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PARAMETER AND DIMENSION DEPENDENCE OF CONVERGENCE RATES
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We obtain rates of convergence to stationarity in L1-Wasserstein distance
for a d-dimensional reflected Brownian motion (RBM) in the nonnegative or-
thant that are explicit in the dimension and the system parameters. The re-
sults are then applied to a class of RBMs considered in (Blanchet and Xinyun
(2016)) and to rank-based diffusions including the Atlas model. In both cases,
we obtain explicit rates and bounds on relaxation times. In the first case we
improve the relaxation time estimates of O(d4(logd)2) obtained in (Blanchet
and Xinyun (2016)) to O((logd)2). In the latter case, we give the first results
on explicit parameter and dimension dependent rates under the Wasserstein
distance. The proofs do not require an explicit form for the stationary mea-
sure or reversibility of the process with respect to this measure, and cover
settings where these properties are not available. In the special case of the
standard Atlas model (In Stochastic Portfolio Theory (2002) 1–24 Springer),
we obtain a bound on the relaxation time of O(d6(logd)2).

1. Introduction. A d-dimensional obliquely reflected Brownian motion with drift in the
nonnegative orthant plays a central role in Queuing Theory where it arises as a diffusion limit
of scaled queue length processes when the system is in the heavy traffic regime (namely the
arrival rate and the service rate are approximately equal) [5, 14, 15, 24, 29]. Such a process
is also used to describe the behavior of rank-based diffusions, namely a system of particles
whose trajectories are given by Brownian motions with drift, where the drift and diffusion
coefficients of a given particle at any given time depend on its relative rank in the system at
that time. These models appear frequently in mathematical finance, for example, the Atlas
model [2, 18, 23]. There has been extensive work in the study of stability of such reflected
Brownian motions (RBM) that gives explicit sufficient conditions for positive recurrence for
the RBM and the corresponding queuing systems [1, 8, 9, 16, 27]. In this work, we obtain
explicit exponential convergence rates (in Wasserstein distance) to equilibrium for multidi-
mensional reflected Brownian motion (RBM) under a key stability condition identified in
[16] (see Assumption (A2)). This assumption is known to be “almost necessary” for stability
(see Remark 1 for a precise statement). The convergence rates obtained in this work are ex-
plicit (up to some universal constants) in the dimension and system parameters. The system
parameters are given by the drift vector, the covariance matrix of the Brownian motion, and
the reflection matrix. Stationary distributions of RBM are rarely explicit and the convergence
rates of the form obtained in this work provide important information for the construction of
numerical schemes that sample from these stationary distributions.

There has been some prior work in this area. Exponential ergodicity was proved in [7] for
semimartingale reflecting Brownian motions under the stability condition of [9]. This class
includes RBM of the form considered in this work. The paper [7] also established exponential
ergodicity of certain reflected diffusions with state dependent drift and diffusion coefficients.
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The key ingredient in the proof was the construction of a suitable Lyapunov function along
with establishing a minorization condition on a sufficiently large compact set (referred to as
a “small set”). The Lyapunov function provides good control on the exponential moments
of the return times to the small set while the minorization condition implies the existence
of abstract couplings of two copies of the process (via construction of “pseudo-atoms” as
described in Chapter 5 of [22]) which have a positive chance of coalescing inside the small
set. Together, they furnish exponential rates of convergence (in a weighted total variation
distance). However, due to the somewhat implicit treatment of the process inside the small
set, the rates obtained by this method shed little light on how they qualitatively depend on
the system parameters or the state dimension. The paper [18] obtained explicit convergence
rates for a class of reversible rank-based diffusions with explicit stationary measures using
Dirichlet form techniques (which crucially use reversibility). See also the discussion in Sec-
tion 5.2. The convergence considered in [18] corresponds to that of time averages of bounded
functionals of the state process to the corresponding stationary values in probability (see
Theorem 1 of [18]), which is considerably weaker than the L1-Wasserstein distance consid-
ered in the current work. The setting of one-dimensional RBM was considered in [28] where
(among other results) an estimate on the spectral gap was provided as a function of the drift
and the diffusion coefficient. In a recent work, [3] obtained dimension dependent bounds
on rates of Wasserstein convergence for a class of RBM. Under conditions on the drift vec-
tor, the covariance matrix of the Brownian motion, and the reflection matrix (see Conditions
(BC1)–(BC3) in Section 5), [3] analyzed the behavior of the RBM inside the small set ex-
plicitly by considering synchronous couplings (namely, couplings where the RBM starting
from different points are driven by the same Brownian motion). Using explicit couplings to
obtain better convergence rate estimates is a relatively recent but developing area. See [4,
10–12] for such results for other classes of diffusions. In this work, we revisit the idea of
constructing synchronous couplings for RBM. Under quite general conditions (specifically,
the ones introduced in [16] that guarantee the existence of strong solutions and positive re-
currence), we construct a suitable Lyapunov function and identify (an appropriate analogue
of) a small set that both depend crucially on the process parameters and the state dimension.
This, along with a careful treatment of excursions from the small set, enables us to quantify
contraction rates in L1-distance for synchronous couplings starting from distinct points and
thereby obtain rates of Wasserstein convergence that are given explicitly in terms of the sys-
tem parameters, the state dimension, and some constants (that do not depend on dimension
or model parameters). These convergence rates, together with bounds on relaxation times of
the RBM that follow from it, are the main results of this work and are given in Theorem 1.
In Section 5 we apply these results to the class of RBMs considered in [3] and rank-based
diffusions considered in [18]. In the former case, we substantially improve the relaxation
time estimates from O(d4(logd)2) obtained in [3] to O((logd)2). In the latter case, we give
the first results on explicit parameter and dimension dependent rates under the Wasserstein
distance. The proofs do not require an explicit form for the stationary measure or reversibil-
ity of the process with respect to this measure, and cover settings where these properties are
not available. In the special case of the standard Atlas model [13], we give a bound on the
relaxation time of O(d6(logd)2) (see Remark 6).

2. Model, notation and assumptions. Let B be a d-dimensional standard Brownian
motion and let μ ∈ R

d and D,R ∈ R
d×d . Consider for x ∈ R

d+ := [0,∞)d the R
d+-valued

continuous stochastic process given by the equation

(1) X(t;x) = x + DB(t) + μt + RL(t),
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where L, referred to as the local time process, is a nondecreasing continuous process satisfy-
ing

(2) L(0) = 0,

∫ t

0
Xi(s;x) dLi(s) = 0 for all t > 0 and 1 ≤ i ≤ d.

We will make the following basic assumptions.

ASSUMPTIONS.

(A1) The matrix P := I −RT is substochastic (nonnegative entries and row sums bounded
above by 1) and transient (P n → 0 as n → ∞).

(A2) b := −R−1μ > 0.
(A3) The matrix � = DDT is positive definite.

The paper [15] shows that under (A1) there is a unique strong solution to (1)–(2), namely
for each x ∈ R

d+ there is a unique pair of continuous stochastic processes (X,L) satisfying
the above equations. This assumption is satisfied by the routing matrix of any single-class
open queueing network [15] and consequently diffusion limits of such networks can be char-
acterized by (1)–(2). The collection {X(·;x)}x∈Rd+ defines a strong Markov process (see [16])
which we denote as RBM(μ,�,R) and refer to simply as the reflected Brownian motion
(RBM). The matrix R describes the reflection mechanism, specifically, the ith column of R

gives the direction of reflection on the ith face of the orthant. The conditions on P in particu-
lar say that its spectral radius is strictly less than 1. The matrix � = DDT gives the covariance
matrix associated with the diffusion term of (1).

NOTATION. Although μ, � and R depend on the dimension d , this dependence is sup-
pressed to avoid cumbersome notation. We will write b = −R−1μ. The entries of b will be
denoted by bi , and the diagonal entries of � will be denoted by σ 2

i , where 1 ≤ i ≤ d . All
constants appearing in the statements of lemmas and theorems will be universal in that they
do not depend on model parameters or the dimension d , unless noted otherwise.

REMARK 1. Unique strong solutions of the RBM that follow from (A1) imply that any
coupling of the driving Brownian motions translate into a coupling of the processes them-
selves. Throughout this work we will take the family {X(·;x)}x∈Rd+ to be notationdriven by
the same Brownian motion, namely we will consider a synchronous coupling of the processes
starting from different initial conditions. Assumption (A2) is the well-known “stability con-
dition” which is sufficient for the existence of a stationary measure [16]. The condition is
almost necessary for stability in that if bi < 0 for some i then the RBM is transient [6]. As-
suming (A3) in addition to (A1)–(A2) gives that the strong Markov process RBM(μ,�,R)

has a unique stationary probability distribution [16].

3. Main result. Following [3], define the following stopping times: η0(x) = 0 and

ηk
i (x) = inf

{
t ≥ ηk−1(x) + 1 : Xi(t,x) = 0

}
, ηk(x) = sup

{
ηk

i (x) : 1 ≤ i ≤ d
}
.

Define

N (t;x) = sup
{
k ≥ 0 : ηk(x) ≤ t

}
.

Also define the contraction coefficient

(3) n(R) := inf
{
n ≥ 1 : ∥∥P n1

∥∥∞ ≤ 1/2
}
,
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where 1 is a d-dimensional vector of ones and for u ∈ R
d , ‖u‖∞ := sup1≤i≤d |ui |. By As-

sumption (A1), n(R) < ∞. This quantity plays a key role in quantifying the convergence rate
to equilibrium.

We now present the main result of this work. Given probability measures μ and ν on R
d+,

a probability measure γ on R
d+ ×R

d+ is said to be a coupling of μ and ν if γ (· ×R
d+) = μ(·)

and γ (Rd+ × ·) = ν(·). The L1-Wasserstein distance between two probability measures μ and
ν on R

d+ is given by

W1(μ, ν) = inf
{∫

R
d+×R

d+
‖x − y‖1γ (dx,dy) : γ is a coupling of μ and ν

}
,

where for a vector z ∈ R
d , ‖z‖1 =∑d

i=1 |zi |. We will denote the law of a random variable X

by L(X). Recall that from [16], under Assumptions (A1)–(A3), there is a unique stationary
distribution of the RBM. Denote by X(∞) a random vector sampled from this stationary
distribution. Define the relaxation time, trel(x) for the RBM starting from x ∈ R

d+ as

trel(x) := inf
{
t ≥ 0 : W1

(
L
(
X(t;x)

)
,L
(
X(∞)

))≤ 1/2
}
.

We will abbreviate the parameters of the RBM as � := (μ,�,R). Recall that these parame-
ters are required to satisfy (A1)–(A3). We will quantify rate of convergence to equilibrium in
terms of the following functions of �, d . Fix κ ∈ (0,∞). Let

a(�) := sup
1≤i≤d

[∑d
j=1(R

−1)ij σj

bi

]
, b(�) := sup

1≤i≤d

[∑d
j=1(R

−1)ij σj

σi

]
,

R1(�,d) := n(R)
(
1 + a(�)2 log(2d)

)
, R2(�) := a(�)2b(�),

C1(x,�) := 2‖x‖1 + a(�)
∑
i,j

(
R−1)

ij σj ,

C2(x,�,κ) := 2‖x‖1e
3(κa(�)b(�))−1‖x‖∗∞ + a(�)

[
2d(1 + d)

(∑
i,j

(
R−1)2

ij

)( d∑
j=1

σ 2
j

)]1/2

.

For any x ∈ R
d+, define ‖x‖∗∞ := sup1≤i≤d σ−1

i xi .

THEOREM 1. There exist a t0 ∈ (0,∞) and D1,D2 ∈ (0,∞) such that for every d ∈ N,
x ∈ R

d+, every parameter choice �, and t ≥ t0(1 + (a(�))2 log(2d)),

W1
(
L
(
X(t;x),L

(
X(∞)

))
≤ E

(∥∥X(t;x) − X
(
t;X(∞)

)∥∥
1

)
≤ C1(x,�)

(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)+ C2(x,�,D2)e

− t
8D2R2(�) .

In particular, the relaxation time satisfies

trel(x) ≤ max
{
D−1

1 R1(�,d) log
(
8C1(x,�)

)
+ 16D2R2(�) log

[
4
(
C1(x,�) + C2(x,�,D2)

)]
,

t0
(
1 + (a(�)

)2 log(2d)
)}

.

REMARK 2. The universal constants t0, D1 and D2 will be identified in Sections 6 and 7.
Specifically, t0 and D1 are introduced in Lemma 8 (see (43)) and D2 := max{A0,9}, where
A0 is introduced in Lemma 5.
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REMARK 3. The proof of Theorem 1 (see Remark 8) will show that one can, in fact,
obtain a better bound of the form

W1
(
L
(
X(t;x),L

(
X(∞)

))≤ E
(∥∥X(t;x) − X

(
t;X(∞)

)∥∥
1

)
≤ C1(x,�)

(
e
−D1n(R)t

R1(�,d) + e
− 32(log 2)D1t

R1(�,d) + e
− t

16D2R2(�)
)

+ C2(x,�,D2)e
− t

8D2R2(�) .

This bound leads to a better choice of the universal constants appearing in the exponents
of the bound when n(R) is large. As a consequence the bounds on relaxation times and the
bounds given in the examples of Section 5 can be slightly improved using the above estimate.
However, this improved bound leads to cumbersome expressions in the bounds and relaxation
time estimates in Section 5. Moreover, our main goal is to highlight the dependence of the
convergence rates on system parameters which is completely captured by Theorem 1. Hence,
we do not give details on how the improved bound can be obtained, however see Remark 8
for some additional comments.

An important ingredient in the proof is the following analogue of Lemma 3 from [3] which
shows that the synchronous coupling gives an a.s. contraction of the L1-distance ‖X(t;x) −
X(t;0)‖1 which can be quantified as follows. The proof is similar to that in [3] and so only a
sketch is provided.

LEMMA 2 (See [3]). For x ∈ R
d+ and t ≥ 0,∥∥X(t;x) − X(t;0)

∥∥
1 ≤ 2‖x‖12−N (t;x)/n(R).

PROOF. The main idea is to associate the substochastic matrix P with a Markov chain
on states {0,1, . . . , d} absorbed at 0 and show that ‖x‖−1

1 ‖X(t;x) − X(t;0)‖1 (assuming
‖x‖1 	= 0) is bounded above by the maximum over the initial state i of the probability that,
starting from i, the Markov chain is not absorbed by time N (t;x). Using this idea, Lemma 2
in [3] and the proof of Lemma 3 in [3] establish

(4)
∥∥X(t;x) − X(t;0)

∥∥
1 ≤ ∥∥PN (t;x)1

∥∥∞‖x‖1.

The lemma now follows from the definition of n(R) given in (3) above. �

REMARK 4. The quantity n(R)−1 defined in (3) gives an explicit bound on the exponen-
tial decay rate of ‖P n1‖∞ with n. Note that n(R) possibly depends on the dimension d , but
the dependence is solely through R. Sometimes (as we will see in the first example of Sec-
tion 5) it is possible to get a better bound in the sense that we can obtain positive constants
C(R,d) and n′(R) < n(R) such that∥∥P n1

∥∥∞ ≤ C(R,d)2−n/n′(R), n ≥ 0.

In this case, we can replace the bound in Lemma 2 by

(5)
∥∥X(t;x) − X(t;0)

∥∥
1 ≤ C(R,d)‖x‖12−N (t;x)/n′(R).

REMARK 5. In cases where we can obtain the better bound (5), the constants R1(�,d)

and C1(x,�) appearing in the bounds on Wasserstein distance and relaxation time in Theo-
rem 1 can be replaced by R′

1(�,d) and C′
1(x,�,d) respectively, where

R′
1(�,d) := n′(R)

(
1 + a(�)2 log(2d)

)
,

C′
1(x,�,d) := 2‖x‖1 + a(�)C(R,d)

2

∑
i,j

(
R−1)

ij σj .
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4. Outline of approach. We now give an outline of our approach.

(i) We use a key idea from [3] which shows that, under the synchronous coupling, the
L1-distance between the two processes X(·;0) and X(·;x) decreases with time. Using this
idea, we provide an estimate on the rate of decay of this L1-distance in terms of a “contraction
coefficient” which quantifies the decay rate of ‖P n1‖∞ with n. The precise statement was
formulated as Lemma 2 in Section 3.

(ii) We use the fact that for any v > 0 in R
d satisfying R−1v ≤ b, one can dominate

the process X(·;x) in an appropriate manner by a normally reflected Brownian motion with
drift −v in R

d+. This process, written as X+
v (·;x), is technically simpler to analyze. The

idea of dominating an RBM(μ,�,R) by a normally reflected RBM is due to [16]. Next,
we choose an appropriate compact set (which plays a role similar to the “small set” in the
terminology of [22]) such that one can obtain a tight control over return times to this set (this
is done via Lyapunov function techniques in Lemma 5) and, loosely speaking, is such that
the L1-distance between the synchronously coupled processes X(·;0) and X(·;x) decreases
by a constant factor each time the process X+

v (·;x) visits this set (this result is formulated in
Lemma 7). A crucial ingredient here is the Introduction of a suitable weighted norm (see (16))
whose sub-level sets are the appropriate “small sets” with the desired contraction property.
The definition of this norm is guided by an analysis of how the maximum process for each
coordinate scales with the system parameters. This weighted norm is used to construct the
small set and also an appropriate Lyapunov function. These constructions and their properties
are studied in Section 6.

(iii) In Section 7, we obtain the rate of decay of ‖X(t;x)−X(t;0)‖1 with time t , in terms
of the parameter v of the dominating normally reflected RBM, by decomposing the path of
X+

v (·;x) into excursions from the small set obtained in (ii) and using the estimates from
Section 6 for probabilities of certain events associated with these excursions.

(iv) Finally in Section 8 we prove our main result, namely Theorem 1, where we obtain
explicit parameter and dimension dependent rates of decay in L1-Wasserstein distance be-
tween the processes X(·;0) and X(·;x) with time t by optimizing the rates derived in (iii)
over the parameter v > 0 of the dominating RBM.

Before proceeding to the proof we apply Theorem 1 in two settings, the first is that of RBM
satisfying the assumptions of [3] and the second corresponds to that of rank-based diffusions
such as the Atlas model.

5. Examples. We will use Theorem 1 (and Remark 5) to obtain bounds on the rate of
convergence to equilibrium in two examples that are discussed in Sections 5.1 and 5.2 below.

5.1. Blanchet–Chen RBM. This refers to the class of RBM under the set of assumptions
in [3], namely:

(BC1) The matrix P is substochastic and there exist κ > 0 and β ∈ (0,1) not depending
on the dimension d such that ‖1T P n‖∞ ≤ κ(1 − β)n for all n ≥ 0.

(BC2) There exists δ > 0 independent of d such that R−1μ < −δ1.
(BC3) There exists σ > 0 independent of d such that σi := √

�ii satisfies σ−1 ≤ σi ≤ σ

for every 1 ≤ i ≤ d .

Under the above conditions [3] give a polynomial bound of O(d4(logd)2) on the relaxation
time of the RBM. As shown in the following theorem, Theorem 1 gives a substantial im-
provement by establishing a polylogarithmic relaxation time of O((logd)2).
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THEOREM 3. Under Assumptions (BC1), (BC2) and (BC3), there exist positive con-
stants E1, E2, E3, E4, t1 such that for any x ∈R

d+, t ≥ t1 max{‖x‖∞, log(2d)},
E
(∥∥X(t;x) − X

(
t;X(∞)

)∥∥
1

)
≤ 2
(
2‖x‖1 + E1d

2)e−E2t/ log(2d) + (4‖x‖1 + E1d
2)e−E4t/2 + E3d

2e−E4t .

In particular, the relaxation time satisfies

trel(x) ≤ max
{
E−1

2 log
[
8
(
2‖x‖1 + E1d

2)] log(2d)

+ E−1
4

[
2 log

[
8
(
4‖x‖1 + E1d

2)]+ log
(
8E3d

2)],
t1 max

{‖x‖∞, log(2d)
}}

.

PROOF. Observe that∥∥P n1
∥∥∞ ≤ 1T P n1 ≤ d

∥∥1T P n
∥∥∞ ≤ dκ(1 − β)n.

Thus, the hypothesis of Remark 4 is satisfied with

C(R,d) = κd, n′(R) ≡ n′ := log(2)

log(1 − β)−1 + 1.

Now we will use Theorem 1 in conjunction with Remark 5.
Under Assumptions (BC1), (BC2) and (BC3), we have the following bounds:

a(�) = sup
1≤i≤d

[∑d
j=1(R

−1)ij σj

bi

]
≤ ‖R−11‖∞σ

δ
≤ κσ

βδ
,

b(�) = sup
1≤i≤d

[∑d
j=1(R

−1)ij σj

σi

]
≤ ‖R−11‖∞σ

σ−1 ≤ κσ 2

β
,

R′
1(�,d) = n′(R)

(
1 + a(�)2 log(2d)

)≤ n′
(

1 + κ2σ 2

β2δ2 log(2d)

)
,

R2(�) = a(�)2b(�) ≤ κ3σ 4

β3δ2 ,

C′
1(x,�,d) = 2‖x‖1 + a(�)C(R,d)

2

∑
i,j

(
R−1)

ij σj

≤ 2‖x‖1 + κ2σd2

2βδ

∥∥R−11
∥∥∞σ ≤ 2‖x‖1 + κ3σ 2d2

2β2δ
,

where we have used the observation that under Assumption (BC1), one has ‖R−11‖∞ ≤ κ/β .
Next, observe that ‖x‖∗∞ ≤ σ‖x‖∞. This, along with the bound on a(�) obtained above, im-

plies that for t ≥ 48κσ 2

βδ
‖x‖∞, 3(D2a(�)b(�))−1‖x‖∗∞ ≤ t/(16D2R2(�)). Hence, for such t ,

C2(x,�,D2)e
− t

8D2R2(�)

= 2‖x‖1e
3(D2a(�)b(�))−1‖x‖∗∞e

− t
8D2R2(�)

+ a(�)

[
2d(1 + d)

(∑
i,j

(
R−1)2

ij

)( d∑
j=1

σ 2
j

)]1/2

e
− t

8D2R2(�)
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≤ 2‖x‖1e
− t

16D2R2(�) + κσ

βδ

[
2d(1 + d)d

(∥∥R−11
∥∥∞)2(dσ 2)]1/2

e
− t

8D2R2(�)

≤ 2‖x‖1e
− t

16D2R2(�) + 2κ2σ 2

β2δ
d2e

− t
8D2R2(�)

≤ 2‖x‖1e
− β3δ2t

16D2κ3σ4 + 2κ2σ 2

β2δ
d2e

− β3δ2t

8D2κ3σ4
.

Take E1 = κ3σ 2

2β2δ
, E2 = D1[n′(2 + κ2σ 2

β2δ2 )]−1, E3 = 2κ2σ 2

β2δ
, E4 = β3δ2

8D2κ
3σ 4 . Using the above

bounds in Theorem 1 (modified as in Remark 5), for any x ∈ R
d+, t ≥ max{t0(1 +

κ2σ 2

β2δ2 log(2d)), 48κσ 2

βδ
‖x‖∞},

E
(∥∥X(t;x) − X

(
t;X(∞)

)∥∥
1

)
≤ C′

1(x,�,d)
(
2e

− D1t

R′
1(�,d) + e

− t
16D2R2(�)

)+ C2(x,�,D2)e
− t

8D2R2(�)

≤ (2‖x‖1 + E1d
2)(2e−E2t/ log(2d) + e−E4t/2)+ 2‖x‖1e

−E4t/2 + E3d
2e−E4t .

This proves the first part of the theorem upon taking t1 = max{t0(1 + κ2σ 2

β2δ2 ), 48κσ 2

βδ
}. The

bound on the relaxation time follows immediately from the first part. �

5.2. Gap process of rank-based diffusions. Rank based diffusions are interacting parti-
cle systems where the drift and diffusion coefficient of each particle depends on its rank.
Mathematically, they are represented by the SDE

(6) dXi(t) =
(

d+1∑
j=1

δj 1[Xi(t)=X(j)(t)]
)

dt +
(

d+1∑
j=1

σj 1[Xi(t)=X(j)(t)]
)

dWi(t)

for 1 ≤ i ≤ d + 1, where {X(j)(t) : t ≥ 0} denotes the trajectory of the rank j particle as
a function of time t (X(1)(t) ≤ · · · ≤ X(d+1)(t) for all t ≥ 0), δj , σj denote the drift and
diffusion coefficients of the rank j particle, and Wi , 1 ≤ i ≤ d , are mutually independent
standard one-dimensional Brownian motions. We will assume throughout that σi > 0 for all
1 ≤ i ≤ d + 1. Rank-based diffusions have been proposed and extensively studied as models
for problems in finance and economics. A special case is the Atlas model [13] where the min-
imum particle (i.e., the particle with rank 1) is a Brownian motion with positive drift and the
remaining particles are Brownian motions without drift (i.e. δi = 0 for all i > 1). The general
setting considered in (6) was introduced in [2]. In order to study the long time behavior, it
is convenient to consider the gap process Y = (Y1, . . . , Yd), given by Yi = X(i+1) − X(i) for
1 ≤ i ≤ d . The process Y ≡ Y(t;y) is a RBM in R

d+ given as

Y(t;y) = y + DB(t) + μt + RL(t),

where y is the initial gap sequence, B is a standard d-dimensional Brownian motion, μi =
δi+1 − δi for 1 ≤ i ≤ d , D ∈ R

d×d , L is the local time process associated with Y and R

satisfies Assumption (A1). The covariance matrix � = DDT has entries �ii = σ 2
i + σ 2

i+1
when 1 ≤ i ≤ d , �i(i−1) = −σ 2

i for 2 ≤ i ≤ d , �i(i+1) = −σ 2
i+1 for 1 ≤ i ≤ d −1 and �ij = 0

otherwise. In particular, (A3) is satisfied, namely � is positive definite. Moreover, R is given
explicitly as R = I − P T , where P is the substochastic matrix given by Pi(i+1) = Pi(i−1) =
1/2 for all 2 ≤ i ≤ d − 1, P12 = Pd(d−1) = 1/2 and Pij = 0 if |i − j | ≥ 2. From [16] the
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process is positive recurrent and has a unique stationary distribution if Assumption (A2) is
satisfied, namely b = −R−1μ > 0, which is same as the following condition:

(7) bk =
k∑

i=1

(δi − δ) > 0 for 1 ≤ k ≤ d, where δ = (d + 1)−1
d+1∑
j=1

δj .

In the special case where

(8) σ 2
i+1 − σ 2

i = σ 2
2 − σ 2

1 for all 1 ≤ i ≤ d,

the stationary distribution is explicit and takes the form L(Y(∞)) =⊗d
k=1 Exp(2bk(σ

2
k +

σ 2
k+1)

−1) (see Section 5 of [19]). For the general case (i.e., σi are strictly positive and (7)
is satisfied) explicit formulas for stationary distribution are not available, however from [7],
the law of Y(t;y) converges to the unique stationary distribution in (weighted) total variation
distance at an exponential rate. As noted previously, this result does not provide information
on parameter or dimension dependence of the rate of convergence. The paper [18] provides
explicit rate of convergence to stationarity, that shows a clear parameter dependence, under
the stability condition (7) and the assumption that σi = 1 for all 1 ≤ i ≤ d . In this case
the stationary measure takes an explicit form and the process is reversible with respect to
the stationary measure. The proofs in [18], which are based on Dirichlet form techniques,
crucially make use of these properties. The explicit representation of the stationary measure
is available only under the skew-symmetry condition (see [17]) guaranteed by (8) and the
reversibility of the process with respect to this measure is not available if the σi are not all
equal. The convergence considered in [18] corresponds to that of time averages of bounded
functionals of the state process to the corresponding stationary values in probability (see
Theorem 1 of [18]), which is considerably weaker than the L1-Wasserstein distance or total
variation convergence.

From Theorem 1 we have the following bound on the rate of L1-Wasserstein convergence
of the gap process to Y(∞). Note that we do not require reversibility or an explicit expression
for the stationary measure.

Two key quantities appearing in the rate of convergence are

(9) a∗ := sup
1≤i≤d

i(d + 1 − i)

bi

, σ =
(

sup
1≤i≤d

σi

)
∨
(

sup
1≤i≤d

σ−1
i

)
,

where bi are defined in (7) and σi is the standard deviation of the rank i particle (see (6)).

THEOREM 4. There exist positive constants F1, F2, F3, F4, t2 such that for any y ∈ R
d+

and any t ≥ t2 max{σ 2a∗‖y‖∞,1 + σ 2a∗2 log(2d)},
E
(∥∥Y(t;y) − Y

(
t;Y(∞)

)∥∥
1

)≤ 2
(
2‖y‖1 + F1σ

2a∗d3)e−F2t/[d2(1+σ 2a∗2 log(2d))]

+ (4‖y‖1 + F1σ
2a∗d3)e−F4t/[2σ 4a∗2(d+1)2]

+ F3σ
2a∗d7/2e−F4t/[σ 4a∗2(d+1)2].

In particular, the relaxation time satisfies

trel(y) ≤ max
{
F−1

2

[
d2(1 + σ 2a∗2 log(2d)

)]
log
[
8
(
2‖y‖1 + F1σ

2a∗d3)]
+ F−1

4 σ 4a∗2(d + 1)2[2 log
[
8
(
4‖y‖1 + F1σ

2a∗d3)]+ log
(
8F3σ

2a∗d7/2)],
t2 max

{
σ 2a∗‖y‖∞,1 + σ 2a∗2 log(2d)

}}
.
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PROOF. Direct calculation shows that R−1 takes the form

(
R−1)

ij =

⎧⎪⎪⎨⎪⎪⎩
2j (d + 1 − i)

(d + 1)
if j ≤ i,

2i(d + 1 − j)

(d + 1)
if j > i.

Therefore,

(10)
d∑

j=1

(
R−1)

ij = (R−11
)
i = i(d + 1 − i).

Using (10) and recalling (9), we obtain

(11)

a(�) = sup
1≤i≤d

[∑d
j=1(R

−1)ij σj

bi

]
≤ σ sup

1≤i≤d

i(d + 1 − i)

bi

= σa∗,

b(�) = sup
1≤i≤d

[∑d
j=1(R

−1)ij σj

σi

]
≤ σ 2 sup

1≤i≤d

i(d + 1 − i) ≤ σ 2 (d + 1)2

4
,

R2(�) = a(�)2b(�) ≤ σ 4a∗2(d + 1)2

4
,

C1(y,�) = 2‖y‖1 + a(�)
∑
i,j

(
R−1)

ij σj

≤ 2‖y‖1 + σ 2a∗
d∑

i=1

i(d + 1 − i)

= 2‖y‖1 + σ 2a∗ d(d + 1)(d + 2)

6
.

To compute R1(�,d), we need to estimate n(R). To do this, let {S∗
n}n≥0 denote a simple,

symmetric random walk on Z starting from S∗
0 ∈ {1,2, . . . , d} and absorbed when it hits 0 or

d + 1. Then, for any n ≥ 0,(
P n1

)
i = P

(
S∗

n /∈ {0, d + 1} | S∗
0 = i

)= P
(
S∗

k /∈ {0, d + 1} for any 1 ≤ k ≤ n | S∗
0 = i

)
.

For j ∈ {0,1, . . . , d + 1}, define τS∗
j := inf{k ≥ 0 : S∗

k = j}. By Chapter 10, Example 10.17

of [21], for any i ∈ {1, . . . , d}, E(τ S∗
d+1 ∧ τS∗

0 | S∗
0 = i) = i(d + 1 − i). Using this observation

and Markov’s inequality, for all d ∈N and i ∈ {1, . . . , d},
P
(
S∗

k /∈ {0, d + 1} for any 1 ≤ k ≤ 2d2 | S∗
0 = i

)
≤ P

(
τS∗
d+1 ∧ τS∗

0 > 2d2 | S∗
0 = i

)
≤ E(τS∗

d+1 ∧ τS∗
0 | S∗

0 = i)

2d2 = i(d + 1 − i)

2d2 ≤ (d + 1)2

8d2 ≤ 1/2

and consequently,

(12) n(R) ≤ 2d2.

Using (11) and (12), we obtain

(13) R1(�,d) = n(R)
(
1 + a(�)2 log(2d)

)≤ 2d2(1 + σ 2a∗2 log(2d)
)
.
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For t ≥ 48σ 2a∗‖y‖∞, using the bound on a(�) obtained in (11), and noting b(�) ≥ 1 and
‖y‖∗∞ ≤ σ‖y‖∞,

3
(
D2a(�)b(�)

)−1‖y‖∗∞ ≤ 3
(
D2R2(�)

)−1
a(�)σ‖y‖∞ ≤ t

16D2R2(�)
.

Moreover, from the explicit form of R−1,
∑

i,j (R
−1)2

ij ≤ 4d4. Using the above two bounds

along with (11), for t ≥ 6a∗(d + 1)2‖y‖∞,

C2(y,�)e
− t

8D2R2(�)

= 2‖y‖1e
3(D2a(�)b(�))−1‖y‖∗∞e

− t
8D2R2(�)

+ a(�)

[
2d(1 + d)

(∑
i,j

(
R−1)2

ij

)( d∑
j=1

σ 2
j

)]1/2

e
− t

8D2R2(�)

≤ 2‖y‖1e
− t

16D2R2(�) + σ 2a∗
[
2d2(1 + d)

(∑
i,j

(
R−1)2

ij

)]1/2
e
− t

8D2R2(�)

≤ 2‖y‖1e
− t

4D2σ4a∗2(d+1)2 + σ 2a∗[8d6(1 + d)
]1/2

e
− t

2D2σ4a∗2(d+1)2 .

(14)

Take F1 = 1, F2 = D1/2, F3 = 4, F4 = (2D2)
−1. Using the bounds obtained in (11), (13)

and (14) in Theorem 1, for any y ∈ R
d+, t ≥ max{t0(1 + σ 2a∗2 log(2d)),48σ 2a∗‖y‖∞},

E
(∥∥Y(t;y) − Y

(
t;Y(∞)

)∥∥
1

)
≤ C1(y,�)

(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)+ C2(y,�,D2)e

− t
8D2R2(�)

≤ (2‖y‖1 + F1σ
2a∗d3)(2e−F2t/[d2(1+σ 2a∗2 log(2d))] + e−F4t/[2σ 4a∗2(d+1)2])

+ 2‖y‖1e
−F4t/[2σ 4a∗2(d+1)2] + F3σ

2a∗d7/2e−F4t/[σ 4a∗2(d+1)2].

This proves the first part of the theorem upon taking t2 = max{t0,48}. The bound on the
relaxation time follows from the first part. �

REMARK 6. The standard Atlas model [13] is a special case of (6) with δ1 = 1, δi = 0
for all i ≥ 2 and σi = 1 for all i. For this model, using (7), for any k ≥ 1,

bk =
k∑

i=1

(δi − δ) = (d + 1 − k)

d + 1

and

a∗ := sup
1≤i≤d

i(d + 1 − i)

bi

= sup
1≤i≤d

i(d + 1) = d(d + 1), σ = 1.

Using these in Theorem 4, we obtain positive constants G1, G2, G3, G4, t3 such that for any
y ∈ R

d+ and any t ≥ t3{d2‖y‖∞,1 + d2 log(2d)},

E
(∥∥Y(t;y) − Y

(
t;Y(∞)

)∥∥
1

)≤ G1
(‖y‖1 + d5)e−G2t/d

6 log(2d) + G3d
11/2e−G4t/d

6
.

In particular, the relaxation time for the standard Atlas model is O(d6(logd)2) as d → ∞.
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6. Bounding processes, small sets and return times. Fix a vector v > 0 satisfying
R−1v ≤ b and consider the collection {X+

v (·;x)}x∈Rd+ = RBM(−v,�, I), where I is the
identity matrix, given as

(15) X+
v (t;x) = x + DB(t) − vt + L+(t),

where B is the same Brownian motion as used in the synchronous coupling of {X(·;x)}x∈Rd+ ,

and L+ is the local time process associated with X+
v . Observe that X+

v (·;x) can be written as

X+
v (t;x) = x + DB(t) + μt + RL∗(t),

where L∗(t) = R−1L+(t) + (b − R−1v)t is a nondecreasing process. By minimality of the
local time process (see [25], Appendix), L∗(t) ≥ L(t) for all t ≥ 0 implying R−1X(t;x) ≤
R−1X+

v (t;x) for every t ≥ 0. Since in this section v will be fixed, we abbreviate X+
v (·;x)

as X+(·;x). An optimal choice of v will be made later in Section 8. We will hereby refer to
X+(·;x) as the bounding process.

We now introduce an appropriate compact set that depends on system parameters and
for which one can obtain useful bounds on exponential moments of return times to the
set. In order to motivate the choice of the set consider a one-dimensional Brownian motion
Wa,b(t) = bW(t) − at with variance b2 and drift −a (here W is a standard one-dimensional
Brownian motion). Standard techniques using scale functions (see [26], V.46) show that for
any a > 0 and b ∈ R, ab−2 supt<∞ Wa,b(t) has an Exponential distribution with mean 1/2.
This result says that the maximum of the ith co-ordinate of X+(·,x) scales like viσ

−2
i . This

scaling property suggests considering the following weighted supremum norm:

(16) ‖x‖∞,v = sup
1≤i≤d

viσ
−2
i xi, x ∈ R

d+.

This weighted norm will play a central role in our analysis. Also define

(17) φ(v) = 2
d∑

i=1

v2
i σ

−2
i

/
inf

1≤i≤d
v2
i σ

−2
i .

Note that φ(v) ≥ 2d . For A > 0, consider the compact set

KA := {x ∈ R
d+ : ‖x‖∞,v ≤ A logφ(v)

}
and define the following stopping time for the process X+(·;x):

(18) τ+
A (x) := inf

{
t ≥ 0 : X+(t;x) ∈ KA

}= inf
{
t ≥ 0 : ∥∥X+(t;x)

∥∥∞,v ≤ A logφ(v)
}
.

The following lemma gives bounds on the exponential moments of the hitting time of the
compact set KA, namely τ+

A (x).

LEMMA 5. There exists A0 > 0 such that for any A ≥ A0 and any x ∈R
d+,

E
(
e

(v)
2A

τ+
A (x))≤ e3A−1‖x‖∞,v ,

where (v) := inf1≤i≤d
v2
i

σ 2
i

.

PROOF. Fix A > 0 and without loss of generality assume that ‖x‖∞,v > A logφ(v). Con-
sider the “Lyapunov function”

V (y) = log

(
d∑

i=1

eg(2A−1viσ
−2
i yi )

)
,
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where g is any nonnegative, nondecreasing C2 function defined on R+ such that g′(0) = 0,
g(u) ≤ u, g′(u) ≤ 2, g′′(u) ≤ 9 for all u ≥ 0 and g(u) = u for all u ≥ log 2. An example of
such a function is g(u) = (log 2)h(u/ log 2)1[u≤log 2] + u1[u>log 2] where h(u) = u4 − 3u3 +
3u2. The definition of the Lyapunov function is motivated by a similar function introduced in
[3]. The main difference is that here different coordinates are weighted differently depending
on system parameters. We will prove that for sufficiently large A,

(19) −vT ∇V (y) + 1

2
Tr
(
�∇2V (y)

)+ 1

2

(∇V (y)
)T

�
(∇V (y)

)≤ −(v)

2A
, y ∈ R

d+,

where ∇ denotes the gradient and ∇2 denotes the Hessian. By Itô’s formula, this will imply
that M(t) := exp(V (X+(t;x)) + (v)

2A
t) is a positive supermartingale and therefore, by the

optional sampling theorem, for such A,

E
(
e

(v)
2A

τ+
A (x))≤ E

(
eV (X+(τ+

A (x);x))+(v)
2A

τ+
A (x))≤ eV (x).

Since ‖x‖∞,v > A logφ(v) > A logd , we have

V (x) ≤ 2A−1‖x‖∞,v + logd ≤ 3A−1‖x‖∞,v.

Combining the two displays we have that for A that satisfy (19)

(20) E
(
e

(v)
2A

τ+
A (x))≤ e3A−1‖x‖∞,v .

Thus, in order to prove the lemma, it suffices to establish (19) for sufficiently large A. Let

wi(y,A) = e
g(2A−1viσ

−2
i

yi )∑d
k=1 e

g(2A−1vkσ
−2
k

yk)
. By similar calculations as in the proof of Lemma 4 of [3], it

follows that

Tr
(
�∇2V (y)

)≤ 4A−2
d∑

i=1

(
v2
i σ

−4
i wi(y,A)σ 2

i

(
g′′(2A−1viσ

−2
i yi

)+ g′(2A−1viσ
−2
i yi

)2))

≤ 52A−2
d∑

i=1

v2
i σ

−2
i wi(y,A)

using g′′(u) ≤ 9 and g′(u) ≤ 2 for all u ≥ 0. Moreover,(∇V (y)
)T

�
(∇V (y)

)
= 4A−2

∑
1≤i,j≤d

viσ
−2
i wi(y,A)g′(2A−1viσ

−2
i yi

)
�ijwj (y,A)vjσ

−2
j g′(2A−1vjσ

−2
j yj

)

≤ 4A−2

(
d∑

i=1

viσ
−1
i wi(y,A)g′(2A−1viσ

−2
i yi

))2

≤ 16A−2
d∑

i=1

v2
i σ

−2
i wi(y,A),

where we have used �ij ≤ σiσj in the first inequality on the second line and the Cauchy–
Schwarz inequality, the fact that g′(u) ≤ 2 for all u ≥ 0, and the fact that

∑d
j=1 wi(y,A) = 1

in the last inequality. From the above bounds, we obtain

(21) Tr
(
�∇2V (y)

)+ (∇V (y)
)T

�
(∇V (y)

)≤ 68A−2
d∑

i=1

v2
i σ

−2
i wi(y,A).
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Using the definition of wi and the monotonicity of g,

−vT ∇V (y) = −2A−1
d∑

i=1

g′(2A−1viσ
−2
i yi

)
v2
i σ

−2
i wi(y,A)

≤ −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A)1[2A−1viσ

−2
i yi≥log 2]

= −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + 2A−1

d∑
i=1

v2
i σ

−2
i wi(y,A)1[2A−1viσ

−2
i yi<log 2]

≤ −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + 2A−1 eg(log 2)∑d

i=1 v2
i σ

−2
i∑d

k=1 eg(2A−1vkσ
−2
k yk)

.

Next, note for any ‖y‖∞,v > A logφ(v), there is 1 ≤ j ≤ d such that vjσ
−2
j yj >

A log(
2
∑d

i=1 v2
i σ−2

i

inf1≤i≤d v2
i σ−2

i

). Hence, since
2
∑d

i=1 v2
i σ−2

i

inf1≤i≤d v2
i σ−2

i

≥ 2d ≥ 2, we obtain

−vT ∇V (y) ≤ −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + 2A−1 2

∑d
i=1 v2

i σ
−2
i

e
g(2 log(

2
∑d

i=1 v2
i
σ
−2
i

inf1≤i≤d v2
i
σ
−2
i

))

= −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + A−1 (inf1≤i≤d v2

i σ
−2
i )2∑d

i=1 v2
i σ

−2
i

≤ −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + A−1 inf

1≤i≤d
v2
i σ

−2
i

≤ −2A−1
d∑

i=1

v2
i σ

−2
i wi(y,A) + A−1

d∑
i=1

v2
i σ

−2
i wi(y,A)

= −A−1
d∑

i=1

v2
i σ

−2
i wi(y,A).

(22)

From (21) and (22),

−vT ∇V (y) + 1

2
Tr
(
�∇2V (y)

)+ 1

2

(∇V (y)
)T

�
(∇V (y)

)
≤ −A−1

d∑
i=1

v2
i σ

−2
i wi(y,A) + 34A−2

d∑
i=1

v2
i σ

−2
i wi(y,A).

Hence, for any A ≥ 68, we obtain

−vT ∇V (y) + 1

2
Tr
(
�∇2V (y)

)+ 1

2

(∇V (y)
)T

�
(∇V (y)

)
≤ − 1

2A

d∑
i=1

v2
i σ

−2
i wi(y,A) ≤ − 1

2A
inf

1≤i≤d
v2
i σ

−2
i = −(v)

2A

proving (19) and hence the lemma holds with A0 = 68. �

The next lemma gives an estimate of the running maximum of a reflected Brownian motion
with drift.



CONVERGENCE RATES TO STATIONARITY FOR RBM 2019

LEMMA 6. Let Xt = x + σ ′Bt − μ′t − min{infs≤t (x + σ ′Bs − μ′s),0}, where x ≥ 0,
σ ′,μ′ > 0 and B is a one-dimensional standard Brownian motion. Then for any A,T > 0
and any x ∈ [0,A/2],

P

(
sup

0≤t≤T

Xt ≥ A
)

≤ e
−μ′2T

2σ ′2 + (4μ′T A−1 + 2
)
e−Aμ′/σ ′2

.

PROOF. Fix A,T > 0 and x ∈ [0,A/2]. We define the following stopping times: τ0 = 0,
and for k ≥ 0,

τ2k+1 := inf{t ≥ τ2k : Xt = 0},
τ2k+2 := inf{t ≥ τ2k+1 : Xt = A/2}.

Let N := inf{k ≥ 0 : supt∈[τ2k,τ2k+1] Xt ≥ A}. By the strong Markov property, {τ2k+1 −
τ2k}k≥1 are i.i.d., each being distributed as the hitting time of the level −A/2 by the pro-
cess σ ′Bt − μ′t . By [20], Exercise 5.10, for any α > 0, k ≥ 1,

E
(
e−α(τ2k+1−τ2k)

)= e
μ′A
2σ ′2 − A

2σ ′
√

μ′2
σ ′2 +2α

.

Thus, for any n ≥ 0,

P

(
n∑

k=0

(τ2k+1 − τ2k) <
nA

4μ′

)
≤ P

(
e−α

∑n
k=1(τ2k+1−τ2k) > e−αnA/(4μ′))

≤ eαnA/(4μ′)
E
(
e−α

∑n
k=1(τ2k+1−τ2k)

)
= e

αnA
4μ′ + nμ′A

2σ ′2 − nA
2σ ′
√

μ′2
σ ′2 +2α

.

Optimizing the above bound in α yields the following bound:

(23) P

(
n∑

k=0

(τ2k+1 − τ2k) <
nA

4μ′

)
≤ e

− nAμ′
8σ ′2 .

Moreover, recalling that the scale function for the process t �→ σ ′Bt − μ′t is given by s(z) =
e2μ′z/σ ′2

,

P
(
σ ′Bt − μ′t hits A/2 before − A/2

)= 1 − e−Aμ′/σ ′2

eAμ′/σ ′2 − e−Aμ′/σ ′2 ≤ e−Aμ′/σ ′2

and hence, for n ≥ 1,

(24) P(N ≤ n) ≤ (n + 1)e−Aμ′/σ ′2
.

From (23) and (24), for any n ∈N,

P

(
sup

0≤t≤nA/(4μ′)
Xt ≥ A | X0 = x

)
≤ P

(
n∑

k=0

(τ2k+1 − τ2k) <
nA

4μ′ ,N > n

)
+ P(N ≤ n)

≤ e
− nAμ′

8σ ′2 + (n + 1)e−Aμ′/σ ′2
.

(25)

The result follows on taking n = �4μ′T A−1� + 1 in (25). �

Recall the quantities (v) defined in the statement of Lemma 5 and φ(v) defined in (17).
Define

M(v) := (v) + logφ(v), T (v) := M(v)/(v).
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The next lemma shows that for any C0 ∈ (0,∞) there are positive constants C1, C2

such that whenever x1,x2 ∈ R
d+ satisfy ‖x1‖∞,v ≤ C0M(v) and R−1x2 ≤ R−1x1, with (uni-

form) positive probability, all the coordinates of X(·;x2) hit zero by time C2T (v) and the
weighted supremum norm ‖ · ‖∞,v of X+(·;x1) is bounded by C1M(v) over the time interval
[0,C2T (v)].

LEMMA 7. For any C0 > 0, there exists C1 > C0 and C2 > 0 such that for any x1,x2 ∈
R

d+ satisfying ‖x1‖∞,v ≤ C0M(v) and R−1x2 ≤ R−1x1,

P

(
sup

t∈[0,C2T (v)]
∥∥X+(t;x1)

∥∥∞,v ≤ C1M(v), η1(x2) ≤ C2T (v)
)

≥ 1

2
.

PROOF. Let {ei}1≤i≤d denote the unit coordinate vectors in R
d and let Si := {R−1y : y ≥

0, yi = 0} for 1 ≤ i ≤ d . Let U(t;x) = R−1x + R−1DB(t) + R−1μt . We first claim that for
any 1 ≤ i ≤ d and T > 0,

(26)
{
Ui(t;x) = 0 for some 0 ≤ t ≤ T

}⊆ {R−1X(t;x) ∈ Si for some 0 ≤ t ≤ T
}
.

To see this, suppose R−1X(t;x) /∈ Si for all 0 ≤ t ≤ T . Then X(t;x) is strictly positive
over [0, T ]. Since (R−1X)i(t;x) = Ui(t,x) + Li(t), we have from (2) that (R−1X)i(t;x) =
Ui(t,x) for all 0 ≤ t ≤ T . For any y ∈ S \ Si , there exists z ∈ R

d+ with zi > 0 such that
y = R−1z. Hence,

yi =
d∑

j=1

(
R−1)

ij zj ≥ (R−1)
iizi > 0

as (R−1)ii = (I + P T + (P T )2 + · · · )ii ≥ 1. Therefore, Ui(t;x) = (R−1X)i(t;x) > 0 for all
0 ≤ t ≤ T . This proves (26).

Note that U(·;x) is a Brownian motion with drift in R
d with covariance matrix

R−1�(R−1)T and drift vector −b. Write σ̂ 2
i := (R−1�(R−1)T )ii for the variance of the

ith coordinate process Ui of U . Define for each 1 ≤ i ≤ d , τU
i (x) = inf{t ≥ 0 : Ui(t;x) = 0}.

Also define the vector ŵ given by ŵi = σ 2
i v−1

i for 1 ≤ i ≤ d .
For any i, recalling R−1v ≤ b, note that

(
R−1ŵ

)
i =

d∑
j=1

(
R−1)

ij

σ 2
j

vj

≤ sup
1≤k≤d

σ 2
k

v2
k

d∑
j=1

(
R−1)

ij vj ≤
(

sup
1≤k≤d

σ 2
k

v2
k

)
bi.

Moreover, using �jk ≤ σjσk for all 1 ≤ j , k ≤ d ,

σ̂ 2
i =∑

j,k

(
R−1)

ij�jk

(
R−1)

ik

≤
(

d∑
j=1

(
R−1)

ij σj

)2

≤ sup
1≤k≤d

σ 2
k

v2
k

(
d∑

j=1

(
R−1)

ij vj

)2

≤
(

sup
1≤k≤d

σ 2
k

v2
k

)
b2
i .

From the above two bounds, we conclude from the definition of T (v) that for any i,

(27) T (v) ≥
(

(R−1ŵ)i

bi

∨ σ̂ 2
i

b2
i

)
M(v).
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Fix C′ > 0 and take y ∈ R
d+ satisfying R−1y ≤ C′(R−1ŵ)M(v). Using (27) and writing

N(0,1) for a standard normal random variable, we obtain that for any C ′′ > max{2C′,1},
P
(
τU
i (y) > C′′T (v)

)≤ P
((

R−1y
)
i + (R−1DB

(
C′′T (v)

)+ R−1μ
(
C′′T (v)

))
i > 0

)
≤ P

(
C′(R−1ŵ

)
iM(v) + σ̂iBi

(
C′′T (v)

)− biC
′′T (v) > 0

)
= P

(
σ̂iBi

(
C′′T (v)

)
>
(
biC

′′T (v) − C′(R−1ŵ
)
iM(v)

))
≤ P

(
σ̂iBi

(
C′′T (v)

)
>

biC
′′

2
T (v)

)
= P

(
N(0,1) >

bi

2σ̂i

√
C′′T (v)

)

≤ P

(
N(0,1) >

1

2

√
C′′ logφ(v)

)
≤ P

(
N(0,1) >

1

2

√
C′′ log(2d)

)
≤ 1

(2d)C
′′/8

,

(28)

where on the last line we have used (27) in the first inequality and φ(v) ≥ 2d in the second
inequality.

Recall the upper bounding process X+ from (15). Note that the ith coordinate process
X+

i is a one-dimensional reflected Brownian motion with variance σ 2
i and drift −vi . Now let

C0 > 0 be arbitrary and consider any C′ > max{2C0,1}, any C ′′ > max{C′,2}. Then, from
Lemma 6, for any x ∈ R

d+ satisfying ‖x‖∞,v ≤ C0M(v),

(29)

P

(
sup

t∈[0,C′′T (v)]
∥∥X+(t;x)

∥∥∞,v > C′M(v)
)

≤
d∑

i=1

P

(
sup

t∈[0,C′′T (v)]
X+

i (t;x) > C′ σ 2
i

vi

(
(v) + logφ(v)

))

≤
d∑

i=1

(
e
−C′′v2

i
T (v)

2σ2
i +

(
4C′′v2

i T (v)

C′σ 2
i ((v) + logφ(v))

+ 2
)
e−C′((v)+logφ(v))

)

≤ de−2−1C′′ logφ(v) +
(

4C′′T (v)

C′M(v)

d∑
i=1

v2
i

σ 2
i

+ 2d

)
e−C′ logφ(v),

where we have used T (v) ≥ (σ 2
i /v2

i )M(v) ≥ (σ 2
i /v2

i ) logφ(v) in the last step. From the def-
inition of φ(v) and T (v) respectively,

d∑
i=1

v2
i

σ 2
i

= φ(v)

2
(v) and

T (v)

M(v)
= 1/(v).

Using these observations in (29), we obtain

P

(
sup

t∈[0,C′′T (v)]
∥∥X+(t;x)

∥∥∞,v > C′M(v)
)

≤ de−C′′ logφ(v)/2 +
(

2C′′φ(v)

C′ + 2d

)
e−C′ logφ(v)

≤ 1

(2d)
C′′
2 −1

+
(

2C′′

C′ + 1
)

1

(2d)C
′−1

,

(30)

where once more we have used φ(v) ≥ 2d to obtain the last bound.
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Note that for any C′,C′′ > 0, for any x1,x2 ∈ R
d+ satisfying ‖x1‖∞,v ≤ C0M(v) and

R−1x2 ≤ R−1x1,

P

(
sup

t∈[0,C′′T (v)]
∥∥X+(t;x1)

∥∥∞,v > C′M(v) or η1(x2) > C′′T (v)
)

= P

(
sup

t∈[0,C′′T (v)]
∥∥X+(t;x1)

∥∥∞,v > C′M(v)
)

+ P

(
η1(x2) > C′′T (v), sup

t∈[0,C′′T (v)]
∥∥X+(t;x1)

∥∥∞,v ≤ C′M(v)
)
.

(31)

Note that for z1, z2 ∈ R
d+, if ‖z1‖∞,v ≤ CM(v) for some C > 0, and R−1z2 ≤ R−1z1, then

R−1z2 ≤ C(R−1ŵ)M(v). Using (26) and (28), choosing any C′′ > 1 + max{2C′,1}, we ob-
tain by the Markov property applied at time 1,

P

(
η1(x2) > C′′T (v), sup

t∈[0,C′′T (v)]
∥∥X+(t;x1)

∥∥∞,v ≤ C′M(v)
)

≤
d∑

i=1

sup
y∈Rd+:R−1y≤C′(R−1w)M(v)

P
(
τU
i (y) >

(
C′′ − 1

)
T (v)

)

≤ d

(2d)(C
′′−1)/8

= 1

2(2d)(C
′′−9)/8

.

(32)

Using the estimates (30) and (32) in (31), we obtain for C′ > max{2C0,8}, C ′′ = 2 +
max{2C′,33}, and any x1,x2 ∈ R

d+ satisfying ‖x1‖∞,v ≤ C0M(v) and R−1x2 ≤ R−1x1,

P

(
sup

t∈[0,C′′T (v)]
∥∥X+(t;x1)

∥∥∞,v > C′M(v) or η1(x2) > C′′T (v)
)

≤ 1

(2d)
C′′
2 −1

+
(

2C′′

C′ + 1
)

1

(2d)C
′−1

+ 1

2(2d)(C
′′−9)/8

<
1

2
.

The lemma follows on taking C1 = C′, C2 = C′′. �

REMARK 7. Recall the quantity A0 from Lemma 5 and consider C0 ≥ A0. Let C1 be as
in Lemma 7 associated with this C0. Then the set S := {y : ‖y‖∞,v ≤ C1M(v)} plays a role
similar to that of a ‘small set’ in the theory developed in [22], in the following sense. For
any x ≥ 0, (i) by Lemma 5, we have tight control over return times of the bounding process
X+(·;x) to the set S′ = {y : ‖y‖∞,v ≤ C0M(v)} ⊂ S, and (ii) by Lemma 7, given that the
bounding process X+(t;x) lies in S′ for some t ≥ 0, then with probability at least a half,
all the co-ordinates of X(·;x) hit zero at least once in the time interval [t, t + T (v)] without
X+(·;x) leaving S. This, in view of Lemma 2, says that ‖X(·;x) − X(·;0)‖1 is reduced by a
factor 2−1/n(R) over this time interval.

7. Excursions from the small set. In the following lemma, we combine the estimates
from Sections 3 and 6 to decompose the path of X+(·;x) into excursions from the small set
(described in Remark 7) and quantify the rate of decay of ‖X(t;x)−X(t;0)‖1 as t increases.

LEMMA 8. For any A ≥ A0, where A0 is the constant appearing in Lemma 5, there
exist positive constants t0, D1 such that for any x ∈ R

d+, any v > 0 with R−1v ≤ b, and any
t ≥ t0T (v),

E
(∥∥X(t;x) − X(t;0)

∥∥
1

)≤ 2‖x‖1
(
2e

− D1t

n(R)T (v) + e−(v)t
16A
)+ 2‖x‖1e

3A−1‖x‖∞,v e−(v)t
8A .
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PROOF. Fix A ≥ A0 and consider constants C1, C2 from Lemma 7 that are associ-
ated with C0 = A. We also consider the following stopping times. Let τ0 = inf{t ≥ 0 :
‖X+(t;x)‖∞,v ≤ C1M(v)}. For k ≥ 0, having defined the stopping times τ0, . . . , τ2k , define

τ2k+1 := inf
{
t ≥ τ2k : ∥∥X+(t;x)

∥∥∞,v ≤ C0M(v)
}
,

τ2k+2 := inf
{
t ≥ τ2k+1 : ∥∥X+(t;x)

∥∥∞,v = C1M(v)
}∧ (τ2k+1 + C2T (v)

)
.

Define Nt := inf{k ≥ 0 : τ2k ≤ t}. For k ≥ 0, define the event

Ek := {τ2k+2 ≥ τ2k+1 + 1, and all the co-ordinates of
{
X(t;x)

}
t≥0 hit zero

in the time interval [τ2k+1 + 1, τ2k+2]}.
On the event Ek , all the coordinates of X(·;x) hit zero in the time interval [ηN (τ2k;x) +
1, τ2k+2] as it contains the interval [τ2k+1 + 1, τ2k+2]. Consequently, N (τ2k+2;x) −
N (τ2k;x) ≥ 1. Thus, for any k ≥ 0,

N (τ2k+2;x) −N (τk;x) ≥ 1Ek
.

Hence,

(33) N (t;x) ≥
Nt−1∑
k=0

1Ek
.

Let Ft := σ {B(s) : 0 ≤ s ≤ t} be the filtration generated by the Brownian motion. For k ≥ 0,
let

Mn :=
n−1∑
k=0

(
1Ek

−E(1Ek
| Fτ2k

)
)
.

Then (Mn,Fτ2n
)n≥1 is a martingale with increments bounded by 1. By Lemma 7, for every

k ≥ 0, E(1Ek
| Fτ2k

) ≥ 1/2. Thus, for any δ′ > 0, using the Azuma–Hoeffding inequality with
t ≥ 4T (v)/δ′,

P

(Nt−1∑
k=0

1Ek
< δ′t/

(
4T (v)

)
,Nt ≥ δ′t

T (v)

)

≤ P

(� δ′t
T (v)

�−1∑
k=0

1Ek
< δ′t/

(
4T (v)

))

= P

(
M� δ′t

T (v)
� <

δ′t
4T (v)

−
� δ′t

T (v)
�−1∑

k=0

E(1Ek
| Fτ2k

)

)

≤ P

(
M� δ′t

T (v)
� <

δ′t
4T (v)

− 1

2

⌊
δ′t

T (v)

⌋)

≤ P

(
M� δ′t

T (v)
� < − δ′t

8T (v)

)
≤ e−δ′t/(128T (v)).

(34)
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Note that for any δ′ ∈ (0,C−1
2 /2],

P
(
Nt < δ′t/T (v)

)≤ P

(
τ0 +

� δ′t
T (v)

�∑
k=0

(τ2k+2 − τ2k+1) +
� δ′t

T (v)
�∑

k=0

(τ2k+1 − τ2k) > t

)

≤ P

(
τ0 +

� δ′t
T (v)

�∑
k=0

(τ2k+1 − τ2k) > t/2

)
,

(35)

where the last inequality follows because τ2k+2 − τ2k+1 ≤ C2T (v) and hence, as δ′ ∈
(0,C−1

2 /2],

(36)

� δ′t
T (v)

�∑
k=0

(τ2k+2 − τ2k+1) ≤ t/2.

Since C0 = A and M(v) > logφ(v), for any k ≥ 0, conditionally on Fτ2k
, τ2k+1 − τ2k is

stochastically dominated by τ+
A (X+(τ2k;x)) where τ+

A (·) is defined in (18).
For any n ≥ 0 s > 0, using Lemma 5, we obtain

P

(
n∑

k=0

(τ2k+1 − τ2k) > s

)
≤ e−(v)s

2A E
(
e

(v)
2A

(
∑n

k=0(τ2k+1−τ2k))
)

= e−(v)s
2A E

(
e

(v)
2A

(
∑n−1

k=0(τ2k+1−τ2k))E
(
e

(v)
2A

(τ2n+1−τ2n)|Fτ2n

))
≤ e−(v)s

2A E
(
e

(v)
2A

(
∑n−1

k=0(τ2k+1−τ2k))e3A−1‖X+(τ2n;x)‖∞,v
)

≤ e−(v)s
2A e3A−1C1M(v)

E
(
e

(v)
2A

(
∑n−1

k=0(τ2k+1−τ2k))
)
,

where we have used ‖X+(τ2n;x)‖∞,v ≤ C1M(v) by definition of τ2n, and we take∑n−1
k=0(τ2k+1 − τ2k) = 0 when n = 0. Iteratively using the same argument, we obtain

(37) P

(
n∑

k=0

(τ2k+1 − τ2k) > s

)
≤ e−(v)s

2A e3(n+1)A−1C1M(v).

From (37), for any positive δ′ ≤ min{C−1
2 /2, (64C1)

−1} and t ≥ 3T (v)/δ′, taking n = � δ′t
T (v)

�
and s = t/4,

P

(� δ′t
T (v)

�∑
k=0

(τ2k+1 − τ2k) > t/4

)
≤ e−(v)t

8A e3δ′tA−1C1M(v)/T (v)e3M(v)A−1C1

≤ e−(v)t
8A e4δ′tA−1C1M(v)/T (v)

= e−(v)t
8A e4δ′tA−1C1(v) ≤ e−(v)t

16A ,

(38)

where we have used T (v) = M(v)/(v) in the equality above. Moreover, as τ0 ≤ τ+
A (x), by

Lemma 5,

(39) P(τ0 > t/4) ≤ e−(v)t
8A E

(
e

(v)
2A

τ+
A (x))≤ e−(v)t

8A e3A−1‖x‖∞,v .

Using (36), (38) and (39) in (35), for any δ′ and t as above,

P
(
Nt < δ′t/T (v)

)≤ P

( 1
2 �δ′t/T (v)�∑

k=0

(τ2k+1 − τ2k) > t/4

)
+ P(τ0 > t/4)

≤ e−(v)t
16A + e−(v)t

8A e3A−1‖x‖∞,v .

(40)
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From (34) and (40), for positive δ′ ≤ min{C−1
2 /2, (64C1)

−1} and t ≥ 4T (v)/δ′,

P

(Nt−1∑
k=0

1Ek
< δ′t/

(
4T (v)

))

≤ P

(Nt−1∑
k=0

1Ek
< δ′t/

(
4T (v)

)
,Nt ≥ δ′t

T (v)

)
+ P

(
Nt < δ′t/T (v)

)
≤ e−δ′t/(128T (v)) + e−(v)t

16A + e−(v)t
8A e3A−1‖x‖∞,v .

(41)

Now, using Lemma 2, (33) and (41), for positive δ′ ≤ min{C−1
2 /2, (64C1)

−1} and t ≥
4T (v)/δ′,

E
(∥∥X(t;x) − X(t;0)

∥∥
1

)
≤ 2‖x‖1E

(
2−N (t;x)/n(R))

≤ 2‖x‖1E
(
2− 1

n(R)

∑Nt−1
k=0 1Ek

)
≤ 2‖x‖1P

(Nt−1∑
k=0

1Ek
< δ′t/

(
4T (v)

))+ 2‖x‖12− δ′t
4n(R)T (v)

≤ 2‖x‖1
(
e−δ′t/(128T (v)) + e−(v)t

16A + e−(v)t
8A e3A−1‖x‖∞,v + 2− δ′t

4n(R)T (v)
)

≤ 2‖x‖1
(
2e

− δ′t
128n(R)T (v) + e−(v)t

16A
)+ 2‖x‖1e

3A−1‖x‖∞,v e−(v)t
8A .

(42)

This proves the lemma with

(43) t0 = 4/δ′, D1 = δ′/128. �

8. Main result: Optimizing over v. In this section, we state and prove our main theo-
rem. This will involve optimizing the bound obtained in Lemma 8 over all possible choices
of v along with making an appropriate choice of A.

PROOF OF THEOREM 1. Fix any A ≥ A0 whose value will be appropriately chosen
later. Recall from Lemma 8 that the quantities D1

n(R)T (v)
and (v)

A
govern the rate of decay of

E(‖X(t;x) − X(t;0)‖1) for any x ∈ R
d+. To obtain the result in the theorem, we first obtain

a value v(�) of v which simultaneously maximizes D1
n(R)T (v)

and (v)
A

over all vectors v > 0

satisfying R−1v ≤ b. For any such v, define the vector s(v) > 0 by(
s(v)

)
i = σi inf

1≤k≤d

vk

σk

, 1 ≤ i ≤ d.

Then, from the definition of  we see that (s(v)) = (v). Moreover, φ(s(v)) = 2d ≤ φ(v)

from definition of φ. Therefore,

T
(
s(v)

)= (s(v)) + log(2d)

(s(v))
≤ (v) + log(φ(v))

(v)
= T (v).

Thus, for maximizing the rate, it suffices to restrict attention to vectors v of the form vi = v∗σi

for 1 ≤ i ≤ d . From the constraint R−1v ≤ b, we obtain

bi ≥ (R−1v
)
i = v∗

d∑
j=1

(
R−1)

ij σj , for all i,
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and hence,

v∗ ≤ inf
1≤i≤d

[
bi∑d

j=1(R
−1)ij σj

]
= 1

a(�)
.

From this observation, it follows that for any such vector v, (v) = v2∗ ≤ (a(�))−2 and
T (v) ≥ 1 + (a(�))2 log(2d). The vector ṽ given by ṽi := (a(�))−1σi for each i satisfies
R−1ṽ ≤ b and hence, simultaneously maximizes D1

n(R)T (v)
and (v)

A
. Also note that T (ṽ) =

1 + (a(�))2 log(2d) and (ṽ) = (a(�))−2.
From Lemma 8 with ṽ in place of v, we obtain for any x ∈ R

d+ and t ≥ t0(1 +
(a(�))2 log(2d)),

E
(∥∥X(t;x) − X(t;0)

∥∥
1

)
≤ 2‖x‖1

(
2e

− D1t

R1(�,d) + e
− t

16A(a(�))2
)+ 2‖x‖1e

3A−1‖x‖∞,ṽ e
− t

8A(a(�))2 .

(44)

Consider the dominating process X+(·;x) = X+
v (·;x) with v = ṽ. Since R−1X(t;x) ≤

R−1X+(t;x), for each i,

Xi(t;x) ≤ (R−1X(t;x)
)
i

≤ (R−1X+(t;x)
)
i

=
d∑

j=1

(
R−1)

ijX
+
j (t;x)

≤
(

sup
1≤k≤d

X+
k (t;x)

σk

) d∑
j=1

(
R−1)

ij σj

and hence, ∥∥X(t;x)
∥∥∞,ṽ ≤ b(�)

∥∥X+(t;x)
∥∥∞,ṽ, t ≥ 0.

Moreover, ∥∥X(t;x)
∥∥

1 ≤∑
i,j

(
R−1)

ijXj (t;x) ≤∑
i,j

(
R−1)

ijX
+
j (t;x), t ≥ 0.

Denote by X(∞) and X+(∞) the random vectors sampled from the stationary distribution of
X(·;x) and X+(·;x) respectively. By [7], the laws of X(t;x) and X+(t;x) converge in total
variation to those of X(∞) and X+(∞) respectively. Consequently, ‖X(∞)‖1 is stochas-
tically dominated by

∑
i,j (R

−1)ijX
+
j (∞) and ‖X(∞)‖∞,ṽ is stochastically dominated by

b(�)‖X+(∞)‖∞,ṽ . As X+
i (∞) is the stationary distribution of a one-dimensional reflected

Brownian motion with drift −ṽi and variance σ 2
i , it is a standard fact that X+

i (∞) follows an
exponential distribution with mean σ 2

i /(2ṽi ) = σia(�)/2. This implies

E
(∥∥X(∞)

∥∥
1

)≤ E

(∑
i,j

(
R−1)

ijX
+
j (∞)

)
= a(�)

2

∑
i,j

(
R−1)

ij σj ,

E
(∥∥X(∞)

∥∥
1

)2 ≤ E

(∑
i,j

(
R−1)

ijX
+
j (∞)

)2
≤ d(a(�))2

2

(∑
i,j

(
R−1)2

ij

)( d∑
j=1

σ 2
j

)

and

P
(∥∥X+(∞)

∥∥∞,ṽ > t
)≤ d∑

i=1

P
(
X+

i (∞) > a(�)σit
)= de−2t .
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Using the above estimates we have for any D2 ≥ 9,

E
(
e9(D2b(�))−1‖X(∞)‖∞,ṽ

)≤ E
(
e9D−1

2 ‖X+(∞)‖∞,ṽ
)

≤
∫ ∞

0
P
(∥∥X+(∞)

∥∥∞,ṽ > D2 log t/9
)

dt

≤ 1 + d

∫ ∞
1

e−2D2 log t/9 dt ≤ 1 + d

∫ ∞
1

t−2 dt = 1 + d.

Now fix D2 = max{A0,9}. Using the above estimates and (44) with A = D2b(�) (noting
that b(�) ≥ 1), we obtain for any x ∈ R

d+ and t ≥ t0(1 + (a(�))2 log(2d)),

E
(∥∥X(t;x) − X

(
t;X(∞)

)∥∥
1

)
≤ E

(∥∥X(t;x) − X(t;0)
∥∥

1

)+E
(∥∥X(t;X(∞)

)− X(t;0)
∥∥

1

)
≤ 2‖x‖1

(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)+ 2‖x‖1e

3(D2b(�))−1‖x‖∞,ṽ e
− t

8D2R2(�)

+ 2E
(∥∥X(∞)

∥∥
1

)(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)

+ 2E
(∥∥X(∞)

∥∥
1e

3(D2b(�))−1‖X(∞)‖∞,ṽ
)
e
− t

8D2R2(�)

≤ 2‖x‖1
(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)+ 2‖x‖1e

3(D2b(�))−1‖x‖∞,ṽ e
− t

8D2R2(�)

+ 2E
(∥∥X(∞)

∥∥
1

)(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)

+ 2
(
E
(∥∥X(∞)

∥∥2
1

))1/2(
E
(
e9(D2b(�))−1‖X(∞)‖∞,ṽ

))1/2
e
− t

8D2R2(�)

≤ 2‖x‖1
(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)+ 2‖x‖1e

3(D2b(�))−1‖x‖∞,ṽ e
− t

8D2R2(�)

+ a(�)
∑
i,j

(
R−1)

ij σj

(
2e

− D1t

R1(�,d) + e
− t

16D2R2(�)
)

+ a(�)

[
2d(1 + d)

(∑
i,j

(
R−1)2

ij

)( d∑
j=1

σ 2
j

)]1/2

e
− t

8D2R2(�)

which proves the Wasserstein bound in the theorem upon noting that ‖x‖∞,ṽ =
(a(�))−1‖x‖∗∞. This, in turn, implies the stated bound on the relaxation time. �

REMARK 8. To obtain the better bound displayed in Remark 3, note that we can replace
the bound in Lemma 8 by

E
(∥∥X(t;x) − X(t;0)

∥∥
1

)≤ 2‖x‖1
(
e
− δ′t

128T (v) + e−(v)t
16A + e−(v)t

8A e3A−1‖x‖∞,v + 2− δ′t
4n(R)T (v)

)
which follows from the second-to-last inequality in the calculation (42). The vector ṽ in
the proof of Theorem 1 still optimizes the above bound over all v and leads to the bound
displayed in Remark 3.
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