampling methods and their application to approximate Martingale Optimal Transport prob-
lems. One important motivation of this paper is indeed to tackle numerically the Martingale Optimal Transport (MOT)
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problem introduced in [7], which has received a recent and great attention in finance to get model-free bounds on op-
tion prices. A family of probability measures on R

d (Q(x, dy))x∈Rd is called a Markov kernel on R
d if for any Borel

set A ⊂ R
d , Rd � x �→ Q(x,A) is measurable. We define 	M(μ,ν) = {π ∈ 	(μ,ν) : ∀x ∈ R

d,
∫
Rd |y|πY |X(x, dy) <

∞ and
∫
Rd yπY |X(x, dy) = x} where πY |X denotes a Markov kernel such that π(dx, dy) = μ(dx)πY |X(x, dy), the set of

martingale couplings. Theorem 8 in Strassen [27] ensures that, when ν ∈ P1(R
d), μ ≤cx ν ⇐⇒ 	M(μ,ν) �= ∅. For a

measurable payoff function c : Rd ×R
d → R, the MOT problem consists in finding an optimal coupling π� ∈ 	M(μ,ν)

that minimizes (or maximizes)∫
Rd×Rd

c(x, y)π(dx, dy) (1.2)

among all couplings π ∈ 	M(μ,ν). In finance, this problem arises naturally if one considers the prices of d assets ST1 , ST2

at dates T1 < T2. We assume zero interest rates and suppose that we can observe the marginal laws μ (resp. ν) of ST1 (resp.
ST2 ) from option prices on the market and that we want to price an option that pays c(ST1, ST2) at date T2. Any martingale
coupling π ∈ 	M(μ,ν) is an arbitrage free pricing model: the supremum and the infimum of

∫
Rd×Rd c(x, y)π(dx, dy)

over all these couplings give model free bounds on the option price. From the dual formulation of the problem, Beiglböck,
Penkner and Henry-Labordère [7] have proved that the upper (resp. lower) bound is the cheapest (resp. most expensive)
initial value among superhedging (resp. subhedging) strategies. To compute the model free bounds on the option price,
one may consider approximating the probability measures μ and ν by probability measures with finite supports (typically
the empirical measures of i.i.d. samples) μI = ∑I

i=1 piδxi
and νJ = ∑J

j=1 qj δyj
, with I, J ∈N

∗, xi, yj ∈R
d , pi, qj > 0

for any i, j and
∑I

i=1 pi = ∑J
j=1 qj = 1 and solve the approximate MOT problem: to minimize (or maximize)

I∑
i=1

J∑
j=1

rij c(xi, yj ) (1.3)

over (rij )1≤i≤I,1≤j≤J under the constraints

rij ≥ 0,

I∑
i=1

pirij = qj ,

J∑
j=1

rij = 1 and
J∑

j=1

rij yj = xi.

This problem falls into the realm of linear programming: powerful algorithms have been developed to solve it numerically.
The key issue to run these algorithms is the existence of such matrices (rij )1≤i≤I,1≤j≤J , that amounts to the existence of
a martingale coupling between μI and νJ . By Strassen’s theorem, this is equivalent to have μI ≤cx νJ , which motivates
the interest of preserving the convex order when sampling both the probability measures μ and ν. It is very natural in the
financial application to consider empirical measures with I = J : once a stochastic model is calibrated to European option
market prices, one basically samples it at different times to price exotic options, which gives the empirical measures at
those times.

2. Wasserstein projection of μ on the set of probability measures dominated by ν in the convex order

2.1. Definition, existence and uniqueness

Let us first recall that a family of probability measures on R
d (R(x, dy))x∈Rd is called a Markov kernel on R

d if for any
Borel set A ⊂ R

d , Rd � x �→ R(x,A) is measurable. Besides, we say that the Markov kernel R is a martingale Markov
kernel if for all x ∈R

d ,
∫
Rd |y|R(x,dy) < ∞ and

∫
Rd yR(x, dy) = x.

For a Markov kernel R(x,dy) on R
d , we set

mR(x) =
∫
Rd

yR(x, dy) for x ∈R
d s.t.

∫
Rd

|y|R(x,dy) < ∞.

It is well known (see [11] pages 78–80 or [24] page 117) that if π ∈ 	(μ,ν) (resp. π ∈ 	M(μ,ν)), there exists a
μ(dx)-a.e. unique Markov kernel (resp. martingale Markov kernel) R such that μ(dx)R(x, dy) = π(dx, dy). This kernel
satisfies obviously

∫
x∈Rd μ(dx)R(x, dy) = ν(dy), which we note μR = ν later on. Conversely, if R is a kernel satisfying
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μR = ν then μ(dx)R(x, dy) defines a probability measure in 	(μ,ν). We define P(Rd) the set of probability measures
on R

d and, for � ≥ 1,

P�

(
R

d
) =

{
μ ∈P

(
R

d
)
,

∫
Rd

|x|�μ(dx) < ∞
}
,

the set of probability measures with finite moment of order �.
Suppose that ν ∈ P1(R

d) and R is a Markov kernel such that μR = ν. Then∫
Rd×Rd

|y|R(x, dy)μ(dx) =
∫
Rd

|y|ν(dy) < ∞

so that mR(x) is defined μ(dx)-a.e. Moreover for each convex function φ : Rd → R such that supx∈Rd
|φ(x)|
1+|x| < ∞, by

Jensen’s inequality,∫
Rd

φ(y)ν(dy) =
∫
Rd×Rd

φ(y)μ(dx)R(x, dy)

≥
∫
Rd

φ

(∫
Rd

yR(x, dy)

)
μ(dx) =

∫
Rd

φ
(
mR(x)

)
μ(dx).

Despite the restriction on the growth of the convex function φ, by Lemma A.1 below, this ensures that mR#μ ≤cx ν.
For � ≥ 1 and μ,ν ∈P�(Rd), we consider the following generalization of the minimization problem (1.1):{

Minimize J�(R) := ∫
Rd |x − mR(x)|�μ(dx)

under the constraint that R is a Markov kernel such that μR = ν.

Note that this problem is a particular case of the general transport costs considered by Gozlan et al. [15] and Alibert et al.
[3], who are interested in duality results and by Backhoff-Veraguas et al. [5] who deal with existence of optimal transport
plans and necessary and sufficient optimality conditions in the spirit of cyclical monotonicity. Gozlan and Juillet [13]
characterize optimal transport plans between μ and ν for the cost J2. When the Xi are distinct, (1.1) is recovered by
setting

R(x,dy) =
{∑J

j=1 rij δYj
(dy) if x = Xi for some i ∈ {1, . . . , I }

δx(dy) if x /∈ {X1, . . . ,XI }.

At optimality in (1.1), by Jensen’s inequality
∑J

j=1 rij Yj = ∑J
j=1 rkjYj when Xi = Xk for 1 ≤ k �= i ≤ I and the problem

(1.1) modified with the additional constraint
∑J

j=1 rij Yj = ∑J
j=1 rkjYj when Xi = Xk is recovered by setting

R(x,dy) =
{ 1∑I

i=1 1{Xi=x}

∑
i:Xi=x

∑J
j=1 rij δYj

(dy) if x ∈ {X1, . . . ,XI }
δx(dy) if x /∈ {X1, . . . ,XI }.

According to the next theorem the generalized problem is equivalent to the computation of the projection of μ on the set
of probability measures dominated by ν in the convex order for the �-Wasserstein distance.

Theorem 2.1. Let � ≥ 1, μ,ν ∈ P�(Rd). One has infR:μR=ν J�(R) = infη∈P(ν) W
�
� (μ,η) where both infima are at-

tained. If � > 1, then the functions {mR� : μR� = ν and J�(R�) = infR:μR=ν J�(R)} are μ(dx) a.e. equal, μ
�

P(ν)
:=

mR�#μ is the unique η ≤cx ν minimizing W
�
� (μ,η) and μ(dx)δmR�(x)(dy) the unique optimal transport plan π ∈

	(μ,μ
�

P(ν)
) such that W

�
� (μ,μ

�

P(ν)
) = ∫

Rd×Rd |x − y|�π(dx, dy).

When � > 1, μ
�

P(ν)
is the projection of μ on the set of probability measures dominated by ν in the convex order and

μ
�

P(ν)
≤cx ν. The proof relies on the next lemma, and is postponed after its proof.

Lemma 2.2. Let ν ∈ P1(R
d). Then, the set P(ν) is compact for the weak convergence topology.
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Proof. We have supη∈P(ν)

∫
Rd |x|�η(dx) = ∫

Rd |x|�ν(dx). By the Markov inequality, we deduce that for K ∈ (0,+∞),

supη∈P(ν) η({x : |x| > K}) ≤ 1
K�

∫
Rd |x|�ν(dx). By the Prokhorov theorem, this implies that P(ν) is relatively compact

for the weak convergence topology. For K ∈ (0,∞) and η ≤cx ν, denoting by R a martingale Markov kernel such that
ηR = ν, we have∫

Rd

|x|1{|x|≥K}η(dx) =
∫
Rd

∣∣∣∣∫
Rd

yR(x, dy)

∣∣∣∣1{|x|≥K}η(dx) ≤
∫
Rd×Rd

|y|1{|x|≥K}R(x, dy)η(dx)

≤
∫
Rd×Rd

|y|1{|y|≥√
K}R(x, dy)η(dx) + √

K

∫
Rd

1{|x|≥K}η(dx)

≤
∫
Rd

|y|1{|y|≥√
K}ν(dy) +

∫
Rd |x|η(dx)√

K

≤
∫
Rd

|y|1{|y|≥√
K}ν(dy) +

∫
Rd |y|ν(dy)√

K
.

For (ηn)n a sequence in {η ∈ P(Rd) : η ≤cx ν} weakly converging to η∞, this implies uniform integrability ensuring
that for φ : Rd → R continuous and such that supx∈Rd

|φ(x)|
1+|x| < ∞, limn→∞

∫
Rd φ(x)ηn(dx) = ∫

Rd φ(x)η∞(dx). With

Lemma A.1 below and the continuity of real valued convex functions on R
d , we deduce that η∞ ∈ P(ν). Hence P(ν) is

compact for the weak convergence topology. �

Proof of Theorem 2.1. For η ∈ P(Rd),

W�
� (μ,η) ≤

∫
Rd×Rd

|x − y|�μ(dx)η(dy) ≤ 2�−1
(∫

Rd

|x|�μ(dx) +
∫
Rd

|y|�η(dy)

)
,

where the right-hand side is finite if η ∈ P(ν) since supη∈P(ν)

∫
Rd |x|�η(dx) = ∫

Rd |x|�ν(dx). Since η �→ W
�
� (μ,η) is

lower-semicontinuous for the weak convergence topology, by Lemma 2.2, there exists η� ∈ P(ν) such that W
�
� (μ,η�) =

infη∈P(ν) W
�
� (μ,η). Let P be a martingale Markov kernel such that η�P = ν and Q a Markov kernel such that μQ = η�

and W
�
� (μ,η�) = ∫

Rd×Rd |x − y|�Q(x, dy)μ(dy). One has μQP = η�P = ν and, by martingality of P ,

mQP (x) =
∫
Rd×Rd

zP (y, dz)Q(x, dy) =
∫
Rd

yQ(x, dy).

With Jensen’s inequality, we deduce that

W�
� (μ,η�) =

∫
Rd×Rd

|x − y|�Q(x, dy)μ(dy) ≥
∫
Rd

∣∣∣∣x −
∫
Rd

yQ(x, dy)

∣∣∣∣�μ(dx) = J�(QP). (2.1)

On the other hand, for any Markov kernel R such that μR = ν, mR#μ ≤cx ν and J�(R) = ∫
Rd |x − mR(x)|�μ(dx) ≥

W
�
� (μ,mR#μ). Hence

inf
R:μR=ν

J�(R) ≥ inf
η∈P(ν)

W�
� (μ,η) = W�

� (μ,η�) ≥ J�(QP) ≥ inf
R:μR=ν

J�(R)

so that both infima are equal and J�(QP) = infR:μR=ν J�(R). Moreover, the inequality in (2.1) is an equality. If � > 1,
by strict convexity of x �→ |x|� , this implies that μ(dx) a.e. R(x,dy) = δmQP (x)(dy) so that η� = μQ = mQP #μ.

For � > 1, the uniqueness of mR� is also obtained from the strict convexity of x �→ |x|� . Namely, for any optimal
kernel R� we have

J�

(
(R� + QP)/2

) =
∫
Rd

∣∣∣∣x − mR�(x) + mQP (x)

2

∣∣∣∣�μ(dx)

≤
∫
Rd

1

2

∣∣x − mR�(x)
∣∣� + 1

2

∣∣x − mQP (x)
∣∣�μ(dx)

= 1

2

(
J�(R�) +J�(QP)

) = inf
R:μR=ν

J�(R).
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Since μ
R�+QP

2 = ν, we necessarily have J�((R� + QP)/2) = infR:μR=ν J�(R) and then mR�(x) = mQP (x), μ(dx)-
a.e. �

Remark 2.3. When � = 1, let us give an example of non-uniqueness for the optimal functions mR and the probability
measures η� ∈ P(ν) such that W1(μ,η�) = infη∈P(ν) W1(μ,η). Let μ(dx) = 1[0,1](dx) (resp. ν(dy) = 1[1,2](dy)) be the
uniform law on [0,1] (resp. [1,2]). We have

inf
R:μR=ν

J1(R) ≥ inf
R:μR=ν

∣∣∣∣∫
R

xμ(dx) −
∫
R

mR(x)μ(dx)

∣∣∣∣ =
∣∣∣∣∫

R

xμ(dx) −
∫
R

yν(dy)

∣∣∣∣ = 1.

For λ ∈ [0,1], Rλ(x, dy) = (1 − λ)δ1+x(dy) + λδ2−x(dy) is such that μRλ = ν, mRλ(x) = (1 + λ) + (1 − 2λ)x and
mRλ#μ is the uniform law on [(1 + λ) ∧ (2 − λ), (1 + λ) ∨ (2 − λ)]. Using that mRλ(x) ≥ 1 for x ∈ (0,1) for the first
equality, we have

W1(μ,mRλ#μ) ≤ J1(Rλ) =
∫ 1

0
1 + λ − 2λx dx = 1 = inf

η∈P(ν)
W1(μ,η).

Thus all the kernels Rλ and pushforward measures mRλ#μ are optimal.

Example 2.4. Let μ ≤cx ν and � ≥ 1. We assume that ν ∈ P� , which implies that μ ∈ P� . For α ∈ R
d , let μα be the

image of μ by x �→ x + α. Then, for any kernel R such that μαR = ν,∫
Rd

∣∣x − mR(x)
∣∣�μα(dx) ≥

∣∣∣∣∫
Rd

x − mR(x)μα(dx)

∣∣∣∣�
=

∣∣∣∣∫
Rd

xμα(dx) −
∫
Rd

yν(dy)

∣∣∣∣� =
∣∣∣∣∫

Rd

xμα(dx) −
∫
Rd

xμ(dx)

∣∣∣∣� = |α|�.

This lower bound is attained for R(x,dy) = Q(x − α,dy), where Q is any martingale Markov kernel such that μQ = ν,
since mR(x) = x − α for this choice. Therefore, for � > 1, (μα)

�

P(ν)
= μ.

Let us observe that if μ,ν ∈ P�(Rd) with � > 1, then we have μ,ν ∈P�′(Rd) for any �′ ∈ (1, �). In general, as in the

next example, μ
�′
P(ν)

is different from μ
�

P(ν)
.

Example 2.5. Let d = 2, μ = 1
2 (δ(1,0) + δ(0,a)) with a ∈R and ν = 1

2 (δ(1,0) + δ(−1,0)). For � > 1, since, by Theorem 2.1,
μ

�

P(ν)
is the image of μ by some transport map and μ

�

P(ν)
≤cx ν, one has μ

�

P(ν)
= 1

2 (δ(x�,0) + δ(−x�,0)) for some x� ∈
[0,1]. For x ∈ [0,1], since the distances between (x,0) and (0, a) and between (−x,0) and (0, a) are equal whereas (x,0)

is closer to (1,0) than (−x,0), one has 2W
�
� (μ, 1

2 (δ(x,0) +δ(−x,0))) = (1−x)� +(a2 +x2)�/2. Since the unique minimizer
of x �→ (1−x)2 + (a2 +x2) on [0,1] is 1

2 , one has x2 = 1
2 and μ2

P(ν)
= 1

2 (δ(1/2,0) +δ(−1/2,0)). Since the unique minimizer

of x �→ (1 − x)3 + (5 + x2)3/2 on [0,1] is 1
4 , for a ∈ {−√

5,
√

5}, one has x3 = 1
4 and μ3

P(ν)
= 1

2 (δ(1/4,0) + δ(−1/4,0)).

Nevertheless, the situation is strikingly different in dimension d = 1 where, according to Gozlan et al. [14] Theo-
rem 1.5, the projection does not depend on �. We are going to explicit this projection by characterizing its quantile
function in terms of the quantile functions of μ and ν.

2.2. Dimension d = 1

Let Fμ(x) = μ((−∞, x]) and Fν(x) = ν((−∞, x]) be the cumulative distribution functions and for p ∈ (0,1), F−1
μ (p) =

inf{x ∈ R : Fμ(x) ≥ p} and F−1
ν (p) = inf{x ∈ R : Fν(x) ≥ p} their left-continuous and non-decreasing generalized in-

verses also called quantile functions. The convex order is characterized as follows in terms of the quantile functions (see
Theorem 3.A.5 [26]): for μ,ν ∈ P1(R),

μ ≤cx ν iff
∫ 1

0
F−1

μ (p)dp =
∫ 1

0
F−1

ν (p)dp

and ∀q ∈ (0,1),

∫ 1

q

F−1
μ (p)dp ≤

∫ 1

q

F−1
ν (p)dp.

(2.2)
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Notice that, as a consequence of this characterization, if μ ≤cx ν, then for I, k ≥ 1, 1
I

∑I
i=1 δ

I
∫ i

I
i−1
I

F−1
μ (u)du

≤cx

1
kI

∑kI
j=1 δ

kI
∫ j

kI
j−1
kI

F−1
ν (u)du

, as stated by Baker in Theorem 2.4.11 [6].

Theorem 2.6. For μ,ν ∈ P1(R), let ψ denote the convex hull (largest convex function bounded from above by) of
the function [0,1] � q �→ ∫ q

0 F−1
μ (p) − F−1

ν (p)dp. There exists a probability measure μP(ν) such that ∀q ∈ [0,1],∫ q

0 F−1
μP(ν)

(p) dp = ∫ q

0 F−1
μ (p)dp − ψ(q). Moreover, μP(ν) ∈P(ν) and for each � > 1 such that μ,ν ∈P�(R), μ

�

P(ν)
=

μP(ν). Last, T (x) = F−1
μ (Fμ(x)) − ψ ′(Fμ(x)−) is non-decreasing and is an optimal transport map: T #μ = μP(ν) and

for all � ≥ 1, W
�
� (μ,μP(ν)) = ∫

R
|T (x) − x|�μ(dx).

Remark 2.7. The fact that the Wasserstein projection μ
�

P(ν)
does not depend on � is in line with a remarkable feature

of the classical optimal transport in dimension 1. Indeed, whatever � > 1, the optimal W� coupling between μ and ν is
the image πOT of the uniform law on [0,1] by p �→ (F−1

μ (p),F−1
ν (p)) (see for instance Proposition 2.17 [25]). This is

deeply related to the complete lattice structure of P1(R) for the convex order (see top of p. 162 [20]). In fact, the set of
images of π ∈ 	(μ,ν) by (x, y) �→ y − x has an infimum for the convex order. Strikingly, it turns out that this infimum
is a minimum (given by πOT), which ensures that the optimal coupling does not depend on �. Below, to prove that μ

�

P(ν)

does not depend on �, we show that the set of images of π ∈ 	(μ,η) with η ≤cx ν by (x, y) �→ y −x also has a minimum
for the convex order.

For probability measures μI = ∑I
i=1 piδxi

(resp. νJ = ∑J
j=1 qj δyj

) on the real line with (p1, . . . , pI ) ∈ (0,1]I and

x1 < x2 < . . . < xI (resp. (q1, . . . , qJ ) ∈ (0,1]J and y1 < y2 < . . . < yJ ), the continuous and piecewise affine function
q �→ ∫ q

0 F−1
μI

(p)−F−1
νJ

(p)dp changes slope at q ∈ {∑i
k=1 pk : 1 ≤ i ≤ I −1}∪ {∑j

k=1 qk : 1 ≤ j ≤ J −1} with a change

equal to
∑I−1

i=1 1{q=∑i
k=1 pk}(xi+1 − xi) − ∑J−1

j=1 1{q=∑j
k=1 qk}(yj+1 − yj ) (which can be equal to zero if q = ∑i

k=1 pk =∑j

k=1 qk and xi+1 − xi = yj+1 − yj ). Clearly, ψ is piecewise affine and changes slope at most at points q ∈ {∑i
k=1 pk :

1 ≤ i ≤ I − 1} with changes not greater than xi+1 − xi so that (μI )P(νJ ) = ∑I
i=1 piδzi

with z1 ≤ z2 ≤ . . . ≤ zI . The
convex hull ψ can be computed by Andrew’s monotone chain algorithm and the points (zi)i∈I are easily deduced.

The proof of Theorem 2.6 relies on the following lemma and is postponed after its proof.

Lemma 2.8. Let � > 1 and μ,ν ∈P�(R). Then (0,1) � p �→ F−1
μ

�

P(ν)

(p) − F−1
μ (p) is non-increasing.

Proof. It is enough to check that if p �→ F−1
η (p) − F−1

μ (p) is not non-increasing for some η ∈ P(ν), one can find

η̃ ∈ P(ν) such that W
�
� (μ, η̃) < W

�
� (μ,η) where, according to Proposition 2.17 [25], W

�
� (μ,η) = ∫ 1

0 |F−1
η (p) −

F−1
μ (p)|� dp. With the left-continuity of p �→ F−1

η (p) − F−1
μ (p), the lack of monotonicity of this function is equiva-

lent to

0 <

∫
(0,1)2

1Iη (p, q) dp dq where Iη = {
(p, q) : (p − q)

(
F−1

η (p) − F−1
μ (p) − F−1

η (q) + F−1
μ (q)

)
> 0

}
.

Let α(p,q) = 1Iη (p, q)
F−1

η (p)−F−1
μ (p)−F−1

η (q)+F−1
μ (q)

2(F−1
η (p)−F−1

η (q))
, where one easily checks that the denominator does not vanish on

Iη and that 0 ≤ α(p,q) = α(q,p) < 1. For (p, q) ∈ Iη,

α(p,q)F−1
η (q) + (

1 − α(q,p)
)
F−1

η (p) − F−1
μ (p) = F−1

η (p) − F−1
μ (p) + F−1

η (q) − F−1
μ (q)

2
,

so that by strict convexity,

1

2

(∣∣F−1
η (p) − F−1

μ (p)
∣∣� + ∣∣F−1

η (q) − F−1
μ (q)

∣∣�)
>

∣∣α(p,q)F−1
η (q) + (

1 − α(q,p)
)
F−1

η (p) − F−1
μ (p)

∣∣�.
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With Jensen’s inequality, we deduce that

W�
� (μ,η) = 1

2

∫
(0,1)2

∣∣F−1
η (p) − F−1

μ (p)
∣∣� + ∣∣F−1

η (q) − F−1
μ (q)

∣∣� dp dq

>

∫
(0,1)2

∣∣α(p,q)F−1
η (q) + (

1 − α(q,p)
)
F−1

η (p) − F−1
μ (p)

∣∣� dp dq

≥
∫ 1

0

∣∣∣∣∫ 1

0
α(p,q)F−1

η (q) + (
1 − α(q,p)

)
F−1

η (p)dq − F−1
μ (p)

∣∣∣∣� dp.

The right-hand side is not smaller than W
�
� (μ, η̃) where η̃ denotes the image of the Lebesgue measure on (0,1) by

p �→ ∫ 1
0 α(p,q)F−1

η (q)+ (1−α(q,p))F−1
η (p)dq . For φ :R→ R convex and such that supx∈R

|φ(x)|
1+|x|� < ∞, by Jensen’s

inequality,

∫
R

φ(x)̃η(dx) ≤
∫

(0,1)2
α(p,q)φ

(
F−1

η (q)
) + (

1 − α(q,p)
)
φ
(
F−1

η (p)
)
dqdp =

∫ 1

0
φ
(
F−1

η (q)
)
dq.

Since the right-hand side is equal to
∫
R

φ(x)η(dx), by Lemma A.1 below, one has η̃ ∈P(ν). �

Proof of Theorem 2.6. Let U be uniformly distributed on (0,1).
Since for all q ∈ [0,1], ∫ q

0 F−1
μ (p) − F−1

ν (p)dp ≥ ∫ q

0 F−1
μ (p)dp − q

∫ 1
0 F−1

ν (p)dp where the right-hand side is a

convex function of q , one has ψ(0) = 0 and ψ(1) = ∫ 1
0 F−1

μ (p) − F−1
ν (p)dp. By Lemma A.2 below, the convexity of

both q �→ ∫ q

0 F−1
μ (p)dp and q �→ ∫ q

0 F−1
ν (p)dp implies that q �→ ∫ q

0 F−1
μ (p)dp − ψ(q) is convex. Let f denote the

left-hand derivative of this function and μP(ν) the probability distribution of f (U). By Lemma A.3 below, f is equal to
F−1

μP(ν)
so that ∀q ∈ [0,1], ∫ q

0 F−1
μP(ν)

(p) dp = ∫ q

0 F−1
μ (p)dp − ψ(q).

Let q ∈ [0,1]. Since ψ(q) ≤ ∫ q

0 F−1
μ (p) − F−1

ν (p)dp with equality when q = 1, one has
∫ q

0 F−1
μP(ν)

(p) dp =∫ q

0 F−1
μ (p)dp − ψ(q) ≥ ∫ q

0 F−1
ν (p)dp with equality when q = 1 so that by (2.2), μP(ν) ≤cx ν. By concavity of

[0,1] � q �→ −ψ(q) = ∫ q

0 F−1
μP(ν)

(p) − F−1
μ (p)dp, the left-continuous function (0,1) � p �→ F−1

μP(ν)
(p) − F−1

μ (p) is
non-increasing.

The set

P̃(ν) := {
η ∈ P(ν) : (0,1) � p �→ F−1

η (p) − F−1
μ (p) is non-increasing

}
is not empty since μP(ν), δ

∫
R

yν(dy) ∈ P̃(ν). Let D(η) denote the distribution of F−1
η (1 −U)−F−1

μ (1 −U) for η ∈ P̃(ν).

For all η ∈ P̃(ν),
∫
R

|x|D(η)(dx) < ∞ and
∫
R

xD(η)(dx) = E[F−1
η (1 − U) − F−1

μ (1 − U)] = ∫
R

x(ν − μ)(dx).

By Lemma A.4 below, the set {D(η) : η ∈ P̃(ν)} admits an infimum π for the convex order and for all q ∈ [0,1],∫ 1
q

F−1
π (p)dp = infη∈P̃(ν)

∫ 1
q

F−1
D(η)

(p)dp. For η ∈ P̃(ν), since (0,1) � p �→ F−1
η (1 − p) − F−1

μ (1 − p) is non-

decreasing, by Lemma A.3, p �→ F−1
D(η)(p) and p �→ F−1

η (1 − p) − F−1
μ (1 − p) coincide away from the at most

countable set of their common discontinuities, with the former left-continuous and the latter right-continuous. Hence
for q ∈ [0,1],

∫ 1

q

F−1
π (p)dp = inf

η∈P̃(ν)

∫ 1−q

0
F−1

η (p) − F−1
μ (p)dp = − sup

η∈P̃(ν)

∫ 1−q

0
F−1

μ (p) − F−1
η (p)dp

where the right-hand side is not greater than
∫ 1−q

0 F−1
μP(ν)

(p)−F−1
μ (p)dp since μP(ν) ∈ P̃(ν). Since η ∈ P̃(ν) iff F−1

μ −
F−1

η is non-decreasing,
∫ 1

0 |F−1
η (p)|dp < ∞,

∫ 1
0 F−1

η (p)dp = ∫ 1
0 F−1

ν (p)dp and for all q ∈ [0,1], ∫ 1−q

0 F−1
η (p)dp ≥∫ 1−q

0 F−1
ν (p)dp (see (2.2)), the definition of ψ implies that for all q ∈ [0,1], supη∈P̃(ν)

∫ 1−q

0 F−1
μ (p) − F−1

η (p)dp ≤
ψ(1 − q) = ∫ 1−q

0 F−1
μ (p) − F−1

μP(ν)
(p) dp. Hence

∫ 1
q

F−1
π (p)dp = ∫ 1−q

0 F−1
μP(ν)

(p) − F−1
μ (p)dp = ∫ 1

q
F−1

D(μP(ν))
(p) dp

for all q ∈ [0,1] which ensures that π is the distribution D(μP(ν)) of F−1
μP(ν)

(1 − U) − F−1
μ (1 − U). Therefore, if � > 1
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is such that μ,ν ∈ P�(R),

W�
� (μ,μP(ν)) = E

[∣∣F−1
μP(ν)

(1 − U) − F−1
μ (1 − U)

∣∣�] =
∫
R

|x|�π(dx)

≤ inf
η∈P̃(ν)

E
[∣∣F−1

μ (1 − U) − F−1
η (1 − U)

∣∣�] = inf
η∈P̃(ν)

W�
� (μ,η) = inf

η∈P(ν)
W�

� (μ,η),

where we used the definition of π and the convexity of R � x �→ |x|� for the inequality and Lemma 2.8 for the fi-
nal equality. Since, by Theorem 2.1, μ

�

P(ν)
is the unique minimizer of W

�
� (μ,η) on P(ν), we conclude that μP(ν) =

μ
�

P(ν)
.

From the left-continuity of the quantile functions, we get F−1
μP(ν)

(p) = F−1
μ (p) − ψ ′(p−) for p ∈ (0,1), and

this function is non-decreasing. Thus, T is nondecreasing. To conclude the proof, it is now sufficient to check that
T (F−1

μ (p)) = F−1
μ (p) − ψ ′(p−) for a.e. p ∈ (0,1). Indeed, combined with the inverse transform sampling and Proposi-

tion 2.17 [25], this ensures that T #μ = μP(ν) and

W�
� (μ,μP(ν)) =

∫ 1

0

∣∣F−1
μ (p) − T

(
F−1

μ (p)
)∣∣� dp =

∫
R

∣∣x − T (x)
∣∣�μ(dx).

By definition of the quantile function F−1
μ , for all x ∈ R, F−1

μ (Fμ(x)) ≤ x and by right-continuity of Fμ, for all p ∈ (0,1),
Fμ(F−1

μ (p)) ≥ p. With the monotonicity of Fμ we deduce that for all x ∈R such that Fμ(x) ∈ (0,1), Fμ(F−1
μ (Fμ(x))) =

Fμ(x). Therefore, if p ∈ (0,1) is such that p = Fμ(x) for some x ∈ R, then T (F−1
μ (p)) = F−1

μ (p) − ψ ′(p−). Other-
wise, p ∈ [Fμ(x−),Fμ(x)) for some x ∈ R such that μ({x}) > 0. We observe that F−1

μ (q) and ψ ′(q−) are constant
on (Fμ(x−),Fμ(x)] since q �→ ∫ q

0 F−1
μ (u) − F−1

ν (u) du is concave on this interval. For p ∈ (Fμ(x−),Fμ(x)], we have
F−1

μ (p) = x and we get T (F−1
μ (p)) = F−1

μ (Fμ(x)) − ψ ′(Fμ(x)−) = F−1
μ (p) − ψ ′(p−). Therefore the equality holds

for p outside the countable set {Fμ(x−) : x ∈ R s.t. μ({x}) > 0}. �

3. Approximations in the convex order

The next proposition is the key result to construct approximations of probability measures that preserve the convex order.

Proposition 3.1. Let � ≥ 1, μ,ν,μI , νJ ∈P�(Rd) such that μ ≤cx ν. Then, we have

W�

(
μ, (μI )

�

P(νJ )

) ≤ 2W�(μ,μI ) + W�(ν, νJ ),

where, for � = 1, by a slight abuse of notation, (μI )
1
P(νJ )

denotes any η� ∈ P(νJ ) such that W1(μI , η�) =
infη∈P(νJ ) W1(μI , η).

Let μ,ν ∈ P�(Rd) be such that μ ≤cx ν. From Proposition 3.1, if we have approximations μI and νJ that satisfy
W�(μ,μI ) →

I→+∞ 0 and W�(ν, νJ ) →
J→+∞ 0, then (μI )

�

P(νJ )
also approximates μ since we have W�(μ, (μI )

�

P(νJ )
) →

I,J→+∞
0. In particular, if we take i.i.d. samples (Xi)i≥1 (resp. (Yj )j≥1) distributed according to μ (resp. ν), the empirical measure
μI = 1

I

∑I
i=1 δXi

(resp. νJ = 1
J

∑J
j=1 δYj

) satisfy W�(μ,μI ) →
I→+∞ 0 (resp. W�(ν, νJ ) →

J→+∞ 0) almost surely. Indeed,

the law of large numbers gives the almost sure weak convergence of μI towards μ as well as the almost sure convergence
of 1

I

∑I
i=1 |Xi |� to

∫
Rd |x|�μ(dx). By Proposition 7.1.5 of [4], we get W�(μ,μI ) →

I→+∞ 0 almost surely. Under more

restrictive assumptions on the measures μ and ν, we can have almost sure estimates on the rate of convergence. Let us
assume that μ is such that Eα,γ = ∫

Rd eγ |x|αμ(dx) < ∞ for some α > � and γ > 0. Then, by Theorem 2 of Fournier and
Guillin [12], there are constants c,C > 0 depending on �, d , α, γ , Eα,γ such that

∀x ∈ (0,1),P
(
W�(μ,μI ) > x

) = P
(
W�

� (μ,μI ) > x�
) ≤ C exp

(−cIxd∨(2�)
)
.

Therefore we have
∑∞

I=2 P(W�(μ,μI ) > (
2 log(I )

cI
)

1
d∨(2�) ) ≤ C

∑∞
I=2 I−2 < ∞, which gives that almost surely, there

exists I0 such that ∀I ≥ I0, W�(μ,μI ) ≤ (
2 log(I )

cI
)

1
d∨(2�) . Since x �→ eγ |x|α is convex,

∫
Rd eγ |x|α ν(dx) < ∞ =⇒
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Rd eγ |x|αμ(dx) < ∞, in which case we have both W�(μ,μI ) = O((

log(I )
I

)
1

d∨(2�) ) and W�(ν, νJ ) = O((
log(J )

J
)

1
d∨(2�) )

and thus

W�

(
μ, (μI )

�

P(νJ )

) =
I,J→+∞ O

((
log(I ∧ J )

I ∧ J

) 1
d∨(2�)

)
, a.s.

Theorem 2 of [12] also gives upper bounds of P(W�(μ,μI ) > x) under different weaker assumptions on μ. We can repeat
the same argument in those cases and get a weaker rate of convergence of W�(μ,μI ) towards 0.

We now briefly consider the multi-marginal case. Let � ≥ 1, � ≥ 2, I1, . . . , I� be positive integers and μ1, . . . ,μ� be
probability measures on R

d such that μ1 ≤cx . . . ≤cx μ� and
∫
Rd |x|�μ�(dx) < ∞. We consider for 1 ≤ k ≤ �, μk

Ik
=

1
Ik

∑Ik

i=1 δXk
i

the empirical measure of an i.i.d. sample Xk
1, . . . ,X

k
Ik

distributed according to μk . Let us set μ
�,�

I�
= μ�

I�
and

define (using for � = 1 the abuse of notation made in Proposition 3.1) by backward induction for k ∈ {1, . . . , � − 1}, the
projection μ

k,�

Ik,...,I�
of μk

Ik
on the set P(μ

k+1,�

Ik+1,...,I�
) for the W�-Wasserstein distance. Then, by Proposition 3.1, we have

for 1 ≤ k ≤ � − 1,

W�

(
μk,μ

k,�

Ik,...,I�

) ≤ 2W�

(
μk,μk

Ik

) + W�

(
μk+1,μ

k+1,�

Ik+1,...,I�

)
.

Therefore, we deduce by induction that

W�

(
μk,μ

k,�

Ik,...,I�

) ≤ 2
�−1∑
k′=k

W�

(
μk′

,μk′
Ik′

) + W�

(
μ�,μ�

I�

)
.

We eventually get the following result.

Corollary 3.2. Let � ≥ 1, μ1, . . . ,μ� be probability measures on R
d such that μ1 ≤cx . . . ≤cx μ� and

∫
Rd |x|�μ�(dx) <

∞. For 1 ≤ k ≤ �, let (Xk
i )i≥1 be i.i.d. according to μk and μk

Ik
= 1

Ik

∑Ik

i=1 δXk
i

for Ik ∈N
∗.

Then, as I1, . . . , I� → +∞,
∑�

k=1 W�(μk,μ
k,�

Ik,...,I�
) converges almost surely to 0. Besides, if

∫
Rd eγ |x|αμ�(dx) for

some α > � and γ > 0, we have a.s.

�∑
k=1

W�

(
μk,μ

k,�

Ik,...,I�

) =
mink=1,...,� Ik→+∞ O

((
log(mink=1,...,� Ik)

mink=1,...,� Ik

) 1
d∨(2�)

)
.

Proof of Proposition 3.1. We consider � > 1. Let Q
�
μI

(resp. Q�
ν ) be a Markov kernel such that μI (dx)Q

�
μI

(x, dy) (resp.
ν(dx)Q

�
ν (x, dy)) is an optimal transport plan for W�(μI ,μ) (resp. W�(ν, νJ )). Let R(x,dy) be a martingale Markov

kernel such that ν = μR. We observe that Q
�
μI

RQ
�
ν is a Markov kernel such that μIQ

�
μI

RQ
�
ν = μRQ

�
ν = νQ

�
ν = νJ . By

Theorem 2.1, then using the martingale property of R, the Jensen and Minkowski inequalities, we get

W�

(
μI , (μI )

�

P(νJ )

) ≤ J 1/�
�

(
Q�

μI
RQ�

ν

)
=

(∫
Rd

∣∣∣∣∫
Rd×Rd×Rd

(x − w + w − y)Q�
μI

(x, dw)R(w,dz)Q�
ν (z, dy)

∣∣∣∣�μI (dx)

)1/�

=
(∫

Rd

∣∣∣∣∫
Rd×Rd×Rd

(x − w + z − y)Q�
μI

(x, dw)R(w,dz)Q�
ν (z, dy)

∣∣∣∣�μI (dx)

)1/�

≤
(∫

Rd×Rd×Rd×Rd

|x − w + z − y|�Q�
μI

(x, dw)R(w,dz)Q�
ν (z, dy)μI (dx)

)1/�

≤
(∫

Rd×Rd

|x − w|�Q�
μI

(x, dw)μI (dx)

)1/�

+
(∫

Rd×Rd

|z − y|�ν(dz)Q�
ν (z, dy)

)1/�

= W�(μI ,μ) + W�(νJ , ν).

The claim follows since W�(μ, (μI )
�

P(νJ )
) ≤ W�(μ,μI ) + W�(μI , (μI )

�

P(νJ )
). �
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4. Wasserstein projection of ν on the set of probability measures larger than μ in the convex order

Let μ,ν ∈ P�(Rd). We have just presented a construction of a measure μ
�

P(ν)
such that μ

�

P(ν)
≤cx ν. Then, a natural

question is: can we construct similarly a measure ν
�

P̄(μ)
such that μ ≤cx ν

�

P̄(μ)
? Let us start again with two empirical

measures μI = 1
I

∑I
i=1 δXi

and νJ = 1
J

∑J
j=1 δYj

. A natural construction would be to take (νJ )
�

P̄(μI )
= 1

J

∑J
j=1 δỸj

,

where (Ỹj , j = 1, . . . , J ) ∈ (Rd)J minimizes
∑J

j=1 |Ỹj − Yj |� under the constraint μI ≤cx
1
J

∑J
j=1 δỸj

(this constraint

can always be satisfied when J = I by taking Ỹj = Xj for j = 1, . . . , J or when J ≥ d +1 by taking Ỹj , j = 1, . . . , d +1
as the images of the vertices of the canonical simplex by some similarity transformation). The analogous construction for
ν

�

P̄(μ)
would be then to take ν

�

P̄(μ)
= T #ν, where T :Rd → R

d is a measurable map that minimizes
∫
Rd |y −T (y)|�ν(dy),

under the constraint μ ≤cx T #ν. More generally, we define

ν
�

P̄(μ)
:= arg min

η∈P̄(μ)

W�(ν, η) where P̄(μ) = {
η ∈P

(
R

d
) : μ ≤cx η

}
.

Let us now assume that � > 1. The latter problem coincides with the former one when ν is absolutely continu-
ous with respect to the Lebesgue measure (i.e. ν(A) = 0 for any Borel set A with zero Lebesgue measure), since
we know in this case that the optimal coupling for the Wasserstein distance W� is given by a transport map, see
e.g. Theorem 6.2.4 in [4]. We now check that it is well defined. Let (ηn)n≥1 ∈ (P�(Rd))N be such that ηn ∈ P̄(μ)

and W�(ν,ηn) →
n→+∞ infη∈P̄(μ) W�(ν, η). Let πn ∈ 	(ν,ηn) denote an optimal transport plan between ν and ηn for

W� . We have (
∫ |x|�ηn(x))1/� = W�(ηn, δ0) ≤ W�(ηn, ν) + W�(ν, δ0): the boundedness of the moments ensures that

there is a subsequence such that πϕ(n) and ηϕ(n) weakly converges to π∞ and η∞. This gives infη∈P̄(μ) W
�
� (ν, η) ≥

limn→+∞
∫
(|x − y|� ∧ K)πϕ(n)(dx, dy) = ∫

(|x − y|� ∧ K)π∞(dx, dy) for any K > 0. By monotone convergence, we
deduce that infη∈P̄(μ) W�(ν, η) ≥ ∫ |x − y|�π∞(dx, dy). Clearly, π∞ is a coupling between ν and η∞. Besides, from

the uniform integrability given by the bounds on the �-th moment, we get that for any convex function φ : Rd → R
d

such that supx∈Rd
|φ(x)|
1+|x| < ∞,

∫
φ(x)μ(dx) ≤ ∫

φ(x)ηϕ(n)(dx) →
n→+∞

∫
φ(x)η∞(dx). Therefore, by Lemma A.1 be-

low, η∞ ∈ P̄(μ), which shows the existence of a minimum. When ν is absolutely continuous with respect to the
Lebesgue measure, we can show that this minimum is unique. Let us consider η1, η2 ∈ P̄(μ) such that W�(ν,η1) =
W�(ν,η2) = infη∈P̄(μ) W�(ν, η). One has 1

2 (η1 + η2) ∈ P̄(μ), and, by Lemma A.5 below, we get W�(ν, 1
2 (η1 + η2)) ≤

infη∈P̄(μ) W�(ν, η) and η1 = η2 since the inequality is necessarily an equality. In dimension 1, uniqueness still holds

without any assumption on ν. Indeed, by (2.2), the probability measure η̄12 defined by F−1
η̄12

= 1
2 (F−1

η1
+ F−1

η2
) is such

that μ ≤cx η̄12. Again by Lemma A.5, W�(ν, η̄12) ≤ infη∈P̄(μ) W�(ν, η) and η1 = η2 since the inequality is necessarily an
equality. We have just proved the following result.

Theorem 4.1. For � > 1, if μ,ν ∈ P�(Rd), then infη∈P̄(μ) W
�
� (ν, η) is attained by some probability measure ν

�

P̄(μ)
which

is unique when ν is absolutely continuous with respect to the Lebesgue measure or d = 1.

Let us check now that in dimension d = 1, like μ
�

P(ν)
, the projection ν

�

P̄(μ)
does not depend on � > 1.

Proposition 4.2. If μ,ν ∈P1(R), then there is a probability νP̄(μ) such that for all q ∈ [0,1], ∫ 1
q

F−1
νP̄(μ)

(p) dp = ψ̃(q)+∫ 1
q

F−1
ν (p)dp where ψ̃ denotes the concave hull of the function q �→ ∫ 1

q
F−1

μ (p) − F−1
ν (p)dp. Moreover, ν

�

P̄(μ)
= νP̄(μ)

for each � > 1 such that μ,ν ∈P�(R).

Proof. Let

P̃(μ) := {
η ∈ P̄(μ) ∩P1(R) : (0,1) � p �→ F−1

η (p) − F−1
ν (p) is non-decreasing

}
.

Let ψ̃ denote the concave hull (smallest concave function larger than) of the function q �→ ∫ 1
q

F−1
μ (p) − F−1

ν (p)dp.

There is a probability measure νP̄(μ) such that
∫ 1
q

F−1
νP̄(μ)

(p) dp = ψ̃(q) + ∫ 1
q

F−1
ν (p)dp. Moreover, νP̄(μ) ∈ P̃(μ). For

η ∈ P̃(μ), let D(η) denote the distribution of F−1
η (U) − F−1

ν (U) for U uniformly distributed on (0,1). By Lemma A.4

below, the set {D(η) : η ∈ P̃(μ)} admits an infimum π for the convex order and for all q ∈ [0,1], ∫ 1
q

F−1
π (p)dp =
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infη∈P̃(μ)

∫ 1
q

F−1
D(η)(p). For η ∈ P̃(μ), one has F−1

D(η) = F−1
η − F−1

ν by Lemma A.3 below. With the fact that η ∈ P̃(μ)

if and only if
∫ 1
q

F−1
η (p)dp ≥ ∫ 1

q
F−1

μ (p)dp for all q ∈ (0,1) with equality for q = 0 and [0,1] � q �→ ∫ 1
q

F−1
η (p) −

F−1
ν (p)dp is concave, one deduces that for q ∈ (0,1),∫ 1

q

F−1
π (p)dp = inf

η∈P̃(μ)

∫ 1

q

F−1
η (p) − F−1

ν (p)dp = ψ̃(q) =
∫ 1

q

F−1
νP̄(μ)

(p) − F−1
ν (p)dp.

Hence π = D(νP̄(μ)). If μ,ν ∈P�(R) for some � > 1, then

W�
� (ν, νP̄(μ)) = E

[∣∣F−1
νP̄(μ)

(U) − F−1
ν (U)

∣∣�] =
∫
R

|x|�π(dx)

≤ inf
η∈P̃(μ)

E
[∣∣F−1

η (U) − F−1
ν (U)

∣∣�] = inf
η∈P̃(μ)

W�
� (ν, η).

By Lemma A.6 below, infη∈P̃(μ) W�(ν, η) = infη∈P̄(μ) W�(ν, η). Therefore W�(ν, νP̄(μ)) = infη∈P̄(μ) W�(ν, η) and

ν
�

P̄(μ)
= νP̄(μ). �

For probability measures μI = ∑I
i=1 piδxi

(resp. νJ = ∑J
j=1 qj δyj

) on the real line with (p1, . . . , pI ) ∈ (0,1]I and

x1 < x2 < . . . < xI (resp. (q1, . . . , qJ ) ∈ (0,1]J and y1 < y2 < . . . < yJ ), ψ̃ is equal to
∫ 1

0 F−1
μI

(p) − F−1
νJ

(p)dp minus
the convex hull ψ of q �→ ∫ q

0 F−1
μI

(p) − F−1
νJ

(p)dp which has already been discussed after Theorem 2.6 and can be
computed by Andrew’s monotone chain algorithm. One then may compute the probability measure (νJ )P̄(μI ) which

writes
∑K

k=1 rkδzk
with K ≤ I + J , z1 ≤ z2 ≤ . . . ≤ zK and (rk)1≤k≤K denoting the differences between the successive

elements of the increasing reordering of {0} ∪ {∑i
k=1 pk : 1 ≤ i ≤ I } ∪ {∑j

k=1 qk : 1 ≤ j ≤ J }.
In contrast, when d ≥ 2, the measure(s) ν

�

P̄(μ)
do(es) not seem easy to be calculated numerically, even for � = 2. In

fact, the constraint of the convex order is not simple to handle in a minimization program. More precisely, in the case of
empirical measures, one would have to minimize

∑J
j=1 |Ỹj − Yj |2 under the constraint 1

I

∑I
i=1 δXi

≤cx
1
J

∑J
j=1 δỸj

.

Even in dimension 1, this constraint is not linear since it is equivalent to maxi Xi ≤ maxj Ỹj , mini Xi ≤ minj Ỹj ,
1
I

∑I
i=1 Xi = 1

J

∑J
j=1 Ỹj , and 1

I

∑I
i=1(Xi − Ỹj ′)+ ≤ 1

J

∑J
j=1(Ỹj − Ỹj ′)+ for any 1 ≤ j ′ ≤ J , see e.g. Corollary 2.2

in [1]. Nethertheless, we can state error estimations similar to the ones obtained for μ
�

P(ν)
in Section 3.

Proposition 4.3. Let � ≥ 1, μ,ν,μI , νJ ∈P�(Rd) such that μ ≤cx ν. Then, we have

W�

(
(νJ )

�

P̄(μI )
, ν

) ≤ W�(μ,μI ) + 2W�(ν, νJ ), (4.1)

where by a slight abuse of notation, (νJ )
�

P̄(μI )
denotes any minimizing probability measure when uniqueness is not shown.

Proof. We proceed like in the proof of Proposition 3.1. Let Q
�
μI

(resp. Q
�
ν ) be a Markov kernel such that μI (dx)Q

�
μI

(x,

dy) (resp. ν(dx)Q
�
ν (x, dy)) is an optimal transport plan for W�(μI ,μ) (resp. W�(ν, νJ )) and R be a martingale Markov

kernel such that μR = ν. We obviously have νJ = μIQ
�
μI

RQ
�
ν . By Jensen inequality and using the martingale property

of R, we have μI ≤cx ((x,w, z) �→ x + z − w)#μI (dx)Q
�
μI

(x, dw)R(w,dz), so that

inf
η∈P̄(μI )

W�(νJ , η) ≤
(∫

(Rd )4
|x + z − w − y|�μI (dx)Q�

μI
(x, dw)R(w,dz)Q�

ν (z, dy)

)1/�

.

We get (4.1) using Minkowski’s inequality and the triangle inequality W�((νJ )
�

P̄(μI )
, ν) ≤ W�((νJ )

�

P̄(μI )
, νJ ) +

W�(ν, νJ ). �

In the multi-marginal case, defining inductively μ
1,�

I1
= μ1

I1
and for k ∈ {2, . . . , �}, μ

k,�

I1,...,Ik
as the W� projection of μk

Ik

on P̄(μ
k−1,�

I1,...,Ik−1
), we deduce that for k ∈ {2, . . . , �},

W�

(
μk,μ

k,�

I1,...,Ik

) ≤ W�

(
μ1,μ1

I1

) + 2
k∑

k′=2

W�

(
μk′

,μk′
Ik′

)
.
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Comparing W�(ν
�

P̄(μ)
, ν) and W�(μ,μ

�

P(ν)
) leads to interesting properties.

Corollary 4.4. For � > 1, μ,ν ∈ P�(Rd), we have

W�

(
ν

�

P̄(μ)
, ν

) = W�

(
μ,μ

�

P(ν)

)
and there is a measurable transport map T : Rd → R

d such that the only optimal transport plan between ν
�

P̄(μ)
and ν is

ν
�

P̄(μ)
(dz)δT (z)(dy). Moreover, for any martingale Markov kernel R such that μR = ν

�

P̄(μ)
, μ(dx)R(x, dz) a.e., T (z) −

z = ∫
Rd T (z)R(x, dz) − x. Last, in dimension d = 1, when μ,ν ∈ P1(R), we also have for all � ≥ 1, W�(νP̄(μ), ν) =

W�(μ,μP(ν)) = (
∫ 1

0 |ψ ′(u−)|� du)1/� where ψ ′(u−) is the left-hand derivative of the convex hull ψ of the function
[0,1] � q �→ ∫ q

0 F−1
μ (p) − F−1

ν (p)dp.

Proof. Since μ ≤cx ν
�

P̄(μ)
, we may replace (μ,μI , ν, νJ ) by (μ,μ, ν

�

P̄(μ)
, ν) in Proposition 3.1 to get W�(μ,μ

�

P(ν)
) ≤

W�(ν
�

P̄(μ)
, ν). Using that μ

�

P(ν)
≤cx ν to replace (μ,μI , ν, νJ ) by (μ

�

P(ν)
,μ, ν, ν) in Proposition 4.3, we obtain the

converse inequality.
Now, let � > 1, R denote a martingale Markov kernel such that μR = ν

�

P̄(μ)
and Q a Markov kernel such that

ν
�

P̄(μ)
(dz)Q(z, dy) is an optimal transport plan for W�(ν

�

P̄(μ)
, ν). Repeating the arguments of Proposition 3.1 (replac-

ing again (μ,μI , ν, νJ ) by (μ,μ, ν
�

P̄(μ)
, ν)), we get

W�
�

(
μ,μ

�

P(ν)

) ≤
∫
Rd

∣∣∣∣∫
Rd×Rd

(x − y)R(x, dz)Q(z, dy)

∣∣∣∣�μ(dx)

=
∫
Rd

∣∣∣∣∫
Rd×Rd

(z − y)R(x, dz)Q(z, dy)

∣∣∣∣�μ(dx) ≤
∫
Rd

∣∣∣∣∫
Rd

(z − y)Q(z, dy)

∣∣∣∣�ν
�

P̄(μ)
(dz)

≤
∫
Rd×Rd

|z − y|�ν
�

P̄(μ)
(dz)Q(z, dy) = W�

�

(
ν

�

P̄(μ)
, ν

) = W�
�

(
μ,μ

�

P(ν)

)
.

The equality in the last inequality ensures that ν
�

P̄(μ)
(dz) a.e., Q(z,dy) = δT (z)(dy) where T (z) = ∫

Rd yQ(z, dy). More-

over, the equality in the second inequality implies that μ(dx)R(x, dz) a.e., T (z) − z = ∫
Rd T (z)R(x, dz) − x.

If Q̃ is another Markov kernel such that ν
�

P̄(μ)
(dz)Q̃(z, dy) is an optimal transport plan for W�(ν

�

P̄(μ)
, ν), then

ν
�

P̄(μ)
(dz)

Q̃+Q
2 (z, dy) is also an optimal transport plan and ν

�

P̄(μ)
(dz) a.e., Q̃+Q

2 (z, dy) is a Dirac mass so that

Q̃(z, dy) = Q(z,dy).
In dimension 1, we observe that

∀q ∈ [0,1],
∫ q

0
F−1

μP(ν)
(p) dp =

∫ q

0
F−1

μ (p)dp − ψ(q)

and
∫ q

0
F−1

νP̄(μ)
(p) dp =

∫ q

0
F−1

ν (p)dp + ψ(q).

(4.2)

Thus, we have F−1
μP(ν)

(p) − F−1
μ (p) = −ψ ′(p−) and F−1

νP̄(μ)
(p) − F−1

ν (p) = ψ ′(p−) for p ∈ (0,1), which gives the

claim. �

The property T (z) − z = ∫
Rd T (z)R(x, dz) − x, μ(dx)R(x, dz) a.e., in Corollary 4.4 indicates that in dimension 1,

an optimal transport map T between νP̄(μ) and ν should be piecewise affine with slope 1 on the irreducible components
of (μ, νP̄(μ)) introduced in Theorem A.4 [8], provided that we can find a martingale Markov kernel R that spans the
whole components. The irreducible components are the countable disjoint open intervals, the union of which is equal
to the open set {t ∈ R,

∫
R
(t − x)+μ(dx) <

∫
R
(t − x)+νP̄(μ)(dx)}. This is indeed the case according to the following

proposition which moreover exhibits a common optimal transport map for W�(νP̄(μ), ν) and W�(μ,μP(ν)).

Proposition 4.5. Let � > 1, μ,ν ∈ P�(R). Let (tn, tn), 1 ≤ n ≤ N , (resp. (t ′n, t
′
n), 1 ≤ n ≤ N ′) be the irreducible compo-

nents of (μ, νP̄(μ)) (resp. (μP(ν), ν)). Then, we have N = N ′ and Fμ(tn) = FμP(ν)
(t ′n), Fμ(tn−) = FμP(ν)

(t
′
n−) up to a

renumbering of (t ′n)1≤n≤N .
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Let ψ be the convex hull of the function [0,1] � q �→ ∫ q

0 F−1
μ (p) − F−1

ν (p)dp. Then, the function T : R → R defined
by

∀x /∈
⋃

1≤n≤N

(tn, tn), T (x) = F−1
ν

(
FνP̄(μ)

(x)
)

and

∀1 ≤ n ≤ N,∀x ∈ (tn, tn), T (x) = x − ψ(Fμ(tn−)) − ψ(Fμ(tn))

Fμ(tn−) − Fμ(tn)

is an optimal transport map for W�(νP̄(μ), ν) and W�(μ,μP(ν)).

Proof. We set q
n

= Fμ(tn) and qn = Fμ(tn−). From (4.2) and Lemma A.8 below which characterizes the irreducible
components in terms of the quantile functions, we get

⋃
1≤n≤N

(q
n
, qn) =

{
q ∈ [0,1],

∫ q

0
F−1

μ (p)dp >

∫ q

0
F−1

νP̄(μ)
(p) dp

}

=
{
q ∈ [0,1],ψ(q) <

∫ q

0
F−1

μ (p)dp −
∫ q

0
F−1

ν (p)dp

}
=

{
q ∈ [0,1],

∫ q

0
F−1

μP(ν)
(p) dp >

∫ q

0
F−1

ν (p)dp

}
=

⋃
1≤n≤N ′

(
FμP(ν)

(
t ′n

)
,FμP(ν)

(
t
′
n−

))
,

which gives the first claim. From the second equality and since ψ is the convex hull of [0,1] � q �→ ∫ q

0 F−1
μ (p) −

F−1
ν (p)dp, we get

∀q /∈
⋃

1≤n≤N

(q
n
, qn), ψ(q) =

∫ q

0
F−1

μ (p)dp −
∫ q

0
F−1

ν (p)dp (4.3)

and ψ(q) = ψ(q
n
) + ψ(qn)−ψ(q

n
)

qn−q
n

(q − q
n
) for q ∈ [q

n
, qn]. From (4.2), this gives

∀q ∈ (q
n
, qn], F−1

νP̄(μ)
(q) = F−1

ν (q) + ψ(qn) − ψ(q
n
)

qn − q
n

and F−1
μP(ν)

(q) = F−1
μ (q) − ψ(qn) − ψ(q

n
)

qn − q
n

.

(4.4)

Any point q in (0,1) \ ⋃
1≤n≤N(q

n
, qn] is the limit of an increasing sequence (qk)k≥1 of points in (0,1) \⋃

1≤n≤N(q
n
, qn). Since, by (4.2) and (4.3), 1

q−qk

∫ q

qk
F−1

νP̄(μ)
(p) dp = 1

q−qk

∫ q

qk
F−1

μ (p)dp and 1
q−qk

∫ q

qk
F−1

μP(ν)
(p) dp =

1
q−qk

∫ q

qk
F−1

ν (p)dp, the left-continuity of the quantile functions implies that F−1
νP̄(μ)

(q) = F−1
μ (q) and F−1

μP(ν)
(q) =

F−1
ν (q). We deduce that

∀q ∈ (0,1) \
⋃

1≤n≤N

(q
n
, qn], F−1

νP̄(μ)
(q) = F−1

μ (q) and F−1
μP(ν)

(q) = F−1
ν (q). (4.5)

By Corollary 4.4, there exists an optimal transport map T̃ between νP̄(μ) and ν. By Proposition 2.17 in [25], we

have dq-a.e. T̃ (F−1
νP̄(μ)

(q)) = F−1
ν (q). For x ∈ R such that FνP̄(μ)

(x−) < FνP̄(μ)
(x), since F−1

νP̄(μ)
is constant (equal to x)

on (FνP̄(μ)
(x−),FνP̄(μ)

(x)], we deduce that the left-continuous function F−1
ν is also constant on this interval. Let now

x ∈ R∩ ⋃
1≤n≤N {tn, tn}. By definition of the irreducible components, we have

FνP̄(μ)
(x−) ≤ Fμ(x−) ≤ Fμ(x) ≤ FνP̄(μ)

(x). (4.6)
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If FνP̄(μ)
(x−) < FνP̄(μ)

(x), (F−1
νP̄(μ)

,F−1
ν ) is constant and equal to (x,F−1

ν (FνP̄(μ)
(x))) on the interval (FνP̄(μ)

(x−),

FνP̄(μ)
(x)] and, by definition of T , T (F−1

νP̄(μ)
) and F−1

ν are equal on this interval.

We are now going to prove that dq a.e., T (F−1
νP̄(μ)

(q)) = F−1
ν (q), which, by Proposition 2.17 in [25], ensures that T is

an optimal transport map between νP̄(μ) and ν.

If q ∈ (FνP̄(μ)
(tn),FνP̄(μ)

(tn−)) then F−1
νP̄(μ)

(q) ∈ (tn, tn) and T (F−1
νP̄(μ)

(q)) = F−1
νP̄(μ)

(q) − ψ(qn)−ψ(q
n
)

qn−q
n

with the right-

hand side equal to F−1
ν (q) by (4.4) since, by (4.6),(

FνP̄(μ)
(tn),FνP̄(μ)

(tn−)
) ⊂ (q

n
, qn).

By the above reasoning for x ∈ R ∩ ⋃
1≤n≤N {tn, tn}, the equality between T (F−1

νP̄(μ)
) and F−1

ν still holds on

(FνP̄(μ)
(tn−),FνP̄(μ)

(tn−)) ∪ (FνP̄(μ)
(tn−),FνP̄(μ)

(tn)].
If q /∈ (FνP̄(μ)

(tn−),FνP̄(μ)
(tn)], then F−1

νP̄(μ)
(q) ≤ tn or F−1

νP̄(μ)
(q) > tn. We deduce that for q /∈ ⋃

1≤n≤N(FνP̄(μ)
(tn−),

FνP̄(μ)
(tn)], F−1

νP̄(μ)
(q) /∈ ⋃

1≤n≤N(tn, tn) and T (F−1
νP̄(μ)

(q)) = F−1
ν (FνP̄(μ)

(F−1
νP̄(μ)

(q))). The right-hand side is equal

to F−1
ν (q) when FνP̄(μ)

(F−1
νP̄(μ)

(q)−) = FνP̄(μ)
(F−1

νP̄(μ)
(q)) since then FνP̄(μ)

(F−1
νP̄(μ)

(q)) = q and otherwise when q >

FνP̄(μ)
(F−1

νP̄(μ)
(q)−) since, then, the interval (FνP̄(μ)

(F−1
νP̄(μ)

(q)−),FνP̄(μ)
(F−1

νP̄(μ)
(q))] on which F−1

ν is constant con-

tains q .
In conclusion T (F−1

νP̄(μ)
(q)) = F−1

ν (q) for q outside the at most countable set {FνP̄(μ)
(tn−) : 1 ≤ n ≤ N} ∪

{FνP̄(μ)
(x−) : x ∈ R s.t. FνP̄(μ)

(x−) < FνP̄(μ)
(x)} and therefore dq a.e.

With (4.5), we deduce that dq a.e. on (0,1) \ ⋃
1≤n≤N(q

n
, qn], T (F−1

μ (q)) = F−1
μP(ν)

(q). If q ∈ (q
n
, qn) for some

1 ≤ n ≤ N , then F−1
μ (q) ∈ (tn, tn) and, by definition of T and (4.4), T (F−1

μ (q)) = F−1
μ (q) − ψ(qn)−ψ(q

n
)

qn−q
n

= F−1
μP(ν)

(q).

Hence dq a.e. T (F−1
μ (q)) = F−1

μP(ν)
(q) and T is an optimal transport map between μ and μP(ν). �

5. Numerical experiments

5.1. Wasserstein distance

We start by illustrating numerically the convergences obtained in Corollary 3.2, and deduced from Proposition 4.3. We
present on an example the convergence of the Wasserstein projection (μI )

�

P(νI )
(resp. (νI )

�

P̄(μI )
) toward μ (resp. ν) for

the Wasserstein distance when μI and νI are the respective empirical measures of μ and ν with μ ≤cx ν. To do so we
consider an example in dimension one, so that the projections can be calculated explicitly according to Theorem 2.6
and Proposition 4.2. We take μ = N (0,1) and ν = N (0,1.1). For I ≥ 1, we consider independent samples X1, . . . ,XI

and Y1, . . . , YI distributed respectively according to μ and ν. Then, we set μI = 1
I

∑I
i=1 δXi

, νI = 1
I

∑I
i=1 δYi

, X̄I =
1
I

∑I
i=1 Xi , ȲI = 1

I

∑I
i=1 Yi , μ̃I = 1

I

∑I
i=1 δXi−X̄I

and ν̃I = 1
I

∑I
i=1 δYi−ȲI

. Notice that, to define μ̃I and ν̃I , we took
advantage of the knowledge of the common mean of μ and ν. This situation is usual in financial applications: discounted
asset prices are martingales and their means are given by the present values. Equalizing the means can be seen as a first
step towards the restoration of the convex order and we have noticed in our numerical experiments that it improves the
approximation of the limiting problem (see for instance Figure 1). We calculate the Wasserstein projections (μI )P(νI ) and
(μ̃I )P (̃νI ) (resp. (νI )P̄(μI ) and (̃νI )P̄(μ̃I )) and the 2-Wasserstein distance between each of these measures and μ (resp.
ν), as explained below.

As a comparison to these projections, we consider the respective approximations of μ and ν by μI ∧ νI and μI ∨ νI ,
where μI ∧ νI and μI ∨ νI are respectively defined as the infimum and the supremum of μI and νI for the decreasing
convex order when 1

I

∑I
i=1 Xi ≤ 1

I

∑I
i=1 Yi and for the increasing convex order otherwise so that μI ∧ νI ∈ P(νI ) and

μI ∨ νI ∈ P̄(μI ). We also consider the approximations by μ̃I ∧ ν̃I and μ̃I ∨ ν̃I . These approximations can be calculated
explicitly for probability measures with finite support (see [2] or [1]) and are natural alternatives to the Wasserstein
projections in dimension 1.

The graph at left (resp. right) of Figure 1 illustrates the convergence of W2(μ,μI ∧ νI ), W2(μ, (μI )P(νI )), W2(μI ∨
νI , ν) and W2((νI )P̄(μI ), ν) (resp. W2(μ, μ̃I ∧ ν̃I ), W2(μ, (μ̃I )P (̃νI )), W2(μ̃I ∨ ν̃I , ν) and W2((̃νI )P̄(μ̃I ), ν)) toward
zero as I → ∞. The corresponding curves are respectively in red, blue, green and magenta. The star (resp. cross) points
indicate the upper bound for W2(μ, (μI )P(νI )) (left) and W2(μ, (μ̃I )P (̃νI )) (right) (resp. W2((νI )P̄(μI ), ν) (left) and
W2((̃νI )P̄(μ̃I ), ν) (right)) given by Proposition 3.1 (resp. Proposition 4.3). As expected, the curves in blue and magenta



Sampling of probability measures in the convex order 1721

Fig. 1. Plot of the logarithms of the Wasserstein distances in function of log(I ).

Fig. 2. Plot of the Wasserstein distances W2(μI ,μI ∧ νI ), W2(μI , (μI )P(νI )), W2(νI ,μI ∨ νI ) (left) and W2(μ̃I , μ̃I ∧ ν̃I ), W2(μ̃I , (μ̃I )P (̃νI )),
W2 (̃νI , μ̃I ∨ ν̃I ) (right) in function of I .

are below these points. Let us mention that all these Wasserstein distances are calculated exactly by using the quantile
function N−1 of the standard normal variable. For instance, if η = ∑I

i=1 piδZi
with Z1 ≤ Z2 ≤ . . . ≤ ZI , P0 = 0 and

Pi = Pi−1 + pi for 1 ≤ i ≤ I ,

W 2
2 (μ,η) =

∫
R

x2(μ(dx) + η(dx)
) − 2

I∑
i=1

Zi

∫ Pi

Pi−1

N−1(p)dp

= 1 +
I∑

i=1

piZ
2
i +

√
2√
π

I∑
i=1

Zi

(
e−(N−1(Pi ))

2/2 − e−(N−1(Pi−1))
2/2).

Asymptotically, the measure (μI )P(νI ) (resp. (νI )P̄(μI )) seems to slightly better approximate μ (resp. ν) than μI ∧ νI

(resp. μI ∨ νI ). Nonetheless, all these measures seem to converge for the Wasserstein distance at a rate close to O(I−1/2)

as indicated by the line in black with equation y = −x/2. This rate is better than the theoretical one stated in Corollary 3.2.
In the right figure, we first observe that equalizing the means improves the approximations and reduces the Wasserstein
distances (see the distances to the black lines). However, the rate of convergence is still roughly in O(I−1/2). We also
observe that there are only very small differences between using μ̃I ∧ ν̃I or (μ̃I )P (̃νI ) (resp. μ̃I ∨ ν̃I or (̃νI )P̄(μ̃I )).

In Figure 2 are plotted at left (resp. right) the values of W2(μI ,μI ∧ νI ), W2(μI , (μI )P(νI )) = W2(νI , (νI )P̄(μI )),
W2(νI ,μI ∨ νI ) (resp. W2(μ̃I , μ̃I ∧ ν̃I ), W2(μ̃I , (μ̃I )P (̃νI )) = W2(̃νI , (̃νI )P̄(μ̃I )), W2(̃νI , μ̃I ∨ ν̃I )) in function of I . The
corresponding curves are in red, blue and green. We observe that the values of W2(μI ,μI ∧ νI ) and W2(νI ,μI ∨ νI ) are
very close. As expected, the blue curve is below the two other ones. At right, we observe that all the Wasserstein distances
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Table 1
Comparison of the numerical minimizer of (1.1) for � = 2 with the explicit solution (μI )P(νI )

I

10 50 100 200 300

W2-Wasserstein distance 4.4 × 10−5 1.4 × 10−6 4.5 × 10−6 4.1 × 10−7 4.2 × 10−7

are equal to 0 on our sample for I ≈ 3200, but take again positive values for larger values of I . This shows that the value
of I from which we have μ̃I ≤cx ν̃I , if it exists, depends on the sample and may be large.

Now, we conclude this section by checking the accuracy of the solver COIN-OR1 for the quadratic optimization
problem (1.1) with � = 2. In fact, in dimension 1, we know that (μI )P(νI ) can be calculated explicitly as described below
Theorem 2.6. In Table 1, we calculate the Wasserstein distance between (μI )P(νI ) and the measure obtained by solving
numerically (1.1) with COIN-OR for different sample sizes I . As expected, the difference is very small. This validates
numerically our theoretical results. More importantly, this indicates that the solver is reliable for finding the optimal
solution with the values of I that we have considered in this paper.

5.2. MOT problems in dimension 2 with two marginal laws

5.2.1. An explicit example
Let μ and ν be respectively the uniform distributions on [−1,1]2 and [−2,2]2. For x = (x1, x2) ∈ R

2 and y = (y1, y2) ∈
R

2, we consider the minimization of the cost function c(x, y) = |x1 − y1|� + |x2 − y2|� , with � > 2. For any π ∈
	M(μ,ν), we have

∫
R2×R2 ‖y − x‖2

2π(dx, dy) = ∫
R2 ‖y‖2

2ν(dy) − ∫
R2 ‖x‖2

2μ(dx) = 2. Jensen’s inequality gives∫
R2×R2

∣∣x1 − y1
∣∣� + ∣∣x2 − y2

∣∣�π(dx, dy)

≥
(∫

R2×R2

∣∣x1 − y1
∣∣2

π(dx, dy)

) �
2 +

(∫
R2×R2

∣∣x2 − y2
∣∣2

π(dx, dy)

) �
2 = 2.

The equality condition in Jensen’s equality gives that |x1 − y1| = |x2 − y2| = 1, π(dx, dy)-almost surely. Now, let
us consider X = (X1,X2) be distributed according to μ and Z = (Z1,Z2) a couple of independent Rademacher ran-
dom variables which is independent of X. Then Y = X + Z is distributed according to ν and satisfies |Y 1 − X1| =
|Y 2 − X2| = 1. The probability distribution π� of (X,Y ) is the unique martingale optimal coupling that minimizes∫
R2×R2 c(x, y)π(dx, dy). Indeed, if (X̃, Ỹ ) is distributed according to an optimal coupling, then Ỹ 1 − X̃1 and Ỹ 2 − X̃2

follow the Rademacher distribution, and both these random variables are necessarily independent of X̃ in order to satisfy
the martingale property. Last, Ỹ 1 − X̃1 and Ỹ 2 − X̃2 are necessarily independent, otherwise Ỹ would not follow ν.

We now illustrate the MOT and consider independent samples (X1
1,X

2
1), . . . , (X1

I ,X
2
I ) and (Y 1

1 , Y 2
1 ), . . . , (Y 1

I , Y 2
I )

respectively distributed according to μ and ν. We set μ̃I = 1
I

∑I
i=1 δ(X1

i −X̄1
I ,X2

i −X̄2
I ) and ν̃I = 1

I

∑I
i=1 δ(Y 1

i −Ȳ 1
I ,Y 2

i −Ȳ 2
I ),

with X̄�
I = 1

I

∑I
i=1 X�

i and Ȳ �
I = 1

I

∑I
i=1 Y �

i . We work with μ̃I and ν̃I rather than with the empirical measures μI and νI

since we have noticed on our experiments that they better approximate μ and ν (see Figure 1) and give better results for
the approximation of MOT problems (see [2]). Let us mention here that in financial applications, it is generally possible
to calculate μ̃I and ν̃I from the empirical measures μI and νJ since the mean of μ and ν is given by the current price of
the underlying assets. To calculate (μ̃I )

2
P (̃νI )

, we have to solve the quadratic optimization problem with linear constraints

described in equation (1.1) for � = 2. The dimension of the problem is thus equal to I 2. We have used the COIN-OR
solver in our numerical experiments, which enables us to solve (1.1) for I up to 500. Once (μ̃I )

2
P (̃νI )

= 1
I

∑I
i=1 δ(X̃1

i ,X̃2
i )�

is calculated, we can then solve the discrete MOT problem between (μ̃I )
2
P (̃νI )

and ν̃I .

In Figure 3, for � = 2.5, we have plotted y2
i −x2

i in function of y1
i −x1

i for the points (xi, yi) with positive probability in
the MOT for ((μ̃I )

2
P (̃νI )

, νI ). We recall that the optimal coupling for the continuous MOT is given by (X,Y ) with X ∼ μ

and Y = X + Z, Z being a couple of independent Rademacher random variables. Since Y2 − Y1 = X2 − X1 + Z2 − Z1
and Z2 − Z1 takes values in {−2,0,2}, we expect to observe that the points are gathered around the lines y = x − 2,
y = x and y = x + 2, which is the case on Figure 3. This checks our implementation of the algorithm. Besides, we have

1https://www.coin-or.org/

https://www.coin-or.org/
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Fig. 3. Plot of y2
i

− y1
i

in function of x2
i

− x1
i

for the points (xi , yi ) with positive probability in the MOT for ((μ̃I )2
P (̃νI )

, νI ), with I = 100. In red are

drawn the lines y = x − 2, y = x and y = x + 2.

calculated on 100 independent runs the value of the discrete MOT for ((μ̃I )
2
P (̃νI )

, νI ) with I = 100: the average is equal

to 2.0064 and the standard deviation is equal to 0.2213, which gives [1.9631,2.0498] as 95% confidence interval, which
approximates well the value of the continuous MOT.

5.2.2. Model-free bounds on a best-of option
Let (G1,G2) be a centered Gaussian vector with covariance matrix �. We denote by μ the law of (X1,X2) with X� =
exp(G� − ���/2) for � ∈ {1,2}, and by ν the law of (Y 1, Y 2) with Y � = exp(

√
2G� − ���). In the financial context,

this choice of marginal laws is usual and corresponds to a two-dimensional Black–Scholes model: (X1,X2) is the price
of two assets at time t > 0 and (Y 1, Y 2) is the price of these assets at time 2t . We are interested in an option that pays
max(Y 1 − X1, Y 2 − X2,0), i.e. the best arithmetic performance of the two assets, if positive. The price of this option in
the Black–Scholes model can easily be calculated by using a Monte-Carlo algorithm.

Let (X1
1,X

2
1), . . . , (X1

I ,X
2
I ) and (Y 1

1 , Y 2
1 ), . . . , (Y 1

I , Y 2
I ) denote independent samples respectively distributed according

to μ and ν. We set μ̃I = 1
I

∑I
i=1 δ(X̃1

i ,X̃2
i ) and ν̃I = 1

I

∑I
i=1 δ(Ỹ 1

i ,Ỹ 2
i ), with (X̃1

i , X̃
2
i ) = (X1

i + 1 − X̄1
I ,X

2
i + 1 − X̄2

I ),

(Ỹ 1
i , Ỹ 2

i ) = (Y 1
i + 1 − Ȳ 1

I , Y 2
i + 1 − Ȳ 2

I ), X̄�
I = 1

I

∑I
i=1 X�

i and Ȳ �
I = 1

I

∑I
i=1 Y �

i . We calculate (μ̃I )
2
P (̃νI )

numerically by

using again the quadratic optimization solver COIN-OR, and then solve the discrete MOT problem between (μ̃I )
2
P (̃νI )

and ν̃I .

We now turn to our example illustrated in Figure 4. We have considered the following covariance matrix � =
[

0.5 0.1
0.1 0.1

]
.

With this choice, the Black–Scholes price of the option is approximately equal to 0.345. With I = 100, we have calculated
on 100 independent runs the value of the minimization and the maximization programs, and then computed the mean
values. We have thus obtained 0.2293 for the lower bound price and 0.4111 for the upper bound price. The corresponding
standard variations are respectively 0.0848 and 0.1422, which makes 95% confidence intervals with half lengths 0.017
and 0.028. In Figure 4, we have plotted the discrete MOT on the same sample for the minimization and the maximization
problem. Precisely, we have plotted the points (X̃1

i , X̃
2
i )

�, i ∈ {1, . . . , I } in the hyperplane z = 0 and the points (Ỹ 1
i , Ỹ 2

i )

in the hyperplane z = 1. The edges between the points (X̃1
i , X̃

2
i )

� and (Ỹ 1
j , Ỹ 2

j ) indicate that the optimal coupling gives
a positive weight to the corresponding transitions. The difference between the two optimal couplings is clear. We can
heuristically explain the graphs as follows. The cost function c(x, y) = max(y1 − x1, y2 − x2,0) will anyway be positive
for a large increase of one of the two assets. Therefore, to minimize the cost, one has to gather the large increases of Asset
1 and Asset 2. Instead, to maximize the cost, it is better to gather an increase of one asset with a decrease of the other one.

The CPU time needed for the computation of the Wasserstein projection and for the linear programming problem is
reported in Table 2. The dimension d = 1 rows of the table correspond to the MOT problem between the laws of X1
and Y1 for the cost function max(y − x,0). What mainly influences the computation time is the dimension I 2 in which
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Fig. 4. Discrete MOT (I = 100) in dimension 2 for the minimization problem (top) and the maximization problem (bottom).

Table 2
Computation time on a CPU Intel Core i7 at 2.6 GHz with COIN-OR of the quadratic and linear problems in dimensions d = 1 and d = 2

I

100 150 200 300 500

Quadratic problem (1.1), d = 1 1.5 s 4.8 s 18 s 88 s 673 s
Quadratic problem (1.1), d = 2 1.3 s 10 s 22 s 105 s 807 s

Linear problem (1.3), d = 1 0.3 s 0.78 s 2 s 6.6 s 41 s
Linear problem (1.3), d = 2 0.43 s 2 s 4.5 s 19.5 s 120 s

the optimal matrix (rij ) has to be found. The dimension d of the underlying space of the probability measures has a
low impact on the computation time for the quadratic problem (1.1), since the number of equality constraints 2I does
not change with d . Instead, it has some impact on the linear programming problem (1.3), since the number of equality
constraints (2+d)I increases with d . Nonetheless, since the resolution of the linear problem is much less time consuming
than the resolution of the quadratic problem, the impact of the dimension d on the overall computation time is rather mild.

5.3. Further directions

In view of Proposition 3.1 and Corollary 3.2, it would be nice to prove the stability of

inf
π∈	M(μ,ν)

∫
Rd×Rd

c(x, y)π(dx, dy)
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with respect to μ and ν in P(Rd) for the weak convergence topology or the Wasserstein distance. On our numerical
example of Figure 3 where the continuous MOT is explicit, the convergence of the discrete optimal cost towards the
continuous one seems to hold. We plan to investigate this property in a future work. Note that for cost functions satisfying
the so-called Spence–Mirrlees condition (see [17]), the stability of left-curtain couplings obtained by Juillet [18] is an
important step in that direction.

To overcome the sample size limitation for the linear programming solvers to compute the solution of problem (1.3),
one can contemplate introducing an entropic regularization of this problem similar to the one proposed by Benamou et
al. [9] for discrete optimal transport. For μI = ∑I

i=1 piδxi
≤cx νJ = ∑J

j=1 qj δyj
and ε > 0, the regularized problem is

the minimization of

I∑
i=1

J∑
j=1

rε
ij

(
c(xi, yj ) + ε

(
ln rε

ij − 1
))

under the constraints rε
ij ≥ 0,

∑I
i=1 rε

ij = qj for j ∈ {1, . . . , J }, ∑J
j=1 rε

ij = pi and
∑J

j=1 rε
ij yj = pixi for i ∈ {1, . . . , I }.

Since the constraints are affine, this problem can be solved by the iterative Bregman projections presented in [9]. In
particular the solution is obtained by iterating successive entropic projections on the first marginal law constraints, on the
second marginal law constraints and on the martingale constraints. The two first projections are explicit (see for instance
Proposition 1 [9]). The entropic projection on the martingale constraints can be computed using the generalized iterative
scaling algorithm introduced by Darroch and Ratcliff [10]. Such an approach combined with a relaxation of the martingale
constraint has been recently investigated by Guo and Oblòj [16].

Appendix: Technical lemmas

Lemma A.1. Let μ,ν ∈ P1(R
d). Then, we have μ ≤cx ν if, and only if,

∀φ :Rd →R convex and such that sup
x∈Rd

|φ(x)|
1 + |x| < ∞,

∫
Rd

φ(x)μ(dx) ≤
∫
Rd

φ(x)ν(dx).

Proof. Let φ : Rd → R be a convex function. We define φ∗(y) = supx∈Rd x · y − φ(x) the Legendre–Fenchel transform
of φ and have

φ(x) = φ∗∗(x) = sup
y∈Rd

x · y − φ∗(y).

The function φ∗ : Rd → [−φ(0),+∞] is a convex lower semicontinuous function. Therefore, for any n ≥ 1, there exists
yn with Euclidean norm |yn| ≤ n and inf|y|≤n φ∗(y) = φ∗(yn). There exists n0 ∈ N

∗ such that φ∗(yn) < ∞ for n ≥ n0,
otherwise we would have φ∗ = +∞ and then φ = −∞. We set φn(x) = sup|y|≤n x · y − φ∗(y) and have for n ≥ n0

x · yn − φ∗(yn) ≤ φn(x) ≤ n|x| + φ(0).

Thus, φn is with affine growth and therefore
∫
Rd φn(x)μ(dx) ≤ ∫

Rd φn(x)ν(dx). By the monotone convergence theorem
the integrals

∫
Rd (φn − φn0)(x)μ(dx) (resp.

∫
Rd (φn − φn0)(x)ν(dx)) converge to

∫
Rd (φ − φn0)(x)μ(dx) (resp.

∫
Rd (φ −

φn0)(x)ν(dx)) as n → ∞. We conclude that
∫
Rd φ(x)μ(dx) ≤ ∫

Rd φ(x)ν(dx). �

Lemma A.2. Let f,g : [0,1] →R be two convex functions and h denote the convex hull of f − g. Then f − h is convex.

Proof. Let 0 ≤ p < q ≤ 1 and α ∈ [0,1]. If h(αp + (1 − α)q) = (f − g)(αp + (1 − α)q), then, using the convexity of g,
then the fact that h is bounded from above by f − g for the two inequalities, we obtain that

(f − h)
(
αp + (1 − α)q

) = g
(
αp + (1 − α)q

) ≤ αg(p) + (1 − α)g(q)

= α
(
f (p) − (f − g)(p)

) + (1 − α)
(
f (q) − (f − g)(q)

)
≤ α(f − h)(p) + (1 − α)(f − h)(q). (A.1)

Otherwise, h is affine on some interval [r, s] with 0 ≤ r < αp + (1 − α)q < s ≤ 1, h(r) = (f − g)(r) and h(s) = (f −
g)(s). If r ∈ (p,αp+ (1−α)q), then replacing α by q−r

q−p
in (A.1), we get (f −h)(r) ≤ q−r

q−p
(f −h)(p)+ r−p

q−p
(f −h)(q)



1726 A. Alfonsi, J. Corbetta and B. Jourdain

so that (f −h)(r ∨p) ≤ q−r∨p
q−p

(f −h)(p)+ r∨p−p
q−p

(f −h)(q). In a symmetric way, (f −h)(s ∧q) ≤ q−s∧q
q−p

(f −h)(p)+
s∧q−p
q−p

(f − h)(q). Hence,

s ∧ q − (αp + (1 − α)q)

s ∧ q − r ∨ p
(f − h)(r ∨ p) + (αp + (1 − α)q) − r ∨ p

s ∧ q − r ∨ p
(f − h)(s ∧ q)

≤ α(f − h)(p) + (1 − α)(f − h)(q).

By convexity of f and the affine property of h on the interval [r ∨ p, s ∧ q] containing αp + (1 − α)q , the left-hand side
is not smaller than (f − h)(αp + (1 − α)q). �

Lemma A.3. Let f : (0,1) → R be a non-decreasing function and η denote the probability distribution of f (U) for U

uniformly distributed on (0,1). Then f and the quantile function F−1
η coincide away from the at most countable set of

their common discontinuities and even everywhere on (0,1) if f is moreover left-continuous.

Proof. The random variables f (U) and F−1
η (U) are both distributed according to η. Hence for p ∈ (0,1), P(f (U) ≤

F−1
η (p)) = P(F−1

η (U) ≤ F−1
η (p)) ≥ p so that F−1

η (p) ≥ supq∈(0,p) f (q). By symmetry, f (p) ≥ supq∈(0,p) F
−1
η (q) with

the supremum equal to F−1
η (p) by left-continuity and monotonicity of F−1

η . Hence f (p) ≥ F−1
η (p) ≥ supq∈(0,p) f (q)

with the supremum equal to f (p) when f is left-continuous. �

Lemma A.4. For x ∈ R, any non empty subset Px of {η ∈ P1(R) : ∫
R

yη(dy) = x} has an infimum π for the convex

order. Moreover for all q ∈ [0,1], ∫ 1
q

F−1
π (p)dp = infη∈Px

∫ 1
q

F−1
η (p)dp.

Proof. The existence of the infimum is given by Kertz and Rösler [20] p. 162. These authors work with the characteriza-
tion of the convex order in terms of the cumulative distribution functions. By the more convenient characterization in terms
of the quantile functions recalled in (2.2), it is enough to check that for all q ∈ [0,1], ψ̃(q) := infη∈Px

∫ 1
q

F−1
η (p)dp =∫ 1

q
F−1

π (p)dp for some probability measure π ∈ P1(R) such that
∫
R

yπ(dy) = x. For η ∈ Px ,
∫ 1

0 F−1
η (p)dp = x and

for all q ∈ [0,1], ∫ 1
q

F−1
η (p)dp ≥ (1 − q)x. Therefore for all q ∈ [0,1], ψ̃(q) ≥ (1 − q)x, ψ̃(0) = x and ψ̃(1) = 0. The

function ψ̃ being concave on [0,1] as the infimum of concave functions it is continuous on (0,1). Since for η ∈ Px ,
ψ̃(q) ≤ ∫ 1

q
F−1

η (p)dp, ψ̃ is continuous at 0 and 1 and therefore on [0,1]. Denoting its left-hand derivative by f , one has∫ 1
0 |f (p)|dp < ∞ and for all q ∈ [0,1], ψ̃(q) = ∫ 1

q
f (p)dp with f non-decreasing. One concludes by defining π as the

image of the Lebesgue measure on (0,1) by f . �

Lemma A.5. Let � > 1 and η,η1, η2 ∈P�(Rd). Then

W�
�

(
η,

η1 + η2

2

)
≤ 1

2

(
W�

� (η,η1) + W�
� (η,η2)

)
, (A.2)

Besides, when η is absolutely continuous with respect to the Lebesgue measure or d = 1 and η has no atom, equality
holds if and only if η1 = η2. Last, when d = 1, the statements remain valid with η1+η2

2 replaced by the distribution η̄12 of
F−1

η1
+F−1

η2
2 (U) with U uniformly distributed on [0,1].

Proof. Let η3 = η1+η2
2 . For i ∈ {1,2,3}, there exists an optimal probability measure πi ∈ 	(η,ηi) that satisfies

W
�
� (η,ηi) = ∫

Rd×Rd |y − x|�πi(dx, dy). Since π1+π2
2 ∈ 	(η,η3), we have

W�
�

(
η,

η1 + η2

2

)
≤

∫
Rd×Rd

|y − x|� π1 + π2

2
(dx, dy) = 1

2

(
W�

� (η,η1) + W�
� (η,η2)

)
. (A.3)

We now suppose that η is absolutely continuous with respect to the Lebesgue measure. We know by Theorem 6.2.4 in
[4] that the probability measure πi ∈ 	(η,ηi) satisfying W

�
� (η,ηi) = ∫

Rd×Rd |y − x|�πi(dx, dy) is unique, and writes
πi(dx, dy) = η(dx)δTi(x)(dy) for some Borel map Ti : Rd → R

d . If (A.2) is an equality, then the inequality in (A.3)
is also an equality and, by uniqueness, π1+π2

2 = π3. Hence we get η(dx)δT3(x)(dy) = η(dx) 1
2 (δT1(x)(dy) + δT2(x)(dy)),

which gives T1(x) = T2(x) = T3(x), η(dx)-a.e., and implies η1 = η2.
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When d = 1, if η has no atom, according to Theorem 2.9 in [25], πi is still unique and given by η(dx)δ
F−1

ηi
(Fη(x))

(dy),

so that the same conclusion holds. Still when d = 1, since F−1
η̄12

= F−1
η1

+F−1
η2

2 , by Proposition 2.17 [25] and strict convexity
of x �→ |x|� ,

W�
� (η̄12, η) =

∫ 1

0

∣∣∣∣1

2

(
F−1

η1
(p) + F−1

η2
(p)

) − F−1
η (p)

∣∣∣∣� dp

≤ 1

2

(∫ 1

0

∣∣F−1
η1

(p) − F−1
η (p)

∣∣� dp +
∫ 1

0

∣∣F−1
η2

(p) − F−1
η (p)

∣∣� dp

)
= 1

2

(
W�

� (η1, η) + W�
� (η2, η)

)
with equality iff dp a.e. F−1

η1
(p) = F−1

η2
(p) i.e. η1 = η2. �

Lemma A.6. Let � > 1 and μ,ν ∈P�(R). The function (0,1) � p �→ F−1
ν

�

P̄(μ)

(p) − F−1
ν (p) is non-decreasing.

Proof. It is enough to check that for η ∈ P�(R) ∩ P̄(μ) such that p �→ F−1
η (p) − F−1

ν (p) is not non-decreasing then

W
�
� (ν, νP̄(η)) < W

�
� (ν, η) (indeed F−1

νP̄(η)
(p)−F−1

ν (p) is non-decreasing and νP̄(η) ∈ P̄(η) ⊂ P̄(μ)). By Proposition 2.17

[25] and the definition of νP̄(η),

W�
� (ν, νP̄(η)) =

∫ 1

0

∣∣F−1
νP̄(η)

(p) − F−1
ν (p)

∣∣� dp =
∫ 1

0

∣∣f (p)
∣∣� dp,

where f (p) denotes the left-hand derivative of the concave hull ψ̃(q) of [0,1] � q �→ φ(q) := ∫ 1
q

F−1
η (p) − F−1

ν (p)dp.

Since ∀q ∈ [0,1], ∫ 1
q

F−1
η (p) − F−1

ν (p)dp ≤ ∫ 1
q

F−1
η (p)dp − q

∫ 1
0 F−1

ν (p)dp where the right-hand side is a concave

function of q , ψ̃(1) = φ(1) = 0 and ψ̃(0) = φ(0) = ∫ 1
0 F−1

η (p)−F−1
ν (p)dp. Now either ψ̃ and φ coincide on [0,1] and

F−1
η −F−1

ν is non-decreasing or the open set {q ∈ [0,1] : ψ̃(q) > φ(q)} is non empty and writes as the at most countable
union

⋃
i∈I (pi, qi) of disjoint intervals with 0 ≤ pi < qi ≤ 1, ψ̃(pi) = φ(pi), ψ̃(qi) = φ(qi) and ψ̃ affine on [pi, qi].

For each i in the non empty set I , for all p ∈ (pi, qi], f (p) = ψ̃(qi )−ψ̃(pi )
qi−pi

= φ(qi )−φ(pi)
qi−pi

=
∫ qi
pi

F−1
ν (q)−F−1

η (q) dq

qi−pi
so that, by

Jensen’s inequality,

∀i ∈ I,

∫ qi

pi

∣∣f (p)
∣∣� dp <

∫ qi

pi

∣∣F−1
ν (p) − F−1

η (p)
∣∣� dp. (A.4)

For p ∈ (0,1] \ ⋃
i∈I (pi, qi], either ψ̃ is equal to φ on a left-hand neighbourhood of p or there is an accumulation

of intervals ((pin, qin))n∈N at the left of p with (in)n∈N a sequence of distinct elements of I , qin < p for all n ∈ N

and limn→∞ qin = p. For q in the left-hand neighbourhood of p in the first case and in {qin : n ∈ N} in the sec-

ond one, ψ̃(p) − ψ̃(q) = φ(p) − φ(q) = ∫ p

q
F−1

ν (r) − F−1
η (r) dr . By the left-continuity of q �→ F−1

ν (q) − F−1
η (q)

and the definition of f , one concludes that f (p) = F−1
ν (p) − F−1

η (p). Therefore
∫ 1

0 1{p/∈⋃
i∈I (pi ,qi ]}|f (p)|� dp =∫ 1

0 1{p/∈⋃
i∈I (pi ,qi ]}|F−1

ν (p)−F−1
η (p)|� dp which combined with (A.4) and Proposition 2.17 [25] leads to

∫ 1
0 |f (p)|� dp <∫ 1

0 |F−1
ν (p) − F−1

η (p)|� dp = W
�
� (ν, η) when ψ̃ and φ do not coincide on [0,1]. �

Remark A.7. Lemma 2.8 can be proved by similar arguments. But to exhibit η̃ ∈ P(ν) with W
�
� (μ, η̃) ≤ W

�
� (μ,η) and

F−1
η̃ − F−1

μ non-increasing when η ∈ P(ν) is such that F−1
η − F−1

μ is not non-increasing, we chose a more elementary
transformation exploiting directly the lack of monotonicity in place of μP(η).

Lemma A.8. Let μ,ν ∈ P1(R) be two distinct probability measures such that μ ≤cx ν and (tn, tn), 1 ≤ n ≤ N ∈ N
∗ ∪

{∞} be the irreducible components of (μ, ν). Then, we have

{
q ∈ [0,1],

∫ q

0
F−1

μ (p)dp >

∫ q

0
F−1

ν (p)dp

}
=

N⋃
n=1

(
Fμ(tn),Fμ(tn−)

)
.
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Proof. For η ∈ P1(R), let ϕη(t) = ∫ t

−∞ Fη(x)dx for t ∈ R, ψη(q) = ∫ q

0 F−1
η (p)dp for q ∈ [0,1] and ψη(q) = +∞

for q /∈ [0,1]. One has ϕμ(t) = ∫
R
(t − x)+μ(dx) ≤ ∫

R
(t − y)+ν(dy) = ϕν(t) for all t ∈ R and (tn, tn), 1 ≤ n ≤ N ∈

N
∗ ∪ {∞} is the countable family of disjoint intervals such that

{
t ∈R : ϕμ(t) < ϕν(t)

} =
N⋃

n=1

(tn, tn). (A.5)

Since ϕη and ψη are the antiderivatives of two reciprocal non-decreasing functions, it is well known they are the
Legendre–Fenchel transforms of each other i.e. ϕη(t) = supq∈R{qt − ψη(q)}. In fact, for t ∈ R, if Fη(t−) > 0 then
F−1

η (q) < t for q ∈ (0,Fη(t−)), if Fη(t) < 1 then F−1
η (q) > t for q ∈ (Fη(t),1) and if Fη(t−) < Fη(t) then F−1

η (q) = t

for q ∈ (Fη(t−),Fη(t)]. We deduce that supq∈R{qt − ψη(q)} = Fη(t)t − ψη(Fη(t)) = ∫ Fη(t)

0 (t − F−1
η (p)) dp = ∫ 1

0 (t −
F−1

η (p))+ dp = ϕη(t) and

∀t ∈ R,
{
q ∈R, qt − ψη(q) = ϕη(t)

} = [
Fη(t−),Fη(t)

]
. (A.6)

Therefore, we have{
t ∈R, ϕμ(t) < ϕν(t)

} ⊂ {
t ∈ R,∀q ∈ [

Fν(t−),Fν(t)
]
, qt − ψμ(q) < qt − ψν(q)

}
= {

t ∈ R,∀q ∈ [
Fν(t−),Fν(t)

]
,ψμ(q) > ψν(q)

}
.

Hence ⋃
1≤n≤N

(
Fν(tn),Fν(tn−)

) ⊂
⋃

1≤n≤N

⋃
t∈(tn,tn)

[
Fν(t−),Fν(t)

] ⊂ {
q ∈ [0,1],ψμ(q) > ψν(q)

}
. (A.7)

Now, we observe that (0,1) ⊂ ⋃
t∈R[Fμ(t−),Fμ(t)] and, for t ∈ R such that Fμ(t−) < Fμ(t), ψμ(q) is affine for q ∈

[Fμ(t−),Fμ(t)]. Using the convexity of ψν , we get{
q ∈ [0,1],ψμ(q) > ψν(q)

} ⊂
⋃

t∈R:ψμ(Fμ(t))>ψν(Fμ(t)) or ψμ(Fμ(t−))>ψν(Fμ(t−))

[
Fμ(t−),Fμ(t)

]
.

If ψμ(Fμ(t)) > ψν(Fμ(t)), we have ϕμ(t) = Fμ(t)t − ψμ(Fμ(t)) < Fμ(t)t − ψν(Fμ(t)) ≤ ϕν(t) by using that ϕν is the
Legendre transform of ψν . Similarly, ψμ(Fμ(t−)) > ψν(Fμ(t−)) =⇒ ϕμ(t) < ϕν(t), and we get{

q ∈ [0,1],ψμ(q) > ψν(q)
} ⊂

⋃
t∈R:ϕμ(t)<ϕν(t)

[
Fμ(t−),Fμ(t)

] ⊂
⋃

1≤n≤N

[
Fμ(tn),Fμ(tn−)

]
.

By (A.6), if tn > −∞, ψμ(Fμ(tn)) = tnFμ(tn) − ϕμ(tn). Since ϕμ(tn) = ϕν(tn) and the Legendre transform ψν of ϕν

is not greater than ψμ, we deduce that ψμ(Fμ(tn)) = ψν(Fμ(tn)). In the same way, if tn < +∞, then ψμ(Fμ(tn−)) =
ψν(Fμ(tn−)) so that{

q ∈ [0,1],ψμ(q) > ψν(q)
} ⊂

⋃
1≤n≤N

(
Fμ(tn),Fμ(tn−)

)
. (A.8)

Now, (A.5) implies that Fμ(tn) ≤ Fν(tn). If Fμ(tn) < Fν(tn), we necessarily have tn > −∞, and for q ∈ (Fμ(tn),Fν(tn)),
we have F−1

ν (q) ≤ tn and F−1
μ (q) > tn since Fμ is right-continuous. Therefore, we have

∫ p

Fμ(tn) F
−1
μ (q)dq >∫ p

Fμ(tn) F
−1
ν (q) dq and thus ψμ(p) > ψν(p) for p ∈ (Fμ(tn),Fν(tn)]. Similarly, we show that ψμ(q) > ψν(q) for

q ∈ [Fν(tn−),Fμ(tn−)), which, with (A.7) and (A.8), gives the claim. �
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