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We study the problem of pathwise stochastic optimal control, where the
optimization is performed for each fixed realisation of the driving noise, by
phrasing the problem in terms of the optimal control of rough differential
equations. We investigate the degeneracy phenomenon induced by directly
controlling the coefficient of the noise term, and propose a simple proce-
dure to resolve this degeneracy whilst retaining dynamic programming. As
an application, we use pathwise stochastic control in the context of stochastic
filtering to construct filters which are robust to parameter uncertainty, demon-
strating an original application of rough path theory to statistics.

1. Introduction. Stochastic optimal control is a classical optimization problem with nu-
merous applications, from optimal liquidation and portfolio selection in mathematical finance
to various problems in production planning, engineering and biology. Here one typically has
a stochastic differential equation (SDE) of the form

(1.1) dXs = b(Xs, γs)ds + σ(Xs, γs)dWs, s ∈ [t, T ],
with an initial condition Xt = x, where W is a Brownian motion and γ is an adapted control
process, and the goal is to minimize (resp. maximize) a cost (resp. reward) functional of the
form

J (t, x;γ ) = E

[∫ T

t
f (Xs, γs)ds + g(XT )

]

over all possible choices of the control γ . The resolution of this problem is by now well
understood—two primary approaches being that of the Pontryagin stochastic maximum prin-
ciple and Bellman’s principle of optimality (or dynamic programming principle), which al-
lows one to characterise the value function of the control problem, defined by v(t, x) =
infγ J (t, x;γ ), as the unique solution of a Hamilton–Jacobi–Bellman (HJB) partial differ-
ential equation (PDE).

In their 1998 paper [30], Lions and Souganidis considered a variant of this problem, known
as “pathwise stochastic control”, where the optimization is performed pathwise. In other
words, one considers controlling the solution of an equation of the form (1.1) for each in-
dividual realisation of the Brownian motion W . Moreover, they suggest that in this case the
value function should satisfy a “stochastic HJB equation”. Indeed, at least in the case when
σ does not depend on the control γ , if we pretend for the moment that the paths of W were
smooth, then, at least formally, the classical theory leads one to derive a stochastic PDE of
the form

(1.2) −dv − inf
γ

{b · ∇v + f }dt − σ · ∇v dW = 0,

with v(T , ·) = g.
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The notion of pathwise stochastic control actually goes back at least as far as the work
of Davis and Burstein [16, 17], who note that pathwise control is actually equivalent to the
classical stochastic control setting if one allows for anticipative controls, leading to the con-
clusion that the difference between classical and pathwise control boils down to nonanticipa-
tivity of the controls. In this view, pathwise control can be thought of as performing optimal
control with the benefit of complete knowledge of both the past and future realisations of the
stochastic noise. On the other hand, as shown, for instance, by Rogers [33], pathwise control
can also be used to obtain duality results for classical (nonanticipative) stochastic control,
thus providing an alternative approach for numerical computations.

Since pathwise control entails the optimization of a stochastic system path by path, it
is natural to fix such an (arbitrary) path and proceed to analyse the resulting deterministic
problem. This invites a pathwise interpretation of the stochastic integral appearing in the
controlled dynamics. The strategy followed by Buckdahn and Ma [8] circumnavigates such a
technical requirement, by instead employing a Doss–Sussmann-style transformation to con-
vert the problem into a more standard setting of “wider-sense control problem”, allowing
them to establish their value function as the unique stochastic viscosity solution of the asso-
ciated HJB equation. A more direct approach, avoiding such an ad hoc change of variables,
requires one to utilize a pathwise approach to stochastic integration.

One such deterministic approach to integration against paths of low regularity is provided
by rough path theory, introduced by Lyons [31]. The basic idea here is that the notion of inte-
gration can be extended in a consistent way to paths of lower regularity such that strong sta-
bility results concerning continuity of the integration map with respect to the driving “rough
path” hold, but one requires extra information about the driving signal than is expressed in
the path alone. Such paths, ζ say, must therefore be “enhanced” by a suitable “second or-
der” process ζ (2) which captures this missing information. The addition of the process ζ (2) is
equivalent to considering the Lévy area of the path ζ , and corresponds to the addition of the
iterated integral

∫ ·
0
∫ r

0 dζs ⊗ dζr , but since this integral does not exist in the classical sense, its
value must be postulated, rather than being uniquely determined by the original path ζ .

We note in particular the more recent work of Diehl, Friz and Gassiat [18], which appears
to be the first attempt to apply rough path theory to optimal control, in which the authors
consider controlled dynamics of the form

(1.3) dXs = b(Xs, γs)ds + λ(Xs)dζ s,

driven by a geometric rough path ζ . They proceed to both obtain a version of Pontryagin’s
maximum principle and establish their value function as the unique solution of a “rough
HJB equation”, and moreover obtain a duality result for the corresponding nonanticipative
stochastic control problem. Their results suggest that rough path theory is an ideal tool for
the study of pathwise stochastic control—a notion that we will echo in the present work.

Notably, however, the existing literature on pathwise control invariably focuses only on the
case where the control process appears in the drift term, but does not appear in the coefficient
of the noise term (or rough path). That is, the controlled dynamics considered are typically
of the general form in (1.3), where λ is not allowed to depend on the control γ . As observed
in Diehl et al. [18], the pathwise control problem with full dynamic control (particularly
control in the coefficient of the noise term), when stated in the obvious way, turns out to be
degenerate, which explains the lack of results in this direction. An indication of this arises
when one reruns the formal derivation that led to (1.2) in the case where λ depends on γ . In
this case the resulting equation exhibits the Brownian motion W inside the infimum. At least
heuristically, this corresponds to the ability to perfectly optimize over the path of the noise
term, which, as we will see, is the source of the degeneracy.
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EXAMPLE 1.1 (Insider trading). Let us suppose that an agent is trading a stock with
price composed of a diffusive term with volatility σ , representing usual market uncertainty,
and a deterministic path ζ which represents some additional information known only to the
agent. We suppose that ζ : [0, T ] → R is a continuous path which has infinite variation on
any interval. Denoting the size of the agent’s investment by γ and their wealth process by X,
we have the controlled dynamics1

(1.4) dXt,x,γ
s = γs(σ dWs + dζs), s ∈ [t, T ],

with X
t,x,γ
t = x, where W is a standard Brownian motion and x is the agent’s initial wealth.

We assume that at each time the agent can only hold a finite amount of stock. More precisely,
we impose that γ takes values in the finite interval [−ε, ε], for some ε > 0. The agent’s
expected terminal wealth is given by the value function

(1.5) v(t, x) = sup
γ

E
[
X

t,x,γ
T

]
,

where the supremum is taken over the collection of progressively measurable [−ε, ε]-valued
processes. In order to study the nature of this problem, let us approximate ζ by a smooth
function η. The dynamics (1.4) are then approximated by

dXt,x,γ,η
s = γs(σ dWs + η̇s ds),

where η̇ denotes the derivative of η. The resulting control problem is classical. The associated
HJB equation is given by

∂vη

∂t
+ sup

γ∈[−ε,ε]

{
1

2
γ 2σ 2 ∂2vη

∂x2 + γ η̇t

∂vη

∂x

}
= 0,

with terminal condition vη(T , x) = x. The solution vη is seen to be

(1.6) vη(t, x) = x + ε

∫ T

t
|η̇s |ds,

and we infer that the optimal control γ ∗ is given by

(1.7) γ ∗
t = ε sgn(η̇t ).

Suppose now that we were to repeatedly refine the approximation η so that it better captures
the fast fluctuations of ζ . Even without giving a precise definition of what we might mean
by the limit as η → ζ , it is clear that the solution (1.6) should diverge to infinity in this
limit. In other words, the original value function, as defined in (1.5), should be simply given
by v(t, x) = ∞ whenever t < T . Thus, we infer that our original control problem, with the
infinite variation signal ζ , is degenerate.

The phenomenon exhibited here is typical for such control problems, where we attempt to
control the coefficient of the infinite variation term in the controlled dynamics. The problem
in the previous example is that, in contrast to a classical stochastic setting, since the controller
can “see” the path ζ in advance, they can choose controls γ with very small, but extremely
quick, fluctuations, which allow the solution X to take full advantage of the infinite variation
of ζ . Indeed, notice that the sign of the optimal control in (1.7) changes at the same rate as
that of η̇, which varies “infinitely quickly” in the limit as η → ζ .

1Let us suppose for the moment that we have employed a suitable notion of integration such that the integral
against ζ is well-posed.
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To paraphrase Diehl et al. [18], if the coefficient of the driving signal has enough de-
pendence on the control, and this signal has unbounded variation on any interval, then the
controller can drive the solution to reach any point instantly whilst incurring an arbitrarily
low cost.

In the current work we investigate this degeneracy phenomenon in more detail, and see
how it may be resolved by introducing an artificial cost to penalise the variation of the con-
trols. We will see how this cost may be chosen to ensure that a dynamic programming prin-
ciple is retained, thus allowing one to recover a setting comparable to that of [18]. As an
extension of that paper, we proceed to consider pathwise control with unbounded cost func-
tions and, by obtaining locally uniform bounds on the controls, establish the value function
as the unique solution of a rough HJB equation.

Stochastic filtering concerns the problem of estimating the current state of a hidden process
from noisy observations, and itself has widespread and important applications, from finance
and biology to engineering, defence and aerospace. In their paper [15], Crisan, Diehl, Friz
and Oberhauser used rough path theory to resolve an existing open problem in the theory of
“robust” stochastic filtering, by establishing continuity of a large class of stochastic filters
with respect to the observation path, by first enhancing it by its Lévy area. The second con-
tribution of the current work is to consider an application of pathwise control to another kind
of “robust” filtering, namely robustness of the filter with respect to model uncertainty.

Although classical filters are generally known to perform well under perfect knowledge of
the system dynamics, they are typically very sensitive to modelling errors. Thus, the problem
of robust filtering, in this sense, has attracted a great deal of interest; see the discussion at the
beginning of Section 4.2. In [2] the authors constructed such a robust filter, the calculation
of which involves the derivation of a pathwise stochastic control problem. In that setting the
control terms did not appear (in any crucial way) in the coefficient of the driving noise in the
controlled dynamics. Similarly to the approach in Buckdahn and Ma [8], a change of variables
could therefore be used to “hide” the rough noise term in the drift coefficient, thus recovering
a more classical optimal control setting. In the current work we aim to significantly extend
the theoretical results of [2], which will require us to be able to handle full control of the
dynamics. As in Crisan et al. [15], it will be useful to consider the observation process as a
rough path, by first enhancing it by its Lévy area.

It is our hope that the following exposition will be of interest to readers familiar with rough
path analysis, but also accessible to those without a working knowledge of the subject. Ac-
cordingly, we begin Section 2 with a brief recall of the necessary technical preliminaries, and
then present some new results for rough differential equations in the setting of optimal con-
trol. In Section 3 we discuss some alternative reformulations of the pathwise control problem
with the aim to resolve the degeneracy issue. We provide a rigorous treatment of the resulting
unbounded control problem, and illustrate the ideas with some simple examples. In Section 4
we turn our attention to robust stochastic filtering. Our approach leads naturally to a pathwise
optimal control problem and, despite the nonlinearities inherited from the classical filtering
equations, we will proceed to characterise the associated value function as the solution of a
rough HJB equation.

2. Rough path preliminaries. We would like to consider an Rm-valued process X

which, for each choice of control γ : [0, T ] → Rk , satisfies an equation of the form

(2.1) dXs = b(Xs, γs)ds + λ(Xs, γs)dζs, s ∈ [0, T ],
where ζ is a continuous (deterministic) Rd -valued path of infinite variation.

Suppose that b and λ are Lipschitz continuous. In the case when γ is of finite variation
and λ does not depend on the solution X, the integral against ζ then exists in the classical
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Riemann–Stieltjes sense by integration by parts (see, e.g., Theorem 1.2.3 in Stroock [36]).
The equation (2.1) then has a unique solution, and moreover the solution map from the driver
ζ to the corresponding solution Xζ is continuous with respect to the supremum norm. In
fact, in this case all the results of the next section can be reproduced without any reference to
rough path theory, or any other such sophisticated machinery.

On the other hand, in the general case when λ depends on X, the integral against ζ in
(2.1) does not even exist in the Riemann–Stieltjes sense. Moreover, even if ζ were smooth,
the solution map ζ �→ Xζ is known to lack continuity, which later would be fatal to the
derivation of our HJB equation.

A deterministic approach to integration against very general classes of signals is provided
by rough path theory, which moreover allows the continuity property mentioned above to be
recovered. As mentioned in the Introduction, the key here is, rather than to simply integrate
against the path ζ , to first enhance ζ by a suitable “second order” process ζ (2), which con-
tains the missing information required to construct the so-called “rough integral” against the
enhanced path ζ := (ζ, ζ (2)). There are by now a number of monographs on this subject, such
as Friz and Hairer [23] and Friz and Victoir [24].

The language of rough path theory is typically written either in terms of the 1
p

-Hölder
regularity of paths, or in terms of their p-variation. When working only with continuous
paths (as we shall), these two notions of regularity are more or less equivalent (see Chapter 5
in [24] for precise details), and the theory may be built up in an almost identical fashion using
either notion. In the current work it will turn out to be necessary to work primarily with p-
variation norms. On the other hand, in the proof of Proposition 2.4 below we will make use
of the marginally better control on the regularity of paths over small time intervals provided
by restricting to 1

p
-Hölder rough paths. We shall therefore make use of both these notions of

regularity.

2.1. Notation. Throughout, we will consider a finite time interval [0, T ], and write
	[0,T ] := {(s, t) : 0 ≤ s ≤ t ≤ T } for the standard 2-simplex. For any path ζ on [0, T ] we
define the path increment ζs,t := ζt − ζs , and write ‖ζ‖∞ := sups∈[0,T ] |ζs | for the supremum
norm. We will also make use of the following function spaces. We write:

• L(Rd;Rm) for the space of linear maps from Rd to Rm,
• Lipb for the space of bounded Lipschitz functions b : Rm ×Rk →Rm,
• Cn

b (n ∈ N) for the space of n times continuously differentiable (in the Fréchet sense)
functions λ : Rm × Rk → L(Rd;Rm) such that λ and all its derivatives up to order n are
uniformly bounded,

• Cp-var = Cp-var([0, T ];Rk) for the space of Rk-valued continuous paths of finite p-
variation, that is, continuous paths γ such that the seminorm

‖γ ‖p :=
(

sup
P

∑
[s,t]∈P

|γs,t |p
) 1

p

< ∞,

where the supremum is taken over all partitions P of the interval [0, T ],
• C0,p-var = C0,p-var([0, T ];Rk) for the closure of smooth paths from [0, T ] → Rk with re-

spect to the p-variation seminorm.

For p ∈ [2,3) we write C p = C p([0, T ];Rd) for the space of Rd -valued 1
p

-Hölder rough

paths, that is, pairs ζ = (ζ, ζ (2)), where the path ζ : [0, T ] → Rd and its “enhancement”
ζ (2) : 	[0,T ] → Rd ⊗ Rd satisfy certain algebraic and analytical constraints, namely Chen’s
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relation,2

ζ
(2)
s,t = ζ (2)

s,r + ζ
(2)
r,t + ζs,r ⊗ ζr,t ,

which is assumed to hold for all times s ≤ r ≤ t , as well as the condition that

|||ζ ||| 1
p

-Höl := ‖ζ‖ 1
p

-Höl +
∥∥ζ (2)

∥∥ 2
p

-Höl < ∞ where

‖ζ‖ 1
p

-Höl := sup
s �=t∈[0,T ]

|ζs,t |
|t − s| 1

p

and
∥∥ζ (2)

∥∥ 2
p

-Höl := sup
s �=t∈[0,T ]

|ζ (2)
s,t |

|t − s| 2
p

.

The enhanced path ζ is sometimes referred to as the ‘lift’ of ζ . We also define

∥∥ζ (2)
∥∥p

2
:=

(
sup
P

∑
[s,t]∈P

∣∣ζ (2)
s,t

∣∣p
2

) 2
p

,

|||ζ |||p := ‖ζ‖p + ∥∥ζ (2)
∥∥p

2
.

We will sometimes write for example, ‖ζ‖p;[s,t] for the p-variation of ζ over the subinterval
[s, t].

As we are working on the time interval [0, T ], it is straightforward to see that any rough

path ζ = (ζ, ζ (2)) ∈ C p satisfies ‖ζ‖p ≤ ‖ζ‖ 1
p

-HölT
1
p and ‖ζ (2)‖p

2
≤ ‖ζ (2)‖ 2

p
-HölT

2
p , which

in particular implies that |||ζ |||p < ∞ for any ζ ∈ C p .
We introduce the induced rough path metrics3 given, for rough paths η = (η, η(2)) and

ζ = (ζ, ζ (2)), by


 1
p

-Höl(η, ζ ) := ‖η − ζ‖ 1
p

-Höl +
∥∥η(2) − ζ (2)

∥∥ 2
p

-Höl,


p(η, ζ ) := ‖η − ζ‖p + ∥∥η(2) − ζ (2)
∥∥p

2
.

As can be readily checked, any smooth path ζ : [0, T ] →Rd can be “lifted” in a canonical
way to a rough path ζ = (ζ, ζ (2)) by enhancing it with the integral

(2.2) ζ
(2)
s,t =

∫ t

s
ζs,r ⊗ dζr .

On the other hand, for a general 1
p

-Hölder continuous path ζ , the integral in (2.2) does not
exist in the classical sense. In this case the value of this integral is postulated by the enhance-
ment ζ (2), which in practice is often constructed using stochastic integration.

Later we will also consider the space of geometric rough paths C
0,p
g ⊂ C p , defined as

the closure of canonical lifts of smooth paths with respect to 
 1
p

-Höl. For example, when ζ

is a semimartingale and the integral in (2.2) is defined using Stratonovich integration, the
resulting lift turns out to be a (random) geometric rough path. This property of being well
approximated by smooth paths allows one to make sense of solutions to a wide class of rough
ODEs and PDEs—we will see an example of this in Definition 3.13 below.

2Here ⊗ is just the standard tensor product from Rd ×Rd to Rd ⊗Rd ⊂Rd×d .
3The “metrics” 
 1

p
-Höl, 
p do not distinguish between constants, but C p does become a complete metric space

when endowed with the metric (η, ζ ) �→ |η0 − ζ0| + 
 1
p

-Höl(η, ζ ).
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2.2. Rough integration. We now define a suitable class of integrands for rough integra-
tion. Given a rough path ζ ∈ C p , we define the space of controlled rough paths (in the sense
of Gubinelli [26]), which we denote by D

p
ζ = D

p
ζ ([0, T ];Rm), consisting of pairs of paths(

X,X′) ∈ Cp-var([0, T ];Rm) × Cp-var([0, T ];L(
Rd;Rm))

such that the remainder term RX , given by

RX
s,t := Xs,t − X′

sζs,t ,

satisfies ‖RX‖p
2

< ∞. Here X′ is called the Gubinelli derivative of X (with respect to ζ ).

Equipped with the norm (X,X′) �→ |X0|+|X′
0|+‖X′‖p +‖RX‖p

2
, the space D

p
ζ is a Banach

space.

REMARK 2.1. As our main interest is in the optimal control of the solution X to (2.1),
the notion that X is “controlled” by ζ introduces a possible source of confusion, but our use
of the term should always be clear from the context.

PROPOSITION 2.2 (Proposition 2.6 in [25]). Let ζ = (ζ, ζ (2)) ∈ C p([0, T ];Rd), and let
(X,X′) ∈ D

p
ζ ([0, T ];L(Rd;Rm)) be a controlled rough path. Then the limit∫ T

0
Xr dζ r := lim|P|→0

∑
[s,t]∈P

Xsζs,t + X′
sζ

(2)
s,t

exists,4 where the limit is taken over any sequence of partitions P of the interval [0, T ] such
that the mesh size |P| → 0. This limit (which does not depend on the choice of sequence of
partitions) is called the rough integral of X against ζ .

Moreover, for any 0 ≤ s < t ≤ T , we have the estimate

(2.3)

∣∣∣∣
∫ t

s
Xr dζ r − Xsζs,t − X′

sζ
(2)
s,t

∣∣∣∣
≤ Cp

(∥∥RX
∥∥p

2 ;[s,t]‖ζ‖p;[s,t] + ∥∥X′∥∥
p;[s,t]

∥∥ζ (2)
∥∥p

2 ;[s,t]
)
,

where the constant Cp depends only on p.

2.3. Rough differential equations with controls. For a given p ∈ [2,3), rough path
ζ ∈ C p([0, T ];Rd) and control function γ ∈ C

p
2 -var([0, T ];Rk), we consider the rough dif-

ferential equation (RDE)

(2.4) dXs = b(Xs, γs)ds + λ(Xs, γs)dζ s, s ∈ [0, T ],
controlled (in the sense of optimal control) by γ , with X0 = x ∈ Rm, where the second term
on the right-hand side is interpreted as a rough integral against ζ .

The main element that takes us outside the standard RDE setting is the appearance of the
control γ in the coefficients. Note however that, since γ ∈ C

p
2 -var, it is immediately con-

trolled by ζ with γ ′ = 0, so that (γ,0) ∈ D
p
ζ ([0, T ];Rk). Then, provided that λ ∈ C2

b , for any
(X,X′) ∈ D

p
ζ ([0, T ];Rm), the composition λ(X,γ ) can also be interpreted as being con-

trolled by ζ , with Gubinelli derivative given by

(2.5) λ(X,γ )′ = Dxλ(X,γ )X′,
where Dxλ is the Fréchet derivative of λ in its first argument.

4Strictly speaking, in making precise sense of the product X′
sζ

(2)
s,t , we use the natural identification of

L(Rd ;L(Rd ;Rm)) with L(Rd ⊗Rd ;Rm).
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LEMMA 2.3. For some n ≥ 1, let 0 = t0 < t1 < · · · < tn−1 < tn = T , be a partition of the
interval [0, T ]. Then, for any path X, one has that

‖X‖p;[0,T ] ≤ n

(
n∑

i=1

‖X‖p
p;[ti−1,ti ]

) 1
p

.

PROOF. Let 0 = s0 < s1 < · · · < sN−1 < sN = T be another partition of the interval
[0, T ]. We can label the union of these two partitions in two different ways as follows. We
can either write

sj−1 = t
j
0 < t

j
1 < · · · < tjnj

= sj for each j = 1, . . . ,N or

ti−1 = si
0 < si

1 < · · · < si
Ni

= ti for each i = 1, . . . , n,

where, crucially, nj ≤ n for every j . We have

N∑
j=1

|Xsj − Xsj−1 |p ≤
N∑

j=1

( nj∑
i=1

|X
t
j
i

− X
t
j
i−1

|
)p

≤ np
N∑

j=1

nj∑
i=1

|X
t
j
i

− X
t
j
i−1

|p

= np
n∑

i=1

Ni∑
j=1

|Xsi
j
− Xsi

j−1
|p ≤ np

n∑
i=1

‖X‖p
p;[ti−1,ti ].

The result then follows from taking the supremum over all possible partitions s0 < s1 < · · · <
sN of the interval [0, T ]. �

PROPOSITION 2.4. Let b ∈ Lipb and λ,ψ ∈ C2
b . For some p ∈ [2,3) and L > 0, let ζ ∈

C p such that |||ζ ||| 1
p

-Höl ≤ L, and suppose that X satisfies the RDE (2.4) with X′ = λ(X,γ ),

for some γ ∈ C
p
2 -var. We have the following estimates:

(i) ‖ψ(X,γ )′‖p ≤ Cλ,ψ,p(‖X‖p + ‖γ ‖p
2
),

(ii) ‖Rψ(X,γ )‖p
2

≤ Cψ,p(‖X‖2
p + ‖RX‖p

2
+ ‖γ ‖p

2
),

(iii) ‖X‖p ≤ Cb,λ,p,T ,L(1 + ‖γ ‖1+p
p
2

),

(iv) ‖RX‖p
2

≤ Cb,λ,p,T ,L(1 + ‖γ ‖2+p
p
2

),

where in each case the constant C depends only on the variables indicated.

PROOF. The first two estimates follow straightforwardly, noting that the Gubinelli
derivative of ψ(X,γ ) is given by ψ(X,γ )′ = Dxψ(X,γ )λ(X,γ ). Let us therefore turn our
attention to the proof of (iii). In the following the symbol � shall denote inequality up to a
multiplicative constant depending only on b, λ, p, T and L.

Let [s, t] ⊆ [0, T ]. We then have∣∣RX
s,t

∣∣ = ∣∣Xs,t − X′
sζs,t

∣∣
≤

∣∣∣∣
∫ t

s
λ(Xr, γr)dζ r − λ(Xs, γs)ζs,t − λ(X,γ )′sζ

(2)
s,t

∣∣∣∣
+

∣∣∣∣
∫ t

s
b(Xr, γr)dr

∣∣∣∣ + ∣∣λ(X,γ )′sζ
(2)
s,t

∣∣
�

∥∥Rλ(X,γ )
∥∥p

2 ;[s,t]‖ζ‖p;[s,t] + ∥∥λ(X,γ )′
∥∥
p;[s,t]

∥∥ζ (2)
∥∥p

2 ;[s,t] + |t − s| + ∣∣ζ (2)
s,t

∣∣,
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where we applied (2.3) to obtain the last line. It follows that for a given interval I ⊆ [0, T ] of
length |I |,∥∥RX

∥∥p
2 ;I �

∥∥Rλ(X,γ )
∥∥p

2 ;I‖ζ‖p;I + ∥∥λ(X,γ )′
∥∥
p;I

∥∥ζ (2)
∥∥p

2 ;I + |I | + ∥∥ζ (2)
∥∥p

2 ;I .

Applying the estimates in (i) and (ii) with ψ = λ, we obtain∥∥RX
∥∥p

2 ;I ≤ C1
((‖X‖2

p;I + ∥∥RX
∥∥p

2 ;I + ‖γ ‖p
2 ;I

)‖ζ‖p;I

+ (
1 + ‖X‖2

p;I + ‖γ ‖p
2 ;I

)∥∥ζ (2)
∥∥p

2 ;I + |I | + ∥∥ζ (2)
∥∥p

2 ;I
)

for some constant C1 (which only depends on b, λ and p).

Since ‖ζ‖p;I ≤ ‖ζ‖ 1
p

-Höl|I | 1
p ≤ L|I | 1

p , there exists some r > 0 (depending only on p, L

and C1) sufficiently small such that

(2.6) C1‖ζ‖p;I ≤ 1

2
whenever |I | ≤ r . It is enough to prove the result for T ≤ r , since one can then extend the
result to any larger T using Lemma 2.3. We will therefore assume that T ≤ r , so that (2.6)
holds for all intervals I under consideration. We then deduce that

(2.7)
∥∥RX

∥∥p
2 ;I �

(‖X‖2
p;I + ‖γ ‖p

2 ;I
)‖ζ‖p;I + (

1 + ‖X‖2
p;I + ‖γ ‖p

2 ;I
)∥∥ζ (2)

∥∥p
2 ;I + |I |.

From the basic estimate

(2.8) ‖X‖p;I � ‖ζ‖p,I + ∥∥RX
∥∥p

2 ;I ,

we then have that

(2.9) ‖X‖p;I ≤ C2
(
1 + ‖γ ‖p

2 ;I
)(‖ζ‖p;I + ∥∥ζ (2)

∥∥p
2 ;I + |I |) + C2‖X‖2

p;I
for some constant C2 (depending on b, λ, p and L). From here, we aim to infer an esti-
mate which holds on small subintervals, and then use Lemma 2.3 to paste such subintervals
together to obtain an estimate which holds on the entire interval [0, T ].

It follows from above that, if C2‖X‖p;I ≤ 1
2 , then

‖X‖p;I ≤ 2C2
(
1 + ‖γ ‖p

2 ;I
)(‖ζ‖p;I + ∥∥ζ (2)

∥∥p
2 ;I + |I |).

Let t∗ = sup{t ∈ [0, T ] : C2‖X‖p;I ≤ 1
2 whenever |I | ≤ t}. If t∗ = T then we are done. Oth-

erwise, let I be an interval such that |I | = t∗ and C2‖X‖p;I = 1
2 . Then

1

2C2
= ‖X‖p;I ≤ 2C2

(
1 + ‖γ ‖p

2 ;I
)(‖ζ‖p;I + ∥∥ζ (2)

∥∥p
2 ;I + |I |)

≤ 2C2
(
1 + ‖γ ‖p

2 ;[0,T ]
)(‖ζ‖ 1

p
-Höl

(
t∗

) 1
p + ∥∥ζ (2)

∥∥ 2
p

-Höl

(
t∗

) 2
p + t∗

)
,

and we deduce that
1

t∗
� 1 + ‖γ ‖p

p
2 ;[0,T ].

The interval [0, T ] can be partitioned into n := �T/t∗� subintervals I of length at most t∗, on
each of which we have ‖X‖p;I ≤ 1

2C2
. From Lemma 2.3, we obtain the bound ‖X‖p;[0,T ] �

n
1+ 1

p , where n ≤ 1 + T/t∗ � 1 + ‖γ ‖p
p
2 ;[0,T ], and the estimate in (iii) follows.

Substituting (2.8) into (2.7), we have∥∥RX
∥∥p

2 ;I ≤ C3
(
1 + ‖γ ‖p

2 ;I
)(‖ζ‖p;I + ∥∥ζ (2)

∥∥p
2 ;I + |I |) + C3

∥∥RX
∥∥2

p
2 ;I
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for some new constant C3. This equation is of the same form as (2.9). We can thus apply
exactly the same argument as above to deduce the estimate in (iv). �

The results of Theorem 2.5 and Proposition 2.6 below are new in this setting due to the
inclusion of the control function γ , particularly in the controlled path setting of Gubinelli
with path regularity measured in p-variation, but they are based upon standard results, so we
shall postpone their proofs to the Appendix.

THEOREM 2.5. Let b ∈ Lipb, λ ∈ C3
b and ζ ∈ C p . For any x ∈ Rm and any γ ∈ C

p
2 -var,

there exists a unique solution (X,X′) ∈ D
p
ζ to the RDE

(2.10) Xt = x +
∫ t

0
b(Xs, γs)ds +

∫ t

0
λ(Xs, γs)dζ s, t ∈ [0, T ],

such that X′ = λ(X,γ ), where λ(X,γ ) is interpreted as a controlled rough path with Gu-
binelli derivative given by (2.5).

PROPOSITION 2.6. Let b ∈ Lipb, λ ∈ C3
b , γ,ϑ ∈ C

p
2 -var and η, ζ ∈ C p with |||η||| 1

p
-Höl ≤

L, |||ζ ||| 1
p

-Höl ≤ L. Let (X,X′) = (X,λ(X,γ )) ∈ D
p
η (resp. (Y,Y ′) = (Y,λ(Y,ϑ)) ∈ D

p
ζ ) be

the unique solution of the RDE (2.10) controlled by γ (resp. ϑ) and driven by η (resp. ζ ) with
the initial condition x (resp. y). Suppose that ‖γ ‖p

2
,‖ϑ‖p

2
≤ M for some M > 0. Then

(2.11)
∥∥X′ − Y ′∥∥

p + ∥∥RX − RY
∥∥p

2
≤ C

(|x − y| + ‖γ − ϑ‖∞ + ‖γ − ϑ‖p
2

+ 
p(η, ζ )
)
.

Moreover, given ψ ∈ C3
b , we have

(2.12)

∥∥∥∥
∫ ·

0
ψ(Xs, γs)dηs −

∫ ·
0

ψ(Ys,ϑs)dζ s

∥∥∥∥
p

≤ C′(|x − y| + ‖γ − ϑ‖∞ + ‖γ − ϑ‖p
2

+ 
p(η, ζ )
)
.

Here the constants C, C′ depend on b, λ, p, T , L and M , and C ′ also depends on ψ .

3. Pathwise optimal control.

3.1. Avoiding degeneracy. Our set-up is the following. We fix a geometric rough path
ζ = (ζ, ζ (2)) ∈ C

0,p
g ([0, T ];Rd) such that |||ζ ||| 1

p
-Höl ≤ L for some p ∈ [2,3) and L > 0. We

consider, for each γ ∈ C
p
2 -var([0, T ];Rk), the controlled dynamics

(3.1) dXt,x,γ
s = b

(
Xt,x,γ

s , γs

)
ds + λ

(
Xt,x,γ

s , γs

)
dζ s, X

t,x,γ
t = x,

driven by ζ . We then consider the control problem with value function given by

(3.2) v(t, x) := inf
γ∈C p

2 -var
J (t, x;γ )

for (t, x) ∈ [0, T ] ×Rm, where the cost functional J is defined as

(3.3) J (t, x;γ ) :=
∫ T

t
f

(
Xt,x,γ

s , γs

)
ds +

∫ T

t
ψ

(
Xt,x,γ

s , γs

)
dζ s + g

(
X

t,x,γ
T

)
.

Here f : Rm ×Rk →R, ψ : Rm ×Rk → L(Rd;R) and g : Rm →R.
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LEMMA 3.1. Suppose that b ∈ Lipb, λ ∈ C3
b and ψ ∈ C2

b . Then, for any t , x and γ , we
have that

(3.4)
∣∣∣∣
∫ T

t
ψ

(
Xt,x,γ

s , γs

)
dζ s

∣∣∣∣ ≤ C
(
1 + ‖γ ‖2(1+p)

p
2 ;[t,T ]

)
,

where the constant C depends only on b, λ, ψ , p, T and L.

PROOF. By Theorem 2.5, the rough differential equation (3.1) has a unique solution
(Xt,x,γ , λ(Xt,x,γ , γ )) ∈ D

p
ζ for any γ ∈ C

p
2 -var, and the integral

∫ ·
t ψ(X

t,x,γ
s , γs)dζ s is then

well-defined. By (2.3), we have that∣∣∣∣
∫ T

t
ψ

(
Xt,x,γ

s , γs

)
dζ s

∣∣∣∣ ≤ Cp

(∣∣ψ(x, γt )ζt,T

∣∣ + ∥∥Rψ(X,γ )
∥∥p

2 ;[t,T ]‖ζ‖p;[t,T ]

+ ∣∣ψ(
Xt,x,γ , γ

)′
t ζ

(2)
t,T

∣∣ + ∥∥ψ(X,γ )′
∥∥
p;[t,T ]

∥∥ζ (2)
∥∥p

2 ;[t,T ]
)
.

Applying the estimates in Proposition 2.4, we deduce (3.4). �

REMARK 3.2. The choice to measure the regularity of the controls using q-variation
for q = p

2 ensures that 1
p

+ 1
q

> 1, so that the corresponding Young integral of γ against ζ

always exists. It may be tempting to wonder whether the result of Lemma 3.1 could still hold
using a bound based on the q-variation of controls for a larger value of q . However, this is
not true in general. Indeed, if 1

p
+ 1

q
< 1, then one can construct a sequence {(ζ n, γ n)}n≥1

of pairs of bounded variation paths such that ‖ζ n‖p = 1 = ‖γ n‖q for all n ≥ 1, but such that∫ T
0 γ n

s dζ n
s → ∞ as n → ∞, which would contradict (3.4).

Preventing degeneracy of this control problem can essentially be thought of as preventing
the size of the rough integral above from becoming arbitrarily large. Lemma 3.1 shows that
one can control the size of this integral by the p

2 -variation of the controls. However, since
controls can exhibit arbitrarily large p

2 -variation whilst remaining uniformly bounded, the
cost functional in (3.3) is not able to adequately penalise this variation. In view of Exam-
ple 1.1, for a typical choice of ψ , one should expect the value function in (3.2) to be simply
given by

v(t, x) = −∞ for all (t, x) ∈ [0, T ) ×Rm.

We also point out that merely restricting the class of controls γ to, say, smooth functions does
nothing to resolve this problem.

The estimate in (3.4) implies that one could prevent degeneracy by imposing a uniform
bound on the p

2 -variation of the controls but, as appreciated in Diehl et al. [18], this would
not be a very natural condition. Instead, we first propose to introduce an artificial cost in order
to penalise this variation.

DEFINITION 3.3. Let S ⊆ C
p
2 -var be a Banach space of functions from [0, T ] → Rk

(with a possibly stronger topology). We shall call a function β : 	[0,T ] ×C
p
2 -var →R∪{+∞}

a regularising cost on S , if it is bounded below, takes the value +∞ on 	[0,T ] × (C
p
2 -var \S),

and, for every 0 ≤ r < t ≤ T , the map βr,t : S →R is continuous, and satisfies

(3.5)
βr,t (γ )

‖γ ‖2(1+p)
p
2 ;[r,t]

−→ ∞ as ‖γ ‖p
2 ;[r,t] −→ ∞.
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An example of such a cost on C
p
2 -var is given by

(3.6) βr,t (γ ) = ε‖γ ‖q
p
2 ;[r,t]

for any ε > 0 and q > 2(1 + p).

REMARK 3.4. We point out that the power in the denominator in (3.5) is sufficient but
by no means necessary. This choice is a result of the estimate in (3.4), which we do not expect
to be sharp.

Instead of the naive value function in (3.2), we consider the modified function given by5

(3.7) V (t, x) := inf
γ∈C0,

p
2 -var

{
J (t, x;γ ) + βt,T (γ )

}
,

for some regularising cost β . In practice, the justification of the introduction of this “artifi-
cial cost” depends on the application one has in mind; we will see examples of this later in
Sections 3.6 and 4.5.

The following proposition demonstrates the nondegeneracy of this modified control prob-
lem.

PROPOSITION 3.5. Under the natural assumption that the functions f and g are
bounded below, the same is true of the value function V .

PROOF. It follows from Lemma 3.1 and (3.5) that∣∣∣∣
∫ T

t
ψ

(
Xt,x,γ

s , γs

)
dζ s

∣∣∣∣ ≤ C + βt,T (γ )

2

for some new constant C, and hence that

J (t, x;γ ) + βt,T (γ ) ≥
∫ T

t
f

(
Xt,x,γ

s , γs

)
ds + g

(
X

t,x,γ
T

) + βt,T (γ )

2
− C.

Since the cost functions f , g and β are all bounded below, the result follows. �

3.2. Recovering dynamic programming. We have seen that one can resolve the degener-
acy of the optimal control problem by introducing an artificial cost to penalise the variation
of the controls. In Definition 3.3 we introduced a rather general class of cost functions which
provide a sufficient penalisation. The problem with such cost functions, such as the one in
(3.6), is that typically they are not additive, in the sense that βr,s +βs,t �= βr,t . A consequence
of this is that the corresponding control problem is no longer dynamic. That is, the value
function in (3.7) is not generally amenable to dynamic programming, and thus one cannot
necessarily write down a PDE associated with the control problem. Our next aim will be to
demonstrate the existence of an additive regularising cost on a more regular space of controls,
which allows dynamic programming to be recovered.

LEMMA 3.6. Let β be a regularising cost on C0,
p
2 -var. Let S ⊆ C0,

p
2 -var be a subset which

contains all smooth functions from [0, T ] → Rk . Then the value function defined in (3.7)
satisfies

(3.8) V (t, x) = inf
γ∈S

{
J (t, x;γ ) + βt,T (γ )

}
.

5The restriction to controls γ ∈ C0,
p
2 -var ⊂ C

p
2 -var is negligible. Indeed, we recall that C

q
2 -var ⊂ C0,

p
2 -var for

any q ∈ [2,p).
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PROOF. By definition, for any γ ∈ C0,
p
2 -var, there exists a sequence of smooth controls

{γ n}n≥1 such that ‖γ n − γ ‖∞ + ‖γ n − γ ‖p
2

→ 0 as n → ∞. The result then follows from
the continuity of βt,T and the stability estimates in Proposition 2.6. �

In particular, (3.8) holds with S = W 1,q for any q ≥ 1, where W 1,q = W 1,q([0, T ];Rk)

denotes the usual Sobolev space. We recall the continuous embeddings W 1,q ↪→ C1-var ↪→
C0,

p
2 -var, exhibited by the inequalities

T
q−1
q

(∫ t

r
|γ̇s |q ds

) 1
q ≥ ‖γ ‖1;[r,t] ≥ ‖γ ‖p

2 ;[r,t],

where we write γ̇ for the unique element γ̇ ∈ Lq([0, T ];Rk) such that dγs = γ̇s ds. It follows
that, for any ε > 0 and q > 2(1 + p), the choice

βr,t (γ ) = ε

∫ t

r
|γ̇s |q ds

for γ ∈ W 1,q (and β(γ ) ≡ ∞ otherwise), defines a regularising cost on W 1,q . Moreover,
β is additive, in the sense that βr,s + βs,t = βr,t for all r ≤ s ≤ t ; in other words, for each
γ ∈ W 1,q , the two-parameter functional β(γ ) : 	[0,T ] → R is uniquely characterised by the
path t �→ β0,t (γ ). With this choice of β , we can now write

V (t, x) = inf
a∈Rk

v(t, x, a),

where, for (t, x, a) ∈ [0, T ] ×Rm ×Rk ,

(3.9) v(t, x, a) := inf
u∈Lq

{
J

(
t, x;γ t,a,u) + ε

∫ T

t
|us |q ds

}
,

with γ t,a,u
r := a + ∫ r

t us ds for r ∈ [t, T ]. The function v is both nondegenerate, and satisfies
the following dynamic programming principle:

PROPOSITION 3.7. Let us write Xt,x,a,u := Xt,x,γ t,a,u
. Then, for any t , x, a and r ∈

[t, T ], with v as in (3.9), we have

v(t, x, a) = inf
u∈Lq

{
v
(
r,Xt,x,a,u

r , γ t,a,u
r

) +
∫ r

t
f

(
Xt,x,a,u

s , γ t,a,u
s

)
ds

+
∫ r

t
ψ

(
Xt,x,a,u

s , γ t,a,u
s

)
dζ s + ε

∫ r

t
|us |q ds

}
.

This result follows the same proof as that of Theorem 2.1 in [40], Chapter 4. In particular,
the rough integrals appearing in the controlled dynamics and value function do not cause any
additional difficulty.

3.3. A generalised dynamic control problem. To summarise the previous subsections,
we propose to reformulate the naive control problem, given originally by (3.1)–(3.3), to re-
solve the degeneracy problem while retaining enough dynamic structure to retain dynamic
programming, by restricting to a sufficiently regular space of controls, and introducing an
additive artificial cost function, written in terms of the derivative of the controls. Rather than
merely (3.1), by including γ as part of the state trajectory, we instead consider the controlled
dynamics

dXt,x,a,u
s = b

(
Xt,x,a,u

s , γ t,a,u
s

)
ds + λ

(
Xt,x,a,u

s , γ t,a,u
s

)
dζ s, X

t,x,a,u
t = x,(3.10)

dγ t,a,u
s = h

(
γ t,a,u
s , us

)
ds, γ

t,a,u
t = a.(3.11)
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For generality, we have introduced the function h : Rk × U → Rk , where here (U,‖ · ‖U)

is a finite dimensional Banach space, and the control u belongs to the space U of bounded
measurable functions u : [0, T ] → U .

We shall henceforth consider the cost functional

J (t, x, a;u) :=
∫ T

t
f

(
Xt,x,a,u

s , γ t,a,u
s , us

)
ds

+
∫ T

t
ψ

(
Xt,x,a,u

s , γ t,a,u
s

)
dζ s + g

(
X

t,x,a,u
T , γ

t,a,u
T

)
and the value function

(3.12) v(t, x, a) := inf
u∈U J (t, x, a;u),

where we have absorbed a regularising cost into the function f : Rm ×Rk × U → R, which
crucially is now also allowed to depend on u. There is also no harm in allowing the terminal
cost g : Rm ×Rk →R to depend on the terminal value of γ .

REMARK 3.8. If the function h = h(a,u) were bounded in u, then setting X̃ = (X,γ )

would now put us into a comparable setting to Diehl et al. [18]. However, it is more natural
here to allow h to be unbounded in u, meaning that [18], Theorem 5, does not directly apply.6

Moreover, in [18] the cost functions f and g are assumed to be bounded, but we will relax
this assumption in the current work.

The inclusion of the integral
∫

ψ(X,γ )dζ in the value function also takes us outside the
setting of [18]. This term could be included in the terminal cost by setting X̃ = (X,γ,Z) and
g̃(x, a, z) = g(x, a)+z with Zr = z+ ∫ r

t ψ(X,γ )dζ , albeit with the additional complication
that the terminal cost g̃ would then be neither bounded from above nor below.

ASSUMPTION 3.9. We assume that:

• b ∈ Lipb and λ,ψ ∈ C3
b ,

• f = f (x, a,u) and g = g(x, a) are continuous, bounded below, and Lipschitz continuous
in (x, a), uniformly in u,

• h = h(a,u) is continuous, Lipschitz in a, uniformly in u, and is bounded in a, locally
uniformly in u, and moreover, for some δ ≥ 1, satisfies

(3.13) sup
a∈Rk

|h(a,u)|
‖u‖δ

U

−→ 0 as ‖u‖U −→ ∞,

• with the same δ as in (3.13), the running cost f satisfies

(3.14) inf
x∈Rm,a∈Rk

f (x, a,u)

‖u‖2(1+p)δ
U

−→ ∞ as ‖u‖U −→ ∞.

REMARK 3.10. One could in principle also allow the drift coefficient b to depend on the
control u. In this case it is less straightforward to obtain solutions to the RDE (3.10), but the
necessary technical results have already been established in [18].

The following lemma demonstrates the nondegeneracy of our newly formulated control
problem.

6This boundedness condition is not stated explicitly in [18], but is necessary for the application of [4], Corol-
lary III.3.6, in the proof of [18], Theorem 5; see Assumption (A1) in [4], Chapter III.
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LEMMA 3.11. For any t , x, a and u, we have that

(3.15)
∣∣∣∣
∫ T

t
ψ

(
Xt,x,a,u

s , γ t,a,u
s

)
dζ s

∣∣∣∣ ≤ C + 1

2

∫ T

t
f

(
Xt,x,a,u

s , γ t,a,u
s , us

)
ds,

where the constant C depends only on b, λ, ψ , h, p, T and L.

PROOF. By (3.4), (3.11) and Hölder’s inequality, we have that∣∣∣∣
∫ T

t
ψ

(
Xt,x,a,u

s , γ t,a,u
s

)
dζ s

∣∣∣∣ ≤ C
(
1 + ∥∥γ t,a,u

∥∥2(1+p)
p
2 ;[t,T ]

)
≤ C

(
1 + ∥∥γ t,a,u

∥∥2(1+p)
1;[t,T ]

)

= C

(
1 +

(∫ T

t

∣∣h(
γ t,a,u
s , us

)∣∣ ds

)2(1+p))

≤ C

(
1 + T

2(1+p)

p′
∫ T

t

∣∣h(
γ t,a,u
s , us

)∣∣2(1+p) ds

)
,

where p′ is the Hölder conjugate of 2(1 + p). Then, by (3.13) and (3.14) (noting that, since
U is finite dimensional, h is uniformly bounded on bounded subsets of U ), we can ensure
that (3.15) holds for a new constant C. �

COROLLARY 3.12. Let K be a compact subset of Rm ×Rk . There exists an M > 0 such
that, when taking the infimum over u ∈ U in (3.12) for (t, x, a) ∈ [0, T ]×K , one may restrict
to controls u satisfying ‖γ t,a,u‖p

2
≤ M .

PROOF. By Lemma 3.11 and the assumption that g is bounded below, we have that

J (t, x, a;u) ≥ 1

2

∫ T

t
f

(
Xt,x,a,u

s , γ t,a,u
s , us

)
ds − C

for some possibly new constant C. Let u∗ ∈ U be an arbitrary control. By the above, we may
ignore all controls u such that

1

2

∫ T

t
f

(
Xt,x,a,u

s , γ t,a,u
s , us

)
ds − C > sup

(t̂ ,x̂,â)∈[0,T ]×K

J
(
t̂ , x̂, â;u∗)

.

This gives an upper bound on
∫ T
t f (Xt,x,a,u

s , γ t,a,u
s , us)ds, which we observe, by the proof

of Lemma 3.11, also implies an upper bound on ‖γ t,a,u‖p
2

. �

3.4. A smooth noise approximation. Although a dynamic programming principle of the
form in Proposition 3.7 holds for the value function v in (3.12), the appearance of the rough
integrals makes it less straightforward to derive a PDE directly from this result. As in Exam-
ple 1.1, we will therefore proceed by first approximating ζ by a smooth function η. We then
define the corresponding approximate control problem, with dynamics

(3.16) dXt,x,a,u,η
s = b

(
Xt,x,a,u,η

s , γ t,a,u
s

)
ds + λ

(
Xt,x,a,u,η

s , γ t,a,u
s

)
dηs, X

t,x,a,u,η
t = x,

where γ t,a,u satisfies (3.11). Naturally equation (3.16) has a unique C1 solution. However, in
the following it will be useful to also embed this solution in rough path space. As η is smooth,
we can simply enhance it with its iterated integrals in the classical Lebesgue–Stieltjes sense,

(3.17) η
(2)
s,t :=

∫ t

s
ηs,r ⊗ dηr,
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so that η = (η, η(2)) is itself a rough path. Any continuous path with finite p-variation would
make a valid candidate for the Gubinelli derivative of Xη (with respect to η), but to be con-
sistent with the genuinely rough case above we insist on the choice (Xη)′ = λ(Xη, γ ). We
can then consider (Xη,λ(Xη, γ )) as the solution of (3.16) in the sense of Theorem 2.5.

We also define the corresponding approximate value function vη as

vη(t, x, a) := inf
u∈U

{∫ T

t
f

(
Xt,x,a,u,η

s , γ t,a,u
s , us

)
ds

+
∫ T

t
ψ

(
Xt,x,a,u,η

s , γ t,a,u
s

)
dηs + g

(
X

t,x,a,u,η
T , γ

t,a,u
T

)}
.

Writing η̇ for the derivative of η, under Assumption 3.9, we can apply Theorem 3.2 in
Bardi and Da Lio [5], to obtain that vη is the unique viscosity solution of the HJB equation

(3.18)
−∂vη

∂t
(t, x, a) − b(x, a) · ∇xv

η(t, x, a) − inf
u∈U

{
h(a,u) · ∇av

η(t, x, a) + f (x, a,u)
}

− (
λ(x, a) · ∇xv

η(t, x, a) + ψ(x, a)
)
η̇t = 0,

with the terminal condition

(3.19) vη(T , x, a) = g(x, a).

Moreover, by Theorem 2.2 in [5], this solution is locally Lipschitz continuous.

3.5. A rough HJB equation. Replacing η in (3.18) with ζ , we formally derive the rough
PDE given by

(3.20) −dv − b · ∇xv dt − inf
u∈U

{h · ∇av + f }dt − (λ · ∇xv + ψ)dζ = 0,

with

(3.21) v(T , x, a) = g(x, a).

We point out that as written equation (3.20) is only formal, and is given a precise meaning in
Definition 3.13 below.

The following definition exhibits a standard notion of solution for rough PDEs, used in
[18], as well as, for instance, by Caruana, Friz and Oberhauser [9, 10, 22] (see also Chapter 12
in [23]).

DEFINITION 3.13. For any smooth function η : [0, T ] → Rd , write vη for the unique
viscosity solution of (3.18) and (3.19). Moreover, write η for the rough path obtained by
enhancing η with its iterated integrals in the Lebesgue–Stieltjes sense, as in (3.17). We say
that a continuous function v solves (3.20) and (3.21) if

vηn −→ v as n −→ ∞
locally uniformly on [0, T ] × Rm × Rk , whenever (ηn)n≥1 is a sequence of smooth paths
such that ηn → ζ with respect to the 1

p
-Hölder rough path metric, that is, 
 1

p
-Höl(η

n, ζ ) → 0
as n → ∞.

Note that uniqueness of such a solution is built into the definition. Moreover, note that
since we assumed that ζ is a geometric rough path, there certainly exists such a sequence of
smooth paths (ηn)n≥1.
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THEOREM 3.14. Under Assumption 3.9, the value function v defined in (3.12) solves
(3.20) and (3.21) in the sense of Definition 3.13. Moreover, writing v = vζ , the map from
C

0,p
g ([0, T ];Rd) → R given by ζ �→ vζ (t, x, a) is locally uniformly continuous with respect

to each of the rough path metrics 
p and 
 1
p

-Höl, locally uniformly in (t, x, a).

PROOF. Let K be a compact subset of Rm × Rk and let η ∈ C p be another rough
path such that 
 1

p
-Höl(η, ζ ) ≤ 1. By possibly replacing L by L + 1, we may assume that

|||η||| 1
p

-Höl ≤ L. Let us write Xη = Xt,x,a,u,η (resp. Xζ = Xt,x,a,u,ζ ) for the solution of the

RDE (3.10) driven by η (resp. ζ ), and write vη (resp. vζ ) for the corresponding value func-
tion, as defined in (3.12).

By Corollary 3.12, there exists an M > 0 such that, for (t, x, a) ∈ [0, T ] × K , we may
restrict to controls u ∈ UM ⊆ U satisfying ‖γ t,a,u‖p

2
≤ M , so that in particular the hypotheses

of Proposition 2.6 are satisfied.
In the following we shall use � to denote inequality up to a multiplicative constant which

may depend on b, λ, ψ , f , g, h, p, T , L and M . It follows from Proposition 2.6 that

∥∥Xη − Xζ
∥∥∞ � 
p(η, ζ ),

and ∥∥∥∥
∫ ·
t

ψ
(
Xη

s , γs

)
dηs −

∫ ·
t

ψ
(
Xζ

s , γs

)
dζ s

∥∥∥∥∞
� 
p(η, ζ ).

By the Lipschitz assumptions on f and g, for any (t, x, a) ∈ [0, T ] × K , we have

∣∣vη(t, x, a) − vζ (t, x, a)
∣∣

≤ sup
u∈UM

∣∣∣∣
∫ T

t

(
f

(
Xu,η

s , γ u
s , us

) − f
(
Xu,ζ

s , γ u
s , us

))
ds

+
∫ T

t
ψ

(
Xu,η

s , γ u
s

)
dηs −

∫ T

t
ψ

(
Xu,ζ

s , γ u
s

)
dζ s + g

(
X

u,η
T , γ u

T

) − g
(
X

u,ζ
T , γ u

T

)∣∣∣∣
� sup

u∈UM

(∫ T

t

∣∣Xu,η
s − Xu,ζ

s

∣∣ ds + 
p(η, ζ ) + ∣∣Xu,η
T − X

u,ζ
T

∣∣)

� 
p(η, ζ ) � 
 1
p

-Höl(η, ζ ).

Taking a sequence of smooth paths (ηn)n≥1 such that 
 1
p

-Höl(η
n, ζ ) → 0, the required con-

vergence follows by taking η = ηn in the above. Since the approximate value functions vηn

are continuous, continuity of the function v with respect to (t, x, a) also follows from this
convergence. The stated continuity of the value function with respect to the driving rough
path is also immediate from the above. �

REMARK 3.15. One could also introduce another Brownian motion W and con-
sider as controlled dynamics the hybrid Itô-rough differential equation dX = b(X,γ )ds +
σ(X,γ )dW + λ(X,γ )dζ . Just as in the classical case, the value function is then defined
as the infimum (or supremum) over adapted controls of an expected cost function, and the
associated HJB equation is then of second order; see Example 3.17 below.
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3.6. Examples.

EXAMPLE 3.16. When a Brownian motion W is enhanced with its iterated integrals in
the sense of Stratonovich integration, that is,

(3.22) W
(2)
s,t :=

∫ t

s
Ws,r ⊗ ◦dWr,

then, almost surely, W = (W,W(2)) defines a 1
p

-Hölder geometric rough path for any p ∈
(2,3). The choice ζ = W thus leads to the stochastic PDE

−dv − b · ∇xv dt − inf
u∈U

{h · ∇av + f }dt − (λ · ∇xv + ψ) ◦ dW = 0.

EXAMPLE 3.17 (Insider trading revisited). Let us return to the setting of Example 1.1,
where we recall that an agent is trading a stock with the benefit of some extra information not
available to the rest of the market. We denote the agent’s initial investment by a, and the rate
at which they purchase new stock by u. The dynamics of the agent’s wealth process X and
investment γ are given by7

dXt,x,a,u
s = γ t,a,u

s (σ dWs + dζs), X
t,x,a,u
t = x,

dγ t,a,u
s = us ds, γ

t,a,u
t = a,

where W is a Brownian motion and ζ is an arbitrary continuous path. Note that, since ζ is
continuous and γ t,a,u is of finite variation, the integral

∫ ·
t γ t,a,u

s dζs exists in the Riemann–
Stieltjes sense, so there is no need here to lift ζ into rough path space.

Let us suppose that the agent must pay a transaction cost of εu2. The agent’s expected
terminal wealth is then given by the value function

v(t, x, a) = sup
u∈U

E

[
X

t,x,a,u
T −

∫ T

t
εu2

s ds

]
,

where U is the space of progressively measurable R-valued processes. In this case the HJB
equation (3.20) takes the form

(3.23) −dv − 1

2
a2σ 2 ∂2v

∂x2 dt − 1

4ε

(
∂v

∂a

)2
dt − a

∂v

∂x
dζ = 0

with

(3.24) v(T , x, a) = x.

Approximating ζ by a smooth function η, we obtain the classical HJB equation

−∂vη

∂t
− 1

2
a2σ 2 ∂2vη

∂x2 − 1

4ε

(
∂vη

∂a

)2
− aη̇

∂vη

∂x
= 0.

The solution of this equation along with the terminal condition (3.24) is given by

vη(t, x, a) = x + (ηT − ηt )a + 1

4ε

∫ T

t
(ηT − ηs)

2 ds.

Recalling Definition 3.13, we obtain the solution of (3.23) and (3.24) as

v(t, x, a) = x + (ζT − ζt )a + 1

4ε

∫ T

t
(ζT − ζs)

2 ds.

Note that this quantity remains finite even when ζ is of infinite variation. Thus, an agent, even
with perfect knowledge of the future stock price, subject to sufficient transaction costs, can
only make a finite profit.

7When σ �= 0 the inclusion of the Brownian motion takes us outside the class of problems considered above, but
there is no conceptual change and we expect all of the analysis to follow with appropriate technical adjustments.



2292 A. L. ALLAN AND S. N. COHEN

4. Robust filtering.

4.1. The Kalman–Bucy filter. In this section we turn our attention to the problem
of stochastic filtering under model uncertainty. Let us take an underlying filtered space
(�,F, (Ft )t≥0). We suppose that an Rm-valued signal process S and an Rd -valued obser-
vation process Y satisfy the following pair of linear equations:

dSt = αtSt dt + σt dB1
t ,

dYt = ctSt dt + dB2
t ,

with the initial conditions Y0 = 0 and S0 ∼ N(μ0,�0) for some μ0 ∈ Rm and �0 ∈ Sm+ ,
where Sm+ denotes the set of symmetric, positive definite m×m-matrices. Here B1 (resp. B2)
is a standard Rl (resp. Rd )-valued Brownian motion, and α : [0, T ] → Rm×m, σ : [0, T ] →
Rm×l and c : [0, T ] →Rd×m are parameters. Here we include the case when the signal noise
and observation noise are correlated; we suppose that their quadratic covariation is given by

d
〈
B1,B2〉

t = ρt dt,

for some correlation matrix ρ : [0, T ] → Rl×d . In the scalar case, the correlation should nat-
urally satisfy ρ2 ≤ 1. The analogous assumption here is that the matrix I − ρρ� be positive
semi-definite, where I denotes the l × l identity matrix.

We shall denote by (Yt )t≥0 the (completed) natural filtration generated by Y . In short, the
filtering problem is concerned with, at each time t , determining the best estimate for St given
Yt , that is, finding the best estimate for the current value of S, given our past observations
of Y . The mathematical theory underpinning the filtering of stochastic systems is by now
well understood; a particularly good exposition is given in Bain and Crisan [3]. As observed
by Kalman and Bucy [27, 28], and subsequently studied by numerous authors in various
contexts, in this setting where, crucially, the underlying dynamics are linear, the conditional
distribution of St given Yt is Gaussian. Moreover, the conditional mean qt = E[St | Yt ] of
this distribution satisfies the SDE

(4.1) dqt = αtqt dt + (
Rtc

�
t + σtρt

)
(dYt − ctqt dt),

and the conditional variance Rt = E[(St −qt )(St −qt )
� | Yt ] satisfies the deterministic matrix

Riccati equation

(4.2)
dRt

dt
= σtσ

�
t + αtRt + Rtα

�
t − (

Rtc
�
t + σtρt

)(
ctRt + ρ�

t σ�
t

)
.

The filtering equations above allow one to fully characterise the conditional distribution
of the signal. However, this procedure assumes that we know a priori the exact values of the
parameters α, σ , c and ρ. In practice these parameters must be estimated from data, and in
adopting these estimates one concedes an additional source of statistical uncertainty. In the
present work we are interested in incorporating this uncertainty directly into the construction
of the filter. That is, we are interested in stochastic filtering for linear systems which is robust
with respect to model uncertainty.

4.2. Robust filtering via nonlinear expectations. Robust filtering has been studied in var-
ious papers, predominantly in the engineering literature. A typical approach is to construct
an optimization procedure based on a minimax estimator for the hidden state, whereby one
attempts to minimize a maximum expected loss over the space of possible models. See, for
instance, the work of Borisov [6, 7], Miller and Pankov [32], Siemenikhin, Lebedev and
Platonov [34, 35] or Verdú and Poor [37]. By design, such estimators take into account a
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generally large set of models, even though many of them should be considered to be very
implausible, thus often sacrificing filter performance under the most statistically reasonable
model. Another approach is that of H∞, as well as hybrid H2/H∞ filtering, which examines
the energy gain from the noise input to the filtering error and attempts to minimize this en-
ergy transfer subject to suitable constraints; see Aliyu and Boukas [1], Chen and Zhou [11],
Khargonekar, Rotea and Baeyens [29], Xie, de Souza and Fu [38] or Yang and Ye [39].

A new approach to filtering in the presence of uncertainty was introduced in [12], which
utilises a nonlinear expectation described in terms of a penalty function, which describes
how our uncertainty evolves through time. This penalty can be calculated recursively, and
can be used to construct robust estimates for any number of nonlinear functionals of the
signal process, as well as robust interval estimates analogous to classical confidence/credible
intervals.

The first application of this approach in a continuous time setting was presented in [2],
which studies a similar setting to the one described above. In that paper, however, the param-
eter c was assumed to be known, and the signal and observation noises were assumed to be
uncorrelated. In the current work we shall relax these assumptions, and also allow a more
general penalty, which in particular takes into account the statistical likelihood for differ-
ent parameter choices. As we will see, this approach will lead to the derivation of a pathwise
stochastic control problem, and thus require the central ideas of the previous sections in order
to proceed.

We consider convex expectations, that is maps E( · | Yt ) : L∞(F) → L∞(Yt ) satisfying
the properties of monotonicity, translation equivariance, normalization and convexity, which
additionally satisfy the Fatou property. Equivalently, and more explicitly, we consider maps
which admit a representation of the form

(4.3) E(ξ | Yt ) = ess sup
Q∈Qt

{
EQ[ξ | Yt ] − β(Q | Yt )

}
,

where Qt is a collection of equivalent probability measures, and β( · | Yt ) is a nonnegative
Yt -measurable penalty function. See for example, Föllmer and Schied [20, 21] for a proper
exposition of the theory of nonlinear expectations.

As can be inferred from (4.3), in the context of model uncertainty, that is, uncertainty in
the underlying probability measure, nonlinear expectations provide an evaluation of random
variables which takes into account every admissible measure. In other words, they consider
every plausible view of the world, and envisage the worst case scenario. However, in contrast
with sublinear expectations, the inclusion of the penalty term β( · | Yt ) means that we can
penalise different measures according to how unreasonable we consider them to be, thus
restricting our attention to only those measures which we consider to be realistic. Convex
expectations are in this sense less pessimistic than their sublinear counterparts.

In our setting, the class of admissible measures simply corresponds to the family of possi-
ble parameters α, σ , c, ρ, μ0 and �0 of the dynamics of the signal and observation processes.
For notational brevity, we shall denote8

γ := (α, σ, c, ρ),

and write

� := Rm×m ×Rm×l ×Rd×m × ϒ

8One is not obliged to consider all of these parameters as being uncertain, but we will focus on this, the most
general case.
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for the space in which γ takes values, where ϒ denotes the space of valid correlation matri-
ces:

(4.4) ϒ := {
ρ ∈Rl×d : I − ρρ� is positive definite

} = {
ρ ∈ Rl×d : λmax

(
ρρ�)

< 1
}
,

where λmax( · ) denotes the largest eigenvalue. We write Pγ,μ0,�0 for the measure associated
with the parameters γ , μ0 and �0, and write Eγ,μ0,�0 for the corresponding expectation.

For a given uncertainty aversion parameter k1 > 0 and exponent k2 ≥ 1, we define, for any
real-valued bounded measurable function ϕ, the convex expectation with the representation

(4.5) E
(
ϕ(St ) | Yt

) = ess sup
γ,μ0,�0

{
Eγ,μ0,�0

[
ϕ(St ) | Yt

] −
(

1

k1
β(γ,μ0,�0 | Yt )

)k2
}
.

Here the essential supremum is taken over all possible parameters (μ0,�0) ∈ Rm×Sm+ for the
initial distribution of the signal, and over all choices of parameters γ governing the dynamics
of S and Y .

In view of the insights of the previous section, we anticipate the eventual need to restrict
to a sufficiently regular space of parameters γ (which we will later refer to as controls). We
consequently make the following assumption.

ASSUMPTION 4.1. We shall take the space of possible parameters γ to be the family of
all absolutely continuous functions γ : [0, T ] → � with bounded derivative.

The penalty function β represents our opinion of how unreasonable different values of
the parameters are. We shall discuss this term further in the next subsection. The uncertainty
aversion parameters k1, k2 are included for generality, but will play no significant role in our
analysis.

The nonlinear expectation defined above can be used to construct a “robust” point estimate
of ϕ(St ), as

arg min
ξ∈R

E
((

ϕ(St ) − ξ
)2 | Yt

)
.

Moreover, the nonlinear expectation E(ϕ(St ) | Yt ) will typically overestimate the true value
of ϕ(St ), so one may therefore think of E(ϕ(St ) | Yt ) as an “upper” expectation. Defining
the corresponding “lower” expectation by −E(−ϕ(St ) | Yt ), one can then construct a robust
interval estimate for ϕ(St ) via[−E

(−ϕ(St ) | Yt

)
,E

(
ϕ(St ) | Yt

)]
.

4.3. The penalty function. In [2] the penalty β was assumed to be fixed a priori, that is,
it only took our prior beliefs into account. Although the parameters of the underlying system
are unknown, as we make new observations we may wish to use these observations to update
our opinion of how reasonable different parameter choices are. We shall therefore suppose
that this penalty takes the form of a negative log-posterior density. That is, we take

(4.6) βt(γ,μ0,�0 | Yt ) = − log
(
πt(γ,μ0,�0)Lt (γ,μ0,�0 | Yt )

)
,

where π and L( · | Yt ) denote the prior and likelihood respectively.
The penalty function in (4.6) is built from the log-likelihood function, a familiar object

from classical statistics. Penalties based on log-likelihoods form the basis of the data-driven
robust (DR) expectation of [13], which allows the level of penalisation of different parameter
choices to be recursively updated through time as we collect new observations. We refer
to [13] for further discussion. Here we add to this an additional penalty based on our prior
beliefs, which may be calibrated accordingly.
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We shall assume that the prior takes the form

(4.7) − logπt(γ,μ0,�0) =
∫ t

0
f(qs,Rs, γs)ds + g(μ0,�0),

where the functions f and g may be calibrated to represent our prior beliefs about the plau-
sibility of different parameter choices. Here q and R are the conditional mean and variance
corresponding to the parameters γ , μ0 and �0, given by the solutions of (4.1) and (4.2).

Note that the measures Pγ,μ0,�0 for different choices of γ , μ0 and �0 are all equivalent
on Yt . A natural choice for Lt( · | Yt ) is thus the Radon–Nikodym derivative

Lt(γ,μ0,�0 | Yt ) =
(

dPγ,μ0,�0

dPγ ∗,μ∗
0,�∗

0

)
Yt

which is precisely the likelihood ratio of the (arbitrary) parameter choice γ , μ0, �0, with
respect to a (fixed) choice of reference parameters γ ∗, μ∗

0, �∗
0 . We will now derive an explicit

expression for this likelihood.
Recall (from, e.g., Bain and Crisan [3], Chapter 2) that for a given choice of parameters γ ,

μ0, �0, the innovation process V , given in this setting by

dVs = dYs − csqs ds,

is a Yt -adapted Brownian motion under Pγ,μ0,�0 . Writing q∗ (resp. V ∗) for the conditional
mean (resp. innovation process) under the reference measure Pγ ∗,μ∗

0,�∗
0 , we have

dVs = dV ∗
s − (

csqs − c∗
s q

∗
s

)
ds.

Thus, by Girsanov’s theorem (see, e.g., [14], Chapter 15), as V and V ∗ have the predictable
representation property under their respective measures, we can represent the likelihood as a
stochastic exponential, namely

Lt(γ,μ0,�0 | Yt ) = exp
(∫ t

0

(
csqs − c∗

s q
∗
s

) · dV ∗
s − 1

2

∫ t

0

∣∣csqs − c∗
s q

∗
s

∣∣2 ds

)
.

Substituting dV ∗
s = dYs − c∗

s q
∗
s ds, a short calculation yields

− logLt(γ,μ0,�0 | Yt ) = −
∫ t

0

(
csqs − c∗

s q
∗
s

) · dYs + 1

2

∫ t

0

(|csqs |2 − ∣∣c∗
s q

∗
s

∣∣2)
ds.

Since the reference parameters are taken to be fixed, they simply amount to an additive
constant in the above expression. That is,

(4.8) − logLt(γ,μ0,�0 | Yt ) = −
∫ t

0
csqs · dYs + 1

2

∫ t

0
|csqs |2 ds + const.

For simplicity we will henceforth omit this constant from our analysis, conceding that our
penalty function is correct up to an additive constant. This constant may be reintroduced
upon numerical computation of the nonlinear expectation, chosen to ensure that the penalty
function always takes the value zero at its minimum.

It will be useful later to interpret the stochastic integral in (4.8) in the sense of Stratonovich,
rather than that of Itô. We therefore make the transformation

−
∫ t

0
csqs · dYs = −

∫ t

0
csqs ◦ dYs + 1

2
〈cq,Y 〉t .

Recalling (4.1), and using the fact that c is absolutely continuous and in particular of bounded
variation, after some calculation we deduce that the quadratic covariation term is given by

〈cq,Y 〉t =
∫ t

0
tr

(
cs

(
Rsc

�
s + σsρs

))
ds,
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where tr( · ) denotes the trace. Note that csRsc
�
s is positive semi-definite and therefore has

nonnegative trace. Substituting back into (4.8), we obtain

(4.9) − logLt(γ,μ0,�0 | Yt ) = −
∫ t

0
csqs ◦ dYs + 1

2

∫ t

0

(|csqs |2 + tr
(
cs

(
Rsc

�
s +σsρs

)))
ds.

For notational consistency with Section 3, we introduce the functions f and ψ , given by

f (q,R,γ ) := f(q,R,γ ) + 1

2

(|cq|2 + tr
(
c
(
Rc� + σρ

)))
and ψ(q, γ ) := −cq,

where we recall γ = (α, σ, c, ρ). Combining (4.6), (4.7) and (4.9), and substituting into (4.5),
we then obtain the following representation.

(4.10)

E
(
ϕ(St ) | Yt

)
= ess sup

γ,μ0,�0

{
Eγ,μ0,�0

[
ϕ(St ) | Yt

]

−
(

1

k1

(∫ t

0
f (qs,Rs, γs)ds +

∫ t

0
ψ(qs, γs) ◦ dYs + g(μ0,�0)

))k2
}
.

4.4. Fixing an observation path. Since the parameters α, σ , c and ρ are assumed to be
absolutely continuous, R is then the C1 solution of (4.2), and it follows from integration by
parts (see, e.g., Theorem 1.2.3 in [36]) that the Itô integral against Y in (4.1) can also be
interpreted pathwise as a Riemann–Stieltjes integral. Moreover, these two notions of integral
coincide almost surely. This can be seen by noting that the corresponding Riemann sums
converge almost surely to the Riemann–Stieltjes integral, but also in L2 to the Itô integral, so
these two notions of integral must agree by the uniqueness of limits in probability.

In filtering we make inference based on observations of the process Y . Thus, it is natural
to restrict our attention to a particular path of Y , which we denote by ζ . That is, we define
ζ : [0, T ] → Rd by

ζs := Ys(ω) for s ∈ [0, T ],
for some fixed ω ∈ �. By the previous paragraph, we can then consider the filter dynamics
(4.1)–(4.2) with Y replaced by ζ , namely

dqs = αsqs ds + (
Rsc

�
s + σsρs

)
(dζs − csqs ds),(4.11)

dRs

ds
= σsσ

�
s + αsRs + Rsα

�
s − (

Rsc
�
s + σsρs

)(
csRs + ρ�

s σ�
s

)
.(4.12)

REMARK 4.2. Strictly speaking, we a priori only have that the solution (q,R) of (4.1)–
(4.2) exists almost surely for each choice of parameters α, σ , c, ρ, μ0, �0. Here we actually
wish to consider this solution for every choice of parameters, for almost every fixed ω ∈ �.
This can be justified by first considering a countable dense collection of parameters, and
then appealing to the stability of solutions to Lipschitz SDEs (see, e.g., Chapter 16 in [14]).
Alternatively, having fixed an (arbitrary continuous) path ζ , one can establish existence and
uniqueness of solutions of (4.11) directly for any choice of parameters by a classical Picard
iterative argument.

Recall that the representation in (4.10) for the nonlinear expectation involves the stochastic
integral of ψ(q, γ ) against Y . Unlike the stochastic integral in (4.1), since the paths of q and
Y both have Brownian-type regularity, in general this integral does not exist in the pathwise
Riemann–Stieltjes sense. As in the previous section, we instead aim to interpret it as a rough
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integral. Similarly to the setting of Crisan et al. [15], this requires us to lift the observation
process Y into rough path space.

In the previous section we were able to solve optimal control problems where the driving
noise was a geometric rough path. However, since Itô integration does not satisfy first order
calculus—that is, it does not satisfy the classical integration by parts/chain rule—when en-
hancements are defined using iterated Itô integrals the resulting rough paths are in general
not geometric. It was for this reason that we insisted on transforming the Itô integral in (4.8)
into the Stratonovich integral in (4.9). Similarly to Example 3.16, by setting

Y
(2)
s,t =

∫ t

s
Ys,r ⊗ ◦dYr,

we have that, almost surely, Y = (Y,Y (2)) defines a 1
p

-Hölder geometric rough path for any
p ∈ (2,3). Recalling that we defined ζ = Y(ω) for a given ω ∈ �, we can now consider ζ as
a rough path by defining its lift as

ζ := Y(ω) ∈ C 0,p
g

for the same ω.
It remains to establish ψ(q, γ ) as being controlled (in the sense of Gubinelli) by ζ . The

Gubinelli derivative of q with respect to ζ can be inferred by simply inspecting (4.11). Indeed,
recalling the notation ζs,t := ζt − ζs , we have that

qs,t =
∫ t

s

(
Rrc

�
r + σrρr

)
dζr + O

(|t − s|) = (
Rsc

�
s + σsρs

)
ζs,t + O

(|t − s|).
Since c is of bounded variation, it is trivially controlled by ζ with derivative zero, and we
conclude (from, e.g., Corollary 7.4 in [23]) that ψ(q, γ ) = −cq is indeed controlled by ζ

with Gubinelli derivative ψ(q, γ )′ = −c(Rc� + σρ). Thus, almost surely,∫ ·
0

ψ(qs, γs)dζ s

exists as a rough integral and, moreover, coincides with the Stratonovich integral in (4.10).

4.5. Reformulation as an optimal control problem. Writing γ = (α, σ, c, ρ) as usual,
consider the functional κt : Rm × Sm+ →R defined by

(4.13)

κt (μ,�)

= inf
{∫ t

0
f (qs,Rs, γs)ds +

∫ t

0
ψ(qs, γs)dζ s + g(q0,R0)

∣∣∣∣ γ, q0,R0 such that

(qt ,Rt ) = (μ,�)

}
,

where q and R satisfy (4.11)–(4.12) with the terminal condition (qt ,Rt ) = (μ,�). The func-
tion κt is related to the nonlinear expectation (4.10) by the following lemma.

LEMMA 4.3. Denote by �( · ;μ,�) the distribution function of a N(μ,�) distribution.
For any rough path ζ = (ζ, ζ (2)) = Y(ω) ∈ C

0,p
g as defined above, and any bounded measur-

able function ϕ, we have the equality

(4.14) E
(
ϕ(St ) | Yt

) = sup
(μ,�)∈Rm×Sm+

{∫
Rm

ϕ(x)d�(x;μ,�) −
(

1

k1
κt (μ,�)

)k2
}
,

where the expectation on the left-hand side is evaluated on the realisation Y = ζ .
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The proof of Lemma 4.3 is the same as that of Proposition 2.1 in [2].
The expression for κ in (4.13) looks very much like that of the value function of an optimal

control problem with state trajectories governed by (4.11)–(4.12). To make this exact we
should write κ as an infimum over the “control” γ alone. This is easy, but one should note
that, for certain choices of control γ and terminal condition (μ,�) ∈ Rm × Sm+ , there will
not actually exist a corresponding initial value (q0,R0) ∈ Rm × Sm+ . This can happen for one
of two reasons. First, due to the term σsσ

�
s , the solution to (4.12) may no longer be positive

semi-definite, so that R0 does not correspond to a covariance matrix. Second, the solution to
(4.12) may “blow up” in finite time, due to the quadratic term (in R) in the final term on the
right-hand side of (4.12). An example of such behaviour is exhibited in [2], Section 3.

Heuristically, the Kalman–Bucy filter is well behaved when run forwards in time from
an initial condition, but here we instead fix a terminal condition and run the filtering equa-
tions backwards in time, which introduces the abnormalities described above. To prevent this
unphysical behaviour we simply prescribe the value g(μ0,�0) = ∞ for any initial value
(μ0,�0) /∈ Rm × Sm+ and, although we do not actually obtain a physical initial value for
solutions which “blow up” in a finite time, we assign an infinite “initial” cost to all such
trajectories.

We can now write

κt (μ,�) = inf
γ

{∫ t

0
f

(
qt,μ,�,γ
s ,Rt,�,γ

s , γs

)
ds +

∫ t

0
ψ

(
qt,μ,�,γ
s , γs

)
dζ s

+ g
(
q

t,μ,�,γ
0 ,R

t,�,γ
0

)}
,

(4.15)

where qt,μ,�,γ , Rt,�,γ satisfy (4.11)–(4.12) with the terminal condition(
q

t,μ,�,γ
t ,R

t,�,γ
t

) = (μ,�),

noting that trajectories with the undesired behaviour described above will never be considered
when taking the infimum in (4.15).

We have derived an optimal control problem, with the controlled dynamics (4.11)–(4.12),
and the value function defined in (4.15). Moreover, the appearance of the “Brownian-like”
path ζ in (4.11), and indeed the rough path ζ in (4.15), puts us back into the setting of
pathwise stochastic control. In the case where the parameter c is known, the signal and ob-
servation noises are uncorrelated (so that ρ ≡ 0), and if we omit the likelihood term in the
penalty of our nonlinear expectation, then we are not directly controlling the coefficient of
the rough term ζ . This was the case in the setting of [2], where a change of variables was
then used to completely isolate the observation path from the controlled terms.

In the current setting, however, we cannot escape the need to control the coefficient of ζ .
As described in Section 3, if the variation of the controls γ is not sufficiently penalised
then the control problem degenerates. The physical interpretation here is the following: even
if we suppose that the parameters α, σ , c and ρ are able to fluctuate at the same rate as
the observation path ζ , it is not reasonable to suppose that we should be able to calibrate
these parameters over time scales that are so small that our observations are dominated by
measurement noise.

Accordingly, we employ the strategy introduced in the previous section of introducing a
regularising cost, and rewriting the problem in terms of an abstract control process u. We
consider the dynamics (4.11)–(4.12) along with

dγ t,a,u
s = h

(
γ t,a,u
s , us

)
ds,

for some function h : � × U → U , where u belongs to the class U of bounded measurable
functions u : [0, T ] → U := Rm×m ×Rm×l ×Rd×m ×Rl×d . The terminal condition is now
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given by (
q

t,μ,�,a,u
t ,R

t,�,a,u
t , γ

t,a,u
t

) = (μ,�,a) ∈ Rm × Sm+ × �.

Allowing f to depend on u, and g to depend on γ0 (which makes no difference to the proof
of Lemma 4.3), and writing κ̃ for the regularised version of κ , we can write

(4.16) κ̃t (μ,�) = inf
a∈�

v(t,μ,�,a),

where

(4.17)

v(t,μ,�,a) := inf
u∈U

{∫ t

0
f

(
qt,μ,�,a,u
s ,Rt,�,a,u

s , γ t,a,u
s , us

)
ds

+
∫ t

0
ψ

(
qt,μ,�,a,u
s , γ t,a,u

s

)
dζ s + g

(
q

t,μ,�,a,u
0 ,R

t,�,a,u
0 , γ

t,a,u
0

)}

is the value function of our new control problem. As before, to avoid unphysical trajectories,
we assign an infinite cost to any controls u such that (μ0,�0) /∈ Rm × Sm+ or such that the
solution to (4.12) “blows up” in a finite time. Moreover, we assign an infinite cost to those
controls which lead to ρ leaving the space of valid correlation matrices ϒ (as defined in
(4.4)).

Our uncertainty is thus represented by the function v. Once the value of this function has
been determined, one can use (4.16) and then (4.14) to evaluate arbitrary functions of the
signal process S under the nonlinear expectation E( · | Yt ).

4.6. A nonlinear backward control problem. It remains to characterise the value function
v defined in (4.17) as the unique solution of a rough HJB equation. For convenience, we
rewrite the controlled dynamics in full as

dqt,μ,�,a,u
s = bμ

(
qt,μ,�,a,u
s ,Rt,�,a,u

s , γ t,a,u
s

)
ds + λ

(
Rt,�,a,u

s , γ t,a,u
s

)
dζs,

q
t,μ,�,a,u
t = μ,

dRt,�,a,u
s = b�

(
Rt,�,a,u

s , γ t,a,u
s

)
ds, R

t,�,a,u
t = �,

dγ t,a,u
s = h

(
γ t,a,u
s , us

)
ds, γ

t,a,u
t = a,

where γ = (α, σ, c, ρ), and we define

bμ(q,R,γ ) = αq − (
Rc� + σρ

)
cq,

b�(R,γ ) = σσ� + αR + Rα� − (
Rc� + σρ

)(
cR + ρ�σ�)

,

λ(R,γ ) = Rc� + σρ.

We note that this is a “backward” control problem in the sense that, in contrast to the
classical setting of optimal control, here we prescribe a terminal condition for the state tra-
jectories, and consider a cost associated with their initial value. More significantly, we note
that bμ, b� /∈ Lipb and λ, ψ /∈ C3

b , so we cannot immediately apply the results of the pre-
vious section. Nevertheless, as we will see, the desired results can be recovered with some
modifications.

NOTATION 4.4. In the following we write | · | for the usual Euclidean norm, and
‖A‖ for the Frobenius norm of a given matrix A, that is, ‖A‖2 = tr(A�A). Given
an element γ = (α, σ, c, ρ) of U = Rm×m × Rm×l × Rd×m × Rl×d , we write ‖γ ‖ =
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max{‖α‖,‖σ‖,‖c‖,‖ρ‖}. We point out, however, that since the space ϒ of correlation ma-
trices is uniformly bounded,9 the dependence on ‖ρ‖ is not particularly crucial.

If A ∈ Sm+ , so that in particular A is symmetric and positive definite, we write λmin(A)

(resp. λmax(A)) for the smallest (resp. largest) eigenvalue of A.
Where there is no risk of ambiguity, we will omit the superscripts from the state variables

q , R and γ . Finally, in this section we will use the symbol � to denote inequality up to a
multiplicative constant which may depend on any of the dimensions d , l, m, the functions
f , g, h, the measure of regularity p, the terminal time T , and the bound L, where as usual
L > 0 is chosen such that |||ζ ||| 1

p
-Höl ≤ L.

ASSUMPTION 4.5. We assume that:

• f = f (q,R,γ,u) and g = g(q,R,γ ) are continuous, bounded below, and locally Lips-
chitz in (q,R,γ ), uniformly in u,

• h = h(γ,u) is continuous, surjective in u, that is, {h(γ,u) : u ∈ U} = U for every γ ∈ �,
Lipschitz in γ , uniformly in u, and bounded in γ , locally uniformly in u, and moreover,
for some δ1 ≥ 1, satisfies

(4.18) sup
γ∈�

‖h(γ,u)‖
‖u‖δ1

−→ 0 as ‖u‖ −→ ∞,

• for some δ2 > δ1, the running cost f satisfies the asymptotic growth condition:

(4.19)
f (q,R,γ,u)

(1 + |q| + ‖R‖2 + ‖γ ‖2)‖u‖δ2 + (1 + |q|2 + ‖R‖2)(1 + ‖γ ‖4)
−→ ∞

as |q| + ‖R‖ + ‖γ ‖ + ‖u‖ → ∞,
• and the initial cost g satisfies:

g(q,R,γ )

|q|2 + (1 + ‖R‖)(1 + ‖γ ‖2)
−→ ∞ as |q| + ‖R‖ + ‖γ ‖ −→ ∞,(4.20)

inf
(q,γ )∈Rm×�

g(q,R,γ ) −→ ∞ as λmin(R) −→ 0.(4.21)

If the correlation ρ is known, then one can simply take, for example, h(γ,u) = u. If ρ is
uncertain then, for mostly technical reasons, one must take a little extra care to ensure that
correlations close to the boundary of ϒ (where λmax(ρρ�) = 1) are sufficiently penalised. In
this case we assume in addition that:

•
inf

q,R,α,σ,c
g(q,R,γ ) −→ ∞ as λmax

(
ρρ�) −→ 1,(4.22)

∥∥h(γ,u)
∥∥ ≤ (

1 − λmax
(
ρρ�))‖u‖ for all (γ, u) ∈ � × U.(4.23)

REMARK 4.6. The surjectivity of h in u is assumed to ensure that, no matter the choice
of terminal condition (t,μ,�,a), there always exists a choice of control u such that the state
trajectories remain inside their respective domains, so that in particular R0 ∈ Sm+ and ρ0 ∈ ϒ .
This guarantees that the value function v is finite-valued.

The result of Lemma 3.11 can be recovered in the current setting as follows.

9Indeed, one can show that ‖ρ‖ ≤ √
l for every ρ ∈ ϒ .
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LEMMA 4.7. Under Assumption 4.5, for any terminal condition (t,μ,�,a) and control
u, we have that∣∣∣∣

∫ t

0
ψ(qs, γs)dζ s

∣∣∣∣ ≤ C + 1

2

(∫ t

0
f (qs,Rs, γs, us)ds + g(q0,R0, γ0)

)
,

where the constant C depends on d , l, m, f , g, h, p, T and L.

PROOF. From the estimate (2.3) in Proposition 2.2, we have that

(4.24)

∣∣∣∣
∫ t

0
ψ(qs, γs)dζ s

∣∣∣∣ �
∣∣ψ(q0, γ0)

∣∣ + ∥∥ψ(q, γ )′0
∥∥

+ ∥∥Rψ(q,γ )
∥∥p

2 ;[0,t] + ∥∥ψ(q, γ )′
∥∥
p;[0,t].

We aim to bound each of the terms on the right-hand side. Recalling that ψ(q, γ ) = −cq and
ψ(q, γ )′ = −c(Rc� + σρ), we have that

(4.25)

∣∣ψ(q0, γ0)
∣∣ + ∥∥ψ(q, γ )′0

∥∥ � ‖c0‖|q0| + ‖c0‖
∥∥R0c

�
0 + σ0ρ0

∥∥
� |q0|2 + (

1 + ‖R0‖)‖γ0‖2.

Writing (α̇, σ̇ , ċ, ρ̇) = γ̇ = h(γ,u), we have

(4.26)

∥∥ψ(q, γ )′
∥∥
p;[0,t]

≤ ∥∥ψ(q, γ )′
∥∥

1;[0,t] = ∥∥c(
Rc� + σρ

)∥∥
1;[0,t]

=
∫ t

0

∣∣ċs

(
Rsc

�
s + σsρs

) + cs

(
b�(Rs, γs)c

�
s + Rsċ

�
s + σ̇sρs + σsρ̇s

)∣∣ ds

�
∫ t

0

(
1 + ‖Rs‖2 + ‖γs‖2)∥∥h(γs, us)

∥∥ + (
1 + ‖Rs‖2)(

1 + ‖γs‖4)
ds.

By the Young–Lóeve inequality (see, e.g., Theorem 6.8 in [24]), we have

(4.27)
∣∣∣∣
∫ r

h

(
Rsc

�
s +σsρs

)
dζs −(

Rhc
�
h +σhρh

)
ζh,r

∣∣∣∣ ≤ 1

1 − 2− 1
p

∥∥Rc� +σρ
∥∥

1;[h,r]‖ζ‖p;[h,r]

for any interval [h, r] ⊂ [0, t]. We calculate

−R
ψ(q,γ )
h,r = −ψ(qr, γr) + ψ(qh, γh) + ψ(q, γ )′hζh,r

= chqh,r + ch,rqr + ψ(q, γ )′hζh,r

= ch

(∫ r

h
dqs − (

Rhc
�
h + σhρh

)
ζh,r

)
+

∫ r

h
ċsqr ds.

Recalling (4.11) and using (4.27), we have

∣∣Rψ(q,γ )
h,r

∣∣ � ‖ch‖
∥∥Rc� + σρ

∥∥
1;[h,r] +

∣∣∣∣
∫ r

h
ch

(
αsqs − (

Rsc
�
s + σsρs

)
csqs

) + ċsqr ds

∣∣∣∣
�

∫ r

h

(‖ch‖
∣∣b�(Rs, γs)c

�
s + Rsċ

�
s + σ̇sρs + σsρ̇s

∣∣
+ ‖ch‖

∣∣αsqs − (
Rsc

�
s + σsρs

)
csqs

∣∣ + ‖ċs‖|qr |) ds.
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We then obtain

(4.28)

∥∥Rψ(q,γ )
∥∥p

2 ;[0,t] ≤ ∥∥Rψ(q,γ )
∥∥

1;[0,t] = lim|P|→0

∑
[h,r]∈P

∣∣Rψ(q,γ )
h,r

∣∣

�
∫ t

0

(‖cs‖
∣∣b�(Rs, γs)c

�
s + Rsċ

�
s + σ̇sρs + σsρ̇s

∣∣
+ ‖cs‖

∣∣αsqs − (
Rsc

�
s + σsρs

)
csqs

∣∣ + ‖ċs‖|qs |) ds

�
∫ t

0

(
1 + |qs | + ‖Rs‖2 + ‖γs‖2)∥∥h(γs, us)

∥∥
+ (

1 + |qs |2 + ‖Rs‖2)(
1 + ‖γs‖4)

ds,

where the limit in the above is taken over any sequence of partitions of the interval [0, t] with
mesh size tending to zero. Substituting (4.25), (4.26) and (4.28) into (4.24), and using the
growth conditions (4.18)–(4.20) in Assumption 4.5, we deduce the result. �

COROLLARY 4.8. Let K be a compact subset of Rm × Sm+ × �. There exists an M > 0
such that, when taking the infimum over u ∈ U in (4.17) for (t,μ,�,a) ∈ [0, T ] × K , one
may restrict to controls u such that the norms

‖q‖∞, ‖R‖∞, ‖γ ‖∞, ‖R‖1;[0,t], ‖γ ‖1;[0,t]
are all bounded by M .

PROOF. One can obtain a bound for ‖γ ‖1;[0,t] by a similar argument to that in the proof
of Corollary 3.12. Since γt = a lives in a compact set, we immediately also have a bound for
‖γ ‖∞.

We infer from (4.20) that both the terminal value Rt = � and initial value R0 of R must
lie in some bounded set, and by inspecting the ODE (4.12) satisfied by R, we deduce that the
entire path of R must also live in a bounded set, giving a bound for ‖R‖∞.

Given the bounds for ‖γ ‖∞ and ‖R‖∞, a bound for ‖R‖1;[0,t] follows easily from (4.12).
Finally, inspecting the equation (4.11) satisfied by q , in view of (4.27), we deduce a bound
for ‖q‖∞. �

As in the previous sections, let us approximate the rough path ζ by a smooth path η. We
then obtain the approximate value function

(4.29)

vη(t,μ,�,a)

:= inf
u∈U

{∫ t

0
f

(
qt,μ,�,a,u,η
s ,Rt,�,a,u

s , γ t,a,u
s , us

)
ds

+
∫ t

0
ψ

(
qt,μ,�,a,u,η
s , γ t,a,u

s

)
dηs + g

(
q

t,μ,�,a,u,η
0 ,R

t,�,a,u
0 , γ

t,a,u
0

)}
.

NOTATION 4.9. In the following, we will write ∇μ for the usual gradient with respect to
μ, and write ∇� and ∇a for the generalised gradients with respect to each of the components
of � and a respectively. We will also write A : B for the inner product of two elements A, B

from the same vector space. In particular, when A, B are matrices, A : B = tr(A�B) denotes
the Frobenius inner product of A and B .

We shall denote by H the class of functions ṽ : [0, T ]×Rm ×Sm+ ×� →R which explode
asymptotically; that is, those functions ṽ such that

ṽ(t,μ,�,a) −→ ∞
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as |μ| + ‖�‖ + ‖a‖ → ∞, and as λmin(�) → 0, and, in the case when ρ is uncertain, as
λmax(ρρ�) → 1.

PROPOSITION 4.10. Under Assumption 4.5, the approximate value function vη, as de-
fined in (4.29), is locally Lipschitz continuous with respect to (t,μ,�,a), and is the unique
viscosity solution of the HJB equation

(4.30)
∂vη

∂t
+ bμ · ∇μvη + b� : ∇�vη + sup

u∈U

{
h : ∇av

η − f
} + (

λ · ∇μvη − ψ
)
η̇t = 0

in the class H which satisfies the initial condition vη(0,μ,�,a) = g(μ,�,a).

PROOF. As the path η is smooth, the associated PDE (4.30) is classical, except for the
nonlinearities inherited from the filtering equations. As the proof of this result is lengthy, and
not intended to be the focus of the current work, we will only give a sketch of the proof.

That vη is a viscosity solution of (4.30) is a standard application of the dynamic program-
ming principle; we refer to the proof of Proposition 4.9 in [2] for precise details.

Heuristically, as a result of (4.19) and (4.23), for terminal conditions (μ,�,a) which
take extreme or close to degenerate values, that is, when either |μ| + ‖�‖ + ‖a‖ � 1 or
λmin(�) ≈ 0 or λmax(ρρ�) ≈ 1, it takes very expensive controls to allow the state trajectories
(q,R,γ ) to escape these parts of their domain. It then follows from the growth conditions
(4.20)–(4.22) that the value function itself must explode as one approaches these extreme and
degenerate values; that is, vη ∈ H.

One can prove that vη is locally Lipschitz in all of its arguments by adapting the proof
of Theorem 2.2 in [5], which in particular requires the strict inequality δ2 > δ1 in Assump-
tion 4.5.

The controlled dynamics do not satisfy the standard Lipschitz condition which would be
required to be able to apply a standard uniqueness result for Hamilton–Jacobi equations on
unbounded domains, as in for example, Yong and Zhou [40], Chapter 4. Nevertheless, unique-
ness for an equation of the same form as (4.30) was established in [2], Section 5, and an anal-
ogous argument may be used here. The main insight of this result is that the extra condition
one should impose to obtain uniqueness is that solutions belong to the space H; that is, one
should restrict to solutions which explode as they approach the boundary. �

The main result of this section is given by the following theorem.

THEOREM 4.11. Under Assumption 4.5, the value function v, as defined in (4.17), solves
the rough HJB equation

dv + (bμ · ∇μv + b� : ∇�v)dt + sup
u∈U

{h : ∇av − f }dt + λ · ∇μv dζ − ψ dζ = 0

with

v(0,μ,�,a) = g(μ,�,a)

in the sense of Definition 3.13. Moreover, writing v = vζ , the map from C
0,p
g ([0, T ];Rd) →

R given by ζ �→ vζ (t,μ,�,a) is locally uniformly continuous with respect to each of the
rough path metrics 
p and 
 1

p
-Höl, locally uniformly in (t,μ,�,a).

PROOF. Let K be a compact subset of Rm × Sm+ × � and let η ∈ C p be another rough
path such that 
 1

p
-Höl(η, ζ ) ≤ 1. By possibly replacing L by L + 1, we may assume that
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|||η||| 1
p

-Höl ≤ L. Let us write qη (resp. qζ ) for the solution of (4.11) driven by η (resp. ζ ), and

write vη (resp. vζ ) for the corresponding value function, as defined in (4.17).
By Corollary 4.8, there exists a constant M > 0 such that, for terminal conditions

(t,μ,�,a) ∈ [0, T ] × K , we may restrict to controls u ∈ UM ⊆ U such that∥∥qη
∥∥∞,

∥∥qζ
∥∥∞, ‖R‖∞, ‖γ ‖∞, ‖R‖1;[0,t], ‖γ ‖1;[0,t]

are all bounded by M . In the following we will allow the multiplicative constant indicated by
the symbol � to also depend on M .

By the Young–Lóeve inequality (see, e.g., Theorem 6.8 in [24]), we have∣∣∣∣
∫ t

s

(
Rrc

�
r + σrρr

)
d(η − ζ )r

∣∣∣∣ �
∥∥Rsc

�
s + σsρs

∥∥∣∣(ηt − ζt ) − (ηs − ζs)
∣∣

+ ∥∥Rc� + σρ
∥∥

1;[s,t]‖η − ζ‖p;[s,t]
� ‖η − ζ‖p;[s,t],

from which we deduce that∣∣qη
s − qζ

s

∣∣ �
∫ t

s

∣∣qη
r − qζ

r

∣∣ dr + ‖η − ζ‖p;[s,t]

for all s ∈ [0, t], and thus, by Grönwall’s inequality, that

(4.31)
∥∥qη − qζ

∥∥∞ � ‖η − ζ‖p;[0,t].

Since the state variables qη, qζ , R and γ are uniformly bounded, we are free to modify
the coefficients bμ, λ and ψ outside of some large ball containing the domain of the state
variables in its interior, without affecting the solutions qη, qζ . We may therefore pretend that
actually bμ ∈ Lipb and λ,ψ ∈ C3

b , so that in particular the hypotheses of Proposition 2.6 are
satisfied. By the same argument, we may also suppose that f and g are Lipschitz in q .

By Proposition 2.6 combined with (4.31), we obtain

(4.32)
∥∥∥∥
∫ ·

0
ψ

(
qη
s , γs

)
dηs −

∫ ·
0

ψ
(
qζ
s , γs

)
dζ s

∥∥∥∥
p;[0,t]

� 
p(η, ζ ).

Using (4.31) and (4.32), we have, for any terminal condition (t,μ,�,a) ∈ [0, T ] × K , that∣∣vη(t,μ,�,a) − vζ (t,μ,�,a)
∣∣

≤ sup
u∈UM

∣∣∣∣
∫ t

0

(
f

(
qη
s ,Rs, γs, us

) − f
(
qζ
s ,Rs, γs, us

))
ds

+
∫ t

0
ψ

(
qη
s , γs

)
dηs −

∫ t

0
ψ

(
qζ
s , γs

)
dζ s + g

(
q

η
0 ,R0, γ0

) − g
(
q

ζ
0 ,R0, γ0

)∣∣∣∣
� sup

u∈UM

(∫ t

0

∣∣qη
s − qζ

s

∣∣ ds + 
p(η, ζ ) + ∣∣qη
0 − q

ζ
0

∣∣)

� 
p(η, ζ ) � 
 1
p

-Höl(η, ζ ),

and we conclude as we did in the proof of Theorem 3.14. �

REMARK 4.12. As we have seen, in order to prevent degeneracy of the control prob-
lem it is necessary to control the derivative of the parameters, rather than controlling them
directly. This allows us to calibrate, not only beliefs about reasonable values the parameters
could take, but also at what rate they should be able to vary. For example, if one believes
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that the true parameters should remain fairly constant then one can put a large penalty on the
magnitude of this derivative. In fact, by taking the penalty to be infinite for all nonzero con-
trols (derivatives), we obtain a setting with unknown parameters which are constant in time.
The discrete-time results of [13] suggest that we should then expect the resulting filter to con-
verge to the true parameter. (Although our observations are not independent and identically
distributed as in [13], under reasonable conditions they are ergodic, and this leads to consis-
tency properties in the likelihood function; see [19]. In this case, we expect that this would
lead to the nonlinear expectation asymptotically converging to the “true” expectation, and
the analysis of [13] further suggests an interpretation of the nonlinear expectation in terms of
confidence intervals.) Establishing precise convergence results could be the subject of future
research.

APPENDIX: ROUGH PATH ESTIMATES

Before establishing existence of solutions to the RDE (2.4), we recall some useful esti-
mates from Friz and Zhang [25].

LEMMA A.1 (Lemma 3.6 in [25]). Let ψ ∈ C3
b , γ ∈ C

p
2 -var and ζ ∈ C p with |||ζ |||p ≤ L.

Let (X,X′) ∈ D
p
ζ . Then

(∫ ·
0

ψ(Xs, γs)dζ s,ψ(X,γ )

)
∈ D

p
ζ

is a controlled rough path, and we have∥∥ψ(X,γ )
∥∥
p ≤ C

((∣∣X′
0
∣∣ + ∥∥X′∥∥

p

)‖ζ‖p + ∥∥RX
∥∥p

2
+ ‖γ ‖p

2

)
,

∥∥R∫ ·
0 ψ(Xs,γs)dζ s

∥∥p
2

≤ C
(
1 + ∣∣X′

0
∣∣ + ∥∥X′∥∥

p + ∥∥RX
∥∥p

2
+ ‖γ ‖p

2

)2|||ζ |||p,

where the constant C depends on ψ , p and L.

The following lemma is a direct consequence of Lemma 3.4 in [25].

LEMMA A.2. Let ψ ∈ C2
b , γ,ϑ ∈ C

p
2 -var and η, ζ ∈ C p with |||η|||p, |||ζ |||p ≤ L. Let

(X,X′) ∈ D
p
η and (Y,Y ′) ∈ D

p
ζ . For any δ ≥ 1, we have the following estimate:

∥∥ψ(X,γ ) − ψ(Y,ϑ)
∥∥
p + δ

∥∥R∫ ·
0 ψ(Xs,γs)dηs − R

∫ ·
0 ψ(Ys,ϑs)dζ s

∥∥p
2

≤ C
(∥∥Rψ(X,γ ) − Rψ(Y,ϑ)

∥∥p
2

+ δ
(∣∣ψ(X,γ )′0

∣∣ + ∥∥ψ(X,γ )′
∥∥
p + ∥∥Rψ(X,γ )

∥∥p
2

)

p(η, ζ )

+ δ
(∣∣ψ(X,γ )′0 − ψ(Y,ϑ)′0

∣∣ + ∥∥ψ(X,γ )′ − ψ(Y,ϑ)′
∥∥
p

+ ∥∥Rψ(X,γ ) − Rψ(Y,ϑ)
∥∥p

2

)|||ζ |||p
)
,

where the constant C depends on p and L.

LEMMA A.3 (Lemma 3.5 in [25]). Let ψ ∈ C3
b , γ,ϑ ∈ C

p
2 -var and η, ζ ∈ C p with |||η|||p ,

|||ζ |||p ≤ L. Let (X,X′) ∈ D
p
η and (Y,Y ′) ∈ D

p
ζ . Suppose that

∣∣X′
0
∣∣ + ∥∥X′∥∥

p + ∥∥RX
∥∥p

2
≤ M and

∣∣Y ′
0
∣∣ + ∥∥Y ′∥∥

p + ∥∥RY
∥∥p

2
≤ M
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and ‖γ ‖p
2
,‖ϑ‖p

2
≤ M for some M > 0. Then we have∥∥ψ(X,γ )′ − ψ(Y,ϑ)′

∥∥
p ≤ C

(|X0 − Y0| +
∣∣X′

0 − Y ′
0
∣∣ + ∥∥X′ − Y ′∥∥

p

+ ∥∥RX − RY
∥∥p

2
+ ‖γ − ϑ‖∞ + ‖γ − ϑ‖p

2
+ 
p(η, ζ )

)
,

∥∥Rψ(X,γ ) − Rψ(Y,ϑ)
∥∥p

2
≤ C

(|X0 − Y0| +
∣∣X′

0 − Y ′
0
∣∣ + ∥∥X′ − Y ′∥∥

p‖ζ‖p

+ ∥∥RX − RY
∥∥p

2
+ ‖γ − ϑ‖∞ + ‖γ − ϑ‖p

2
+ 
p(η, ζ )

)
,

where the constant C depends on ψ , p, L and M .

PROOF OF THEOREM 2.5. The following argument is adapted from the proof of The-
orem 3.8 in [25]. Let L > 0 be such that |||ζ |||p ≤ L. We define a map Mγ

T : D
p
ζ → D

p
ζ

by

Mγ
T

(
X,X′) :=

(
x +

∫ ·
0

b(Xs, γs)ds +
∫ ·

0
λ(Xs, γs)dζ s, λ(X,γ )

)
.

We will show that this map has a unique fixed point. For δ ≥ 1, we define the ball

B(δ)
T := {(

X,X′) ∈ D
p
ζ

([0, T ];Rm) : (
X0,X

′
0
) = (

x,λ(x, γ0)
)
,

∥∥X,X′∥∥(δ)
ζ,p ≤ 1

}
,

where ∥∥X,X′∥∥(δ)
ζ,p := ∥∥X′∥∥

p + δ
∥∥RX

∥∥p
2
.

We will show that, for a suitable choice of δ and for T sufficiently small, Mγ
T leaves B(δ)

T

invariant, and then that it is a contraction on B(δ)
T .

By Lemma A.1, any (X,X′) ∈ B(δ)
T satisfies

∥∥Mγ
T

(
X,X′)∥∥(δ)

ζ,p ≤ ∥∥λ(X,γ )
∥∥
p + δ

∥∥∥∥
∫ ·

0
b(Xs, γs)ds

∥∥∥∥p
2

+ δ
∥∥R∫ ·

0 λ(Xs,γs)dζ s
∥∥p

2

≤ C1

(
‖γ ‖p

2 ;[0,T ] + δ|||ζ |||p;[0,T ] + δT + 1

δ

)

for some constant C1 ≥ 1
2 depending only on b, λ, p, L and ‖γ ‖p

2
. Let δ = δ1 := 2C1 ≥ 1, so

that ∥∥Mγ
T

(
X,X′)∥∥(δ1)

ζ,p ≤ C1
(‖γ ‖p

2 ;[0,T ] + 2C1|||ζ |||p;[0,T ] + 2C1T
) + 1

2
.

Hence, taking T = T1 sufficiently small, we can ensure that ‖Mγ
T1

(X,X′)‖(δ1)
ζ,p ≤ 1, so that

Mγ
T1

(X,X′) ∈ B(δ1)
T1

. That is, B(δ1)
T1

is invariant under Mγ
T1

.

Let (X,X′), (Y,Y ′) ∈ B(δ1)
T for some T ≤ T1. For any (new) δ ≥ 1 we have∥∥Mγ

T

(
X,X′) −Mγ

T

(
Y,Y ′)∥∥(δ)

ζ,p

≤ δ

∥∥∥∥
∫ ·

0
b(Xs, γs)ds −

∫ ·
0

b(Ys, γs)ds

∥∥∥∥p
2

+ ∥∥λ(X,γ ) − λ(Y, γ )
∥∥
p + δ

∥∥R∫ ·
0 λ(Xs,γs)dζ s − R

∫ ·
0 λ(Ys,γs)dζ s

∥∥p
2

≤ C
(
δT ‖X − Y‖∞ + ∥∥Rλ(X,γ ) − Rλ(Y,γ )

∥∥p
2

+ δ
(∥∥λ(X,γ )′ − λ(Y, γ )′

∥∥
p + ∥∥Rλ(X,γ ) − Rλ(Y,γ )

∥∥p
2

)|||ζ |||p
)
,
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for some constant C depending on b, p and L, where we used the result of Lemma A.2 to
obtain the last line.

We can take M > 0, dependent only on λ and ‖γ ‖p
2

, sufficiently large such that

‖γ ‖p
2

≤ M and
∣∣X′

0
∣∣ + ∥∥X′∥∥

p + ∥∥RX
∥∥p

2
≤ M

for all (X,X′) ∈ B(δ1)
T . Noting that ‖X − Y‖∞ ≤ ‖RX − RY ‖p

2
and applying the estimates in

Lemma A.3, we then deduce that∥∥Mγ
T

(
X,X′) −Mγ

T

(
Y,Y ′)∥∥(δ)

ζ,p

≤ C2
(∥∥RX − RY

∥∥p
2

+ δ
(∥∥X′ − Y ′∥∥

p + ∥∥RX − RY
∥∥p

2

)(|||ζ |||p;[0,T ] + T
))

,

for a new constant C2 > 1
2 which depends only on b, λ, p, L and M . Let δ = δ2 := 2C2 > 1.

We can then choose T = T2 ≤ T1 sufficiently small such that C2δ2(|||ζ |||p;[0,T2] + T2) ≤ 1
2 .

We then have that∥∥Mγ
T2

(
X,X′) −Mγ

T2

(
Y,Y ′)∥∥(δ2)

ζ,p ≤ 1

2

∥∥X′ − Y ′∥∥
p + δ2 + 1

2

∥∥RX − RY
∥∥p

2

≤ δ2 + 1

2δ2

∥∥(
X,X′) − (

Y,Y ′)∥∥(δ2)
ζ,p ,

which establishes the contraction property for Mγ
T2

.
It follows that there exists a unique fixed point (X,X′) ∈ D

p
ζ of the map Mγ

T2
, which

is then the unique solution of (2.10) in D
p
ζ satisfying X′ = λ(X,γ ) over the time interval

[0, T2]. Noting that the time T2 was chosen independently of the initial values x, γ0, we may
then simply paste solutions together to obtain a unique solution over the entire interval [0, T ]
for any given T > 0. �

PROOF OF PROPOSITION 2.6. Since ‖γ ‖p
2

is bounded by M , it follows from Proposi-
tion 2.4 and the fact that X′ = λ(X,γ ), that there exists an M̃ > 0, depending on b, λ, p, T ,
L and M , such that the norms

‖γ ‖p
2
, ‖X‖p,

∣∣X′
0
∣∣, ∥∥X′∥∥

p,
∥∥RX

∥∥p
2
,

∣∣λ(X,γ )′0
∣∣, ∥∥λ(X,γ )′

∥∥
p,

∥∥Rλ(X,γ )
∥∥p

2
,

and the same with X and γ replaced by Y and ϑ , are all bounded by M̃ . In particular we note
that the hypotheses of Lemma A.3 are satisfied. In the following the symbol � will denote
inequality up to a multiplicative constant which may depend on b, λ, ψ , p, T , L and M̃ .

For any δ ≥ 1, we have∥∥X′ − Y ′∥∥
p + δ

∥∥RX − RY
∥∥p

2

� δ

∥∥∥∥
∫ ·

0
b(Xs, γs)ds −

∫ ·
0

b(Ys,ϑs)ds

∥∥∥∥p
2

+ ∥∥λ(X,γ ) − λ(Y,ϑ)
∥∥
p + δ

∥∥R∫ ·
0 λ(Xs,γs)dηs − R

∫ ·
0 λ(Ys,ϑs)dζ s

∥∥p
2
.

Since the drift b is Lipschitz, it is easy to see that∥∥∥∥
∫ ·

0
b(Xs, γs)ds −

∫ ·
0

b(Ys,ϑs)ds

∥∥∥∥p
2

�
(‖X − Y‖∞ + ‖γ − ϑ‖∞

)
T

≤ (|x − y| + ‖X − Y‖p + ‖γ − ϑ‖∞
)
T .
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As (X,X′) = (X,λ(X,γ )) ∈ D
p
η and (Y,Y ′) = (Y,λ(Y,ϑ)) ∈ D

p
ζ , we have that

(A.1)
‖X − Y‖p ≤ ∥∥X′∥∥∞‖η − ζ‖p + ∥∥X′ − Y ′∥∥∞‖ζ‖p + ∥∥RX − RY

∥∥p
2

� ‖η − ζ‖p + |x − y| + ‖γ − ϑ‖∞ + ∥∥X′ − Y ′∥∥
p + ∥∥RX − RY

∥∥p
2
.

Combining the results of Lemmas A.2 and A.3, we then deduce that∥∥X′ − Y ′∥∥
p + δ

∥∥RX − RY
∥∥p

2

≤ C0
(|x − y| + δ
p(η, ζ ) + ∥∥RX − RY

∥∥p
2

+ ‖γ − ϑ‖∞ + ‖γ − ϑ‖p
2

+ δ
(|x − y| + ∥∥X′ − Y ′∥∥

p + ∥∥RX − RY
∥∥p

2

+ ‖γ − ϑ‖∞ + ‖γ − ϑ‖p
2

)(|||ζ |||p;[0,T ] + T
))

,

for some constant C0 > 1
2 which depends on b, λ, p, T , L and M̃ .

Let δ = δ0 := 2C0 > 1. We can then take T = T0 (depending only on p, L and C0) suffi-
ciently small such that

C0δ0
(|||ζ |||p;[0,T0] + T0

) ≤ C0δ0
(‖ζ‖ 1

p
-HölT

1
p

0 + ∥∥ζ (2)
∥∥ 2

p
-HölT

2
p

0 + T0
) ≤ 1

2
,

so that, after rearranging, we obtain∥∥X′ − Y ′∥∥
p + (δ0 − 1)

∥∥RX − RY
∥∥p

2

≤ (δ0 + 1)
(|x − y| + ‖γ − ϑ‖∞ + ‖γ − ϑ‖p

2

) + δ2
0
p(η, ζ ).

It follows that the estimate in (2.11) holds over any time interval of length T0. One can then
extend this estimate to hold over the union of any finite number of such intervals (with a
correspondingly larger constant C) by pasting via Lemma 2.3.

The bound in (A.1) also holds with X and Y replaced with
∫ ·

0 ψ(Xs, γs)dηs and∫ ·
0 ψ(Ys,ϑs)dζ s respectively, so that∥∥∥∥

∫ ·
0

ψ(Xs, γs)dηs −
∫ ·

0
ψ(Ys,ϑs)dζ s

∥∥∥∥
p

� ‖η − ζ‖p + |x − y| + ∥∥ψ(X,γ ) − ψ(Y,ϑ)
∥∥
p + ‖γ − ϑ‖∞

+ ∥∥R∫ ·
0 ψ(Xs,γs)dηs − R

∫ ·
0 ψ(Ys,ϑs)dζ s

∥∥p
2
.

Applying again the results of Lemmas A.2 and A.3, this time with δ = 1, we deduce that∥∥∥∥
∫ ·

0
ψ(Xs, γs)dηs −

∫ ·
0

ψ(Ys,ϑs)dζ s

∥∥∥∥
p

� |x − y| + ∥∥X′ − Y ′∥∥
p + ∥∥RX − RY

∥∥p
2

+ ‖γ − ϑ‖∞ + ‖γ − ϑ‖p
2

+ 
p(η, ζ ).

Combining this with (2.11), we obtain (2.12). �
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