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CENTRAL LIMIT THEOREMS FOR PATTERNS IN MULTISET
PERMUTATIONS AND SET PARTITIONS

BY VALENTIN FÉRAY

Institute of Mathematics, University of Zurich, valentin.feray@math.uzh.ch

We use the recently developed method of weighted dependency graphs
to prove central limit theorems for the number of occurrences of any fixed
pattern in multiset permutations and in set partitions. This generalizes results
for patterns of size 2 in both settings, obtained by Canfield, Janson and Zeil-
berger and Chern, Diaconis, Kane and Rhoades, respectively.

1. Introduction.

1.1. Background and informal presentation of the main results. A natural parameter of
interest in the framework of random combinatorial structures is the number of occurrences of
a given substructure. When this substructure has a fixed size, we observe in many cases that
this number is asymptotically normal. Such a central limit theorem (CLT) for substructures
was first proved for random graphs [21, 29] and random words [13]. More recently, simi-
lar results for pattern occurrences in uniform random permutations were obtained: see the
works of Fulman [14] (for inversions and descents), Goldstein [15], see in particular Exam-
ple 3.2 (for consecutive patterns), Bóna [2] (for monotone patterns, both in the consecutive
and classical settings), Janson, Nakamura and Zeilberger [24] (for general classical patterns)
and Hofer [19] (for vincular patterns). We also refer to the work of the author [10] and Crane,
DeSlavo and Elizalde [9] for results for Ewens distributed and Mallows distributed random
permutations, respectively.

Most of these results are based on the theory of dependency graphs, used either in com-
bination with cumulant estimates or Stein’s method; see, for example, [19], Section 3, for an
overview of these tools. One exception is the work of Janson, Nakamura and Zeilberger [24],
which uses the theory of U -statistics [17, 22]. In all of these methods, a key feature is the
independence of occurrences of the given fixed substructure in disjoint sets of positions.

In this paper, we investigate CLTs for substructures in two other families of combinatorial
objects: multiset permutations and set partitions. For both objects, some notion of patterns
have been studied in the literature; see [1] and [7], respectively. In both settings, a CLT is
only known for the simplest kind of patterns: inversions in multiset permutations, where the
central limit theorem was established by Canfield, Janson and Zeilberger [5] (see also [32])
and crossings in set partitions, from the work of Chern, Diaconis, Kane and Rhoades [8]. The
methods used in these papers do not seem to be generalizable to longer patterns. Indeed they
are based on the following facts, which only hold for inversions and crossings, respectively:
the explicit generating functions of inversions in multiset permutations has a simple explicit
product from; conditionally on the starting and ending points of blocks in set partitions, the
number of crossings is a sum of independent random variables.

What makes patterns in multiset permutations and set partitions harder to study is that
occurrences of a given pattern in disjoint sets of places are no longer independent events.
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We overcome this difficulty by using the theory of weighted dependency graphs, recently
developed by the author [11].

Our main results, Theorems 1.4 and 1.6, are the asymptotic normality of the number of oc-
currences of any fixed patterns in random multiset permutations and in random set partitions.
For multiset permutations, we need a slight regularity assumption on the sequence of multi-
sets that we consider. We refer to Sections 1.3 and 1.4 respectively, for precise definitions of
the notions of patterns in both settings and for precise statements of the main results.

1.2. Terminology and notation. Before stating precisely our main theorem, we introduce
some notation.

Sets and multisets. As usual, we write [n] for the set {1, . . . , n}. A multiset is an unordered
collection of elements, with possible repetitions. Given a multiset B , we write |B| and #B

for its number of elements, and number of distinct elements, respectively.
Probability theory. Indicator functions will be denoted with the symbol 1, namely

1[P ] :=
{

1 if P holds,

0 otherwise.

Throughout the paper, we say that a sequence (Xn)n≥1 of real-valued random variables is
asymptotically normal if the following convergence in distribution holds:

(1)
Xn −EXn√

VarXn

→d Z as n → ∞,

where Z is a standard Gaussian variable.
Asymptotic notation. Besides, we use the standard O,�, Õ, �̃ symbols for asymptotic

comparisons: we write f (n) = O(g(n)) if there exists C > 0 such that |f (n)| ≤ Cg(n),
for all n sufficiently large. Furthermore, f (n) = �(g(n)) stands for f (n) = O(g(n)) and
g(n) = O(f (n)). Finally, in the set partition section, we use the tilde variants, for bounds
up to logarithmic factors: more precisely f (n) = Õ(g(n)) means that there exists d ≥ 0
such that f (n) = O(g(n) ln(n)d); and we write f (n) = �̃(g(n)) if f (n) = Õ(g(n)) and
g(n) = Õ(f (n)). We try and make explicit on which parameters the above constant C (and
exponent d) may depend or not. Nevertheless, as a rule of thumb, it depends on the pattern
(denoted τ or A) we consider and/or the order of the considered moment/cumulant, but nei-
ther on the size n of the objects (or the underlying multiset M for multiset permutations), nor
on the positions i1, . . . , i� of a pattern occurrence.

1.3. First main result: A CLT for patterns in multiset permutations. Let M be a finite
multiset of positive integers. Concretely, we can write M = {1a1,2a2, . . .}, where exponents
are used to indicate multiplicities; let also n = |M| = ∑∞

j=1 aj . A multiset permutation (or
permutation for short) of M is a word containing exactly aj times the integer j (for each j ≥
1). Define SM as the set of multiset permutations of M . Naturally, we have |SM | = n!

a1!a2!··· .

EXAMPLE 1.1. The multiset M = {12,22,3} has 30 permutations, one of which is σ =
23112.

We are interested in patterns in multiset permutations, following [1].

DEFINITION 1.2. Let τ be a permutation of size k. A multiset permutation σ has an
occurrence of τ in position (i1, . . . , i�) (i1 < · · · < i�) if the subsequence σi1σi2 · · ·σi� has
distinct entries in the same relative order as τ ; formally if

σi
τ−1(1)

< σi
τ−1(2)

< · · · < σi
τ−1(�)

.
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For example, the (multiset) permutation σ = 23112 contains five occurrences of the pattern
τ = 21: in positions (1,3), (1,4), (2,3), (2,4) and (2,5).

We are interested in the random variable Occτ
M := Occτ (σ ), which gives the number of

occurrences of τ in a uniform random element σ of SM . Fixing τ and taking a sequence
of multisets M(m), we get a sequence of random variables Occτ

M(m) . Our main theorem is a

central limit theorem for Occτ
M(m) under some regularity condition on the sequence M(m).

DEFINITION 1.3. Fix a positive integer �. A sequence M(m) is called �-regular, if there
exists K < 1 and m0, such that, for m ≥ m0, the sum of the � largest multiplicities in M(m) is
at most K|M(m)|.

THEOREM 1.4. Let τ be a pattern of size � and (M(m))m≥1 be an �-regular sequence of
finite multisets. Then Occτ

M(m) is asymptotically normal.

We also give estimates for the expectation and variance of Occτ
M(m) : under the regularity

hypothesis, the expectation is easily seen to be of order �(n�). Furthermore, it follows from
our proof of Theorem 1.4 that the variance is O(n2�−1) and that this bound is tight up to
subpolynomial factors; see Section 3.4.4.

REMARK 1.5. The above condition of �-regularity is not optimal, as can already be
observed for inversions (τ = 21). In this case, our theorem gives the asymptotic normality
under the condition that an asymptotically nonzero proportion of elements are different from
the two most repeated parts. This asymptotic normality is in fact known to hold under the
weaker condition that a nonbounded number of elements are different from the single most
repeated part [5]. In general, our theorem could be improved if we could prove a lower bound
for the variance with less restrictive conditions; see Question 3.7 below and the discussion
after it.

1.4. Second main result: A CLT for patterns in set-partitions. A set partition π of [n]
is a set of nonempty pairwise disjoint blocks B1,B2, . . . ,Bk with

⋃k
i=1 Bi = [n]. We will

denote the set of set partitions of [n] by P([n]). It is customary to represent graphically set
partitions by a set of arcs that join every pair of consecutive elements in the same block; see
an example in Figure 1. Formally, for i, j ∈ [n], there is an arc from i to j in π if j is the
smallest number that is greater than i and in the same block.

An arc pattern of length � is a subset A ⊆ {(i, j) ∈ [�] × [�] : i < j} such that for distinct
elements (i1, j1) and (i2, j2) in A, we have i1 	= i2 and j1 	= j2. Arc patterns of length � are
exactly the arc representations of set partitions of �, but in the sequel, it is more natural to
think of them as sets of arcs. We say that the pattern A occurs in a set partition π in positions
x1 < x2 < · · · < x� if for every (i, j) ∈ A there is an arc from xi to xj in π . The number of
occurrences of A in a set partition π will be denoted OccA(π). As an example, an occurrence
of the arc pattern {(1,3), (2,4)} is a crossing in a set partition π ; the set partition of Figure 1
contains one such occurrence, in positions {1,2,3,5}.

We are interested in the random variable OccAn := OccA(π), which gives the number of
occurrences of a fixed arc pattern in a uniform random set partition π of [n]. The main result
of this part is the following central limit theorem.

FIG. 1. The arc representation of the set partition π = {{1,3,4}, {2,5}}.
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THEOREM 1.6. The number of occurrences OccAn of any fixed arc pattern A in a uniform
random set partition of [n] is asymptotically normal as n → ∞. Moreover, asymptotically, we
have E(OccAn ) = �̃(n�−a) and Var(OccAn ) = �̃(n2�−2a−1), where � and a denote the length
and the number of arcs of A, respectively.

REMARK 1.7. Arc patterns are a particular case of the statistics called patterns in [7].
The latter are more general in the sense that we can require in an occurrence that some xi is
the first (or the last) element in its block or that xi and xi+1 are consecutive for some i. Then
the authors of [7] consider sums of the kind

∑
Q(x1, . . . , x�, n), where Q is a polynomial, and

the sum runs over occurrences of a given pattern A. This obviously generalizes the number
of occurrences.

The asymptotic normality of such statistics could also be investigated through weighted
dependency graphs. Indeed, we think that with little extra effort (but heavier notation), we
could include in the weighted dependency graph of Section 4.1 some indicator variables Fi

and Li , indicating whether i is the first or the last element in its block, respectively. Never-
theless, at this level of generality, it seems hard to find good variance bounds and estimates
for the parameters R and Th of the weighted dependency graph.

1.5. Discussion on the proofs. As said above, the proof relies on the theory of weighted
dependency graphs. There are two major difficulties in applying it.

• The first one is to prove that the relevant random variables admit a suited weighted de-
pendency graphs; this consists in bounding their joint cumulants. Thanks to the general
theory of weighted dependency graphs, this can be reduced to bound the joint cumulants
of simple indicator random variables.

In the case of multiset permutations, since the corresponding joint moments are explicit,
this is relatively easy. In the case of set partitions, we use a construction of a uniform
random set partition through a urn model with a random number M of urns, due to Stam
[31]. We first bound the conditional cumulants with respect to M , and then use the law
of total cumulance [3]. This needs deviation estimates on M and a quite delicate analysis
(Section 5).

• The second difficulty is to find a lower bound on the variance. This is generally a delicate
question, often left aside in the literature: in [6], the author writes “to show that the bound
[on Kolmogorov’s distance] is useful, we require a lower bound on σ 2. We prefer to think
of that as a separate problem.”

In this paper, we provide such lower bounds on the variance for general patterns, both in
multiset permutations and set partitions. In both cases, these bounds are based on the law of
total variance (which is suited for finding lower bounds since it contains only nonnegative
terms). For set partitions, we condition on the number M of urns in the urn model and it
turns out that one of the terms in the law of total variance, namely the variance of the con-
ditional expectation, is analyzable and already large enough to provide the needed lower
bound (the analysis is however rather delicate, see Section 6). For multiset permutations,
we condition on (one of) the position of the smallest element. This gives us a recursive in-
equality on the variance that can be analyzed to give the needed lower bound. This method
has been recently introduced by Hofer [19], in the context of vincular patterns in (usual)
permutations.

1.6. Outline of the paper. The paper is organized as follows. Section 2 introduces the
necessary background on weighted dependency graphs, in particular, the normality criterion
that we use. Sections 3 and 4 contain the proofs of our main results on multiset permutations
and set partitions, respectively. These sections are independent from each other. Sections 5
and 6 are devoted to technical proofs of the set partition section.
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2. Weighted dependency graphs.

2.1. Motivation and definition. We first present the definition of usual dependency graphs
and explain informally why we need a weighted version of it.

DEFINITION 2.1 (Janson [20]). A graph G is a dependency graph for the family {Yα,α ∈
A} of random variables if the two following conditions are satisfied:

(i) the vertex set of G is A;
(ii) if A1 and A2 are subsets of A such that no edge connects a vertex of A1 to one of A2

in G, then {Yα,α ∈ A1} and {Yα,α ∈ A2} are independent.

Roughly, a dependency graph encodes the dependency relations between the variables Yα :
variables not related by edges must be independent.

Consider now a sequence Sn =∑
α∈An

Yα,n of sum of random variables and, for each n, a
dependency graph Gn for the family {Yα,n, α ∈ An}. If these dependency graphs are sparse
enough, we might expect that Sn behaves as a sum of independent variables and is, under
mild condition, asymptotically normal. A precise normality criterion which formalizes this
intuition, has been given by Janson [20], Theorem 2; see also the work of Mikhailov [26],
which has a higher range of applications.

As explained in the Introduction, dependency graphs are not suited to study patterns in
multiset permutations or set partitions, since occurrences of a given pattern in disjoint sets of
position are in general dependent events. Yet, such events are weakly correlated, and we will
be able to use a weighted variant of dependency graphs that we now present. The rest of this
section follows [11].

First, we need something that quantifies the dependency between random variables. To
this purpose, we use mixed cumulants. Cumulants have a long history and many different
names: they are referred to as Ursell functions (after Ursell [33]) or truncated/connected
correlation functions in the physics literature, as “déviation d’indépendence” in a note of
Schutzengberger [30], or as semi-invariants, for instance, in [25] and [20]. We refer to [23],
Chapter 6, for a modern presentation of mixed cumulants and applications to random graph
theory.

The (mixed) cumulant of a family of random variables X1,X2, . . . ,Xr defined on the same
probability space and having finite moments is defined as

(2) κ(X1,X2, . . . ,Xr) := ∑
π∈P([r])

μ
(
π, [r]) ∏

B∈π

E

(∏
i∈B

Xi

)
,

where P([r]) is the lattice of set partitions of [r] and μ is its Möbius function. If Xi = X

for all i, we abbreviate κ(X1,X2, . . . ,Xr) as κr(X). Key properties of cumulants are the
following:

(i) If {X1,X2, . . . ,Xr} can be written as a disjoint union of two independent nonempty
sets of random variables, then κ(X1,X2, . . . ,Xr) = 0.

(ii) A sequence Yn of random variables converges in distribution to a standard normal
variable as soon as κr(Yn) → 1[r = 2] for all r ≥ 1.

If {Yα,α ∈ A} is a family of random variables with dependency graph G, then property (i)
above implies that, for indices α1, . . . , αr such that the induced graph G[α1, . . . , αr ] is dis-
connected, we have

κ(Yα1, . . . , Yαr ) = 0.
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For weighted dependency graphs, the idea behind the definition is that the smaller the edge
weights in the induced subgraph G[α1, . . . , αr ] are, the smaller the corresponding mixed
cumulants should be.

In the sequel, a weighted graph is a graph with weights on its edges, belonging to (0,1].
Nonedges can be interpreted as edges of weight 0, so that a weighted graph can be equiva-
lently seen as an assignment of weights in [0,1] to the edges of the complete graph. All our
definitions are compatible with this convention.

For a weighted graph H , we define M(H) to be the maximal weight of a spanning tree
of H , the weight of a spanning tree being the product of the weights of its edges (if H is
disconnected, there is no spanning tree and as a consequence of the above convention, we
have M(G[B]) = 0). The following definition was proposed in [11].

DEFINITION 2.2. Let C = (C1,C2, . . .) be a sequence of positive real numbers. Let 	

be a real-valued function on multisets of elements of A.
A weighted graph G is a (	,C) weighted dependency graph for a family {Yα,α ∈ A} of

random variables defined on the same probability space and having finite moments if, for any
multiset B = {α1, . . . , αr} of elements of A, one has

(3)
∣∣κ(Yα;α ∈ B)

∣∣≤ Cr	(B)M
(
G[B]).

In examples of weighted dependency graphs, 	 and C are simple or universal quantities,
so that the meaningful term is M(G[B]). Note that the smaller the weight on edges are, the
smaller M(G[B]) is, which is consistent with intuition.

2.2. A criterion for asymptotic normality. Let G be a (	,C) weighted dependency graph
for a family of variables {Yα,α ∈ A}. Let I and J be subsets of A. If I and J have an
element in common, we set W(I,J ) = 1. Otherwise, we define W(I,J ) as the maximal
weight of an edge in G connecting an element of I to an element of J (if there is no such
edge W(I,J ) = 0, which is consistent with the fact that a nonedge can be replaced by an
edge of weight 0).

Finally, we introduce the following parameters (h being a positive integer):

R = ∑
α∈A

	
({α});(4)

Th = max
α1,...,αh∈A

[∑
β∈A

W
({β}, {α1, . . . , αh})	({α1, . . . , αh,β})

	({α1, . . . , αh})
]
.(5)

Admittedly, the definition of Th is somewhat involved, but these parameters turn out to be
easy to estimate in practice. In the particular case where 	 is the constant function equal to
1, R is the number of variables, and each Th is within a factor h of the maximal weighted
degree of the graph; see [11], Remark 4.9.

Using these parameters, the following asymptotic normality criteria was given in [11],
Theorem 4.11.

THEOREM 2.3. Suppose that, for each n, {Yn,i,1 ≤ i ≤ Nn} is a family of random vari-
ables with finite moments defined on the same probability space. For each n, let 	n a function
on multisets of elements of [Nn]. We also fix a sequence C = (Cr)r≥1, not depending on n.

Assume that, for each n, one has a (	n,C) weighted dependency graph Gn for the fam-
ily {Yn,i,1 ≤ i ≤ Nn} and define the corresponding quantities Rn, T1,n, T2,n, . . . , by equa-
tions (4) and (5).

Let Xn =∑Nn

i=1 Yn,i and σ 2
n = Var(Xn).
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Assume that there exist numbers γh and Qn and an integer s ≥ 3 such that

Th,n ≤ γhQn;(6) (
Rn

Qn

)1/s Qn

σn

→ 0 as n → ∞.(7)

Then Xn is asymptotically normal.

Note that establishing (7) requires a lower bound on σn, which is often nontrivial to obtain.
This theorem is proved by bounding cumulants of Xn. In particular, we get an upper bound
on the variance.

PROPOSITION 2.4 ([11], Lemma 4.10). We use the notation of Theorem 2.3 (but do not
assume (6) and (7)). Then Var(Xn) ≤ 2C2RnT1,n.

REMARK 2.5. The above normality criterion can be adapted to sequences of random
variables with a (	n,Cn) weighted dependency graph Gn, where Cn depends on n. In such
situation, we write Cn = (Cr,n)r≥1. The condition (7) should then be replaced by the fact that,
for some s ≥ 3 and all r ≥ 1, the quantity ( Rn

Qn
)1/s Qn

σn
tends to 0 faster than any power of Cr,n.

The proof of this extension is a straightforward adaptation of the proof of [11], Theorem 4.11.
We will use it in Section 4 below.

2.3. Power of weighted dependency graphs. An important property of weighted depen-
dency graphs is the following stability property. Consider a family of random variables
{Yα,α ∈ A} with a (	,C) weighted dependency graph G and fix some integer d ≥ 1. We
are interested in monomials Y I :=∏

αi∈I Yαi
of degree at most d , that is, I is a multiset of el-

ements of A of size at most d (counting repetitions), which we will denote as I ∈ MSet≤d(A).
This new family of random variables {Y I , I ∈ MSet≤d(A)} admits a natural weighted depen-
dency graph inherited from that of {Yα,α ∈ A}.

To state this formally, we need to introduce some more notation. The dth power Gd of
G is the weighted graph with vertex set MSet≤d(A) and having an edge of weight W(I,J )

between every pair of vertices (I, J ) in MSet≤d(A) (here, we describe the weighted graph
Gd as a complete graph with possibly zero edge-weights).

Finally, a function 	 defined on multiset of A is naturally seen as a function on multiset
of multisets of A by setting:

(8) �
({I1, . . . , Ir})= 	(I1 
 · · · 
 Ir).

PROPOSITION 2.6 ([11], Proposition 5.11). Consider random variables {Yα,α ∈ A} with
a (	,C) weighted dependency graph G and fix some integer d ≥ 1. Then, with the above
notation, Gd is a (�,Dd) weighted dependency graph for the family {YI , I ∈ MSet≤d(A)},
where the constants Dd = (Dd,r )r≥1 depend only on d , r and C.

In applications, the above proposition is used as follows. We first find a weighted depen-
dency graphs for some simple family of random variables: typically indicators of basic events,
such as σ(i) = j for (multiset) permutations, or the presence of an arc between given points
i and j in set partitions. The above theorem gives us automatically a weighted dependency
graph for more complicated random variables, such as indicators of having a fixed pattern in
some given set of positions. Then the normality criterion (Theorem 2.3) gives a central limit
theorem for the number of occurrences of this fixed pattern.
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3. Permutation patterns in multiset permutations. In this section, we prove Theo-
rem 1.4. We refer to Section 1.3 for notation.

3.1. The weighted dependency graph. We consider the following random variable X
j
i on

SM , defined by

X
j
i (σ ) =

{
1 if σi = j ;
0 otherwise.

Let us also denote AM := {Xj
i : 1 ≤ i ≤ n, j ∈ M}. The purpose of this subsection is to prove

the following.

THEOREM 3.1. Consider the weighted complete graph GM on vertex-set AM with
weights

w
(
X

j
i ,X

j ′
i′
)=

⎧⎪⎪⎨
⎪⎪⎩

1 if i = i ′,
1/aj if i 	= i′ and j = j ′,
1/n otherwise.

Then GM is a (	,C) weighted dependency graph for the family AM , where 	 is the function
on multisets B of elements in AM defined by

	(B) = ∏
X

j
i ∈B distinct

E
[
X

j
i

]= ∏
X

j
i ∈B distinct

aj

n

and C = (C1,C2, . . .) is a universal sequence of constants not depending on M .

PROOF. The proof is relatively easy using the tools given in [11], but these tools require
to introduce some terminology/notation. As a start, recall that if G is a weighted graph and B

a subset of its vertices, we denote G[B] the subgraph induced by G in B (if B is a multiset,
we see it as a set, by simply forgetting repetitions). Also, for a weighted graph H , M(H) is
the maximal weight of a spanning tree of H .

We have to prove that for any multiset B = {Xj1
i1

, . . . ,X
jr

ir
} of elements of AM , one has

(9)
∣∣κ(Xj1

i1
, . . . ,X

jr

ir

)∣∣≤ Cr	(B)M
(
GM [B]).

For a multiset B , we denote B1, B2, . . . , the vertex-sets of the connected components of
GM

1 [B], the graph obtaining from GM [B] by keeping only edges of weight 1. Using [11],
Proposition 5.2, it is equivalent to prove (9) or the following: for any multiset B of elements
of AM with |B| = r we have

(10)
∣∣∣∣κ
( ∏

X
j
i ∈B1

X
j
i ,

∏
X

j
i ∈B2

X
j
i , . . .

)∣∣∣∣≤ Dr	(B)M
(
GM [B]),

for some sequence Dr also independent of M .

By definition of GM , vertices X
j
i and X

j ′
i′ are connected in GM

1 [B] if and only if i = i′

or both j = j ′ and aj = 1. In this case, X
j
i X

j ′
i′ = 0 a.s. unless i = i′ and j = j ′. Of course,

if one of the product on the left-hand side of (10) is a.s. 0, then the inequality is trivial.
Thus it suffices to consider the case where each component Bk contains at most one distinct
element X

j
i , say with multiplicity m. But since X

j
i is a Bernoulli random variable, we have

(X
j
i )m = X

j
i ; the right-hand side of (10) is also insensitive to repetitions in B , so that we can
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assume m = 1 (in each of the components Bk). In other words, we only need to prove (10) in
the case the left-hand side is |κ(X

j1
i1

, . . . ,X
jr

ir
)|, for distinct i1, . . . , ir (and such that repeated

entries j in the list j1, . . . , jr fulfills aj > 1, but we will not need this extra condition).
The proof of (9) in the all i distinct case is based on the formula for joint moments in this

case: if C is such a subset of AM , we have

(11) E

( ∏
X

j
i ∈C

X
j
i

)
=
( n−|C|
a1−#{X1

i ∈C},a2−#{X2
i ∈C},...

)
( n
a1,a2,...

) .

Indeed, the numerator counts the number of multiset permutations σ of M with σ(i) = j

for all X
j
i ∈ C, while the denominator is the total number of multiset permutations of M .

To get bounds on cumulants, we use this expression and the quasi-factorization technique, as
developed in [11], Section 5.2.

Consider a family u = (u�)�⊆[r] of real numbers indexed by subsets of [r] with u∅ 	= 0.
We furthermore assume that uδ = 0 implies that u� = 0 as well for all subsets � containing
δ; we call this the vanishing ideal condition. In the following, all families under consideration
fulfill the vanishing ideal condition. For such a u, we define

P�(u) = ∏
δ⊆�

(uδ)
(−1)|�|−|δ|

.

By convention, if the above fraction is 0/0, we set P�(u) = 0. A simple Möbius inversion
gives back

u� = ∏
δ⊆�

Pδ(u).

Let H be a weighted graph on [r]. We say that u has the H -quasi factorization property
if, for each � ⊆ [r] of size at least 2, we have

(12) P�(u) = 1 +O
(
M

(
H [�])).

The constants in the O symbol should depend only on r , in particular, in the following, they
are independent of B and M .

Fix now a subset B = {Xj1
i1

, . . . ,X
jr

ir
} of AM with distinct i1, . . . , ir . For � ⊆ [r], we

define u� = E[∏t∈� X
jt

it
]. (Note that the dependence in M and B is kept implicit here.)

From equation (11), this is explicitly given as

u� = u
(1)
� u

(2)
�

∏
j≥1

u
(3,j)
� ,

with

u
(1)
� = 1( n

a1,a2,...

) ; u
(2)
� = (

n − |�|)!;
u

(3,j)
� = 1

(aj − #{t ∈ � : jt = j})! .

By convention, u
(3,j)
� = 0 if aj − #{t ∈ � : jt = j} < 0. Note that all of these families have

the vanishing ideal property. We discuss the quasi-factorization property of each factor sepa-
rately:

(i) The first factor u
(1)
� is independent of � and, therefore, u(1) trivially satisfies the

H(1)-quasi factorization property, where H(1) is the graph on [r] with no edges.
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(ii) The family u(2) defined by u
(2)
� = (n − |�|)! satisfies the H(2)-quasi factorization

property, where H(2) is the complete graph on [r] with weight 1/n on each edge [11], Propo-
sition 5.10.

(iii) Fix j ≥ 1 and consider the factor u
(3,j)
� = (aj − #{i : X

j
i ∈ �})!−1. Let H(3,j) be

the graph with vertex-set [r], and an edge of weight 1
aj

between s and t if js = jt = j (in

particular, if js 	= j , then s is isolated in H(3,j)). We claim that u(3,j) has the H(3,j) quasi
factorization property. Indeed, if � contains an s such that js 	= j , then u

(3,j)
δ∪{s} = u

(3,j)
δ for

δ ⊆ (� \ {s}) and this implies P�(u(3,j)) = 1 so that (12) holds trivially. On the other hand,
if � ⊆ {s : js = j}, then u

(3,j)
δ = (aj − |δ|)!−1 and the estimate (12) again follows from [11],

Proposition 5.10.

Denote H the following graph with vertex-set [r]: the weight of the edge between s and t is
the maximum of the weights of the corresponding edges in H(1), H(2) and in all the H(3,j).
Note that H corresponds to GM [B], where GM is defined in the statement of Theorem 3.1.
Observe that, for any �, we have

P�(u) = P�

(
u(1))P�

(
u(2)) ∏

j≥1

P�

(
u(3,j)),

where at most one factor in the infinite product is different from 1. Together with the above
observations, this implies that u has the H quasi factorization property. In [11], it is proved
that the H quasi-factorization property implies the so-called H small cumulant property,1

that is, in particular the following inequality:∣∣κr

(
X

j
i ,X

j
i ∈ B

)∣∣=O
(
M(H)

∏
X

j
i ∈B

E
(
X

j
i

))
,

which is what we needed to prove. �

3.2. A preliminary estimate. Let M = {1a1,2a2, . . . } be a finite multiset of size n =∑
i≥1 ai . We let (bj )j≥1 be the nonincreasing reordering of (ai)i≥1 and define, for j ≥ 1,

(13) n(j) = n − b1 − · · · − bj .

Furthermore, for an integer d ≥ 1, we denote by ed(M) the dth elementary symmetric func-
tion evaluated in the numbers a1, a2, . . . , that is,

ed(M) := ∑
j1<···<jd

aj1 · · ·ajd
.

These quantities turn out to be omnipresent when we evaluate the various parameters needed
to prove our central limit theorem.

LEMMA 3.2. For any d ≥ 1 and any multiset M = {1a1,2a2, . . . }, we have

1

d!nn(1) · · ·n(d−1) ≤ ed(M) ≤ nn(1) · · ·n(d−1).

In practice, the degree d will be fixed, while n tends to infinity, so that the above lemma
gives us the exact order of magnitude of ed(M). For a d − 1-regular sequence of multiset
partition, we clearly have nj = �(n) for any j ≤ d − 1, so that ed(M) = �(nd).

1See [11], Proposition 5.8; the implication is proved for families u with nonzero entries, but the proof extends
readily to families with the vanishing ideal property.
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PROOF. We start with the upper bound. Assume, without loss of generality that the se-
quence (ai)i≥1 is nonincreasing, in which case n(h) = n − a1 − · · · − ah. Then we have

ed(a1, a2, . . .) = ∑
j1<···<jd

aj1 · · ·ajd

≤
(∑

j1≥1

aj1

)(∑
j2≥2

aj2

)
· · ·

(∑
jd≥d

ajd

)

= nn(1) · · ·n(d−1).

For the lower bound, we first observe that

d!ed(a1, a2, . . .) = ∑
j1≥1

aj1

( ∑
j2 	=j1

aj2

(
· · ·

( ∑
jd 	=j1,...,jd−1

ajd

)))
.

The inner sum over jd can be bounded below as follows:( ∑
jd 	=j1,...,jd−1

ajd

)
= n − aj1 − · · · − ajd−1 ≥ n(d−1).

This bound does not depend on j1, . . . , jd−1 and can therefore be factorized out of all sums.
We then bound the sum over jd−1 by n(d−2), which can also be factorized out. Iterating this
procedure, we get

d!ed(a1, a2, . . .) ≥ n(d−1)n(d−2) · · ·n(1)n,

as claimed. �

3.3. The central limit theorem. The goal of this section is to prove Theorem 1.4. Fix a

pattern τ and a sequence of finite multisets, where M(m) = {1a
(m)
1 ,2a

(m)
2 , . . .}. Most of the time

we will omit the superscript m and denote n = |M(m)|. We first observe that the number Occτ

of occurrences of a pattern τ in a uniform random element σ in SM can be written as

(14) Occτ (σ ) = ∑
i1<···<i�≤n

j1<···<j�

X
jτ(1)

i1
· · ·Xjτ(�)

i�
.

Combining Theorem 3.1 and Proposition 2.6, we know that the family

Aτ := {
X

jτ(1)

i1
· · ·Xjτ(�)

i�
, i1 < · · · < i� ≤ n, j1 < · · · < j�

}
admits (GM)� as (D,�) dependency graph, where D and � are as follows:

• With a multiset B of monomials in Aτ , the function � associates
∏

X
j
i

aj

n
, where the prod-

uct runs over the distinct variables X
j
i appearing in some monomial in B;

• D = (D1,D2, . . . ) is a sequence of constants independent of the set partition M under
consideration.

Our goal is to apply the normality criterion of Theorem 2.3 to this (sequence of) dependency
graph(s). The first task is to estimate the parameters R and Th. For R, this is immediate;
indeed, we write

R = ∑
i1<···<i�≤n,

j1<···<j�

�∏
t=1

ajt

n
=
(
n

�

)
e�(M)

n�
= �

(
e�(M)

)
.
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We now consider Th. By definition,

(15) Th := max
α1,...,αh∈Aτ

[ ∑
β∈Aτ

W
({β}, {α1, α2, . . . , αh})�({α1, α2, . . . , αh,β})

�({α1, α2, . . . , αh})
]
.

We fix a set S = {α1, α2, . . . , αl} ⊆ Aτ and write

F(β) := W
({β}, {α1, α2, . . . , αh})�({α1, α2, . . . , αh,β})

�({α1, α2, . . . , αh}) .

We use the O-notation with implicit constants depending on h. We split the sum over β into
three parts:

(i) Consider first the monomial β = X
jτ(1)

i1
· · ·Xjτ(�)

i�
, which do not share any index with

any of the α in S (i.e., neither an upper, nor a lower index). For such β , the W factor in F(β)

is 1/n, while the quotient of 	 is
∏

t
ajt

n
, which yields

F(β) = n−�−1
�∏

t=1

ajt .

We should sum this over ordered �-uplets (i1, . . . , i�) and (j1, . . . , j�) with values in [n]. The
sum over (j1, . . . , j�) gives n−�−1e�(M). This is independent of i1, . . . , i� so that summing
over the O(n�) possible �-uplets (i1, . . . , i�) gives O(n−1e�(M)).

Summing up, the total contribution of monomials β not sharing any index with any α in S

to the sum in (15) is O(n−1e�(M)).
(ii) We now consider monomials β which do not share a lower index with any α ∈ S

but do share some upper index, say jr , with some α ∈ S. For such β , we have that
W({β}, {α1, α2, . . . , αh}) = 1

αjr
and

F(β) = 1

ajr

�∏
t=1

ajt

n
= n−�

∏
t 	=r

ajt .

Again, we should sum over ordered �-uplets (i1, . . . , i�) and (j1, . . . , j�) with values in [n].
But the number of possible values of jr is finite since it must be chosen among the lower
indices of α1, . . . , α�. Up to a constant factor, we can therefore only consider the sum over
j1, . . . , jr−1, jr+1, . . . , j�, which gives O(n−�e�−1(M)). Finally, summing over the O(n�)

possible �-uplets (i1, . . . , i�) yields O(e�−1(M)). This is the total contribution to the sum in
(15) of monomial β in this second case.

(iii) The third and last case is that of monomials β sharing some lower index, say ir with
some α ∈ S. In that case, the W factor in F(β) is one. Define

T (β) = {
t ∈ [�] : Xjτ(t)

it
is not a factor of some α in S

}⊆ [�].
Then we have F(β) =∏

t∈T (β)

ajτ(t)

n
= n−|T (β)|∏

t∈T (β) ajτ(t)
. The number of possible values

for the set T (β) is finite, so that it is enough to bound the sum in (15) over β’s with a given
value of T (β).

Given T0 ⊆ [�], a monomial β with T (β) = T0 is described by the lists (it )t∈T0\[r] and
(jτ(t))t∈T0 , and some additional finite choices (the values of it and jτ(t), for t /∈ T0, as well as
that of ir if r ∈ T0). Similarly, as above, summing F(β) over (jτ(t))t∈T0 gives n−|T0|e|T0|(M),
while summing over (it )t∈T0 yields n|T0|−1 or n|T0|, depending on whether r is in T0 or not.
Therefore, the total contribution to the sum in (15) of monomials β in this third case with
T (β) = T0 is either O(n−1ed(M)) for d := |T0| ≤ � (in the case r ∈ T0) or O(ed(M)) for
d := |T0| ≤ � − 1 (in the case r /∈ T0).
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From Lemma 3.2, we see that, as long as n(�−1) tends to infinity (so in particular for
an �-regular sequences of multiset partition M(m)), the biggest of the above bounds is
O(e�−1(M)). We therefore conclude that Th = O(e�−1(M)).

Next, we need a lower bound on the variance. Here, we need our regularity assumption on
the sequence of multiset partitions.

PROPOSITION 3.3. Let τ be a fixed pattern of size � and consider a �-regular sequence
M(m) of multisets. There exists a constant K1 > 0 such that

Var
(
Occτ

M(m)

)≥ K1
∣∣M(m)

∣∣2�−3/2
.

The proof of this statement being rather technical, we postpone it to the end of the multiset
partition part, that is, Section 3.4.

We can now prove Theorem 1.4, using the normality criterion given in Theorem 2.3. We
assume that the sequence of multiset partitions M(m) is regular. This implies the estimate
e�−1(M) = �(n�−1), so that Th = O(n�−1); therefore, we can take Qn = n�−1 in Theo-
rem 1.4. Combining with Proposition 3.3, we find Qn

σn
≤ 1√

K1

n�−1

n�−3/4 = O(n−1/4). Further-

more, Rn = �(e�(M)) = O(n�). Summing up, for s = 5, we have(
Rn

Qn

)1/s Qn

σn

= O
(
n1/5n−1/4)= O

(
n−1/20).

This tends to 0 as n tends to infinity, and (7) is satisfied. We conclude that Occτ
M(m) is asymp-

totically normal, as wanted.

3.4. Variance estimate for pattern counts in multiset permutations. As above, we fix a
pattern τ of size �. Throughout this section, we assume that M(m) is an �-regular sequence of
multisets. We will most of the time drop to superscript m and denote n = |M(m)|. The goal of
this section is to prove Proposition 3.3, that is, to bound Var(Occτ (σ )) from below, where σ

is a random uniform multiset permutation of M . We use the notation v(M) = Var(Occτ (σ )),
making the dependence in τ implicit.

3.4.1. An initial bound and a recursive inequality on the variance. Let M = {1a1,2a2,

. . . } be a multiset of size n and choose j0 minimal such that aj0 > 0. We denote M ′ the
multiset obtained by removing a single copy of j0 from M .

Then a random uniform multiset permutation σ of M can be constructed as follows:

• Choose P uniformly at random between 1 and n and set σP = j0.
• Take a uniform random multiset permutation σ ′ of M ′, independent from P , and fill the

other positions of σ in the same order as in σ ′. Formally, we set, for i 	= P ,

σ i =
{
σ ′

i if i < P ;
σ ′

i−1 if i > P.

It is straightforward to check that, by construction, σ is a uniform random multiset permuta-
tion of M . Moreover, we can write Occτ (σ ) = B + C, where:

• B is the number of occurrences of τ in σ , not using the position P —it is easy to see that
B = Occτ (σ ′);

• C is the number of occurrences of τ in σ , using the position P .
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Using the law of total variance, we have

v(M) = Var
(
Occτ (σ )

)= E
[
Var

(
Occτ (σ )|P )]+ Var

[
E
(
Occτ (σ )|P )].

Note that B is independent of P , so that E(B|P) is the constant random variable a.s. equal
to E(B). This implies that

Var
[
E
(
Occτ (σ )|P )]= Var

[
E(B) +E(C|P)

]= Var
[
E(C|P)

]
.

In particular, we get an initial bound

(16) v(M) ≥ Var
[
E(C|P)

]
.

On the other hand, from Cauchy–Schwarz and Jensen inequalities, since B and P are inde-
pendent, we have∣∣E[Cov(B,C|P)

]∣∣≤ E
[√

Var(B)
√

Var(C|P)
]≤√

Var(B)

√
E
[
Var(C|P)

]
.

Expanding Var(Occτ (σ )|P) = Var(B + C|P) by bilinearity, we find that

E
[
Var

(
Occτ (σ )|P )]= Var(B) + 2E

[
Cov(B,C|P)

]+E
[
Var(C|P)

]
≥ Var(B) − 2

√
Var(B)

√
E
[
Var(C|P)

]
.

Note that Var(B) = v(M ′) since B = Occτ (σ ′). Summing up, we get the following recursive
inequality on v(M):

(17) v(M) ≥ v
(
M ′)(1 − 2

√
E[Var(C|P)]

v(M ′)

)
+ Var

[
E(C|P)

]
.

3.4.2. Analyzing the initial bound (16). Recall that C counts the number of occurrences
of τ in σ that use the position P . Since the letter at position P is the smallest one in σ , it
should correspond to 1 in the pattern τ . Formally, if r is the index such that τ(r) = 1, an
occurrence (i1, . . . , i�) of τ in σ using the position P must satisfy ir = P . We therefore have,
conditionally on P ,

(18) C = ∑
i1<···<ir−1<P

i�>···>ir+1>P

[ ∑
j�>···>j2>j1=j0

X
jτ(1)

i1
· · ·Xjτ(�)

i�

]
.

Note that the factor X
jτ(r)

ir
= X

j0
P = 1 because of the condition on the summation index. For

any i1, . . . , ir−1, ir+1, . . . , i�, we have

E
[
X

jτ(1)

i1
· · ·Xjτ(r−1)

ir−1
X

jτ(r+1)

ir+1
· · ·Xjτ(�)

i�
|P ]

= E
[(

X′)jτ(1)

i1
· · · (X′)jτ(r−1)

ir−1

(
X′)jτ(r+1)

ir+1−1 · · · (X′)jτ(�)

i�−1

]
,

(19)

where the variables (X′)ji refer to the multiset permutation σ ′. In particular, the right-hand
side is a quantity F(j2, . . . , j�) that depends neither on P , nor i1, . . . , i� (the uniform random
multiset permutation σ ′ is invariant by re-indexing). Since the number of choices for the
indices i1, . . . , ir−1, ir+1, . . . , i� is

(P−1
r−1

)(n−P
�−r

)
, we have

E(C|P) =
(
P − 1
r − 1

)(
n − P

� − r

)( ∑
j�>···>j2>j1=j0

F(j2, . . . , j�)

)
.
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We take the variance of this function of the random variable P (the sum is independent of P ,
i.e., deterministic):

Var
[
E(C|P)

]
=
( ∑

j�>···>j2>j1=j0

F(j2, . . . , j�)

)2
Var

((
P − 1
r − 1

)(
n − P

� − r

))
.

(20)

Since P is uniformly distributed in {1, . . . , n}, we see easily that the variance of the product
of binomials is of order n2�−2. Moreover, equation (11) gives us (recall that the jt are distinct
here)

F(j2, . . . , j�) = aj2 · · ·ajt

(n − 1) · · · (n − � + 1)
≥ n−�+1

�∏
t=2

ajt .

Therefore, the sum in (20) is bigger than e�−1(M \ (j0))n
−�+1, where M \ (j0) is obtained

form M by removing all copies of j0. Note that, if a sequence M(m) of multiset partition is �

regular, then e�−1(M \ (j0)) = �(n�−1). We conclude that there exist K2,K3 > 0 such that

(21) Var
[
E(C|P)

]≥ K2
(
e�−1

(
M \ (j0)

))2 ≥ K3n
2�−2.

In particular, using (16), we have

(22) v(M) ≥ K3n
2�−2.

3.4.3. Analyzing the recursive inequality. The lower bound (22) is not sufficient to apply
Theorem 2.3 directly. We shall use the recursive inequality equation (17) to improve it. To
this end, we first need to analyze the term E[Var(C|P)].

LEMMA 3.4. Let M(m) be an �-regular sequence of multisets. There exist K4,K5 > 0
such that

E
[
Var(C|P)

]≤ K4e�−1
(
M \ (j0)

)
e�−2

(
M \ (j0)

)≤ K5n
2�−3.

PROOF. We start from equations (18) and (19). Conditionally on P , we have (note that
the indices it for t ≥ r + 1 below are shifted by 1, compared to equations (18) and (19)):

C = ∑
i1<···<ir−1<P

i�>···>ir+1≥P

j�>···>j2>j1=j0

(
X′)jτ(1)

i1
· · · (X′)jτ(r−1)

ir−1

(
X′)jτ(r+1)

ir+1
· · · (X′)jτ(�)

i�
.

In the sequel, we use i and j to represent lists (i1, . . . , ir−1, ir+1, . . . , i�) and (j2, . . . , j�)

as in the above summation index. We also write (X′)ji for the corresponding monomial. We
have

Var(C|P) = ∑
i,ĩ,j ,j̃

Cov
((

X′)j
i ,
(
X′)j̃

ĩ

)
.

Since σ ′ is a uniform random multiset permutation of M ′, the variable (X′)ji admit a (�,D)-
weighted dependency graph (by Theorem 1.4 and Proposition 2.6) and we have that, for some
constant K4 > 0∣∣Cov

((
X′)j

i ,
(
X′)j̃

ĩ

)∣∣≤ K4�
((

X′)j
i ,
(
X′)j̃

ĩ

)
W
((

X′)j
i ,
(
X′)j̃

ĩ

)
.
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With the same case distinction as in Section 3.3 on whether (X′)ji and (X′)j̃
ĩ

share a lower
index, an upper index or no index at all, we can prove that∣∣Var(C|P)

∣∣≤ K4e�−1
(
M \ (j0)

)
e�−2

(
M \ (j0)

)
.

The upper bound is independent of P , so that

E
[
Var(C|P)

]≤ K4e�−1
(
M \ (j0)

)
e�−2

(
M \ (j0)

)
.

For �-regular sequences of multisets, the upper bound is smaller than K5n
2�−3 (for some

K5 > 0), concluding the proof of the lemma. �

Plugging in equations (21) and (22) and Lemma 3.4 in equation (17), we get that, for some
constant K6 > 0,

(23) v(M) ≥ v
(
M ′)(1 − K6n

−1/2)+ K3n
2�−2.

We denote M(i) = ((M ′) · · · )′ the partition obtained by removing the i smallest parts of M

(counting parts with repetitions). For i ≤ K7n
1/2 (where K7 is a positive constant that will be

determined later), the sequence M(i) is still �-regular. Therefore, we can apply (23) and we
have for

v(M(i)) ≥ v(M(i+1))
(
1 − K6(n − i)−1/2)+ K3(n − i)2�−2.

We start from the initial inequality v(M(K7
√

n)) ≥ K3(n − K7
√

n)2�−2 and iterate the above
recursive inequality: we get

v(M) ≥
K7

√
n−1∑

i=0

K3(n − i)2�−2(1 − K6(n − i)−1/2) · · · (1 − K6n
−1/2).

For K7 sufficiently small, the product is bounded away from 0, so that each of the �(
√

n)

terms in the sum behaves as �(n2�−2). Therefore, there exists a constant K1 > 0 such that

(24) v(M) ≥ K1n
2�−3/2,

which is exactly what we wanted to prove.

REMARK 3.5. Plugging in the final inequality (24) in (22), we could improve (23) to

v(M) ≥ v
(
M ′)(1 − K6n

−3/4)+ K3n
2�−2.

Then, arguing as above with i ≤ K8n
3/4, we have v(M) ≥ K9n

2�−5/4 (for some K9 > 0).
Iterating this argument shows that for any ε > 0, there exists K10(ε) > 0 such that v(M) ≥
K10(ε)n

2�−1−ε . However, the bound v(M) ≥ K1n
2�−3/2 given above is sufficient to apply

our normality criterion.

3.4.4. Comparison with an upper bound. Proposition 2.4 and the estimates R =
O(e�(M)), T1 = O(e�−1(M)) from Section 3.3 yield the following upper bound on the vari-
ance, which is valid without the regularity hypothesis.

PROPOSITION 3.6. There exists a constant K11 > 0, such that for each multiset permu-
tation M = {1a1,2a2, . . . }, we have

Var
(
Occτ )≤ K11e�(M)e�−1(M).
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We note in the case τ = 21, that is, when we are interested in inversions in random multiset
permutations, this upper bound is tight (up to a multiplicative constant): see [5], equation
(1.10) or Lemma 3.1. It is natural to ask whether this is also the case for longer patterns.

QUESTION 3.7. Fix a pattern τ . Does there exist a constant K12 > 0 (depending on τ ),
such that for each multiset permutation M = {1a1,2a2, . . . }, we have

(25) Var
(
Occτ )≥ K12e�(M)e�−1(M)?

An affirmative answer to this question would imply that the central limit in Theorem 1.4
holds under the less restrictive condition that the sequence of multiset permutations satisfy
n(�−1) → ∞ (n(j) is defined in (13)). This condition is easily seen to be necessary for having
a central limit theorem (see [5], Section 5, for the case of inversions).

For a regular sequence M = M(m) of multisets, we have the estimate e�(M)e�−1(M) =
�(n2�−1), and we can prove Var(Occτ ) ≥ K10(ε)n

2�−1−ε for arbitrarily small ε > 0; see
Remark 3.5. Therefore, in this case, the suggested lower bound (25) holds, at least up to
subpolynomial factors.

4. Arc patterns in set partitions. In this section, we prove Theorem 1.6. We refer to
Section 1.4 for notation.

4.1. Stam’s urn model and the weighted dependency graph. Stam’s urn model [31] gives
a simple way to uniformly sample from P([n]). It works as follows: the first step consists in
picking the number of urns M according to the distribution

(26) P(M = m) = 1

eBn

mn

m! ,
where Bn = |P([n])| is the nth Bell number. This is indeed a probability measure, thanks to
Dobiński’s formula; see [28] for an insightful proof.

In the second step, we drop each number i ∈ [n] into one of M urns with uniform proba-
bility 1/M . We denote by π the random set partition of [n] in which i and j are in the same
block if and only if they were dropped into the same urn. This construction of a random set
partition will be referred to as Stam’s urn model.

PROPOSITION 4.1 ([31]). The random set partition π constructed by Stam’s urn model
is uniformly distributed on P([n]). Moreover, the number of empty urns in the process has
law Poisson(1) and is independent from π .

For 1 ≤ i < j ≤ n, we consider the random variable

Xij = 1[there is an arc from i to j in π ].
THEOREM 4.2. Consider the weighted graph Gn on vertex-set An with weights

w(Xij ,Xi′j ′) =
{

1 if i = i′ or j = j ′;
1/n otherwise.

Then, for each n ≥ 1, the graph Gn is a (	,Cn) weighted dependency graph for the family
An, where 	 is the function on multisets of elements of An defined by

	(B) = n−#(B)

and (Cn)n≥1 = (Cr,n)r≥1,n≥1 is a doubly indexed sequence of coefficients such that for each
r , we have Cr,n = Õ(1) as n tends to infinity.
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The proof is postponed to Section 5, but let us say a few words on its structure. We should
bound joint cumulants κ(Xij ,Xij ∈ B) for multiset B of elements An; with the same kind of
observations as in the proof of Theorem 3.1, we can assume w.l.o.g. that B is a (repetition-
free) subset of An. The difficulty here is that the joint moments of Xij do not have a simple
form as in equation (11). However, conditionally on M , joint moments do have a nice multi-
plicative expression. Indeed, a random set partition π generated by Stam’s urn model contains
all the arcs in some set B if and only if:

(i) for every arc (i, j) in B , we drop its endpoint j in the same urn as its starting point i;
(ii) for every arc (i, j) in B , none of the integers between i and j is dropped in the same

urn as i; equivalently, if g is not the endpoint of an arc of B , it should be dropped in a different
urn from the starting points of those arcs in B that go over g.

Since all balls are dropped uniformly independently, this happens with probability

(27) E

( ∏
Xij∈B

Xij

∣∣M)
= 1

Ma

∏
g:g/∈{j,Xij∈B}

M − a(g)

M
,

where a(g) is the number of arcs in B going over g. Using the multiplicative form of equa-
tion (27) and general results from the theory of weighted dependency graphs, we can show
that the conditional joint cumulants κ(Xij ∈ B|M) are small.

To go back to unconditional cumulants, we use Brillinger’s law of total cumulance [3],
which we now recall. If X1, . . . ,Xr and Y are random variables with finite moments defined
on the same probability space, then

(28) κ(X1, . . . ,Xr) =∑
ρ

κ
(
κ(Xi, i ∈ B|Y ),B ∈ ρ

)
,

where the sum runs over all set partitions ρ of [r] and the B’s are the blocks of ρ.
Note that the inner conditional cumulants are functions of the random variable Y , that is,

in our setting, of M . We therefore need estimates for cumulants of particular functions of M ,
which we derive in Section 5.2 as a preliminary to the proof of Theorem 4.2.

In the rest of this section, we admit Theorem 4.2 and show how to deduce Theorem 1.6
from it.

4.2. A lower bound for the variance. As in the statement of Theorem 1.6, we fix an arc
pattern A of length � with a arcs and denote OccAn its number of occurrences in a uniform
random set partition of size n. We would like a lower bound on its variance.

To this end, we use the law of total variance, conditioning on the value of the number M

of urns in Stam’s construction:

Var
(
OccAn

)= E
[
Var

(
OccAn |M)]+ Var

[
E
(
OccAn |M)]

.

Both terms are nonnegative; it turns out that the second one is relatively easy to evaluate and
gives us a good enough lower bound (in fact, this lower bound is optimal up to logarithmic
factors, as explained at the end of Section 4.3).

LEMMA 4.3. Var(OccAn ) ≥ Var[E(OccAn |M)] = �̃(n2�−2a−1).

PROOF. We start by introducing notation. For i in {2, . . . , �}, we denote by ai the number
of arcs above the segment [i − 1, i] in A. For example, if A is the arc pattern of Figure 1,
then a2 = a5 = 1 and a3 = a4 = 2. By convention, we set a1 = 0.



CENTRAL LIMIT THEOREMS FOR PATTERNS 305

Recall from equation (27) above that

(29) P
(
(x1, . . . , x�) occurrence of A|M)= 1

Ma

∏
g:g/∈{xj ,(i,j)∈A}

M − a(g)

M
.

The product can be split in two parts.

• First, consider factors indexed by g in {x1, . . . , x�} \ {xj , (i, j) ∈ A}, that is, by elements
of the pattern that are not the ending point of an arch. There are a fixed number of such
g, and the corresponding numbers a(g) do not depend on x1, . . . , x� nor on n. Thus the
product of such factors is a Laurent polynomial of degree 0 in M , say R0(M), independent
of x1, . . . , xj (and of n);

• Second, we consider factors corresponding to g /∈ {x1, . . . , x�}: for each i in [�], we get
xi − xi−1 − 1 factors equal to M−ai

M
(by convention x0 = 0).

Hence (29) rewrites as

P
(
(x1, . . . , x�) occurrence of A|M)= R0(M)

Ma

∏
i≤�

(
M − ai

M

)xi−xi−1−1
.

Summing this conditional probability over x1 < x2 < · · · < x� ≤ n, we get the conditional
expectation of OccAn . For convenience, we rather write this formula with summation indices
yi = xi − xi−1 (with the convention x0 = 0, i.e., y1 = x1):

E
[
OccAn |M]= R0(M)

Ma

∑
y1,...,y�≥1

y1+···+y�≤n

∏
i≤�

(
M − ai

M

)yi−1
.

We denote t the number of i such that ai 	= 0. Since the above expression is symmetric in
the ai , we may assume as well that a1, . . . , at are nonzero, while at+1 = · · · = a� = 0. The
summand in the above display does not depend on (yi, i > t), so that we can write

(30) E
[
OccAn |M]= R0(M)

Ma

∑
y1,...,yt≥1

y1+···+yt≤n

(
n − y1 − · · · − yt

� − t

)∏
i≤t

(
1 − ai

M

)yi−1
.

The next step is to see how the sum behaves when n → ∞, and M is closed to its expectation

mn := E(M) ∼ n/ ln(n).

We will see later that M concentrates around mn; see beginning of Section 5.2. Informally,
the dominant term is obtained as follows:

(i) replace the binomial coefficient by its dominant part, which is

1

(� − t)!(n − y1 − · · · − yt )
�−t ;

(ii) forget the condition y1 + · · · + yt ≤ n in the sum;
(iii) use the approximation

∑
y≥1

yj

(
1 − a

M

)y−1
≈ ∑

y≥1

(y + j − 1) · · ·y
(

1 − a

M

)y−1

= j !
(

1

1 − (1 − a
M

)

)j+1
= j !

(
M

a

)j+1
.
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(For the middle equality, note that both sides are the j th derivative of 1/(1 − x) evaluated in
x = 1 − a

M
.) With this heuristic, we get

∑
y1,...,yt≥1

y1+···+yt≤n

(
n − y1 − · · · − yt

� − t

)∏
i≤t

(
1 − ai

M

)yi−1

≈ 1

(� − t)!
∑

j0,...,jt≥0
j0+···+jt =�−t

(
� − t

j0, . . . , jt

)
nj0

∏
i≤t

[∑
yi≥1

(−yi)
ji

(
1 − ai

M

)yi−1]

≈ ∑
j0,...,jt≥0

j0+···+jt=�−t

(−1)j1+···+jt
nj0Mj1+···+jt+t

j0!aj1+1
1 · · ·ajt+1

t

.

The summand corresponding to j0 = � − t, j1 = · · · = jt = 0 dominates the above sum. In-
serting this estimate back into equation (30), we deduce heuristically the following: uniformly
on M in [mn − n3/4,mn + n3/4], one has

(31) E
[
OccAn |M]= n�−tMt−a

(� − t)!
(
1 + o(1)

)
.

Taking the variance of this function of M , we expect to get (see Section 5.2 for a justification
of this heuristic):

(32) Var
(
E
[
OccAn |M])= E

[
E
[
OccAn |M]2]

�̃
(
n−1)= �̃

(
n2�−2a−1).

In Section 6, we prove formally equations (31) and (32). In particular, this completes the
proof of the lemma. �

4.3. The central limit theorem. In this section, we prove Theorem 1.6. The quantity OccAn
of interest can be written in terms of the Xij as follows:

OccAn = ∑
s1<s2<···<s�

∏
(i,j)∈A

Xsisj .

From Theorem 4.2 and Proposition 2.6, the family of monomials
∏

(i,j)∈A Xsisj has a
(�n,Dn)-weighted dependency graph, where:

• �n is the function on multisets of monomials
∏

(i,j)∈A Xsisj , which is n−#arcs, where #arcs
denotes the total number of distinct arcs Xsisj appearing in some monomial in the multiset;

• (Dn)n≥1 = (Dr,n)r≥1,n≥1 is a doubly indexed sequence of numbers such that, for each
r ≥ 1, we have Dr,n = Õ(1).

We will prove the central limit theorem for OccAn by applying Theorem 2.3. For this, we need
to evaluate the quantities Rn and Th,n defined in equations (4) and (5). We have

Rn := ∑
1≤s1<···<s�≤n

	

({ ∏
(i,j)∈A

Xsisj

})
= �

(
n�−a).

(Recall that a is the number of arcs in A.) We now consider Th,n. In the following, we use
α(k) or β to denote some �-uple of positive integers s1 < · · · < s� ≤ n and �(α(k)) or �(β)

for the corresponding monomial
∏

(i,j)∈A Xsisj . By definition,

Th,n = max
α(1),...,α(h)

[∑
β

F (β)

]
,
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where

F(β) = W
({

�(β)
}
,
{
�
(
α(1)), . . . ,�(

α(h))})	({�(β),�(α(1)), . . . ,�(α(h))})
	({�(α(1)), . . . ,�(α(h))}) .

To evaluate this quantity, we fix α(1), . . . , α(h). All constants in O terms below depend im-
plicitly on h, but not on α(1), . . . , α(h).

• Consider first the terms where β is disjoint from α(1) ∪ · · · ∪ α(h). For such β , the weight
in F(β) is 1/n, while the quotient of 	 is n−a . Thus, we have F(β) = n−1−a . Since there
are O(n�) such terms, their total contribution is O(n�−a−1).

• Consider now terms where β intersects α(1) ∪ · · · ∪ α(h), but there is no factor in common
between �(β) and any �(α(k)). There are only O(n�−1) such terms. In this case, we bound
the weight in F(β) by 1, and the quotient of 	’s is still n−a . The total contribution of such
terms is therefore also O(n�−a−1).

• We finally consider terms, where some factors of �(β), say g of them, are already present
in some �(α(k)) (possibly different factors are in different �(α(k))). This forces β∩(α(1)∪
· · ·∪α(h)) to be of size at least g +1, so that the number of such β is O(n�−g−1). Again we
bound the weight in F(β) by 1, but now the quotient of 	’s is n−a+g . The total contribution
of such terms is therefore also O(n�−a−1) as well.

From this discussion, for any fixed h ≥ 1, we have Th,n = O(n�−a−1). We can therefore set
Qn = n�−a−1 in Theorem 2.3.

From Lemma 4.3, we know that

σn :=
√

Var
(
OccAn

)≥ �̃
(
n�−a−1/2).

Therefore, for s = 3, we have (
Rn

Qn

)1/s Qn

σn

= �̃
(
n−1/6)

and thus, this quantity tends to 0 faster than any power of Dr,n (for any fixed r ≥ 1). From
Theorem 2.3 and Remark 2.5, we conclude that OccAn is asymptotically normal.

We still need to justify the expectation and variance estimates. From equation (31) above
and using that E(Mt−a) = �̃(nt−a) (see equation (37) below), we have E(OccAn ) = �̃(n�−a).
For the variance, a lower bound is obtained in Lemma 4.3. A matching upper bound comes
from Proposition 2.4, using the estimates Rn = �(n�−a) and T1,n = O(n�−a−1) given above.

5. The weighted dependency graphs for set partitions. The goal of this section is to
prove Theorem 4.2, that is, that a given weighted graph is a weighted dependency graphs for
the presence of arcs in set partitions.

5.1. Two general simple estimate for cumulants. We start by two easy bounds on cumu-
lants. Denote Br =∑

π∈P([r]) |μ(π, [r])|, which is a universal constant depending only on r .
We use the standard notation for the r-norm ‖X‖r := E[|X|r ]1/r .

LEMMA 5.1. For any random variables X1, . . . ,Xr with finite moments defined on the
same probability space, we have

(33)
∣∣κ(X1, . . . ,Xr)

∣∣≤ Br

r∏
i=1

‖Xi‖r .
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PROOF. This is an immediate consequence of the moment-cumulant formula (2), com-
bined with Hölder inequality and the monotonicity of r-norms (‖X‖s ≤ ‖X‖r is s ≤ r). �

For an event A, we denote Ac its complement.

LEMMA 5.2. Let X1, . . . ,Xr be random variables on the same probability space. Then,
for any event A, we have

∣∣E(1[A]X1 · · ·Xr

)−E(X1 · · ·Xr)
∣∣≤ P

(
Ac)1/(r+1)

r∏
i=1

‖Xi‖r+1;(34)

∣∣κ(X11[A], . . . ,Xr1[A])− κ(X1, . . . ,Xr)
∣∣

(35)

≤ rBrP
(
Ac)1/(r+1)

r∏
i=1

‖Xi‖r+1.

PROOF. The first formula is a trivial consequence of Hölder inequality:

E
(
1[A]X1 · · ·Xr

)−E(X1 · · ·Xr) = E
(
1
[
Ac]X1 · · ·Xr

)
≤ ∥∥1

[
Ac]∥∥

r+1

r∏
i=1

‖Xi‖r+1.

For the second, we use the moment-cumulant formula (2) and write

κ
(
X11[A], . . . ,Xr1[A])− κ(X1, . . . ,Xr)

= ∑
π∈P([r])

μ
(
π, [r]) ∏

B∈π

[
E

(
1[A] ∏

i∈B

Xi

)
−E

(∏
i∈B

Xi

)]
.

(36)

For a block B of size s we have, since r-norms are increasing in r ,∣∣∣∣E
(

1[A] ∏
i∈B

Xi

)∣∣∣∣≤
∣∣∣∣E
(∏

i∈B

|Xi |
)∣∣∣∣≤ ∏

i∈B

‖Xi‖s ≤ ∏
i∈B

‖Xi‖r+1;

and ∣∣∣∣
[
E

(
1[A] ∏

i∈B

Xi

)
−E

(∏
i∈B

Xi

)]∣∣∣∣≤ P
(
Ac)1/(s+1)

r∏
i=1

‖Xi‖s+1

≤ P
(
Ac)1/(r+1)

∏
i∈B

‖Xi‖r+1.

Combining this with the classical inequality,

|a1 · · ·at − b1 · · ·bt | ≤
t∑

i=1

|b1| · · · |bi−1||ai − bi ||ai+1| · · · |at |

implies that, for any set partition π , we have∣∣∣∣ ∏
B∈π

[
E

(
1[A] ∏

i∈B

Xi

)
−E

(∏
i∈B

Xi

)]∣∣∣∣≤ |π |P(Ac)1/(r+1)
r∏

i=1

‖Xi‖r+1.

Since we always have |π | ≤ r , plugging this inequality back into equation (36) proves equa-
tion (35). �
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5.2. Cumulants of rational functions in M . In this section, we bound (joint) cumulants of
various functions of M . The important recurrent feature is that all cumulants have a smaller
order of magnitude than what we could naively expect, the difference being a factor n1−r

(for joint cumulants of order r , up to logarithmic factors). As usual, constants in O and Õ
symbols do depend on the order r of the cumulant under consideration.

Recall that the distribution of M is given in (26). In particular, M depends on n, even if
this is implicit in the notation. For a fixed integer r (either positive or negative), one has

(37) E
[
Mr]= Bn+r

Bn

= �̃
(
nr);

the first equality is indeed a direct consequence of the formula for the distribution of M

(equation (26)), while the second equality follows from asymptotic results for Bell numbers;
see, for example, [4], equation (4). This implies ‖M‖r = O(n). Regarding cumulants, the
following estimates for r ≤ 3 were given in [12], Section 8.3:

mn := E[M] = n

lnn

(
1 + o(1)

)
,(38)

σ 2
n := Var(M) = n

(lnn)2

(
1 + o(1)

)
,(39)

κ3(M) = 2n

(lnn)2

(
1 + o(1)

)
.(40)

Having such asymptotic equivalent for all cumulants seem hard, but we can easily get a O(n)

bound, which will be sufficient for us.

LEMMA 5.3. We have |κr(M)| = O(n) = mr
nÕ(n1−r ).

PROOF. Note that the second equality follows from (38). We focus therefore on the first
one.

From Proposition 4.1, it follows that M the same law as Xn + P , where Xn is the number
of parts in a uniform random set partition of [n], and is independent from the Poisson(1)

random variable P . Besides, we know from Harper [16], page 413, that Xn can be written as a
sum of n independent Bernoulli variables Xn =∑n

i=1 Bi,n; the parameters of these Bernoulli
variables are here irrelevant. Summing up, we get for M the following useful representation:

(41) M
law= P +

n∑
i=1

Bi,n.

Using the additivity of cumulants on independent random variables, we have

κr(M) = κr(P ) +
n∑

i=1

κr(Bi,n).

Since κr(Bi,n) is bounded by a constant Dr , independently on the parameter of Bi,n, the
lemma is proved. �

This lemma has the following easy consequence. Consider the following normalized ver-
sion of M :

Zn := M − mn

σn

,

then its cumulants behave as follows: κ1(Zn) = 0 and, for r ≥ 2,

(42)
∣∣κr(Zn)

∣∣= σ−r
n κr(M) = Õ

(
n1−r/2).
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For r ≥ 3, the upper bound tends to 0, so that Zn converges in distribution and in moments
to a standard normal variable. (The convergence in distribution is stated in [8], Theorem 2.1,
see also Harper [16].)

We now give bounds for joint cumulants of powers of M .

COROLLARY 5.4. For any integers i1, . . . , ir ≥ 1, we have

κ
(
Mi1, . . . ,Mir

)= O
(
ni1+···+ir−r+1)= mi1+···+ir

n Õ
(
n1−r),

where the constants in O and Õ symbols depend on i1, . . . , ir . Consequently, we have

(43) κ
(
Zi1

n , . . . ,Zir
n

)=
(

mn

σn

)i1+···+ir

Õ
(
n−r+1).

PROOF. The Leonov–Shiryaev formula for cumulants of products of random variables
[25] gives

κ
(
Mi1, . . . ,Mir

)=∑
π

∏
B∈π

κ|B|(M),

where the sum runs over all set partitions π of [i1] 
 · · · 
 [ir ] such that

(44) π ∨ {[i1], . . . , [ir ]}= {[i1] 
 · · · 
 [ir ]}.
(Here, ∨ is the joint operation on the set partition lattice, ordered by refinement.) Using
Lemma 5.3, we have

κ
(
Mi1, . . . ,Mir

)=O
(
max

π
n#(π)

)
,

where #(π) is the number of parts of π and the maximum is taken on set partitions π sat-
isfying (44). A simple combinatorial argument (left to the reader) shows that (44) implies
#(π) ≤ i1 + · · · + ir + 1 − r , proving the corollary. �

Finally, we consider joint cumulants of 1/M and Zn/M , which will be useful in the next
section. To this end, we need some concentration inequality for M . Let us introduce the
following event:

An = {
mn − n3/4 ≤ M ≤ mn + n3/4}.

Note that n3/4 is larger than the standard deviation σn = Õ(n1/2) of M , so that we expect An

to hold with large probability. Indeed, the following holds.

LEMMA 5.5. P[Ac
n] tends to 0 faster than any rational function of n.

PROOF. We use the representation (41) of M as a sum of independent variables:

M
law= P +

n∑
i=1

Bi,n,

where P follows a Poisson law of parameter 1 and the Bi,n are independent Bernoulli vari-
ables, whose parameters are not relevant. A standard tail estimate for Poisson distribution
(see, e.g., [27], page 97) gives

P

[∣∣P −E(P )
∣∣≥ 1

2
n3/4

]
≤ P

[
P ≥ 1

2
n3/4

]
≤ e−1

(
2e

n3/4

)n3/4

,
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while Hoeffding’s inequality [18], Theorem 1, equation (2.3), tells us that

P

[∣∣∣∣∣
n∑

i=1

(
Bi,n −E(Bi,n)

)∣∣∣∣∣≥ 1

2
n3/4

]
≤ 2 exp

(
−1

2
n1/2

)
.

Combining both inequalities tells us yields, for n big enough,

P
[|M − mn| ≥ n3/4]≤ 3 exp

(
−1

2
n1/2

)
. �

From Lemma 5.2, adding/removing 1[An] from joint cumulants/joint moments of powers
of Zn, M and 1/M change the resulting value by an error that is smaller than any rational
function of n (indeed, for each fixed r ≥ 1, the r-norms of Zn, M and 1/M are bounded
by Õ(

√
n), O(n) and 1, resp.). We will denote by oe(n) such error terms and use this fact

repeatedly below.
We can now turn back to bounds on cumulants.

PROPOSITION 5.6. For nonnegative integers r1, r2 with r1 + r2 ≥ 1, we have

κ
(
M−1, . . . ,M−1︸ ︷︷ ︸

r1 times

,Zn/M, . . . ,Zn/M︸ ︷︷ ︸
r2 times

)= m−r1
n σ−r2

n Õ
(
n1−r1−r2

)
.

PROOF. Fix some integer k ≥ 0 (that will be specified later). Elementary analysis asserts
that, for any x ≥ −1/2,

(1 + x)−1 =
k−1∑
i=0

(−x)i + εk(x),

where |εk(x)| ≤ 2|x|k . When An holds, for n large enough, we can use this expansion for
x = M−mn

mn
= σn

mn
Zn and write

1[An]mn

M
= 1[An]

(
1 + σn

mn

Zn

)−1

= 1[An]
[

k−1∑
i=0

(
− σn

mn

Zn

)i

+ εk

(
σn

mn

Zn

)]
.

Multiplying this by σn

mn
Zn and setting ε′

k(x) = xεk−1(x) (so that we have the bound |ε′
k(x)| ≤

2|x|k , as for εk(x)), we get (after a shift of index)

1[An]σn

Zn

M
= 1[An]

[
−

k−1∑
i=1

(
− σn

mn

Zn

)i

+ ε′
k

(
σn

mn

Zn

)]
.

We now consider the cumulants

(45) kr1,r2 := κ

(
1[An]mn

M
, . . . ,1[An]mn

M︸ ︷︷ ︸
r1 times

,1[An]σn

Zn

M
, . . . ,1[An]σn

Zn

M︸ ︷︷ ︸
r2 times

)
.

One the one hand, since Ac
n has exponentially small probability, we can forget the indicators

1[An] in the definition of kr1,r2 , up to an error term oe(n). Therefore, we have

(46) kr1,r2 = mr1
n σ r2

n κ
(
M−1, . . . ,M−1︸ ︷︷ ︸

r1 times

,Zn/M, . . . ,Zn/M︸ ︷︷ ︸
r2 times

)+ oe(n).

On the other hand, we can expand (45) by multilinearity and bound separately each summand
(the number of summands is independent of n). We set r = r1 + r2 and distinguish two types
of summands:
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• First consider, for 0 ≤ i1, . . . , ir ≤ k − 1, the summand

±κ

[
1[An]

(
− σn

mn

Zn

)i1

, . . . ,1[An]
(
− σn

mn

Zn

)ir
]
,

which does not involve any of the functions εk . Removing the indicators 1[An] yields an
error of order oe(n). Then, using (43), we see that such terms are of order Õ(n1−r ).

• We now consider summands that involves some function εk or ε′
k . Again the indicator

functions can be forgotten up to an error of order oe(n). For such terms, we use Lemma 5.1
and, therefore, we only have to bound expressions of the form

E

[∣∣∣∣ σn

mn

Zn

∣∣∣∣ri1
]1/r

· · ·E
[∣∣∣∣− σn

mn

Zn

∣∣∣∣rit
]1/r

· · ·E
[∣∣∣∣εk

(
σn

mn

Zn

)∣∣∣∣r
] s1

r

E

[∣∣∣∣ε′
k

(
σn

mn

Zn

)∣∣∣∣r
] s2

r

for triples (t, s1, s2) 	= (r,0,0) of sum r and integers i1, . . . , it ≥ 0. Denoting A = k(s1 +
s2) + i1 + · · · + it and using the bound for εk and ε′

k , the above expression is smaller than

2s1+s2

(
σn

mn

)A

E
[|Zn|ri1]1/r · · ·E[|Zn|rit ]1/r

E
[|Zn|kr] s1+s2

r .

Since cumulants of Zn converges, so does its moments and its absolute moments, and we
get a bound in Õ(n−A/2). Take k = 2(r − 1). Since s1 + s2 ≥ 1, we have A ≥ k and we get
that all summands are Õ(n1−r ).

Finally, we conclude that kr1,r2 = Õ(n1−r ). Together with equation (46), this concludes the
proof. �

COROLLARY 5.7. For any nonnegative integers i1, . . . , ir and j1, . . . , jr , we have

κ

[(
1

M

)i1
(

Zn

M

)j1

, . . . ,

(
1

M

)ir
(

Zn

M

)jr
]

= m−i1−···−ir
n σ−j1−···−jr

n Õ
(
n1−r),

where the constant in the Õ symbols depend on i1, . . . , ir1, j1, . . . , jr2 .

PROOF. Similar to the proof of Corollary 5.4. �

We consider polynomials P in the variables (x = {x1, . . . , xp}, y, z) and define the fol-
lowing gradations. If P is a monomial in these variables, we denote by degx(P ) its to-
tal degree in x1, . . . , xp; by degy(P ) its degree in y; and by degx,y−1(P ) the difference
degx(P ) − degy(P ). As usual, for any of the three above notions of degree, the degree of
a polynomial P is the maximal degree of a monomial with a nonzero coefficient in P .

We claim that Corollary 5.7 implies by linearity the following bound. Let (Pi)1≤i≤s be
polynomials in (x = {x1, . . . , xp}, y, z) and di be integers with degx,y−1(Pi) ≤ di . Then, uni-
formly for all values a = (a1, . . . , ap) and b = (b1, . . . , bs) in [0, n], we have

(47) κ

(
Pi

(
a,M−1,

biσnZn

M · mn

)
: 1 ≤ i ≤ s

)
= n

∑
i≤s di Õ

(
n1−s).

Indeed it is enough to check this for monomials Pi = xei yfi zgi (for i in [s]), the general case
following by linearity. For monomials we have, using Corollary 5.7∣∣∣∣κ

(
Pi

(
a,M−1,

biσnZn

M · mn

)
: 1 ≤ i ≤ s

)∣∣∣∣
≤ ∏

i≤s

(
aei

(
biσn

mn

)gi
)

· ∣∣κ(M−fi (Zn/M)gi : i ≤ s
)∣∣
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≤ n
∑

i≤s degx(Pi)

(
1√
n

)g1+···+gs

m−f1−···−fs
n σ−g1−···−gs

n Õ
(
n1−s)

≤ n
∑

i≤s (degx(Pi)−fi)Õ
(
n1−s),

concluding the proof of (47).

5.3. Proof of Theorem 4.2. By definition of weighted dependency graphs, we have to
prove that for any multiset B = {Xi1j1, . . . ,Xirjr } of elements of An, one has

(48)
∣∣κ(Xi1j1, . . . ,Xirjr )

∣∣≤ Cr,n	(B)M
(
Gn[B]).

Recall that M(Gn[B]) is by definition the maximal weight of a spanning tree of the graph
induced by Gn on B .

As in the proof of Theorem 3.1, [11], Proposition 5.2, allows us to reduce the proof of (48)
to the case where Gn[B] has no edges of weight 1, that is, where i1, . . . , ir and j1, . . . , jr

are two lists of distinct integers (but we may have it = js for some s, t in [r]). Indeed, this
reduction was based on the following facts, which hold true here as well:

• variables linked by an edge of weight 1 are incompatible (i.e., their product is a.s. 0);
• our random variables take values in {0,1};
• 	(B) is insensitive to repetitions.

In the case where i1, . . . , ir and j1, . . . , jr are two lists of distinct integers, the bound to be
proven is

(49)
∣∣κ(Xi1j1, . . . ,Xirjr )

∣∣≤ Cr,nn
1−2r = Õ

(
n1−2r),

where the constant in Õ symbol depend on r but neither on n nor on the indices
i1, . . . , ir , j1, . . . , jr .

Fix r ≥ 2. Take i1, i2, . . . , ir distinct and j1, j2, . . . , jr distinct with is < js for all s. We
identify B to the set of arcs {(i1, j1), (i2, j2), . . . , (ir , jr)} and will use letters C and D for
subsets of B .

We first condition on the number of urns M and get bound for the conditional cumulants.
Consider a set partition π generated through the urn model with M urns. As explained in (27)
above, we have

(50) E

( ∏
(i,j)∈D

Xij

∣∣∣M)
= ∏

g∈[n]
pg(D),

where pg(D) is the probability of g being dropped in a correct urn, that is,

pg(D) =

⎧⎪⎪⎨
⎪⎪⎩

1

M
if g = jt for some (it , jt ) in D;

M − ag(D)

M
otherwise.

Here, ag(D) := {(i, j) ∈ D : i < g < j} is the number of arcs in D above g.
As in the proof of Theorem 3.1, we will use the small-cumulant/quasi-factorization equiv-

alence. For a subset C of B , we define

QC(M) := ∏
D⊆C

E

( ∏
(i,j)∈D

Xij

∣∣∣M)(−1)|D|
.

For each D ⊆ C, we can use (50) for the corresponding joint moment and we get

QC(M) = ∏
g∈[n]

∏
D⊆C

pg(D)(−1)|D|
.

The integers g indexing the product can be divided in three categories:
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(i) There exists an arc (i0, j0) in C that is not above g; more precisely such that g ≤ i0
or g > j0, the large and strict inequalities being important. Then∏

D⊆C

pg(D)(−1)|D| = 1,

since the map D ↔ D � {(i, j)} (� is the symmetric difference) gives a fixed-point free
sign-reversing involution of the factors.

(ii) If all arcs (i, j) in C are above g (i.e., i < g < j for all (i, j) in C), then for all
D ⊆ C, we have ag(D) = |D|. Therefore,

∏
D⊆C

pg(D)(−1)|D| = ∏
D⊆C

(
M − |D|

M

)(−1)|D|
= ∏

D⊆C

(
M − |D|)(−1)|D|

.

The right-hand side clearly depends only on M and of the size |C| of C. By [11], Lemma A.1,
it writes as 1 + R|C|(M) for some rational function R|C| of degree at most −|C|.

(iii) The remaining case is when both min(j1, . . . , js) > max(i1, . . . , is) and g = min(j1,

. . . , js) hold. To simplify notation, assume g = j1. Then pg(D) = 1
M

whenever (i1, j1) ∈ D.
The corresponding factors cancel out and we get, with similar arguments as above for the
other factors,∏

D⊆C

pg(D)(−1)|D| = ∏
D⊆C\{(i1,j1)}

(
M − |D|)(−1)|D| = 1 + R|C|−1(M).

In conclusion, we have

QC(M) = (
1 + R|C|(M)

)�C
(
1 + R|C|−1(M)

)1[�C>0]
,

where �C is the number of g ∈ [n] that are below all arcs, that is,

�C := max
[(

min(j1, . . . , js) − max(i1, . . . , is)
)
,0
]
.

Note that we always have �C ≤ n.
We now perform an asymptotic expansion of QC , using ∗ for coefficients which depend

only on |C| and do not need to be made explicit: if �C > 0, we have(
1 + R|C|(M)

)�C

= exp
[
�C log

(
1 + R|C|(M)

)]
= exp

[
�C log

(
1 + ∗M−|C| + ∗M−|C|+1 + · · · +O

(
M−r))]

= exp
[∗�CM−|C| + ∗�CM−|C|+1 + · · · +O

(
�CM−r))]

= 1 + ∗�CM−|C| + · · · +O
(
�CM−r)+ ∗�2

CM−2|C| + · · · +O
(
�r
CM−r|C|).

For |C| ≥ 2, under the assumption that M ≥ 1
2mn, both error terms are smaller than Õ(n1−r )

(we use the universal bound �C ≤ n). The main term is a polynomial in �C and M−1. After
subtracting 1, its total degree in �C and M is at most −|C| + 1. Note that both the constants
in the error terms and this polynomial only depend on the size of |C|. The same applies to the
other factor 1 + R|C|−1(M) of QC . We therefore conclude that, for all C such that �C > 0,

(51) QC(M) = 1 + P|C|
(
�C,M−1)+ Õ|C|

(
n1−r),

where P|C| is a polynomial in x and y such that degx,y−1(P|C|) ≤ −|C| + 1 and the error

term Õ|C|(n1−r ) is uniform for all C of a given size and all M ≥ 1
2mn. For �C = 0, we
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have QC(M) = 1, so that (51) holds trivially in this case as well (though, with different
polynomials P|C| and error terms Õ|C|(n1−r )).

We shall also need an expansion of the conditional expectation of single variable Xij :

E[Xij |M] = M−1(1 − M−1)j−i−1

= M−1 exp
[−(j − i)M−1] exp

[
M−1 + ∗(j − i − 1)M−2 + · · ·(52)

+O
(
(j − i)M−r)].

The second exponential writes as P̃1(j − i,M−1) + Õ(n1−r ) for some polynomial P̃1 with
degx,y−1(P̃1) ≤ 0. The exponent of the first exponential however is typically large, forcing us
to use the concentration property of M and exhibit the deterministic dominant term. We have

exp
[−(j − i)M−1]= exp

[−(j − i)m−1
n

]
exp

[
(j − i)σnZn

M · mn

]
,

where we recall that σnZn = M − mn by definition. Assume now that we have |M − mn| ≤
n3/4, which implies Zn = Õ(n1/4). Then the argument of the second exponential is Õ(n−1/4)

and we can perform a series expansion, uniformly on (i, j) and M :

(53) exp
[−(j − i)M−1]= exp

[−(j − i)m−1
n

](
P̂1

(
(j − i)σnZn

M · mn

)
+ Õ

(
n1−r)),

for some polynomial P̂1(z). Combining equations (52) and (53), we get

E[Xij |M] = M−1 exp
[−(j − i)m−1

n

]
×
[
P1

(
j − i,M−1,

(j − i)σnZn

M · mn

)
+ Õ

(
n1−r)],(54)

where P1 is a polynomial with degx,y−1(P1) ≤ 0 and the error term is uniform on (i, j) and
M in the interval [mn − n3/4;mn + n3/4].

We now come back to the conditional cumulant

κC(M) := κ
(
Xij : (i, j) ∈ C|M)

.

As observed in [11], Proof of Proposition 5.8, it can be written in terms of conditional expec-
tations and quotients Q as follows:

κC(M) =
( ∏

(i,j)∈C

E[Xij |M]
)

· ∑
{C1,...,Cm}

(QC1 − 1) · · · (QCm − 1),

where the sum is over all sets of (distinct) subsets C1, . . . ,Cm ⊆ C such that |Ci | ≥ 2 and the
hypergraph with edges C1, . . . ,Cm is connected. Using the asymptotic expansions (51) and
(54), we get

κC(M) = M−|C| ∏
(i,j)∈C

exp
[−(j − i)m−1

n

]

×
[
PC

(
�C,M−1,

(j − i)σnZn

M · mn

)
+ Õ

(
n1−r)],

(55)

where �C represent the vector (�D)D⊆C and PC is a polynomial in the variables (x =
(xD)D⊆C, y, z). Furthermore, the error term Õ(n1−r ) is uniform for M in the interval
[mn − n3/4;mn + n3/4]. Both the polynomials PC and the constants in the error terms de-
pend only on C through its size and which of �D (D ⊆ C) are nonzero. Therefore, the error
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term can thus be chosen uniformly on C with |C| ≤ r . Moreover, the total degree of PC in x
and y−1 is at most

max{C1,...,Cm}
(−|C1| + 1

)+ · · · + (−|Cm| + 1
)
,

where the maximum is taken over sets of subsets of C such that the hypergraph with edges
C1, . . . ,Cm is connected. It is a simple combinatorial exercise to see that this condition im-
plies (−|C1| + 1

)+ · · · + (−|Cm| + 1
)≤ −|C| + 1,

so that degx,y−1(PC) ≤ −|C| + 1.
We now use the law of total cumulance (28). Recall that, from Lemma 5.5, the event

An = {|M − mn| ≤ n3/4} has probability 1 − oe(n). We have

κ
(
Xij : (i, j) ∈ B

)= ∑
π∈P(B)

κ
(
κC(M) : C ∈ π

)

= ∑
π∈P(B)

κ
(
1[An]κC(M) : C ∈ π

)+ oe(n).

When An is satisfied, the conditional cumulants κC(M) can be evaluated by (55) and we get

κ
(
Xij : (i, j) ∈ B

)+ oe(n)

=
( ∏

(i,j)∈B

exp
[−(j − i)m−1

n

]) ·

× ∑
π∈P(B)

κ

(
1[An]M−|C|

[
PC

(
�C,M−1,

(j − i)σnZn

M · mn

)
+ Õ

(
n1−r)] : C ∈ π

)
.

We now bound the right-hand side. The product of exponential factors is simply bounded
by 1. Each summand of the sum over set partitions is bounded as follows. We expand by
multilinearity the joint cumulant.

• One of the terms is

κ

(
1[An]M−|C|

[
PC

(
�C,M−1,

(j − i)σnZn

M · mn

)]
: C ∈ π

)
.

Using equation (47) and the fact degx,y−1(PC) ≤ −|C| + 1, we get that this term is Õ(ne),
where

e ≤ 1 − |π | + ∑
C∈π

(−2|C| + 1
)= 1 − 2r.

• The other terms are joint cumulants of random variables, at least one of which is Õ(n1−r )

uniformly on the event An. Since all PC have nonpositive degree in x and y−1, they are
bounded on the event An by Õ(1). Moreover, on An, we have M−|C| = Õ(n−|C|). We
therefore use the easy bounds (33) and (35) for cumulants and get that all these terms are

Õ
(
n1−r−∑C∈π |C|)= Õ

(
n1−2r).

To conclude, we get that

κ
(
Xij : (i, j) ∈ B

)= Õ
(
n1−2r).

Note that the constants in the Õ symbols only depend on which �D are nonzero, for subsets
D of B , and hence can be chosen uniformly for all sets B of size r (assuming, as we have
always done so far, that i1, . . . , ir , resp., j1, . . . , jr , are distinct). We have thus proved (48)
for lists i1, . . . , ir and j1, . . . , jr with distinct entries. As argued at the beginning of the proof,
this completes the proof of Theorem 4.2.
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6. Technical statements for the variance estimate. The goal of this section is to prove
the estimates on E[OccAn |M] and its variance given in equations (31) and (32). According
to (30), we need to understand sums of the following kind (where we take a1, . . . , at to be
positive integers and � ≥ t):

Fa1,...,at ;�(n,M) = ∑
y1,...,yt≥1

y1+···+yt≤n

(
n − y1 − · · · − yt

� − t

)∏
i≤t

(
1 − ai

M

)yi−1
.

Note that they satisfy the following recursive formula (setting y = yt ):

(56) Fa1,...,at ;�(n,M) = ∑
1≤y≤n

Fa1,...,at−1;�−1(n − y,M)

(
1 − at

M

)y−1
.

The general strategy is the following: using this recursive formula, we will prove that such
functions belong to some specific graded space V , analyze their highest degree terms and
show that the expectation and the variance of an element of V can be bounded above given
its degree.

We let V to be the Q(M)[n]-span of (1 − b/M)n, where b runs over the set of nonneg-
ative integers (it is easy to see that the functions (1 − b/M)n are linearly independent over
Q[n](M)).

We now define a gradation deg on V . Both variables n and M are of degree 1. Moreover,
the degree of a term (1 − b/M)n is chosen to be −b. With this convention, we can check
that an element of V of degree at most d behaves as Õ(nd), as n and M to infinity with
|M − mn| ≤ n3/4.

LEMMA 6.1. For all positive integers a1, . . . , at and � ≥ t , the quantity Fa1,...,at ;�(n,M)

is in V . Moreover,

Fa1,...,at ;�(n,M) = ∑
j0,...,jt≥0

j0+···+jt=�−t

(−1)j1+···+jt

j0!aj1+1
1 · · ·ajt+1

t

nj0(M)j1+···+jt+t + Err(n,M),

where the error term Err(n,M) has degree at most � − 1.

PROOF. For the sake of this proof, we introduce a second gradation deg′ on V , for which
n and M still have degree 1 but any (1 − b/M)n has degree 0. Obviously for any f in V ,
we have deg(f ) ≤ deg′(f ). To distinguish both gradations, we will refer below to deg as the
standard degree, while deg′ is called the modified degree.

We introduce some additional notation: let

Ia

[
G(n,M)

]= ∑
1≤y≤n

G(n − y,M)

(
1 − a

M

)y−1

be the Q(M)-linear operator appearing in equation (56). Finally, NoRn is the Q(M)[n]-linear
projection from V to V which sends the basis element 1 to 1 and (1 − b/M)n to 0 for b > 0.

The proof of the lemma involves three claims.

CLAIM 1. The functional Ia maps V to V and increases the modified degree by at most 1.

PROOF. By Q(M)-linearity, it suffices to consider Ia[G(n,M)], where G(n,M) =
P(n)(1 − b/M)n has modified degree d (i.e., deg(P )d). By definition and elementary ma-
nipulations,

(57) Ia

[
P(n)(1 − b/M)n

]= (1 − b/M)n−1
∑

1≤y≤n

P (n − y)

(
1 − a/M

1 − b/M

)y−1
.
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If a = b, then the above sum is a polynomial of degree deg(P )+ 1 = d + 1 in n and therefore
Ia[P(n)(1 − b/M)n] is an element of P of modified degree d + 1.

Consequently, we focus on the case a 	= b. The quantity P(n−y) is a polynomial in n and
y and can be decomposed as

(58) P(n − y) = ∑
j≤deg(P )

αj P̃j (n)y(y + 1) · · · (y + j − 1),

for some constants αj and polynomials P̃j satisfying deg(P̃j ) + j ≤ deg(P ). This implies

Ia

[
P(n)(1 − b/M)n

]= (1 − b/M)n−1
∑

j≤deg(P )

αj P̃j (n)Sj ,

where

Sj := ∑
1≤y≤n

y(y + 1) · · · (y + j − 1)

(
1 − a/M

1 − b/M

)y−1

= dj

dxj

1 − xn+j

1 − x

∣∣∣
x= 1−a/M

1−b/M

(59)

=
(

j !
(1 − x)j+1 −

j∑
h=0

(
j

h

)
h! (n + j)!

(n + h)!
xn+h

(1 − x)h+1

)∣∣∣
x= 1−a/M

1−b/M

.

We set R(M) := 1−a/M
1−b/M

. The above formula shows that each Sj is a Q(M)[n] linear combina-

tion of 1 and R(M)n, so that (1−b/M)n−1Sj is a Q(M)[n] linear combination of (1−b/M)n

and (1 − b/M)nR(M)n = (1 − a/M)n. This proves that Ia[P(n)(1 − b/M)n] is in V .
Let us analyze its modified degree: R(M) has degree 0, while 1

1−R(M)
has degree 1 in

M . Since both (1 − b/M)n and (1 − b/M)nR(M)n = (1 − a/M)n have modified degree
0, we see that the modified degree of (1 − b/M)nSj is at most j + 1. From the inequality
deg(P̃j ) + j ≤ deg(P ), we conclude that Ia[P(n)(1 − b/M)n] has modified degree at most
deg(P ) + 1 = d + 1. This completes the proof of Claim 1. �

CLAIM 2. For a > 0, we have NoRn◦Ia = NoRn◦Ia ◦ NoRn.

PROOF. Again, by Q(M)-linearity, it is again to check the equality applied to G(n,M) =
P(n)(1 − b/M)n. If b = 0, this is trivial since, in this case, NoRn(G(n,M)) = G(n,M). For
b > 0, NoRn(G(n,M)) = 0 and we should check that NoRn◦Ia(G(n,M)) = 0.

This is a consequence of equation (59) and the discussion after it; indeed, for b > 0, the
quantity Ia[P(n)(1 − b/M)n] is a Q(M)[n] linear combination of (1 − b/M)n and (1 −
a/M)n. Since a and b are both positive, these two basis elements are sent to 0 by NoRn
proving Claim 2. �

CLAIM 3. Let G(n,M) be a homogeneous element of degree d in Q(M)[n] (i.e., without
terms of the form (1−b/M)n). Then the top homogeneous component of NoRn◦Ia[G(n,M)]
is �a[G(n,M)], where �a is the Q(M) linear map defined by

�a

(
nd

d!
)

=
d∑

j=0

(−1)j
nd−j

(d − j)!
Mj+1

aj+1 .
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PROOF. We focus on the case G(n,M) = P(n) = nd , the general case following by
Q(M)-linearity. In this case, the decomposition (58) writes

P(n − y) = (n − y)d

=
d∑

j=0

(
d

j

)
(−1)jnd−j yj

=
d∑

j=0

(
d

j

)
(−1)jnd−j y(y + 1) · · · (y + j − 1) + smaller degree terms.

Consequently,

Ia

[
nd]=

d∑
j=0

(
d

j

)
(−1)jnd−j Sj + smaller modified degree terms,

where Sj is given by equation (59), setting b = 0. From equation (59), we observe that

NoRn(Sj ) = j !
(1 − x)j+1

∣∣∣
x=1−a/M

= j !M
j+1

aj+1 .

Therefore, we have

NoRn◦Ia

[
nd]=

d∑
j=0

(
d

j

)
(−1)jnd−j j !M

j+1

aj+1 ,

concluding the proof of Claim 3. �

We come back to the proof of the lemma. Unwrapping the recursion in equation (56), we
have

Fa1,...,at ;�(n,M) = Ia1 ◦ Ia2 · · · ◦ Iat

[(
n

� − t

)]
.

From Claim 1, it immediately follows that Fa1,...,at ;�(n,M) is in V and has modified degree
at most �.

We are interested in its homogeneous component of standard degree �. Since we know
that its modified degree is at most �, this top homogeneous part cannot contain any term
(1 − b/M)n with b > 0; indeed such term have a bigger modified degree as standard degree.
We can therefore consider

NoRn
(
Fa1,...,at ;�(n,M)

)= NoRn◦Ia1 ◦ Ia2 · · · ◦ Iat

[(
n

� − t

)]

= NoRn◦Ia1 ◦ NoRn◦Ia2 · · ·NoRn◦Iat

[(
n

� − t

)]
,

where the second equality follows from Claim 2.
Since

( n
�−t

)
has degree � − t and that each one of the t operators NoRn◦Ias increases the

degree by at most 1, we can only keep the highest degree component all along the computa-
tion. Therefore, using Claim 3, the highest degree component of Fa1,...,at ;�(n,M) is

�a1 ◦ �a2 · · · ◦ �at

[
n�−t

(� − t)!
]

= ∑
j0,...,jt≥0

j0+···+jt=�−t

(−1)j1+···+jt

j0!aj1+1
1 · · ·ajt+1

t

nj0Mj1+···+jt+t .

This completes the proof of the lemma. �
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In particular, the above lemma implies that, Err(n,M) = Õ(n�−1) as N tends to infinity,
uniformly on all M satisfying |M − mn| ≤ n3/4. This proves (31).

We are now interested in controlling the variance of E[OccAn |M]. We start by a general
result for the variance of some element in V .

LEMMA 6.2. Let f (n,M) be a function in V of degree d . Assume that f (n,M) is
bounded by a polynomial function of n and M . Then

Var
(
f (n,M)

)= Õ
(
n2d−1).

PROOF. Note that any polynomial function of n and M is bounded in 2-norm by a poly-
nomial of n (recall that ‖M‖r = O(n) for any r ≥ 1). Moreover, from Lemma 5.5, the event
An = {|M − mn| ≤ n3/4} has probability 1 − oe(n). Therefore,

Var
(
f (n,M)

)= Var
(
f (n,M)1An

)+ oe(n)

and we aim to prove that

Var
(
f (n,M)1An

)= Õ
(
n2d−1).

By Q[n]-bilinearity and the Cauchy–Schwarz inequality, it is enough to consider the case
where f (n,M) = R(M)(1−b/M)n, for some b ∈ Z≥0. Performing a Taylor series expansion
of the logarithm, we write, for some integer A > 0,

(1 − b/M)n = exp
[
n log(1 − b/M)

]= exp
[−bn

M
+ nP1

(
M−1)+O

(
M−A)],

where P1 is a polynomial in M−1 with no constant and linear terms. Continuing the compu-
tation, we have

(1 − b/M)n = exp
[−bn

mn

]
exp

[−bn(M − mn)

Mmn

]
exp

[
nP1

(
M−1)](1 +O

(
M−A)).

When |M − mn| ≤ n3/4, we have −bn(M−mn)
Mmn

= Õ(n−1/4) and nP1(M
−1) = Õ(n−1). Doing

some series expansion of the second and third exponential factors above, we get

(1 − b/M)n

exp[−bn
mn

] = P(n,M,mn) + Õ
(
n−A),

where P(n,M,mn) is a Laurent polynomial of total degree 0. We now multiply by R(M)

and perform a series expansion of R(M) on the right-hand side: this gives

R(M)(1 − b/M)n

exp[−bn
mn

] = P̃ (n,M,mn) + Õ
(
ndR−A),

where P̃ (n,M,mn) is a Laurent polynomial of total degree dR := deg(R). Since, for all
integers r , we have Var(Mr) = n2rÕ(n−1) (see Corollaries 5.4 and 5.7), it is clear that all
Laurent monomials degree d in n, M and mn have variance Õ(n2d−1). Hence using the
Cauchy–Schwarz inequality and choosing A = 1, we have

Var
(

R(M)(1 − b/M)n

exp[−bn
mn

] 1An

)
= Var

(
P̃ (n,M,mn) + Õ

(
ndR−A))

= Õ
(
n2dR−1).

Since the denominator is deterministic and has order n−b, this implies

Var
(
R(M)(1 − b/M)n1An

)= Õ
(
n2(dR−b)−1),

as wanted. �
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COROLLARY 6.3. If R0(M) denotes the Laurent polynomial appearing in (30), we have

Var
(

R0(M)

Ma
Err(n,M)

)
) = Õ

(
n2�−2a−3).

PROOF. We know that Err(n,M) is an element of V of degree at most � − 1, which
implies that R0(M)

Ma Err(n,M) is also an element of V , of degree � − a − 1. Moreover, since
E(OccAn |M) is bounded by a polynomial function in n and M (namely n|A|), the quantity
R0(M)

Ma Err(n,M) also has this property. We can therefore apply Lemma 6.2 and conclude.
�

Now consider Laurent polynomials P(n,M) in the variables n and M . We order mono-
mials nxMy , with the lexicographic order on (x + y, x); this is consistent with the natural
asymptotic ordering when An holds.

LEMMA 6.4. Assume that

(60) P(n,M) = nx0My0 + smaller degree terms

with y0 	= 0 (in particular, M does appear in the dominant monomial). Then

Var
(
P(n,M)

)= Var
(
nx0My0

)(
1 + o(1)

)= �̃
(
n2x0+2y0−1).

PROOF. As above, we write M = mn + σnZn, with Zn asymptotically normal. For any
x1, y1, x2, y2 with y1 	= y2, we have

Cov
(
nx1My1, nx2My2

)
= nx1+x2

∑
k1,k2≥0

(
y1
k1

)(
y2
k2

)
my1+y2−k1−k2

n σ k1+k2
n Cov

(
Zk1

n ,Zk2
n

)
,

where the sum might be finite or infinite depending on the signs of y1 and y2. The summand
with the largest asymptotic behaviour correspond to k1 = k2 = 1 (if k1 = 0 or k2 = 0, the
corresponding summand is 0). Therefore, when the sum is finite (i.e., when y1, y2 > 0), we
have

Cov
(
nx1My1, nx2My2

)= nx1+x2my1+y2−2
n σ 2

n

(
1 + o(1)

)
.

The same can be proved when y1 and/or y2 is negative, using the technique of Proposition 5.6;
details are left to the reader.

Writing P(n,M) as a sum of monomials and expanding Var(P (n,M)) concludes the
proof. �

We now give a similar result when P(n,M) is perturbed by an error term with sufficiently
small variance.

LEMMA 6.5. We take a Laurent polynomial P(n,M) as in (60) and let E(n,M) be a
function with Var(E(n,M)) = Õ(n2x0+2y0−3). Then

Var
(
P(n,M) + E(n,M)

)= Var
(
P(n,M)

)(
1 + o(1)

)= �̃
(
n2x0+2y0−1).

PROOF. This is a trivial application of the Cauchy–Schwarz inequality after expanding
the variance. �
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Looking at equation (30), Lemma 6.1, and Corollary 6.3, we see that E(OccAn |M) is of
the form P(n,M) + E(n,M), where Var(E(n,M)) = Õ(n2�−2a−3) and P(n,M) is a Lau-
rent polynomial with dominant term 1

(�−t)!n
�−tMt−a . If t 	= a, Lemma 6.5 directly applies

and (32) is proved. If t = a, we simply apply Lemma 6.5 to E(OccAn |M) − 1
(�−t)!n

�−t : this

difference has the same variance as E(OccAn |M) (we removed a deterministic quantity) and
is of the desired form: its dominant term is �(n�−t−1M−1). This concludes the proof of (32).
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