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Abstract. We establish theoretical guarantees for the expected prediction error of the exponentially weighted aggregate in the case
of multivariate regression that is when the label vector is multidimensional. We consider the regression model with fixed design and
bounded noise. The first new feature uncovered by our guarantees is that it is not necessary to require independence of the observations:
a symmetry condition on the noise distribution alone suffices to get a sharp risk bound. This result needs the regression vectors to be
bounded. A second curious finding concerns the case of unbounded regression vectors but independent noise. It turns out that applying
exponential weights to the label vectors perturbed by a uniform noise leads to an estimator satisfying a sharp oracle inequality. The
last contribution is the instantiation of the proposed oracle inequalities to problems in which the unknown parameter is a matrix. We
propose a low-rankness favoring prior and show that it leads to an estimator that is optimal under weak assumptions.

Résumé. Nous établissons des garanties théoriques pour l’erreur de prédiction de l’agrégat par poids exponentiels dans le cadre
de la régression multivariée, c’est-à-dire lorsqu’on souhaite prédire une étiquette multidimensionnelle. Nous considérons le modèle de
régression à design fixe et à bruit borné. La première conséquence de nos garanties est qu’il n’est pas nécessaire d’exiger l’indépendance
des observations : une condition de symétrie sur la seule distribution du bruit suffit pour obtenir des bornes précises. Ce résultat nécessite
que les vecteurs de régression soient bornées. Une seconde conséquence curieuse concerne le cas des vecteurs de régression non bornés
mais indépendant de bruit. Il s’avère que l’application des poids exponentiels aux vecteurs d’étiquette perturbés par un bruit uniforme
conduit à un estimateur satisfaisant une inégalité d’oracle exacte. La dernière contribution est l’instanciation des inégalités d’oracle
proposées à des problèmes dans lesquels le paramètre inconnu est une matrice. Nous proposons une loi a priori favorisant les matrices
à faible rang et montrons qu’elle conduit à un estimateur optimal sous des hypothèses faibles.
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1. Introduction

The goal of this paper is to extend the scope of the applications of the exponentially weighted aggregate (EWA) to
regression problems with multidimensional labels. Such an extension is important since it makes it possible to cover such
problems as the multitask learning, the multiclass classification and the matrix factorization. We consider the regression
model with fixed design and additive noise. Our main contributions are mathematical: we establish risk bounds taking the
form of PAC-Bayesian type oracle inequalities under various types of assumptions on the noise distribution.

Sharp risk bounds for the exponentially weighted aggregate in the regression with univariate labels have been estab-
lished in [13,14,16,20,22,24]. These bounds hold under various assumptions on the noise distribution and cover popular
examples such as Gaussian, Laplace, uniform and Rademacher noise. One of the important specificities of the setting
with multivariate labels is that noise is multivariate as well, and one has to cope with possible correlations within its
components. We provide results that not only allow for dependence between noise components corresponding to different
labels, but also for dependence between different samples. The corresponding result, stated in Theorem 1, requires, how-
ever, some symmetry of the noise distribution. To our knowledge, this is the first oracle inequality that is sharp (i.e., the
leading constant is equal to one) and valid under such a general condition on the noise distribution. The remainder term
in that inequality is of the order K/n, where K is the number of labels and n is the sample size. This order of magnitude
of the remainder term is optimal, in the sense that when all the labels are equal we get the best possible rate.
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Nevertheless, one can expect that for weakly correlated labels the remainder term might be of significantly smaller
order. This is indeed the case, as shown in Theorem 2, under the additional hypothesis that the n samples are independent.
In the obtained sharp oracle inequality, the remainder term is now proportional to ‖�‖/n, where ‖�‖ is the spectral norm
of the noise covariance matrix � ∈ R

K×K . Of course, when all the components of the noise vector are highly correlated,
the spectral norm ‖�‖ is proportional to K and, therefore, the conclusions of Theorem 1 and Theorem 2 are consistent.

The two aforementioned theorems are established under the condition that the aggregated matrices belong to a set
having a bounded diameter. The resulting risk bounds scale linearly in that diameter and eventually blow up when the
diameter is equal to infinity. However, it has been noticed in that for some distributions this condition can be dropped
without deteriorating the remainder term. In particular, this is the case of the Gaussian [24] and the uniform distributions
[14]. Furthermore, using an extended version of Stein’s lemma, [14] show that the same holds true for any distribution
having bounded support and a density bounded away from zero. Corollary 1 in [14] even claims that the same type of
bound holds for any symmetric distribution with bounded support. Unfortunately, the proof of this claim is flawed since
it relies on Lemma 3 (page 58) that is wrong. In the present work, we have managed to repair this shortcoming and to
establish sharp PAC-Bayesian risk bounds for any symmetric distribution with bounded support. This is achieved using a
key modification of the aggregation procedure, which consists in adding a suitable defined uniform noise to data vectors
before applying the exponential weights. We call the resulting procedure noisy exponentially weighted aggregate. Its
statistical properties are presented in Theorem 4.

Finally, we show an application of the obtained PAC-Bayes inequalities to the case of low-rank matrix estimation. We
exhibit a well suited prior distribution, termed spectral scaled Student prior, for which the PAC-Bayes inequality leads to
optimal remainder term. This prior is the matrix analogue of the scaled Student prior studied in [16,20]. We also provide
some hints how this estimator can be implemented using the Langevin Monte Carlo algorithm and present some initial
experimental results on the problem of digital image denoising.

Notation

For every integer k ≥ 1, we write 1k (resp. 0k) for the vector of Rk having all coordinates equal to one (resp. zero). We set
[k] = {1, . . . , k}. For every q ∈ [0,∞], we denote by ‖u‖q the usual �q -norm of u ∈R

k , that is ‖u‖q = (
∑

j∈[k] |uj |q)1/q

when 0 < q < ∞, ‖u‖0 = Card({j : uj �= 0}) and ‖u‖∞ = maxj∈[k] |uj |.
For all integers p ≥ 1, Ip refers to the identity matrix in R

p×p . Finally the transpose and the Moore–Penrose pseu-
doinverse of a matrix A are denoted by A� and A†, respectively. The spectral norm, the Fobenius norm and the nuclear
norm of A will be respectively denoted by ‖A‖, ‖A‖F and ‖A‖1. For every integer k, tk and χ2

k are the Student and the
chi-squared distributions with k degrees of freedom.

2. Exponential weights for multivariate regression

In this section we describe the setting of multivariate regression and the main principles of the aggregation by exponential
weighting.

2.1. Multivariate regression model

We consider the model of multivariate regression with fixed design, in which we observe n feature-label pairs (xi ,Y i ),
for i ∈ [n]. The labels Y i ∈ R

K are random vectors with real entries, the features are assumed to be deterministic elements
of an arbitrary space X . Note that, unless specified otherwise, we do not assume that the observations are independent.

We introduce the regression function f ∗ : X → R
K and noise vectors ξ i :

F∗
i = E[Y i] = f ∗(xi ), ξ i = Y i − F∗

i , i ∈ [n].
We are interested in estimating the values of f ∗ at the points x1, . . . ,xn only, which amounts to denoising the observed
labels Y i . In such a setting, of course, one can forget about the features xi and the function f ∗, since the goal is merely
to estimate the K × n matrix F∗ = [F∗

1, . . . ,F∗
n]. The quality of an estimator F̂ will be measured using the empirical loss

�n

(̂
F,F∗) = 1

n

∥∥F̂ − F∗∥∥2
F

= 1

n

∑
i∈[n]

∥∥F̂i − F∗
i

∥∥2
2.

This quantity is also referred to as in-sample prediction error. Let F be the set of all K ×n matrices with real entries. The
following assumption will be repeatedly used.
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Fig. 1. The contour plots of the log pseudo-posterior for different values of the temperature parameter. The prior is a product of two Student t (3)

distributions. For a very large temperature, τ = 20, the first plot from the left, the posterior is very close to the prior. On the other extreme, for
τ = 0.008, the utmost right plot, the posterior gets close to a Dirac mass at the observed data Y (here Y = [2,1]).

Assumption C(Bξ ,L). For some positive numbers Bξ and L that, unless otherwise specified, may be equal to +∞, it
holds that

max
i∈[n] P

(‖ξ i‖2
2 > KB2

ξ

) = 0, sup
F,F′∈F

max
i∈[n]

∥∥Fi − F′
i

∥∥2
2 ≤ KL2. (1)

Note in (1) the presence of the normalizing factor K in the upper bounds on the Euclidean norms of K-dimensional
vectors ξ i and (F − F′)i . This allows us to think of the constants Bξ and L as dimension independent quantities.

2.2. Exponentially weighted aggregate

The exponentially weighted aggregate (EWA) is defined as the average with respect to a tempered posterior distribution
πn on F , the set of all K ×n matrices with real entries. To define the tempered posterior πn, we choose a prior distribution
π0 on F and a temperature parameter τ > 0, and set

πn(dF) ∝ exp

{
−

(
1

2τ

)
�n(F,Y)

}
π0(dF).

Figure 1 depicts the form of this posterior density for different values of τ . The EWA is then

F̂EWA =
∫
F

Fπn(dF). (2)

According to the Varadhan–Donsker variational formula, the posterior distribution πn is the solution of the following
optimisation problem:

πn ∈ arg min
p

{∫
F

1

2
�n(F,Y)p(dF) + τDKL(p ‖ π0)

}
,

where the inf is taken over all probability measures p on F . We see that the posterior distribution minimises a cost
function which contains a term accounting for the fidelity to the observations and a regularisation term proportional to
the divergence from the prior distribution. The larger the temperature τ , the closer the posterior πn is to the prior π0.

In most situations the integral in (2) cannot be computed in closed form. Even its approximate evaluation using a
numerical scheme is often difficult. An appealing alternative is then to use Monte Carlo integration. This corresponds to
drawing N samples F1, . . . ,FN from the posterior distribution πn and to define the Monte Carlo version of the EWA by

F̂MC-EWA = 1

N

N∑
�=1

F�.

Of course, the applicability of this method is limited to distributions πn for which the problem of sampling can be solved
at low computational cost. We will see below that this approximation satisfies the same kind of oracle inequality as the
original EWA.

3. PAC-Bayes type risk bounds

In this section, we state and discuss several risk bounds for the EWA and related estimators under various conditions. We
start with the case of the bounded regression vectors, i.e., the case where the constant L in Assumption C(Bξ ,L) is finite.
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Main results of this section, Theorems 1–4, contain two versions of PAC-Bayesian bounds on the expected loss. The
second version requires the temperature parameter to be twice larger than the minimal temperature for which the first
version holds. However, it has the advantage of containing an additional negative term. The presence of this negative
term, proportional to the variance of the posterior πn, allows us to obtain PAC-Bayesian risk bounds for the Monte-Carlo
version of the EWA, as shown in Proposition 2 below. Let us also stress that PAC-Bayes type risk bounds are a powerful
theoretical tool, since they may be used to obtain sharp oracle inequalities under various structural assumptions.

3.1. Bounds without independence assumption but finite L

We first state the results that hold even when the columns and rows of the noise matrix ξ are dependent. These results,
however, require the boundedness of the set of aggregated elements F.

Theorem 1. Suppose that Assumption C(Bξ ,L) is satisfied and the distribution of ξ is symmetric in the sense that

for any sign vector s ∈ {±1}n, the equality in distribution [s1ξ1, . . . , snξn] D= ξ holds. Let F̂ = F̂EWA. Then, for every
τ ≥ ( 1

n
)(KBξ )(2L ∨ 3Bξ ), we have

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
, (3)

where the inf is taken over all probability measures on F . Furthermore, for larger values of the temperature, τ ≥
( 1
n
)(KBξ )(2L ∨ 6Bξ ), the following upper bound holds

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
− 1

2

∫
F

E
[
�n(̂F,F)πn(dF)

]
.

One can remark that the risk bound provided by (3) is an increasing function of the temperature. Therefore, the best
risk bound is obtained for the smallest allowed value of temperature, that is

τ = K

n
Bξ (2L ∨ 3Bξ ).

Assuming Bξ and L as constants, while K = Kn can grow with n, we see that the remainder term in (3) is of the
order K/n. We will see below that using other proof techniques, under somewhat different assumptions on the noise
distribution, we can replace K by the spectral norm of the noise covariance matrix E[ξ iξ

�
i ]. In the “worst case” when all

the entries of ξ i are equal, these two bounds are of the same order since ‖E[ξ iξ
�
i ]‖ = E[ξ2

i1]‖1K1�
K‖ = KE[ξ2

i1]. Note,
however, that the result above does not assume any independence condition on the noise vectors ξ i .

Theorem 2. We assume that for some K × K matrix � � 0, we have ξ = �1/2ξ̄ where ξ̄ has independent rows ξ̄ j•
satisfying the following boundedness and symmetry conditions:

• for any (i, j) ∈ [n] × [K], we have P(|ξ̄j i | ≤ B̄ξ ) = 1,

• for any sign vector s ∈ {±1}n, the equality in distribution [s1ξ̄ j,1, . . . , snξ̄ j,n] D= ξ̄ j• holds.

In addition, the set F is such that for some L̄ > 0, we have maxi∈[n] ‖�1/2(Fi − F′
i )‖∞ ≤ L̄ for every F,F′ ∈ F . Let

F̂ = F̂EWA. Then, for every τ ≥ ( 1
n
)(B̄ξ )(2L̄ ∨ 3‖�‖B̄ξ ), we have

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
,

where the inf is taken over all probability measures on F . Furthermore, for larger values of the temperature, τ ≥
( 1
n
)(B̄ξ )(2L̄ ∨ 6‖�‖B̄ξ ), the following upper bound holds

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
− 1

2

∫
F

E
[
�n(̂F,F)πn(dF)

]
.

The strength of this theorem is that it does not require the independence of the observations Y i corresponding to
different values of i ∈ [n]. Only a symmetry condition is required. Furthermore, the resulting risk bound is valid for a
temperature parameter which is of order O(1/n) and, hence, is independent of the dimension K of label vectors Y i .
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The proofs of Theorem 1 and Theorem 2, postponed to Section 7, rely on the following interesting construction related
to the Skorokhod embedding. If γ > 0 is a fixed number and ξ is a random variable having a symmetric distribution,
then one can devise a new random variable ζ such that ξ + γ ζ has the same distribution as (1 + γ )ξ and E[ζ |ξ ] = 0.
The construction of the pair (ξ, ζ ) is as follows. We first draw a random variable R of the same distribution as |ξ | and a
Brownian motion (Bt : t ≥ 0) independent of R. We then define the two stopping times T and Tγ by

T = inf
{
t ≥ 0 : |Bt | = R

}
, Tγ = inf

{
t ≥ 0 : |Bt | = (1 + γ )R

}
.

One can easily check that the random variable BT has the same distribution as ξ whereas BTγ has the same distribution
as (1 + γ )ξ . Furthermore, since conditionally to BT = x, the process (BT +t − x : t ≥ 0) is a Brownian motion, we have
E[BTγ − BT |BT ] = 0. Therefore, the pair ξ := BT and ζ := (BTγ − BT )/γ satisfies the aforementioned conditions. If we
set η = ζ/ξ , we can check that

η =
{

1, with probability 1 − γ
1+2γ

,

−1 − 1
γ
, with probability γ

1+2γ
.

This is exactly the formula used in Lemma 3 below. This particular example of the Skorokhod embedding relies heavily
on the symmetry of the distribution of ξ . There are other constructions that do not need this condition. We believe that
some of them can be used to further relax the assumptions of Theorem 1 and Theorem 2. This is, however, out of scope
of the present work.

3.2. Bounds under independence with infinite L

The previous two theorems require from the set F of aggregated elements to have a finite diameter L (or L̄) and this
diameter enters (linearly) in the risk bound through the temperature. The presence of this condition is dictated by the
techniques of the proofs; we see no reason for the established oracle inequalities to fail in the case of infinite L. In the
present section, we state some results that are proved using another technique, building on the celebrated Stein lemma,
which do not need L to be finite.

Theorem 3. Assume that for some K × K positive semidefinite matrix �, the noise matrix ξ = �1/2ξ̄ with ξ̄ satisfying
the following conditions:

C1. all the random variables ξ̄j,i are iid with zero mean and unit variance,
C2. the measure mξ̄ (x) dx, where mξ̄ (x) = −E[ξ̄j,i1(ξ̄j,i ≤ x)], is absolutely continuous with respect to the distribution

of ξ̄j,i with a Radon–Nikodym derivative1 gξ̄ ,
C3. gξ̄ is bounded by some constant Gξ̄ < ∞.

Let F̂ = F̂EWA. For any τ ≥ (‖�‖Gξ̄ )/n, we have

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
. (4)

Furthermore, if τ ≥ 2(‖�‖Gξ̄ )/n, then

E
[
�n

(̂
F,F∗)] = inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
− 1

2

∫
F

E
[
�n(F, F̂)πn(dF)

]
.

As mentioned in [14, pp. 43–44], many distributions satisfy assumptions C2 and C3. For instance, for the Gaussian
distribution N (0, σ 2) and for the uniform in [−b, b] distributions these assumptions are fulfilled with Gξ̄ = σ 2 and

Gξ̄ = b2/2, respectively. More generally, if ξ̄j,i has a density pξ̄ with bounded support [−b, b], then the assumptions are

satisfied with Gξ̄ = E[|ξ̄j,i |]/min|x|≤b pξ̄ (x). Furthermore, if a random variable ξ̄ satisfies these assumptions, then for

every γ ∈R, the scaled random variable γ ξ̄ satisfies these assumptions with Gγ ξ̄ = γ 2Gξ̄ . Here, we add another class to
the family of distributions satisfying C2 and C3: unimodal distributions with compact support.

1This means that for any bounded and measurable function h, we have
∫
R

h(x)mξ̄ (x) dx = E[h(ξ̄j,i )gξ̄ (ξ̄j,i )].
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Proposition 1. Assume that ξ̄j,i has a density pξ̄ with respect to the Lebesgue measure such that pξ̄ (x) = 0 for every

x /∈ [−b, b] and, for some a ∈ [−b, b], pξ̄ is increasing on [−b, a] and decreasing on [a, b]. Then, ξ̄j,i satisfies C2 and

C3 with Gξ̄ = ( b2

2 ).

Perhaps the most important shortcoming of the last theorem is that it cannot be applied to the discrete distributions
of noise. In fact, if the distribution of ξ̄j,i is discrete, then there is no chance condition C2 to be satisfied. This is due to
the fact that the measure mξ̄ dx, being absolutely continuous with respect to the Lebesgue measure, cannot be absolutely
continuous with respect to a counting measure. On the other hand, Theorem 1 and Theorem 2 can be applied to discrete
noise distributions, but they require boundedness of the family F . At this stage, we do not know whether it is possible
to extend PAC-Bayesian type risk bound (4) to discrete distributions and unbounded sets F . However, in the case of a
bounded discrete noise, we propose a simple modification of the EWA for which (4) is valid.

The modification mentioned in the previous paragraph consists in adding a uniform noise to the entries of the observed
labels Yi . Thus, we define the noisy exponential weighting aggregate, nEWA, by

F̂nEWA =
∫
F

Fπ̄n(dF), π̄n(dF) ∝ exp

{
−

(
1

2τ

)
�n(F, Ȳ)

}
π0(dF), (5)

where π̄n is defined in the same way as πn but for the perturbed matrix Ȳ = Y + ζ , with ζ a K × n random perturbation
matrix.

Theorem 4. Let F̂nEWA be the noisy EWA defined by (5). Assume that

C4. entries ξj,i of the noise matrix ξ are iid with zero mean and bounded by some constant Bξ > 0,
C5. entries ζj,i of the perturbation matrix are iid uniformly distributed in [−Bξ ,Bξ ].
Then, for any τ ≥ 2B2

ξ /n, we have

E
[
�n

(̂
FnEWA,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
. (6)

Furthermore, if τ ≥ 4B2
ξ /n, then for F̂ = F̂nEWA

E
[
�n

(̂
F,F∗)] = inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
− 1

2

∫
F

E
[
�n(F, F̂)π̄n(dF)

]
.

Proof of Theorem 4. Let us check that the matrix of perturbed labels Ȳ satisfies the conditions of Theorem 3 with
� = IK . To this end, we set ξ̃j,i = ξj,i + ζj,i . We will check that the distribution of ξ̃j,i satisfies conditions C2 and C3
(condition C1 is straightforward). Since the distribution of ξ̃j,i is the convolution of that of ξj,i and a uniform distribution,
it admits a density with respect to the Lebesgue measure which is given by

p̃(x) = 1

2Bξ

P
(|ξj,i − x| ≤ Bξ

) = 1

2Bξ

P
(
ξj,i ∈ [x − Bξ , x + Bξ ] ∩ [−Bξ ,Bξ ]

)
.

The set Ax := [x − Bξ , x + Bξ ] ∩ [−Bξ ,Bξ ] is empty if |x| > 2Bξ . When x runs from −2Bξ , the set Ax increases, while
it decreases when x runs from 0 to 2Bξ . This implies that the density p̃ is zero outside the interval [−2Bξ ,2Bξ ] and
unimodal in this interval. Therefore, it satisfies Proposition 1 with b = 2Bξ and a = 0. This implies that conditions C2
and C3 are fulfilled with Gξ̄ = 2B2

ξ and ‖�‖ = 1. Thus, the conclusion of Theorem 3 applies and yields the claims of
Theorem 4. �

We can replace in Theorem 4 the condition C4 by ξ = �1/2ξ̄ , where ξ̄j,i are iid and bounded. In this case, the contam-
ination added to the labels is of the form �1/2ζ̄ , where ζ̄j,i ’s are iid uniform. The claims of Theorem 4 remain valid, but
they are of limited interest, since it is not likely to find a situation in which the matrix � is known.

3.3. Risk bounds for the Monte Carlo EWA

All the four theorems of the previous sections contain two risk bounds. The first bound is, in each case, more elegant
and valid for a smaller value of the temperature than the second bound. However, the latter appears to be more useful for
getting guarantees for the Monte Carlo version of the EWA. This is due to the fact that the additional term in the second
risk bounds is proportional to the difference of the risks between the MC-EWA and the EWA.
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Proposition 2. If F̂MC-EWA is the MC-EWA with N Monte Carlo samples, then

E
[
�n

(̂
FMC-EWA,F∗)] = E

[
�n

(̂
FEWA,F∗)] + 1

N

∫
F

E
[
�n

(
F, F̂EWA)

πn(dF)
]
.

Therefore, if the conditions of one of the four foregoing theorems are satisfied and τ is chosen accordingly then, as soon
as N ≥ 2,

E
[
�n

(̂
FMC-EWA,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
.

The proof of this result is straightforward. For the sake of completeness, it is provided in Section 7. Note that this
result bounds only the expected error, where the expectation is taken with respect to both the noise matrix ξ and the
Monte Carlo sample. Using standard concentration inequalities, this bound can be complemented by an evaluation of the
deviation between the Monte Carlo average F̂MC-EWA and its “expectation” F̂EWA.

3.4. Relation to previous work

To the best of our knowledge, the first result in the spirit of the oracle inequalities presented in foregoing sections was es-
tablished by [24], using a technique based on Stein’s unbiased risk estimate for regression with Gaussian noise developed
in [18,19]. Extensions to more general noise distributions were presented in [13,14] and later on refined in [16]. These
papers studied the problem of aggregating “frozen” (that is independent of the data used for the aggregation) estimators,
except [24] who considered the case of projection estimators as well. In his PhD thesis, [23] proved that analogous oracle
bounds hold for the problem of aggregation of shrinkage estimators. The case of more general linear estimators was ex-
plored by [5,10,12]. In the context of sparsity, statistical properties of exponential weights were studied in [3,26,27]. [20]
proved that analogous results hold true in the sequential setting, see also [29].

There is also extensive literature on the exponential weights for problems with iid obsrvations, such as the density
model, the regression with random design, etc. We refer the interested reader to [4,9,15,22,31,32] and the references
therein. It is useful to note here that the proof techniques used in the iid setting and in the setting with deterministic
design considered in the present work are very different. Furthermore, the version exponential of the exponential weights
used in the iid setting involves an additional averaging step and is therefore referred to as progressive mixture or mirror
averaging.

4. EWA with low-rank favoring priors

To give a concrete example of application of the results established in previous section, let us consider the so called
reduced rank regression model. An asymptotic analysis of this model goes back to [21], whereas more recent results can
be found in [6,7] and the references therein. It corresponds to assuming that the matrix F∗ = E[Y] has a small rank,
as compared to its maximal possible value K ∧ n. Equivalently, this means that the observed K dimensional vectors
Y 1, . . . ,Y n belong, up to a noise term, to a low dimensional subspace. Such problems arise, for instance, in subspace
clustering or in multi-index problems. Of course, one can estimate the matrix F∗ by the PCA, but it requires rather precise
knowledge of the rank.

In order to get an estimator that takes advantage of the (nearly) low-rank property of the matrix F∗, we suggest to use
the following prior

π0(dF) ∝ det
(
λ2IK + FF�)−(n+K+2)/2

dF, (7)

where λ > 0 is a tuning parameter. From now on, with a slight abuse of notation, we will denote by π0(F) the probability
density function of the measure π0(dF). The same will be done for p(dF) and πn(dF). We will refer to π0 as the spectral
scaled Student prior, since one easily checks that

π0(F) ∝
K∏

j=1

(
λ2 + sj (F)2)−(n+K+2)/2

,

where sj (F) denotes the j th largest singular value of F. We can recognize in the last display the density function of the
scaled Student t evaluated at sj (F). Thus, the scaled spectral Student prior operates on the spectrum of F as the sparsity
favoring prior introduced in [16] on the vectors. Another interesting property of this prior, is that if F ∼ π0, then the
marginal distributions of the columns of F are scaled multivariate Student t3.
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Lemma 1. If F is a random matrix having as density the function π0, then the random vectors Fi are all drawn from the
K-variate scaled Student distribution (λ/

√
3)t3,K . As a consequence, we have

∫
F ‖Fi‖2

2π0(F) dF = λ2K .

From a mathematical point of view, the nice feature of the aforementioned prior is that the Kullback–Leibler divergence
between π0 and its shifted by a matrix F̄ version grows proportionally to the rank of F̄, when all the other parameters
remain fixed. This is formalized in the next result.

Lemma 2. Let p̄ be the probability density function obtained from the prior π0 by a translation, p̄(F) = π0(F − F̄).
Then, for any matrix F̄ of at most rank r , we have

DKL(p̄‖π0) ≤ 2r(n + K + 2) log

(
1 + ‖F̄‖F√

2rλ

)
≤ 2r(n + K + 2) log

(
1 + ‖F̄‖/λ)

.

The proof of this result is deferred to the Appendix. Applying this lemma, in conjunction with Theorem 3, we get a
risk bound in the reduced rank regression problem which illustrates the power of the exponential weights.

Theorem 5. Let the noise matrix ξ and the artificial perturbation matrix ζ satisfy the assumptions of Theorem 4. Let π0
be the scaled spectral Student prior (7) with some tuning parameter λ > 0. Then, for every τ ≥ 2B2

ξ /n, we have

E
[
�n

(̂
FnEWA,F∗)] ≤ inf

F̄

{
�n

(
F̄,F∗) + 4r(F̄)(n + K + 2)τ log

(
1 + ‖F̄‖F√

2r(F̄)λ

)}
+ λ2K,

where r(F̄) = rank(F̄) and the inf is taken over all K × n matrices F̄.

Proof of Theorem 5. Let us fix an arbitrary matrix F̄ and denote its rank by r . We apply Theorem 4 and upper bound
the inf with respect to all probability distributions p by the right hand side of (6) evaluated at the distribution p̄ defined
in Lemma 2. This yields

E
[
�n

(̂
FnEWA,F∗)] ≤

∫
F

�n

(
F,F∗)π0(F − F̄) dF + 4r(F̄)(n + K + 2)τ log

(
1 + ‖F̄‖F√

2rλ

)
. (8)

Using the translation invariance of the Lebesgue measure and the fact that
∫

Fπ0(F) dF = 0, we get∫
F

�n

(
F,F∗)π0(F − F̄) dF = �n

(
F̄,F∗) + 1

n

∫
F

‖F‖2
F π0(F) dF. (9)

Using Lemma 1 and the fact that ‖F‖2
F = ∑

i∈[n] ‖Fi‖2
2, one checks that

∫
F ‖F‖2

F π0(F) dF ≤ λ2Kn. Combining this
inequality with (9) and (8), we get the claim of the theorem. �

There are many papers using a Bayesian approach to the problem of prediction with low rank matrices, see [1] and
the references therein. All the methods we are aware of put a prior on F which is defined as follows: first choose one
prior πU

0 on the space of K × (K ∧ n) matrices, a prior πV
0 on the space of n × (K ∧ n) matrices and a third prior πγ

on R
K∧n, then define π0 as the distribution of UD2

γ V� when the triplet (U,V,γ ) is drawn from the product distribution

πU
0 × πV

0 × π
γ

0 (see, for instance, [2]).
To our knowledge, [30] is the only work dealing with prior (7) in a context related to low rank matrix estimation and

completion. It proposes variational approximations to the Bayes estimator and demonstrates their good performance on
various data sets. In a sense, Theorem 5 provides theoretical justification for the empirically observed good statistical
properties of the prior defined in (7).

Let us briefly discuss the inequality of Theorem 5. If we choose τ = 2B2
ξ /n and λ2 = B2

ξ (n + K)/(nK), we get the

following upper bound on the risk E[�n(̂FnEWA,F∗)]:

inf
F̄

{
�n

(
F̄,F∗) + 8B2

ξ r(F̄)(n + K + 2)

n
log

(
1 + ‖F̄‖F

√
K√

2r(F̄)Bξ

)}
+ B2

ξ (n + K)

n
. (10)

We see that (10) handles optimally mis-specification, since it is an oracle inequality with a leading constant 1, and the
remainder term is of optimal order r(n + K)/n, up to a logarithmic factor. The extra logarithmic factor in the last display
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can be further simplified using the inequality ‖F̄‖F ≤ ‖F̄‖
√

r(F̄). This implies that the term inside the logarithm is the
signal-to-noise ratio

√
K‖F̄‖/Bξ . Other oracle inequalities with nearly optimal remainder terms in the context of low-

rank matrix estimation and completion are exposed in [1,2]. However, those results are not sharp oracle inequalities since
the factor in front of the leading term in the upper bound is larger than 1. All the oracle inequalities we are aware of, for
the model under consideration, contain analogous (and often much more complicated) logarithmic factors.

Using the properties of the scaled Student prior exposed in Lemma 1 and Lemma 2, one can establish oracle inequalities
in other statistical problems in which the unknown parameter is a matrix, such as matrix completion, trace regression or
multiclass classification, see [6,8,25,28]. This is left to future work.

5. Implementation and a few numerical experiments

In this section, we report the results of some proof of concept numerical experiments. We propose to compute an ap-
proximation of the EWA with the scaled multivariate Student prior by a suitable version of the Langevin Monte Carlo
algorithm. To describe the letter, let us first remark that

logπn(F) = − 1

2τ
�n(F,Y) − (n + K + 2)

2
log det

(
λ2IK + FF�)

. (11)

From this relation, we can infer that

−∇ logπn(F) = 1

nτ
(F − Y) + (n + K + 2)

(
λ2IK + FF�)−1F.

The (constant-step) Langevin MC is defined by choosing an initial matrix F0 and then by using the recursion

Fk+1 = Fk + h∇ logπn(F) + √
2hWk, k = 0,1, . . . ,

where h > 0 is the step-size and W0,W1, . . . are independent Gaussian random matrices with iid standard Gaussian
entries. For (strongly) log-concave densities π , nonasymptotic guarantees for the LMC have been recently established
in [11,17], but they do not carry over the present case since the right hand side of (11) is not concave. Our numerical
experiments show that (despite the absence of theoretical guarantees) the LMC converges and leads to relevant results.

Note that a direct application of the Langevin MC algorithm involves a K × K matrix inversion at each iteration.
This might be costly and can slow down significantly the algorithm. We suggest to replace this matrix inversion by a
few steps of gradient descent for a suitably chosen optimization problem. Indeed, one can easily check that the matrix
M = (λ2IK + FF�)−1F is nothing else but the solution to the convex optimization problem

min
{∥∥In − F�M

∥∥2
F

+ 2λ2‖M‖2
F

}
.

We use ten gradient descent steps for approximating the solution of this optimization problem. This does not require
neither matrix inversion nor svd or other costly operation.

We applied this algorithm to the problem of image denoising (see Figure 2). We chose an RGB image of resolution
120 × 160 and applied to it an additive Gaussian white noise of standard deviation σ ∈ {10,30,50}. In order to make use
of the denoising algorithm based on the aforementioned Langevin MC, we transformed the noisy image into a matrix of
size 192 × 300. Each row of this transformed matrix corresponds to a patch of size 10 × 10 × 3 of the noisy image. The
patches are chosen to be non-overlapping in order to get a reasonable dimensionality. We expect the result to be better for
overlapping patches, but the computational cost will also be high. The parameters were chosen as follows:

τ = 2σ 2/n; λ = 10σ
√

(n + K)/(nK); h = 10; kmax = 4000.

Note that the values of τ and λ are suggested by our theoretical results, while the step-size h and the number of iterations
of the LMC, kmax, were chosen experimentally. The LMC after kmax iterations provides one sample that is approximately
drawn from the pseudo-posterior πn. We did N = 400 repetitions and averaged the obtained results for approximating the
posterior mean.

6. Conclusion

We have studied the expected in-sample prediction error of the Exponentially Weighted Algorithm (EWA) in the context of
multivariate regression with possible dependent noise. We have shown that under boundedness assumptions on the noise
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Fig. 2. The result of the experiment on image densoising. Left: the original 120 × 160 × 3 image. Middle: the noisy image for different values of σ .
Right: the denoised image.

and the aggregated elements, the EWA satisfies a PAC-Bayes type sharp oracle inequality, provided that the temperature
parameter is sufficiently large. The remainder term in these oracle inequalities is of arguably optimal order of magnitude
and is consistent with the corresponding results obtained in the model of univariate regression. An interesting observation
is that if we apply the EWA to the data matrix artificially contaminated by a uniform noise, the resulting procedure
satisfies a sharp oracle inequality under a much weaker assumption on the noise distribution. In particular, this allows to
cover any distribution with bounded support. We have also included the results of a small numerical experiment on image
denoising, that shows the applicability of the EWA.
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7. Proofs of the main results

The proofs of all the main theorems stated in the previous sections are gathered in this section. The proofs of some
technical lemmas are deferred to Appendix A.

Proof of Theorem 1. We wish to upper bound �n(̂FEWA,F∗). Let ζ be a random matrix such that E[ζ |Y] = 0 and define

�n

(
F,F∗, ζ

) = �n

(
F,F∗) + 2

n

〈
ζ ,F − F∗〉. (12)

In what follows, we use the short notation F̂ instead of F̂EWA. We have, for every α > 0,

�n

(̂
F,F∗, ζ

) = 1

α
log exp

{
α�n

(̂
F,F∗, ζ

)}
= 1

α
log

∫
F

eα(�n(̂F,F∗,ζ )−�n(F,F∗,ζ ))πn(dF)︸ ︷︷ ︸
:=S1(α)

− 1

α
log

∫
F

e−α�n(F,F∗,ζ )πn(dF)︸ ︷︷ ︸
:=S(α)

.

The next two lemmas provide suitable upper bounds on the magnitude of the terms S(α) and S1(α).

Lemma 3. Let ξ = [ξ1, . . . , ξn] be a K × n random matrix with real entries having a symmetric distribution (see the
statement of Theorem 1). Let ζ i be defined as ζ i = −ξ iηi , where ηi are iid random variables independent of ξ and
satisfying

ηi =
{

1, with probability 1 − ατ
1+2ατ

,

−1 − 1
ατ

, with probability ατ
1+2ατ

.

Then, the expectation of the random variable S can be bounded as follows:

−
(

1

α

)
E

[
S(α)

] ≤ inf
p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
,

where the inf is taken over all probability measures on F .

Lemma 4. Let the random vectors ζ i , i ∈ [n] be as defined in Lemma 3. Then, we have

lim
α→0

1

α
E

[
S1(α)|ξ] ≤

∑
i∈[n]

τ log
∫
F

e(2/nτ)ξ�
i (̂Fi−Fi )πn(dF) −

∫
F

�n(̂F,F)πn(dF).

Applying these two lemmas, we get

E
[
�n

(̂
F,F∗)] = E

[
�n

(̂
F,F∗, ζ

)]
= lim

α→0

E(E[S1(α)|ξ ]) − E[S(α)]
α

≤ inf
p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
−

∫
F

�n(̂F,F)πn(dF)

+
∑
i∈[n]

τE
{

log
∫
F

e(2/nτ)ξ�
i (̂Fi−Fi )πn(dF)

}
. (13)

Then, for every τ ≥ (2K/n)(BξL), we have

e(2/nτ)ξ�
i (̂Fi−Fi ) ≤ 1 + 2ξ�

i (̂Fi − Fi )

nτ
+ 3(ξ�

i (̂Fi − Fi ))
2

(nτ)2

≤ 1 + 2ξ�
i (̂Fi − Fi )

nτ
+ 3KB2

ξ ‖F̂i − Fi‖2
2

(nτ)2
.
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This implies that∫
F

e(2/nτ)ξ�
i (̂Fi−Fi )πn(dF) ≤ 1 + 3KB2

ξ

(nτ)2

∫
F

‖F̂i − Fi‖2
2πn(dF).

Combining the last display with (13) and using the inequality log(1 + x) ≤ x, we arrive at

E
[
�n

(̂
F,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}

−
(

1 − 3KB2
ξ

nτ

)
E

{∫
F

�n(̂F,F)πn(dF)

}
.

This completes the proof of the theorem. �

Proof of Theorem 2. The proof follows the same arguments as those used in the proof of Theorem 1. That is why we
will skip some technical details. The main difference is in the definition of the matrix ζ and the subsequent computations
related to the evaluation of the term S2(α). Thus, for any random matrix ζ such that E[ζ |Y] = 0 and for �n(F,F∗, ζ ) =
�n(F,F∗) + 2

n
〈ζ ,F − F∗〉, we have

E
[
�n

(̂
F,F∗)] = E

[
�n

(̂
F,F∗, ζ

)] = lim
α→0

E[S1(α)] − E[S(α)]
α

,

where S and S1 are the same as in the proof of Theorem 1. We instantiate the matrix ζ as follows: ζ = �1/2ζ̄ where the
entries of ζ̄ are given by ζ̄j,i = −ξ̄j,iηj,i , with ηj,i being iid random variables independent of ξ and satisfying

ηj,i =
{

1, with probability 1 − ατ
1+2ατ

,

−1 − 1
ατ

, with probability ατ
1+2ατ

.

One easily checks that the resulting vector ξ̄ j• − 2ατ ζ̄ j,• has the same distribution as the vector (1 + 2ατ)ξ̄ j,•, for every

j ∈ [K]. Furthermore, for different values of j , these vectors are independent. This implies that the matrix ξ̄ − 2ατ ζ̄ has
the same distribution as the matrix (1 + 2ατ)ξ̄ , which is sufficient for getting the conclusion of Lemma 3. That is

−
(

1

α

)
E

[
S(α)

] ≤ inf
p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p ‖ π0)

}
,

where the inf is taken over all probability measures on F . To bound the term S1, we use a result similar to that of Lemma 4.

Lemma 5. Let the random matrix ζ be defined as above. Set H(F) = �1/2(̂F − F). Then, we have

lim
α→0

1

α
E

[
S1(α)|ξ] ≤

∑
i∈[n]
j∈[K]

τ log
∫
F

e(2/nτ)ξ̄j,iHj,i (F)πn(dF) −
∫
F

�n(̂F,F)πn(dF).

Then, for every τ ≥ (2/n)(B̄ξ L̄), we have

e(2/nτ)ξ̄j,iHj,i (F) ≤ 1 + 2ξ̄j,iHj,i(F)

nτ
+ 3ξ̄2

j,iHj,i (F)2

(nτ)2

≤ 1 + 2ξ̄j,iHj,i(F)

nτ
+ 3B̄2

ξ H2
j,i(F)

(nτ)2
.

Using the fact that
∫
F H(F)πn(dF) = 0, the last display implies that

∫
F

e(2/nτ)ξ̄j,iHj,i (F)πn(dF) ≤ 1 + 3B̄2
ξ

(nτ)2

∫
F

H2
j,i(F)πn(dF).



EWA in matrix regression and low rank 1477

Combining the last display with Lemma 5 and using the inequality log(1 + x) ≤ x, we arrive at

lim
α→0

1

α
E

[
S1(α)|ξ] ≤

∑
i,j

3B̄2
ξ

n2τ

∫
F

H2
j,i(F)πn(dF) −

∫
F

�n(̂F,F)πn(dF)

= 3B̄2
ξ

n2τ

∫
F

∥∥�1/2(̂F − F)
∥∥2

F
πn(dF) −

∫
F

�n(̂F,F)πn(dF)

≤
(3B̄2

ξ ‖�‖
nτ

− 1

)∫
F

�n(̂F,F)πn(dF).

This completes the proof of the theorem. �

Proof of Theorem 3. We outline here only the main steps of the proof, without going too much into the details. One can
extend the Stein lemma from the Gaussian distribution to that of ξ̄j,i , provided the conditions of Theorem 3 are satisfied
(see Lemma 1 in [14] for a similar result). The resulting claim is that the random variable

r̂ := �n(̂F,Y) − tr(�) + 2

n

n∑
i=1

K∑
j=1

gξ̄ (ξ̄j,i )∂ξ̄j,i

(
�1/2F̂

)
j,i

(14)

satisfies E[̂r] = E[�n(̂F,F∗)]. On the one hand, using Varadhan–Donsker’s variational formula, we get

E
[
�n(̂F,Y)

] ≤ E
[
�n(̂F,Y) + 2τDKL(πn‖π0)

]
= E

[∫
F

�n(F,Y)πn(dF) + 2τDKL(πn‖π0)

]
−

∫
F

E
[
�n(F, F̂)πn(dF)

]
≤ E

[
inf
p

(∫
F

�n(F,Y)p(dF) + 2τDKL(p‖π0)

)]
−

∫
F

E
[
�n(F, F̂)πn(dF)

]
≤ inf

p
E

[(∫
F

�n(F,Y)p(dF) + 2τDKL(p‖π0)

)]
−

∫
F

E
[
�n(F, F̂)πn(dF)

]
= inf

p

(∫
F

�n

(
F,F∗)p(dF) + tr(�) + 2τDKL(p‖π0)

)
−

∫
F

E
[
�n(F, F̂)πn(dF)

]
.

On the other hand, computing the partial derivative ∂Yj,i
(�1/2F̂)j,i , we get

∂ξ̄j,i

(
�1/2F̂

)
j,i

= e�
j �1/2(∂ξ̄ i

F̂i )ej

= 1

2nτ
e�
j �1/2

(∫
F

Fi (Fi − Yi )
�πn(dF) − F̂i (̂Fi − Yi )

�
)

�1/2ej

= 1

2nτ

∫
F

{
e�
j �1/2(F − F̂)i

}2
πn(dF).

From this relation, we infer that

K∑
j=1

gξ̄ (ξ̄j,i )∂ξ̄j,i

(
�1/2F̂

)
j,i

= 1

2nτ

K∑
j=1

gξ̄ (ξ̄j,i )

∫
F

{
e�
j �1/2(F − F̂)i

}2
πn(dF)

≤ Gξ̄

2nτ

∫
F

∥∥�1/2(Fi − F̂i )
∥∥2

2πn(dF)

≤ ‖�‖Gξ̄

2nτ

∫
F

‖Fi − F̂i‖2
2πn(dF). (15)

Combining (14)–(15), we arrive at

E
[
�n

(̂
F,F∗)] = E[̂r]
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≤ inf
p

(
�n

(
F,F∗) + 2τDKL(p‖π0)

) −
∫
F

E
[
�n(F, F̂)πn(dF)

]
+ ‖�‖Gξ̄

n2τ

n∑
i=1

∫
F

E
[‖F̂i − Fi‖2

2πn(dF)
]

= inf
p

(
�n

(
F,F∗) + 2τDKL(p‖π0)

) −
(

1 − ‖�‖Gξ̄

nτ

)∫
F

E
[
�n(F, F̂)πn(dF)

]
.

This completes the proof. �

Proof of Proposition 1. Without loss of generality, we assume that a ≥ 0. We have, for every x ∈ [a, b],

mξ̄ (x) =
∫ b

x

ypξ̄ (y) dy ≤ pξ̄ (x)

∫ b

x

y dy ≤
(

b2

2

)
pξ̄ (x).

Similarly, for every x ∈ [−b,0], we have x ≤ a and, therefore,

mξ̄ (x) = −
∫ x

−b

ypξ̄ (y) dy ≤ pξ̄ (x)

∫ x

−b

(−y)dy ≤
(

b2

2

)
pξ̄ (x).

Finally, for x ∈ [0, a], we have

mξ̄ (x) =
∫ x

−b

(−y)pξ̄ (y) dy ≤
∫ 0

−b

(−y)pξ̄ (y) dy ≤
(

b2

2

)
pξ̄ (0) ≤

(
b2

2

)
pξ̄ (x)

and the claim of the lemma follows. �

Appendix A: Proofs of postponed technical results

Proof of Lemma 3. Using the fact that πn(dF) ∝ exp{−( 1
2τ

)�n(F,Y)}π0(dF) and that �n(F,Y) = �n(F,F∗) +
( 2
n
)〈ξ ,F∗ − F〉 + ( 1

n
)‖ξ‖2

F , we arrive at

−S(α) = log
∫
F

e−( 1
2τ

)�n(F,F∗)−( 1
nτ

)〈ξ ,F∗−F〉π0(dF)

− log
∫
F

e−(α+ 1
2τ

)�n(F,F∗)−( 1
nτ

)〈ξ−2ατζ ,F∗−F〉π0(dF)

One easily checks that the random matrix ξ − 2ατζ has the same distribution as the matrix (1 + 2ατ)ξ and, therefore,

−E
[
S(α)

] = E
[

log
∫
F

e−( 1
2τ

)�n(F,F∗)−( 1
nτ

)〈ξ ,F∗−F〉π0(dF)

]
− E

[
log

∫
F

e−(2ατ+1)( 1
2τ

�n(F,F∗)+( 1
nτ

)〈ξ ,F∗−F〉)π0(dF)

]
.

Applying the Hölder inequality
∫
F Gdπ0 ≤ (

∫
F G2ατ+1 dπ0)

1/(2ατ+1) to the first expectation of the right hand side, we
get

−E
[
S(α)

] ≤ − 2ατ

2ατ + 1
E

[
log

∫
F

e−(2ατ+1)( 1
2τ

�n(F,F∗)+( 1
nτ

)〈ξ ,F∗−F〉)π0(dF)

]
.

Donsker–Varadhan’s variational inequality implies that

− 1

α
E

[
S(α)

] ≤ E
[

inf
p

{∫
F

(
�n

(
F,F∗) +

(
2

n

)〈
ξ ,F∗ − F

〉)
p(dF) + 2τ

2ατ + 1
DKL(p ‖ π0)

}]
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≤ inf
p

{∫
F

E
[
�n

(
F,F∗) +

(
2

n

)〈
ξ ,F∗ − F

〉]
p(dF) + 2τ

2ατ + 1
DKL(p ‖ π0)

}
≤ inf

p

{∫
F

E
[
�n

(
F,F∗)]p(dF) + 2τ

2ατ + 1
DKL(p ‖ π0)

}
.

The desired result follows from the last display using the inequality 2ατ + 1 ≥ 1. �

Proof of Lemma 4. In view of (12), we have

�n

(̂
F,F∗, ζ

) − �n

(
F,F∗, ζ

) = �n

(̂
F,F∗) − �n

(
F,F∗) + 2

n
〈ζ , F̂ − F〉

which implies that,

S1(α) = log
∫
F

eα(�n(̂F,F∗)−�n(F,F∗)+ 2
n
〈ζ ,̂F−F〉)πn(dF).

Using the definition of the expectation, we get

�(α) := E
[
S1(α)|ξ] =

∑
s∈{0,1}n

(ατ)‖s‖1(1 + ατ)n−‖s‖1

(1 + 2ατ)n
log

∫
F

e�(α,s,F)πn(dF),

where

�(α, s,F) := α
(
�n

(̂
F,F∗) − �n

(
F,F∗)) − 2

n

n∑
i=1

{
α(1 − si) − si

(
α + 1

τ

)}
〈ξ i , F̂i − Fi〉.

One easily checks that the function �(α) is differentiable in (0,∞) and that �(0) = 0. Therefore,

lim
α→0

�(α)

α
= lim

α→0

�(α) − �(0)

α
= � ′(0)

= d

dα

∣∣∣∣
α=0

∑
s∈{0,1}n
‖s‖1≤1

(ατ)‖s‖1(1 + ατ)n−‖s‖1

(1 + 2ατ)n
log

∫
F

e�(α,s,F)πn(dF). (16)

Let us now compute the derivatives with respect to α of the terms of the last sum. First of all, remark that all the terms
corresponding to s with ‖s‖1 ≥ 2 have derivatives vanishing at α = 0. This is due to the fact that these terms can be
written as α2�(α) with a function � which is well defined and differentiable in [0,1]. Therefore, it suffices to consider
the terms with ‖s‖1 ≤ 1. For the term corresponding to s = 0, since �(0,0,F) = 0, we have

d

dα

∣∣∣∣
α=0

{
(1 + ατ)n

(1 + 2ατ)n
log

∫
F

e�(α,0,F)πn(dF)

}
= d

dα

∣∣∣∣
α=0

{
log

∫
F

e�(α,0,F)πn(dF)

}
= d

dα

∣∣∣∣
α=0

{∫
F

e�(α,0,F)πn(dF)

}
(a)=

∫
F

d

dα

∣∣∣∣
α=0

�(α,0,F)πn(dF).

In the above equality (a), the permutation of the integral and the derivative is justified by the fact that the function
F �→ e�(α,0,F) and its derivative with respect to α are πn-integrable in a neighborhood of 0. Using that �(α,0,F) is a
linear function of α, as well as the fact that

∫
Fπn(dF) = F̂, we arrive at

d

dα

∣∣∣∣
α=0

{
(1 + ατ)n

(1 + 2ατ)n
log

∫
F

e�(α,0,F)πn(dF)

}
= −

∫
F

�n(̂F,F)πn(dF).

Let us go back to (16) and evaluate the terms corresponding to vectors s such that ‖s‖1 = 1. This means that only one
entry of s is equal to one, all the others being equal to zero. Hence, if we denote by ei the ith element of the canonical
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basis of Rn, we get

d

dα

∣∣∣∣
α=0

∑
s∈{0,1}n
‖s‖1=1

(ατ)‖s‖1(1 + ατ)n−‖s‖1

(1 + 2ατ)n
log

∫
F

e�(α,s,F)πn(dF)

=
∑
i∈[n]

d

dα

∣∣∣∣
α=0

(ατ)(1 + ατ)n−1

(1 + 2ατ)n
log

∫
F

e�(α,ei ,F)πn(dF)

=
∑
i∈[n]

τ log
∫
F

e�(0,ei ,F)πn(dF) =
∑
i∈[n]

τ log
∫
F

e(2/nτ)ξ�
i (̂Fi−Fi )πn(dF).

This completes the proof of the lemma. �

Proof of Proposition 2. Recall that F̂MC-EWA is the average of N independent random matrices F1, . . . ,FN such that their
conditional distribution given Y is πn. This implies that E[Fi] = F̂EWA = F̂. Since �n is the square loss, the bias-variance
decomposition yields

E
[
�n

(̂
FMC-EWA,F∗)|Y] = 1

n

∥∥E
[̂
FMC-EWA|Y] − F∗∥∥2

F
+ 1

n
E

[∥∥F̂MC-EWA − E
[̂
FMC-EWA|Y]∥∥2

F
|Y]

= 1

n

∥∥F̂ − F∗∥∥2
F

+ 1

n
E

[∥∥F̂MC-EWA − F̂
∥∥2

F
|Y]

= �n

(̂
F,F∗) + 1

nN

∫
F

‖F − F̂‖2
F πn(dF)

= �n

(̂
F,F∗) + 1

N

∫
F

�n(F, F̂)πn(dF).

Taking the expectation of both sides of the above inequality, we get the first claim of the distribution. To prove the second
claim, let us assume that conditions of Theorem 3 are fulfilled and that τ ≥ 2(‖�‖Gξ̄ )/n. Then, for F̂ = F̂EWA we know
that

E
[
�n

(̂
F,F∗)] = inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
− 1

2

∫
F

E
[
�n(F, F̂)πn(dF)

]
.

Combining with the first claim of the proposition, this leads to

E
[
�n

(̂
FMC-EWA,F∗)] ≤ E

[
�n

(̂
F,F∗)] + 1

N

∫
F

E
[
�n(F, F̂)πn(dF)

]
≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
− 1

2

∫
F

E
[
�n(F, F̂)πn(dF)

] + 1

N

∫
F

E
[
�n(F, F̂)πn(dF)

]
.

This readily implies that, as soon as N ≥ 2,

E
[
�n

(̂
FMC-EWA,F∗)] ≤ inf

p

{∫
F

�n

(
F,F∗)p(dF) + 2τDKL(p‖π0)

}
.

This completes the proof. �

Proof of Lemma 1. For any bounded and measurable function h :RK → R, we have∫
F

h(F1)π0(F) dF
(a)= 1

Cλ

∫
F

h(F1)

det(λ2IK + FF�)(n+K+2)/2
dF

(b)= 1

C1

∫
F

h(λM1)

det(IK + MM�)(n+K+2)/2
dM
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where in (a) we have used the notation Cλ = ∫
F det(λ2IK + FF�)−(n+K+2)/2 dF, whereas in (b) we have made the

change of variable F = λM. In order to compute the last integral, we make another change of variable, M � M̄, given by
M = [M̄1, (I + M̄1M̄�

1 )1/2M̄2:n]. This yields

dM = dM1 dM2:n = dM̄1 det
(
I + M̄1M̄�

1

)(n−1)/2
dM̄2:n

(c)= (
1 + ‖M̄1‖2

2

)(n−1)/2
dM̄1 dM̄2:n

and

det
(
I + MM�) = det

(
I + M1M�

1 + M2:nM�
2:n

)
= det

(
I + M̄1M̄�

1 + (
I + M̄1M̄�

1

)1/2M̄2:nM̄�
2:n

(
I + M̄1M̄�

1

)1/2)
= det

((
I + M̄1M̄�

1

)1/2(I + M̄2:nM̄�
2:n

)(
I + M̄1M̄�

1

)1/2)
= det

(
I + M̄1M̄�

1

)
det

(
I + M̄2:nM̄�

2:n
)

(c′)= (
1 + ‖M̄1‖2

2

)
det

(
I + M̄2:nM̄�

2:n
)
,

where in (c) and (c′) we have used the fact that the matrix I + M̄1M̄�
1 has all its eigenvalues equal to 1 except the largest

one, corresponding to the eigenvector M̄1, which is equal to 1 + ‖M̄1‖2
2. Using the same change of variable in C1, and

replacing M̄1 by x for convenience, we get∫
F

h(F1)π0(F) dF =
∫
RK h(λx)(1 + ‖x‖2

2)
−(K+3)/2 dx∫

RK (1 + ‖x‖2
2)

−(K+3)/2 dx

=
∫
RK h(λy/

√
3)(1 + ‖y‖2

2/3)−(K+3)/2 dy

3
∫
RK (1 + ‖y‖2

2/3)−(K+3)/2 dy
.

In the last expression, we recognize the probability density function of the multivariate t3-distribution. Since the covari-
ance matrix of a K-variate tν distribution is equal to ν

ν−2 IK , we infer that∫
F

‖F‖2
F π0(F) dF = nKλ2.

This completes the proof of the lemma. �

Proof of Lemma 2. It holds that

DKL(p̄‖π0) =
∫
F

log

(
p̄(F)

π0(F)

)
p̄(F) dF

=
∫
F

log

(
π0(F − F̄)

π0(F)

)
π0(F − F̄) dF

(1)=
∫
F

log

(
π0(U)

π0(F̄ + U)

)
π0(U) dU

(2)=
∫
F

log

(
π0(F)

π0(F̄ − F)

)
π0(F) dF.

In (1) above we have used the change of variable U = F − F̄, while in (2) we have set F = −U and have used the fact that
the density π0 is symmetric. To ease notation, we set A = (λ2IK + FF�)−1/2 and B = λ2IK + (F − F̄)(F − F̄)�. We have

2 log

(
π0(F)

π0(F̄ − F)

)
= (n + K + 2) log

(
det(B)

det(A−2)

)
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= (n + K + 2) log
(
det(ABA)

)
= (n + K + 2)

K∑
j=1

log sj (ABA), (17)

where sj (ABA) is the j th largest eigenvalue of the symmetric matrix ABA. Let r be the rank of F̄. The first claim is that
the matrix ABA has at most 2r singular values different from one. Indeed, one can check that

ABA − IK = AF̄F̄�A − AF̄F�A − AFF̄�A.

The matrix at the right hand side is at most of rank 2r . This implies that ABA − IK has at most 2r nonzero eigenvalues.
Therefore, the number of eigenvalues of ABA different from 1 is not larger than 2r , which implies that the sum at the
right hand side of (17) has at most 2r nonzero entries.

Let uj be the unit eigenvector corresponding to the eigenvalue sj . We know that, for every j ∈ [2r], sj = u�
j ABAuj .

Using , we get

sj = 1 + u�
j

(
AF̄F̄�A − AF̄F�A − AFF̄�A

)
uj

= 1 + ∥∥F̄�Auj

∥∥2
2 − 2

(
F̄�Auj

)�(
F�Auj

)
≤ 1 + ∥∥F̄�Auj

∥∥2
2 + 2

∥∥F̄�Auj

∥∥
2

∥∥F�Auj

∥∥
2

(�)≤ (
1 + ∥∥F̄�Auj

∥∥
2

)2
,

where (�) follows from the fact that ‖F�Auj‖2 ≤ ‖F�A‖ ≤ 1. Using the concavity of the function log(1 + x1/2) over
(0,+∞), we arrive at

2 log

(
π0(F)

π0(F̄ − F)

)
= (n + K + 2)

2r∑
j=1

log sj (ABA)

≤ 2(n + K + 2)

2r∑
j=1

log
(
1 + {∥∥F̄�Auj

∥∥2
2

}1/2)

≤ 4(n + K + 2)r log

(
1 +

{
1

2r

2r∑
j=1

∥∥F̄�Auj

∥∥2
2

}1/2)
.

Finally, since uj ’s are orthonormal and A � λ−1IK , we get the claim of the lemma. �

Appendix B: Flaw in Corollary 1 of [14]

As mentioned in the Introduction, Corollary 1 in [14] relies heavily on Lemma 3 of the same paper, that claims that

x + log

(
1 + 1

α0

(
e−xα0 − 1

)) ≤ x2α0

2
, ∀x ∈ R,∀α0 > 0.

Unfortunately, this inequality is not always true. In particular, the argument of the logarithm is not always positive, which
implies that the left hand side is not always well defined. For instance, one can check that if α = 0.5 and x ≥ 2, we have

1 + 1

α0

(
e−xα0 − 1

) = 2e−0.5x − 1 ≤ (2/e) − 1 ≤ 0.
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