
The Annals of Applied Probability
2019, Vol. 29, No. 5, 3201–3229
https://doi.org/10.1214/19-AAP1478
© Institute of Mathematical Statistics, 2019

APPROXIMATING STATIONARY DISTRIBUTIONS OF FAST
MIXING GLAUBER DYNAMICS, WITH APPLICATIONS TO

EXPONENTIAL RANDOM GRAPHS

BY GESINE REINERT1 AND NATHAN ROSS2

University of Oxford and University of Melbourne

We provide a general bound on the Wasserstein distance between two ar-
bitrary distributions of sequences of Bernoulli random variables. The bound
is in terms of a mixing quantity for the Glauber dynamics of one of the se-
quences, and a simple expectation of the other. The result is applied to es-
timate, with explicit error, expectations of functions of random vectors for
some Ising models and exponential random graphs in “high temperature”
regimes.

1. Introduction. A high-level heuristic in statistical physics models is that
systems of dependent random variables having the stationary distribution of a fast
mixing Markov chain are approximately independent. Precise statements of this
heuristic include spatial-temporal mixing conditions (see, e.g., Mossel and Sly
(2013) and discussion there); as well as establishing properties of the dependent
variables common to independent variables, such as central limit theorems (see,
e.g., Ellis and Newman (1978)); and concentration inequalities (see, e.g., Luczak
(2008), Chatterjee ((2005), Chapter 4), and Gheissari, Lubetzky and Peres (2018)).
Such results are particularly useful for models with intractable normalizing con-
stants; for example, Ising models and exponential random graphs; since it is pos-
sible to define and analyse Markov chains which only depend on ratios of proba-
bilities and, therefore, do not require computation of the normalizing constant.

We provide a general result (Theorem 2.1 below) that explicitly bounds the
Wasserstein distance between distributions of vectors of Bernoulli random vari-
ables, in terms of (1) a quantity depending on the mixing of the Glauber dynamics
of one of the vectors; and (2) a straightforward expectation of the other. The result
applies to many models where fast mixing is known, and here we apply it to Ising
models and exponential random graphs, sharpening some recent results of Eldan
and Gross (2018a, 2018b).

We now state a simplified version of our general approximation result, and its
implications in some applications; (1.7) and Propositions 1.11 and 1.12. Let N ∈
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N and X = (X1, . . . ,XN) ∈ {0,1}N be a vector of Bernoulli random variables.
Denote [N] := {1, . . . ,N}, and for s ∈ [N], write es ∈ {0,1}N for the vector with
1 in the sth coordinate, and 0 in all others, and, for x ∈ {0,1}N , denote

x(s,1) = x + (1 − xs)es, x(s,0) = x − xses,

so that x(s,1) has a 1 in the sth coordinate and is otherwise the same as x, and
similar for x(s,0) except there is a 0 in the sth coordinate.

Define the Glauber dynamics Markov chain {X(m),m = 0,1, . . .} with transi-
tion probabilities

P
(
x �→ x(s,1)) = 1

N
− P

(
x �→ x(s,0)) = qX(x(s,1)|x)

N
, s ∈ [N],

where

qX

(
x(s,1)|x) := P

(
Xs = 1|(Xu)u�=s = (xu)u�=s

)
.

In words, at every step in the chain, we choose a coordinate uniformly at ran-
dom and resample it conditional on the values at the other coordinates. It is easily
checked that this chain is reversible with respect to L (X).

For functions h : {0,1}N → R, define

�sh(x) := h
(
x(s,1)) − h

(
x(s,0)),

denote the supremum norm by ‖ · ‖, let ‖�h‖ := sups∈[N] ‖�sh‖, and denote the

Hamming distance of x, y ∈ {0,1}N by dH(x, y) := ∑N
s=1 |xs − ys |.

THEOREM 1.1. Let X,Y ∈ {0,1}N be random vectors. Write

(1.1) P(X = x) = 1

κ
exp

{
L(x)

}
,

for a function L and normalising constant κ , and assume that Y has independent
coordinates with ps := P(Ys = 1), for s = 1, . . . , n, satisfying

(1.2) ps = 1 + tanh(1
2E�sL(Y ))

2
.

Assume that for each s ∈ [N] and x ∈ {0,1}N , there is a coupling (Ũ [x,s], Ṽ [x,s])
with L(Ũ [x,s]) = L(X(1)|X(0) = x(s,1)) and L(Ṽ [x,s]) = L(X(1)|X(0) = x(s,0)),
such that for some 0 < ρ ≤ 1,

(1.3) EdH
(
Ũ [x,s], Ṽ [x,s]) ≤ (1 − ρ),

and that the Glauber dynamics of L (X) are irreducible. Then for any h :
{0,1}N → R,

(1.4)
∣∣Eh(X) −Eh(Y )

∣∣ ≤ ‖�h‖
4Nρ

N∑
s=1

E
∣∣�sL(Y ) −E�sL(Y )

∣∣.
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Before applying the result, we make a couple of general remarks to aid in inter-
pretation.

REMARK 1.2. Regarding the conditions of the theorem: writing the probabili-
ties of X in the form (1.1) is without loss of generality assuming P(X = x) > 0 for
all x ∈ {0,1}N (or we allow L to take the value −∞). The condition (1.2) comes
from matching the update probabilities of the Glauber dynamics of L (X) to those
of the independent chain, while respecting the behaviour of the statistic in the ex-
ponent under the product measure; this is the so-called mean field prediction (cf.
Eldan and Gross (2018a)). Solutions to this equation also arise as critical points
for variational problems arising from studying large deviations in these systems;
see Ellis (2006), Chatterjee and Diaconis (2013), and discussion below.

Chains with a coupling satisfying (1.3) are called contracting in Gheissari, Lu-
betzky and Peres (2018), and the condition is satisfied by many chains in statisti-
cal physics models in “high temperature” regimes; see Levin, Peres and Wilmer
((2009), Chapters 14 and 15) and applications below. The condition is implied
by the Dobrushin–Shlosman condition, going back to Dobrushin and Shlosman
(1985), which is a classical criterion for fast mixing of the Glauber dynamics,
among other nice implications. Our general result, Theorem 2.1, replaces the
Dobrushin–Shlosman condition (1.3) by the more general assumption that the
“influence matrix” of the Glauber dynamics has p-norm less than 1 (Dobrushin–
Shlosman corresponds to p = 1). Such an assumption still implies fast mixing of
the Glauber dynamics; see Dobrushin (1970), Hayes (2006) and Dyer, Goldberg
and Jerrum (2009).

Also note that under the assumptions of the theorem, the bound is easy to com-
pute since the expectation in (1.4) is taken against a vector Y of independent vari-
ables. A key to our approach is that the intractable normalising constant κ of L (X)

does not need to be computed in order to analyse the Glauber dynamics.

REMARK 1.3. In a nice situation, ρ 	 1/N , E|�sL(Y ) − E�sL(Y )| =
O(1/

√
N), and the bound is then ‖�h‖O(

√
N). The way to interpret the bound is

that for functions h such that ‖�h‖√N � Eh(Y ), Eh(X) can be approximated by
Eh(Y ) with small error. If Eh(Y ) is of constant order with N , then the function h

must satisfy ‖�h‖ = o(1/
√

N) for the bound to be meaningful.

REMARK 1.4. In the case that the chain does not satisfy the mixing assump-
tion (1.3), or that of the more general Theorem 2.1, Lemmas 2.4 and 2.5 give an
intermediate bound that can be used directly, as is done to prove Theorem 1.13
below.

We apply Theorem 1.1 in some examples and applications.
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1.1. Ising model on a fixed graph. Let G be a fixed graph on N vertices with
vertex set V (G) = [N ] and edge set E(G). Each vertex has a label in {0,1} at-
tached to it, and a configuration of such labels is denoted by x ∈ {0,1}N . Let
r ∈ [N − 1] and for each s ∈ [N ], let Ns ⊂ [N ] \ {s} be a nonrandom set of size
|Ns | ≤ r , such that u ∈ Ns ⇐⇒ s ∈ Nu. One can think of r as the largest ver-
tex degree in G. Let X ∈ {0,1}N have the Ising model with “neighbourhoods”
(Ns)s∈[N], defined by P(X = x) ∝ eL(x), where

L(x) = β

N

N∑
s=1

∑
t∈Ns

(2xs − 1)(2xt − 1).

To apply Theorem 1.1, we first compute

�sL(x) = β

N

{ ∑
t∈Ns

(2 − 1)(2xt − 1) − ∑
t∈Ns

(0 − 1)(2xt − 1)

+ ∑
u:u�=s

1(s ∈ Nu)
{
(2xu − 1)(2 − 1) − (2xu − 1)(0 − 1)

}}

= 4
β

N

∑
t∈Ns

(2xt − 1),

where we used that u ∈ Ns ⇐⇒ s ∈Nu. Hence

�sL(x) = 4β

N

∑
t∈Ns

(2xt − 1).

For (Ys)s∈[N], a vector of independent Bernoulli variables with P(Ys = 1) = ps ,

E�sL(Y ) = 4β

N

∑
t∈Ns

(2pt − 1),

and according to (1.2), we set the ps to satisfy

(1.5) (2ps − 1) = tanh
(

2β

N

∑
t∈Ns

(2pt − 1)

)
.

Equation (1.5) always has at least one solution: ps ≡ a = 1/2. For the mixing
time, we restrict to the high temperature regime where 0 < β < r/N . Accord-
ing to Levin, Peres and Wilmer ((2009), Proof of Theorem 15.1), with their β

corresponding to our β/N (and see also Levin, Luczak and Peres ((2010), Propo-
sition 2.1) for the case r = (N − 1)), there is a coupling of (U [x,s](1),V [x,s](1))

such that

EdH
(
U [x,s](1),V [x,s](1)

) ≤ (
1 − N−1(

1 − r tanh(β/N)
))

,
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so that in applying Theorem 1.1, we can set ρ = N−1(1 − r tanh(β/N)) ≥ (1 −
βr/N)N−1; since tanh is 1-Lipschitz. Hence Theorem 1.1 implies that or any h :
{0,1}N →R,

(1.6)
∣∣Eh(X) −Eh(Y )

∣∣ ≤ ‖�h‖
4(1 − βr/N)

N∑
s=1

E
∣∣�sL(Y ) −E�sL(Y )

∣∣.
Assuming ps ≡ a, it is easy to see that �sL(Y )

d= 8βN−1Bs + c, where Bs ∼
Bi(|Ns |, a) and c = −4β|Ns |/N is a constant. So with a = 1

2 and Y a vector of
i.i.d. Bernoulli(1/2) random variables,

E
∣∣�sL(Y ) −E�sL(Y )

∣∣ ≤
√

Var
(
�sL(Y )

) = 8β
√|Ns |a(1 − a)

N
≤ 4β

√
r

N
.

Combining this and (1.6), Theorem 1.1 implies that for any h : {0,1}N → R and
0 ≤ β < r/N ,

(1.7)
∣∣Eh(X) −Eh(Y )

∣∣ ≤ ‖�h‖ β
√

r

(1 − βr/N)
.

To put this result in context, the model with |Ns | = (N − 1) is frequently re-
ferred to as the Curie–Weiss model and is one of the most well studied in statistical
physics. Laws of large numbers, central limit theorems with rates, large deviations,
concentration and moment inequalities and local limit theorems with rates have
been established for this model; see Ellis and Newman (1978), Ellis, Newman and
Rosen (1980), Ellis (2006), Chatterjee (2007), Eichelsbacher and Löwe (2010),
Chatterjee and Shao (2011), Röllin and Ross (2015), Barbour, Röllin and Ross
(2019). However, it is not obvious how to get an explicit result like (1.7) directly
from these results. Some very recent work closely related to (1.7) is Eldan and
Gross ((2018a), Corollary 3.5), which implies that for β < 1,

(1.8)
∣∣Eh(X) −Eh(Y )

∣∣ ≤ ‖�h‖
(

5001(1 + β)2

2(1 − β)
+ 12

)
N7/8.

Our bound (1.7) in this case is essentially ‖�h‖β√
N/(1 − β), which compares

favorably to (1.8) in rate, constant and dependence on β (i.e., goes to zero with β).

1.2. Exponential random graph models. Exponential random graph models
(ERGMs), suggested for directed networks by Holland and Leinhardt (1981) and
for undirected networks by Frank and Strauss (1986), are frequently used as para-
metric statistical models in network analysis; see, for example, Wasserman and
Faust (1994). This is due to the Gibbs form of the distribution, which allows for
straightforward implementation of modern Markov chain Monte Carlo (MCMC)
methods. However, the models are difficult to analyse directly, and so the stability
of MCMC algorithms and the structure of the resulting networks have only re-
cently been meaningfully studied. Two important references, both in general and
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for this work, are Bhamidi, Bresler and Sly (2011), which establishes mixing times
for the MCMC (Gibbs samplers) used for ERGMs, and Chatterjee and Diaconis
(2013), which establishes asymptotic properties of these random networks. A fur-
ther discussion is postponed to after the statement of our definitions and results.

Of particular interest in the analysis of networks are counts of small graphs.
These counts occur in the theory of graph limits; see Section 2.2 in Chatterjee
and Diaconis (2013) for an overview. Over-and under-represented small subgraphs
are conjectured to be building blocks of complex networks; see, for example,
Milo et al. (2002). Small subgraphs are used for comparing networks; see Pržulj
(2007), Ali et al. (2014). Assessing the exceptionality of small subgraph counts,
also called motifs, depends crucially on the underlying network model; see Picard
et al. (2008). Hence assessing the distribution of small subgraph counts in ERGMs
is a key question. While our results do not provide the distribution of these counts,
they provide an approximation in terms of the well-studied corresponding distri-
butions for Bernoulli random graphs, together with a bound on the error in the
approximation which allows to gauge whether the approximation is appropriate.

We first define the vertex-labeled ERGM. Let Glab
n be the set of vertex-labeled

simple graphs on n vertices and define the set [n]2 := {(i, j) : 1 ≤ i < j ≤ n}
(this is sometimes also denoted

([n]
2

)
but we prefer our notation for typesetting

purposes). We identify Glab
n with {0,1}(n

2) by encoding x ∈ Glab
n by an ordered

collection of 0 − 1 valued variables: x = (xij )(i,j)∈[n]2 , where xij = 1 means there
is an edge between vertices i and j . We refer to xij as the ij th “coordinate” of x.
Note that in the general setup above, N = (n

2

)
.

For a graph H , let V (H) denote the vertex set, and for x ∈ {0,1}(n
2), define

t (H,x) to be the number of “edge-preserving” injections from V (H) to V (x); an
injection σ preserves edges if for all edges vw of H , xσ(v)σ (w) = 1 (here assuming
σ(v) < σ(w)).

DEFINITION 1.5 (Exponential random graph model). Fix n ∈ N and k con-
nected graphs H1, . . . ,Hk with H1 a single edge, and for � = 1, . . . , k denote
v� := |V (H�)| (so v1 = 2), and

t�(x) = t (H�, x)

n(n − 1) · · · (n − v� + 3)
.

For β = (β1, . . . , βk) with β� ∈ R for � = 1, . . . , k, we say the random graph
X ∈ Glab

n is distributed according to the exponential random graph model with
parameters β , denoted X ∼ ERGM(β), if for x ∈ Glab

n ,

P(X = x) = 1

κn(β)
exp

(
k∑

�=1

β�t�(x)

)
,

where κn(β) is a normalizing constant.
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The scaling in the exponent matches Bhamidi, Bresler and Sly ((2011), Defi-
nition 1) and Chatterjee and Diaconis ((2013), Sections 3 and 4). Note also that
t1(H1, x) is twice the number of edges of x so that if k = 1, then ERGM(β) has
the same law as an Erdős–Rényi random graph (identified above as a collection of(n
2

)
i.i.d. Bernoulli variables) with edge parameter e2β1/(1 + e2β1).

As in Bhamidi, Bresler and Sly (2011) and Eldan and Gross (2018b), an impor-
tant role is played by the following functions defined on [0,1],

�(a) :=
k∑

�=1

β�e�a
e�−1 and ϕ(a) := 1 + tanh(�(a))

2
= e2�(a)

e2�(a) + 1
,

where e� is the number of edges in H�. In particular, solutions to the equation
ϕ(a) = a satisfying ϕ′(a) < 1 are key quantities in what follows. To help under-
stand where these equations come from, Chatterjee and Diaconis ((2013), Theo-
rem 4.2), states that if β� ≥ 0 for � = 2, . . . , k, then X ∼ ERGM(β) is asymptoti-
cally close (in the cut metric) to a mixture of Erdős–Rényi random graphs where
the mixture is over the finite set U of maximizers in the interval [0,1], of the
function

(1.9)
k∑

�=1

β�a
e� − 1

2

(
a log(a) + (1 − a) log(1 − a)

)
.

Moreover, Chatterjee and Diaconis (2013) show that the set U is finite, and possi-
bly only has one element. The connection to solutions of ϕ(a) = a is that critical
points of (1.9) satisfy

(1.10) 2�(a) = log
(

a

1 − a

)
,

which a little algebra shows is the same as ϕ(a) = a. The second condition that
ϕ′(a) < 1 corresponds to the critical point being a local maximum. Thus, such
solutions are key to describing any Erdős–Rényi limiting behaviour of ERGMs.

It is intuitively clear that if β2, . . . , βk are small, then ERGM(β) should be close
to an Erdős–Rényi random graph. Our first ERGM result explicitly quantifies this
heuristic. Here and below, we denote

C2 := 4

3
√

3
< 0.77,

which appears in our study as the maximum of the first derivative of sech2(a).
Moreover, from the next theorem onwards, Z always has the Erdős–Rényi distri-
bution with parameter a∗, where a∗ ∈ [0,1] satisfies a∗ = ϕ(a∗).

THEOREM 1.6. For given β1 ∈ R, β� > 0, � = 2, . . . , k, assume a∗ ∈ [0,1]
satisfies a∗ = ϕ(a∗), define A∗ := max{a∗,1 − a∗} ≤ 1, set

α1 := 1

2

(
�′(a∗) + A∗�′′(1)

)
,
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α2 := ϕ′(a∗)
+ 1

2

[
C2

(
A∗ + n−1)

�′(1)
(
�′(a∗) + A∗�′(1)

) + A∗�′′(1) sech2(
�

(
a∗))]

,

and assume

(1.11) 1 − min{α1, α2} =: γ > 0.

Then for X ∼ ERGM(β), Z having the Erdős–Rényi distribution with parameter
a∗, and h : {0,1}(n

2) →R,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ ‖�h‖

(
n

2

)
(4γ )−1

k∑
�=2

β�

√
Var

(
�12t�(Z)

)
.

The condition (1.11) may look contrived, but note the theoretically nice fact
that a necessary condition for 1 − α2 > 0, is that ϕ′(a∗) < 1, and this corre-
sponds to the critical point a∗ of (1.9) being a local maximum, as explained
above. We now prove a similar result, which has simpler conditions and allows
β� to be negative for � ≥ 2. Showing how our methods can be used to extend to
this case is due to Sinulis ((2018), Proofs of Theorem 2.2 and Proposition 2.4),
which appeared after the first draft of this paper was put on the arXiv. Define
|�|(a) := ∑k

�=1 |β�|e�a
e�−1.

THEOREM 1.7. For given β� ∈ R, � = 1, . . . , k, assume that 1
2 |�|′(1) < 1

and that a∗ ∈ [0,1] satisfies a∗ = ϕ(a∗). Then for X ∼ ERGM(β), Z having the
Erdős–Rényi distribution with parameter a∗, and h : {0,1}(n

2) →R,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ ‖�h‖

(
n

2

)(
4
(

1 − 1

2
|�|′(1)

))−1 k∑
�=2

|β�|
√

Var
(
�12t�(Z)

)
.

REMARK 1.8. The condition from Theorem 1.7,

(1.12) |�|′(1) < 2,

is easier to verify than (1.11) of Theorem 1.6. Moreover, the dependence on β of
(1.12) is more transparent than (1.11), since it does not involve the fixed point a∗.
In particular, it is plain to see that for any fixed choice of H2, . . . ,Hk , (1.12) holds
for |β| small enough.

REMARK 1.9. For fixed a∗, the random variables

�(1,2)t�(Z) = �(1,2)t (H�,Z)

n(n − 1) · · · (n − v� + 3)
,

have variance of order at most 1/n, with constant depending on properties of H�.



STATIONARY DISTRIBUTIONS OF GLAUBER DYNAMICS 3209

To see this, let H and x be graphs with vertex and edge sets V (H), V (x),
E(H), E(x), and let I (H,x) be the set of all injections iH,x : V (H) → V (x). For
such an injection and any edge e = (u, v) of H , we use the notation iH,x(e) =
{iH,x(u), iH,x(v)} and E(iH,x) = ⋃

e∈E(H){iH,x(e)}. Then the number of edge-
preserving injections of I (H,x) is

t (H,x) = ∑
iH,x∈I (H,x)

∏
e∈E(H)

1
(
iH,x(e) ∈ E(x)

)
,

and so for s ∈ E(x),

�st(H,x)

= ∑
iH,x∈I (H,x)

{ ∏
e∈E(H)

1
(
iH,x(e) ∈ E

(
x(s,1))) − ∏

e∈H

1
(
iH,x(e) ∈ E

(
x(s,0)))}

= ∑
iH,x∈I (H,x)

1
(
s ∈ E(iH,x)

) ∏
e∈E(H)\i−1

H,x(s)

1
(
iH,x(e) ∈ (

E(x) \ iH,x(s)
))

.

Now, |I (H,x)| is of the order n|v(H)| and the number of such edge-preserving in-
jections iH,x which use the edge s, so that s ∈ E(iH,x), is of the order n|v(H)|−2.
The variance of �st(H,Z) involves of the order n2(|v(H)|−2) covariances, but
many of these covariances will be 0 because edges in Z are independent. Indeed,
a nonzero covariance is obtained only when the two injections share at least one
edge, which leaves only at most |v(H)| − 3 vertices to choose from for the injec-
tion. Hence

Var�st(H,Z) = O
(
n2|v(H)|−5)

.

Thus taking the denominator in �(1,2)t�(Z) into account yields Var�(1,2)t�(Z) =
O(n−1). This argument has been explored for subgraph counts in Bernoulli graphs
in many previous works, for example, Ruciński (1988).

Special test functions of interest are homomorphism densities h(x) = t (H,x)×
n−|V (H)| for small nontrivial subgraphs H , since convergence of subgraph den-
sities plays a key role in many other notions of convergence; see Borgs et al.
(2008, 2012), and as mentioned previously, counts of small subgraphs are used
in the analysis of networks as building blocks and summary statistics. We have
the following corollary, which follows easily from Theorems 1.6 and 1.7 and Re-
mark 1.9 after noting that ‖�h‖ = O(n−2), providing a rate of convergence for
this case.

COROLLARY 1.10. If β satisfies the hypotheses of Theorems 1.6 or 1.7, and
for some graph H , h(x) = t (H,x)n−|V (H)|, then for X ∼ ERGM(β), Z having
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the Erdős–Rényi distribution with parameter a∗,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ c√

n
,

where c is a computable constant depending on β and H .

Explicit computation of the region of applicability of Theorem 1.7 is possible
for small—though frequently used (see Wasserman and Faust (1994))—examples,
as we now illustrate.

PROPOSITION 1.11. Let X ∼ ERGM(β) with k = 2, H2 a two-star, β1 ∈ R,
and |β2| < 1. Then there is a unique a∗ ∈ [0,1] satisfying a∗ = ϕ(a∗), and for Z

distributed Erdős–Rényi with parameter a∗, and any h : {0,1}(n
2) →R,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ ‖�h‖

(
n

2

)(
4
(
1 − |β2|))−1

√
8a∗(1 − a∗)|β2|√

n − 2
.

PROPOSITION 1.12. Let X ∼ ERGM(β) with k = 2, H2 be a triangle, β1 ∈ R,
and |β2| < 1/3. Then there is a unique a∗ ∈ [0,1] satisfying a∗ = ϕ(a∗), and for
Z distributed Erdős–Rényi with parameter a∗ and any h : {0,1}(n

2) →R,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ ‖�h‖

(
n

2

)(
4
(
1 − 3|β2|))−1 6a∗√

1 − (a∗)2|β2|√
n − 2

.

For comparison, if k = 2 and H2 is a triangle, the recent result of Eldan and
Gross ((2018b), Theorem 19) states that in the range 0 ≤ |β2| < 1/3,

∣∣Eh(X) −Eh(Z)
∣∣ ≤ ‖�h‖5000((72|β2|) ∨ 2)2

1 − 3|β2|
(
n

2

)15/16

.

Our bound compares favourably to this one in rate and constant.
Before stating our next ERGM result and having a further discussion, we give a

quick toy numerical example.

Florentine marriages. The Florentine Families Marriage data is a classical
data set collected by Padgett and Ansell (1993). It is an undirected network, which
consists of the marriage ties among 16 families in 15th century Florence, Italy;
each family is a vertex, and two vertices are connected by an edge if there is a
marriage between them. There are n = 16 vertices and 20 edges in the network,
and one of the vertices is isolated; the network has 50 ∗ 2 = 100 subgraphs which
are isomorphic to a 2-star. Figure 1 shows this network; the vertices are labelled
by the family names.
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FIG. 1. Marriage relations between Florentine families.

Using the R package sna,3 we fit an exponential random graph model to these
data with k = 2 and H2 a 2-star. The fitted coefficients are β1 = −1.6339 and
β2 = 0.0049 ∗ 2 = 0.0098, and so Proposition 1.11 applies. The function � is

�(a) = −1.6339 + 0.0196a,

and the unique solution to ϕ(a) = a is a∗ = 0.036743. Thus the upper bound of
Proposition 1.11 between the fitted model and an Erdős–Rényi graph with param-
eter a∗ is approximately(

16

2

)
0.036743

√
8(0.0098)(1 − 0.036743)

(4(1 − 0.0098))
√

14
= 0.0817595.

Our next result is a generalisation of Theorem 1.6, which applies to the whole
high temperature regime, meaning there is a unique critical point for (1.9) and it is
a maximum. The result is more general, but the constants are not explicit.

THEOREM 1.13. For given β1 ∈ R, β� > 0, � = 2, . . . , k, assume there is a
unique a∗ ∈ [0,1] that satisfies a∗ = ϕ(a∗), and that this unique fixed point satis-
fies ϕ′(a∗) < 1. Then for X ∼ ERGM(β), Z having the Erdős–Rényi distribution
with parameter a∗, and any function h : {0,1}(n

2) → R, there is a constant C de-
pending only on β and H1, . . . ,H�, such that∣∣Eh(X) −Eh(Z)

∣∣ ≤ C‖�h‖n3/2.

3https://cran.r-project.org/web/packages/sna/sna.pdf

https://cran.r-project.org/web/packages/sna/sna.pdf
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REMARK 1.14. To interpret this bound, note that setting ‖�h‖ = 1 gives an
upper bound on the Wasserstein distance (with respect to Hamming distance) be-
tween L (X) and L (Z). An alternative definition of the Wasserstein distance is

inf
(X̂,Ẑ) s.t.

X̂
d=X,Ẑ

d=Z

EdH(X̂, Ẑ),

and so the bound implies we can couple X to Z in such a way that on average there
are O(n3/2) edges that do not match. The bound implies a meaningful approxima-
tion since there are O(n2) edges in X.

Now, to compare our ERGM results to those existing, we already mentioned
the result of Chatterjee and Diaconis (2013), which shows large ERGMs are close
to finite mixtures of Erdős–Rényi random graphs. Theorems 1.6 and 1.7 explicitly
quantify this in a subset of the high temperature regime, while Theorem 1.13 gives
rates over the whole high temperature regime. Our results rely on a close analy-
sis of the ERGM Glauber dynamics, following Bhamidi, Bresler and Sly (2011),
where mixing times are studied. In particular, they find that in the high temper-
ature regime, the chain mixes at the same order (n2 log(n)) as the Erdős–Rényi
case. The region described in our Theorem 1.6 is a subset of the high temperature
regime where the Glauber dynamics are contracting. For parameter values where
there is more than one local maximum, Bhamidi, Bresler and Sly (2011) show that
the chain takes exponential (in n) time to mix. One approach to adapt our results
to this case is to study the Glauber dynamics of the ERGM conditioned to be in
a region “close” to a local maximum where the dynamics are contracting; a suit-
able region can be read from Lemma 3.1. We also mention Radin and Yin (2013),
where the variational problem (1.9) is analysed in the case when k = 2 and β2 > 0
or where β2 < 0 in the case where H2 is a star; even this basic case is impor-
tant to understand, though not straightforward to analyse. Further analysis of the
variational problem for k = 3 is given in Yin (2013).

Closest to our ERGM results is Eldan and Gross (2018b) (already mentioned
in an example above), and in particular they showed in their Theorem 18 that for
positive β� for � = 2, . . . , k and assuming there is a unique solution a∗ to (1.10)
and with ϕ′(a∗) < 1 (the high temperature regime) then for X ∼ ERGM(β), Z

having the Erdős–Rényi distribution with parameter a∗, and any h : {0,1}(n
2) →R,∣∣Eh(X) −Eh(Z)

∣∣ ≤ ‖�h‖O
(
n2(1−θ))

for some 0 < θ < 1/16, and the constant can be made numerically explicit in fixed
examples. The result is more general than Theorem 1.6, as it covers the entire
high temperature regime, but the rate is not as good. Theorem 1.13 covers the high
temperature regime with a better rate than Eldan and Gross ((2018b), Theorem 18),
but without explicit constants (and really no hope of extracting them from our
proof).
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The remainder of this paper is organized as follows. We finish the Introduc-
tion with a summary discussion. In Section 2, we state and prove our main gen-
eral approximation result, Theorem 2.1, and show how it implies Theorem 1.1.
In Section 3, we state and prove our ERGM results, Theorems 1.6 and 1.7, and
Propositions 1.11 and 1.12 and Theorem 1.13.

1.3. Discussion. Our main result gives an easy to compute upper bound be-
tween a vector of Bernoulli variables that are the stationary distribution of a fast
mixing Markov chain and an independent vector. In typical applications, such as
Ising models and ERGMs, the result gives approximation with rates of conver-
gence for expectations of certain statistics of the system. Our work further sup-
ports the notion, appearing in other contexts, that stationary distributions of fast
mixing Markov chains should have properties similar to independent systems. Our
bounds are simple and explicit, and improve upon others given in Eldan and Gross
(2018a, 2018b), which in turn are derived from a “nonlinear” large deviations
framework developed in Eldan (2018). That framework uses a notion of complex-
ity referred to as Gaussian width. A similar framework with a different notion of
complexity is given in Chatterjee and Dembo (2016); see also Chatterjee (2016).
It would be interesting to make the connection between these complexity mea-
sures and fast mixing explicit, which would complete more of the picture around
concentration, mixing, and distance to independence.

Though our results only apply in high temperature regimes, note that in low
temperature regimes, fast mixing may occur for the measure conditioned to be
in a “good” neighbourhood. For example, in the ERGM, we would condition on
being in the set given by (3.2) for small enough ε such that (3.3) is satisfied. The
difficulty is to ensure that the conditional Glauber dynamics are well behaved at
the boundary.

REMARK 1.15. After the second author spoke about this work at the MIT
probability seminar on 23 October 2017, we became aware that Guy Bresler and
Dheeraj Nagaraj have been working independently on a similar general approxi-
mation result, with applications to Ising models; see Bresler and Nagaraj (2017).
In particular, they prove Lemmas 2.3 and 2.4 using roughly the same ideas as ours,
and explore their use in Ising models, going beyond the illustrative Section 1.1.
Results for ERGMs, which are our main application, are not developed in their
work. For added transparency, we have coordinated the submissions of our two
papers.

2. General approximation result. In this section, we state and prove our
general approximation result, and then show how it implies Theorem 1.1. As pre-
viously mentioned, we work in the setup of Hayes (2006) and Dyer, Goldberg and
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Jerrum (2009). Define the N × N influence matrix R̂ for the Glauber dynamics of
L (X) by

R̂rs := max
x∈{0,1}N

∣∣qX

((
x(s,1))(r,1)|x(s,1)) − qX

((
x(s,0))(r,1)|x(s,0))∣∣.

Then R̂rs is the maximum amount that the conditional distribution of the r th coor-
dinate of x can change due to a change in the sth coordinate of x. For 1 ≤ p ≤ ∞,
let ‖ · ‖p be the p-norm on R

N , and define the matrix operator p-norm

‖A‖p := sup
v �=0

‖Av‖p

‖v‖p

;

as is typical, the notation ‖ · ‖p has different meaning depending on whether the
argument is a matrix or vector, but this should not cause confusion.

THEOREM 2.1. Let X,Y ∈ {0,1}N be random vectors, h : {0,1}N → R,
and assume the continuous time Glauber dynamics for L (X) is irreducible.
For s ∈ [N ], set cs := ‖�sh‖ and vs(y) := |qX(y(s,1)|y) − qY (y(s,1)|y)|, and
c := (c1, . . . , cN) and v(Y ) := (v1(Y ), . . . , vN(Y )). Assume there is an N × N

matrix R, such that for all r, s ∈ [N ], and some 1 ≤ p ≤ ∞ and ε = εp > 0,

(2.1) R̂rs ≤ Rrs and ‖R‖p ≤ 1 − ε < 1,

where R̂ is the influence matrix for the Glauber dynamics of L (X). Then for
q := p/(p − 1), ∣∣Eh(X) −Eh(Y )

∣∣ ≤ ε−1‖c‖qE
∥∥v(Y )

∥∥
p.

REMARK 2.2. A matrix R such that (2.1) holds is also called a dependency
matrix. The condition ‖R‖p ≤ 1 − ε < 1 with p = ∞ (maximum of row sums)
is the Dobrushin condition from Dobrushin (1970), and with p = 1 (maximum of
column sums) is the Dobrushin–Shlosman condition from Dobrushin and Shlos-
man (1985). Either condition implies fast mixing of Glauber dynamics, and it was
shown in Hayes (2006) that (2.1) with p = 2 implies fast mixing of Glauber dy-
namics (even with “random update”). Moreover, from Dyer, Goldberg and Jerrum
(2009), the same bound for more general matrix norms also implies rapid mixing
of Glauber dynamics (it may be possible to adapt the methods there to obtain a
variation of the bound of Theorem 2.1). These papers cover a variety of applica-
tions, for example, Ising and hard core models and proper graph colorings, where
Theorem 2.1 can be applied. We pursue further applications, generalisations and
their implications elsewhere.

The proof of the theorem uses Stein’s method, due to Stein (1972, 1986); see
Barbour and Chen (2005), Chen, Goldstein and Shao (2011), Ley, Reinert and
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Swan (2017), Ross (2011) for various introductions; and we follow Barbour’s gen-
erator method from Barbour (1988, 1990). Our approach is related to ideas from
Reinert (2005) for functions of independent variables, and Eichelsbacher and Rein-
ert (2008) for one-dimensional Gibbs measures. The generator approach requires
bounds on certain mixing quantities, and these are obtained from the bound on the
norm of the influence matrix, following Hayes (2006), Dyer, Goldberg and Jerrum
(2009) and Bubley and Dyer (1997). We also remark that the key Lemma 2.5 be-
low is closely related to ideas in Chatterjee ((2005), Section 4.2), which gives fast
mixing criteria for concentration of Lipschitz functions of stationary distributions.

The underlying idea to the generator approach is that a distribution μ is charac-
terised as the stationary distribution of a Markov process which has generator Aμ.
The generator A appears in the so-called Stein equation

Aμf (x) = h(x) −Eh(X),

where X has distribution μ and h is a test function. Two distributions can then
be compared through the comparison of the corresponding generators; if Y has
distribution ν then

Eh(Y ) −Eh(X) = EAμf (Y ) = EAμf (Y ) −EAνf (Y ).

Here, the last equality follows from EAνf (Y ) = 0 under some regularity assump-
tions.

A Markov process which has stationary distribution μ can sometimes be ob-
tained through a sequence of exchangeable operations on the configurations which
the chain can take on; see, for example, Rinott and Rotar (1997) and Reinert
(2005). In this paper, the exchangeable construction is provided by the Glauber
dynamics with an exponential clock for the transition times.

The first lemma we need in order to prove the theorem is by now standard in
Stein’s method; it provides a solution of the Stein equation induced by the gener-
ator of the Glauber dynamics. Define the continuous time Glauber dynamics with
exponential rate 1 holding times, having generator A := AX given by

(2.2) Af (x) = 1

N

∑
s∈[N]

[
q
(
x(s,1)|x)

�sf (x) + (
f

(
x(s,0)) − f (x)

)]
.

LEMMA 2.3. Let X ∈ {0,1}N be a random vector and (X(t))t≥0 be the con-
tinuous time Glauber dynamics Markov chain for L (X) with generator (2.2). If
the Markov chain is irreducible, then for any h : {0,1}N →R, the function

fh(x) := −
∫ ∞

0
E

[
h
(
X(t)

) −Eh(X)|X(0) = x
]
dt

is well defined and satisfies Afh(x) = h(x) −Eh(X).
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The next lemma gives an intermediate bound on the quantity we want to ap-
proximate, through comparing the generators of the Glauber dynamics (2.2) for
the two processes under investigation.

LEMMA 2.4. Let X,Y ∈ {0,1}N be random vectors, h : {0,1}N → R, fh be
as in Lemma 2.3. Then

∣∣Eh(X) −Eh(Y )
∣∣ ≤ 1

N

∑
s∈[N]

E
[∣∣qX

(
Y (s,1)|Y ) − qY

(
Y (s,1)|Y )∣∣∣∣�sfh(Y )

∣∣].

PROOF. From Lemma 2.3 and the fact that EAY f (Y ) = 0, we have∣∣Eh(X) −Eh(Y )
∣∣ = ∣∣EAXfh(Y )

∣∣
= ∣∣EAXfh(Y ) −EAY fh(Y )

∣∣
= 1

N

∣∣∣∣ ∑
s∈[N]

E
[(

qX

(
Y (s,1)|Y ) − qY

(
Y (s,1)|Y ))

�sfh(Y )
]∣∣∣∣

≤ 1

N

∑
s∈[N]

E
[∣∣qX

(
Y (s,1)|Y ) − qY

(
Y (s,1)|Y )∣∣∣∣�sfh(Y )

∣∣].
�

The next lemma bounds |�sfh(Y )|.

LEMMA 2.5. Let X,Y ∈ {0,1}N be random vectors, h : {0,1}N → R,
fh be as in Lemma 2.3. For each s ∈ [N ], x ∈ {0,1}N , and m ≥ 0, let
(U [x,s](m),V [x,s](m)) be any coupling such that L(U [x,s](m)) = L(X(m)|X(0) =
x(s,1)) and L(V [x,s](m)) = L(X(m)|X(0) = x(s,0)). Then∣∣�sfh(x)

∣∣ ≤ ∑
r∈[N]
m≥0

‖�rh‖P(
U [x,s]

r (m) �= V [x,s]
r (m)

)
.

PROOF. Let 0 = T0 < T1 < T2 < · · · be the jump times of the continuous time
Glauber dynamics Markov chain. Since the jump times are independent of the
discrete skeleton, and using Lemma 2.3, we have for x ∈ {0,1}N ,

∣∣�sfh(x)
∣∣ ≤

∫ ∞
0

∣∣E[
h
(
X(t)

)|X(0) = x(s,1)] −E
[
h
(
X(t)

)|X(0) = x(s,0)]∣∣dt

≤
∞∑

m=0

E

∣∣∣∣
∫ Tm+1

Tm

[
h
(
U [x,s](m)

) − h
(
V [x,s](m)

)]
dt

∣∣∣∣
=

∞∑
m=0

E
∣∣h(

U [x,s](m)
) − h

(
V [x,s](m)

)∣∣
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≤ ∑
r∈[N]
m≥0

‖�rh‖E∣∣U [x,s]
r (m) − V [x,s]

r (m)
∣∣

= ∑
r∈[N]
m≥0

‖�rh‖P(
U [x,s]

r (m) �= V [x,s]
r (m)

)
.

�

The approach for the proof of Theorem 2.1 is closely related to that of Chatterjee
((2005), Proof of Theorem 4.3).

PROOF OF THEOREM 2.1. Set

B :=
(

1 − 1

N

)
I + R

N
,

where I denotes the identity matrix. We follow the path coupling paradigm of
Bubley and Dyer (1997). A direct consequence of Dyer, Goldberg and Jerrum
((2009), Formula (4))—note that their R is the transpose of ours—implies that
there is a coupling of the Glauber dynamics of L (X) such that

P
(
U [x,s]

r (m) �= V [x,s]
r (m)

) ≤ (
Bm)

rs .

Therefore by Lemma 2.5,∣∣�sfh(x)
∣∣ ≤ ∑

r∈[N]
m≥0

‖�rh‖(
Bm)

rs .

Applying this in Lemma 2.4, and then using Hölder’s inequality and sub-
multiplicativity of matrix norms, we find∣∣Eh(X) −Eh(Y )

∣∣ ≤ N−1
∑

r,s∈[N]
m≥0

E
[
cr

(
Bm)

rsvs(Y )
]

≤ N−1
∑
m≥0

‖c‖qE
∥∥Bmv(Y )

∥∥
p

≤ N−1‖c‖qE
∥∥v(Y )

∥∥
p

∑
m≥0

‖B‖m
p .

The result now follows after noting

‖B‖p =
∥∥∥∥
(

1 − 1

N

)
I + 1

N
R

∥∥∥∥
p

≤ N − 1

N
+ 1

N
‖R‖p ≤ 1 − ε

N
. �

Specialising the proof of Theorem 2.1 to the case where p = 1, Y is a vector
of independent Bernoulli variables, and writing X in Gibbs measure form, yields
Theorem 1.1, as we now show.
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PROOF OF THEOREM 1.1. Since

EdH
(
Ũ [x,s], Ṽ [x,s]) ≤ (1 − ρ),

path coupling implies that for each s ∈ [N ], x ∈ {0,1}N , and m ≥ 0, there is a cou-
pling (U [x,s](m),V [x,s](m)) such that L(U [x,s](m)) = L(X(m)|X(0) = x(s,1)),
and L(V [x,s](m)) = L(X(m)|X(0) = x(s,0)), and

EdH
(
U [x,s](m),V [x,s](m)

) ≤ (1 − ρ)m.

Thus, from Lemma 2.5,∣∣�sfh(x)
∣∣ ≤ ∑

r∈[N]
m≥0

‖�rh‖P(
U [x,s]

r (m) �= V [x,s]
r (m)

)

≤ ‖�h‖ ∑
m≥0

EdH
(
U [x,s](m),V [x,s](m)

)

= ‖�h‖ρ−1.

Now, Lemma 2.4 implies

∣∣Eh(X) −Eh(Y )
∣∣ ≤ ‖�h‖

Nρ
E

∥∥v(Y )
∥∥

1,

where we use the notation from Theorem 2.1. To bound E‖v(Y )‖1, first we write
the Glauber dynamics probabilities for L (X) as follows:

qX

(
x(s,1)|x) = P

(
Xs = 1|(Xu)u�=s = (xu)u�=s

)
= P(Xs = 1; (Xu)u�=s = (xu)u�=s)

P(Xs = 1; (Xu)u�=s = (xu)u�=s) + P(Xs = 0; (Xu)u�=s = (xu)u�=s)

= exp{L(x(s,1))}
exp{L(x(s,1))} + exp{L(x(s,0))} ,

which simplifies to

qX

(
x(s,1)|x) = e�sL(x)

e�sL(x) + 1
= 1 + tanh(1

2�sL(x))

2
.

Now, it is easy to see that

(2.3) ps = 1 + tanh(1
2 log(

ps

1−ps
))

2
,

and tanh is 1-Lipschitz, so, noting that qY (x(s,1)|x) = ps ,

∣∣qX

(
Y (s,1)|Y ) − ps

∣∣ ≤ 1

4

∣∣∣∣�sL(Y ) − log
(

ps

1 − ps

)∣∣∣∣.
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A simple rearrangement using (2.3) shows that any solution p ∈ [0,1]N to the
system (1.2) also satisfies

log
(

ps

1 − ps

)
= E�sL(Y ),

and the result now easily follows. �

3. Proof of ERGM results. To prove Theorem 1.6, we use Theorem 2.1. In
the notation there, we want to bound the influence matrix. The ideas we use es-
sentially come from Bhamidi, Bresler and Sly (2011), where mixing times for the
Glauber dynamics of ERGMs are derived. Their results are not strong enough to
apply directly, but we are able to derive sharper, more quantitative versions.

For a graph H with vH vertices and eH edges, define

rH (x; ij) =
(

�ij t (H,x)

2eHn(n − 1) · · · (n − vH + 3)

)1/(eH −1)

,

and r�(x; ij) := rH�
(x; ij). If Z is an Erdős–Rényi graph with parameter a∗,

then for any small subgraph H with at least two edges, with high probability,
rH (Z; ij) = a∗ + o(1). The basic idea of the proof is that if rH (x; ij) ≈ a∗, then
the ERGM(β) Glauber dynamics starting from x are similar to the Erdős–Rényi
dynamics.

The next lemma makes explicit some statements of Bhamidi, Bresler and Sly
((2011), Proof of Lemma 18). For a graph H and e ∈ E(H), define the graph H \ e

to be H with the edge e removed, but with all vertices retained, even if isolated.
For a polynomial f (x) = ∑k

i=1 aix
i , we use the notation |f |(x) = ∑k

i=1 |ai |xi .

LEMMA 3.1. For all x ∈ {0,1}(n
2),

(3.1)
∑

st �=ij

∣∣q(
x(st,1)|x(ij,1)) − q

(
x(st,1)|x(ij,0))∣∣ ≤ 1

2
|�|′(1).

Assuming now β� > 0 for � = 2, . . . , k, if a∗ ∈ [0,1] satisfies a∗ = ϕ(a∗) and x ∈
{0,1}(n

2) is such that for all edges st �= ij and all graphs H = H� \ e for some
� = 2, . . . , k and e ∈ E(H�),

(3.2) max
st �=ij

{∣∣rH (
x(ij,1); st) − a∗∣∣ ∨ ∣∣rH (

x(ij,0); st) − a∗∣∣} ≤ ε,

then

(3.3)

∑
st �=ij

∣∣q(
x(st,1)|x(ij,1)) − q

(
x(st,1)|x(ij,0))∣∣

≤ 1

2

[
�′(a∗) + ε�′′(1)

](
1 ∧ [

sech2(
�

(
a∗)) + C2

(
ε + n−1)

�′(1)
])

.
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PROOF. For st �= ij , we bound∣∣q(
x(st,1)|x(ij,1)) − q

(
x(st,1)|x(ij,0))∣∣

= 1

2

∣∣∣∣∣tanh

(
1

2

k∑
�=1

β�

(
�st t�

(
x(ij,1)))) − tanh

(
1

2

k∑
�=1

β�

(
�st t�

(
x(ij,0))))∣∣∣∣∣

≤ 1

4

(
k∑

�=1

|β�|(�st�ij t�(x)
))

×
(

1 ∧
[

sech2

(
1

2

k∑
�=1

β�

(
�st t�

(
x(ij,0)))) + C2

4

(
k∑

�=1

|β�|�st�ij t�(x)

)])
,

where the inequality follows by using first and second-order Taylor’s theorem for
tanh. For the first assertion, first we use the 1 in the minimum and sum over
edges st �= ij . Next, recall that �st�ij t (H�, x) is the number of (x(ij,1))(st,1) edge-
preserving injections of V (H�) into V (x), which use both edges ij and st . Writing
t (H�, x; e �→ st) for the number of these injections that map e to st in x, we have

�st�ij t (H�, x) = ∑
e∈H�

�ij t (H�, x; e �→ st)

n(n − 1) · · · (n − v� + 3)

and then

(3.4)

∑
st �=ij

(
�st�ij t�(x)

) = ∑
st �=ij

∑
e∈E(H�)

�ij t (H�, x; e �→ st)

n(n − 1) · · · (n − v� + 3)

= ∑
e∈H�

�ij t (H� \ e, x)

n(n − 1) · · · (n − v� + 3)
,

where the first equality is by swapping summations (cf. Bhamidi, Bresler and Sly
(2011), Lemma 10). Now, the first assertion follows since

�ij t (H� \ e, x)

n(n − 1) · · · (n − v� + 3)
≤ �ij t (H� \ e,1)

n(n − 1) · · · (n − v� + 3)
≤ 2(e� − 1),

where 1 denotes the complete graph. For the last inequality, note that �ij t (H� \
e,1) is the number of injections from V (H� \ e) into V (1) using edge ij . There
are at most 2(e� − 1) of assigning vertices of H� \ e to ij , and there are at most
n(n−1) · · · (n−v�+3) ways to assign the remaining vertices. Hence the inequality
follows.

For the second assertion, assume that β� > 0 for � = 2, . . . , k. For an alternative
bound on

∑k
�=1 β�(�st�ij t�(x)), note that

�st t�
(
x(ij,0)) = 2e�r�

(
x(ij,0); st)e�−1

.
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Hence by (3.2) and the fact that; using the positivity of β2, . . . , βk ; 0 ≤ �′(a) ≤
�′(1) = ∑k

�=2 β�e�(e� − 1) for 0 < a < 1, we have

(3.5)

∣∣∣∣∣1

2

k∑
�=1

β�

(
�st t�

(
x(ij,0))) − �

(
a∗)∣∣∣∣∣

=
∣∣∣∣∣

k∑
�=1

β�e�

(
r�

(
x(ij,0); st)e�−1 − (

a∗)e�−1)∣∣∣∣∣
≤ ε

k∑
�=2

β�e�(e� − 1);

we shall derive (3.5), and use it a few more times, below. Then we can write

sech2

(
1

2

k∑
�=1

β�

(
�st t�

(
x(ij,0)))) ≤ sech2(

�
(
a∗)) + εC2

k∑
�=2

β�e�(e� − 1).

We also bound

(3.6) �st�ij t�(x) ≤ �st�ij t�(1) ≤ 4e�(e� − 1)

n
.

To see (3.5) and (3.6), first note that for � = 2, . . . , k, following the same argument
as for Remark 1.9, �st�ij t (H�, x) is the number of (x(ij,1))(st,1) edge-preserving
injections of V (H�) into V (x), which use both edges ij and st . So inequality (3.5)
follows from the fact that such subgraph injections increase with the number of
edges, maximized for the complete graph 1. For inequality (3.6), �st�ij t (H�,1)

is simply the number of injections from V (H�) into V (1) using both edges st and
ij . To count the number of injections, there are at most 4e�(e� − 1) ways to assign
vertices of H� to st and ij (and maybe fewer depending on the topology of H� and
whether st and ij share a vertex), and then there are at most (n−3) · · · (n−v� +1)

ways to assign the remaining vertices. The remaining vertices can be counted:
v� − 3 vertices of H� to (n − 3) remaining vertices of the big graph, when st and
ij share a vertex, or v� − 4 vertices of H� to (n − 4) remaining vertices otherwise.
Thus we find

�st�ij t�(1) ≤ 4e�(e� − 1)
(n − 3) · · · (n − v� + 1)

n · · · (n − v� + 3)
≤ 4e�(e� − 1)

n
,

as desired.
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Combining the bounds of the previous displays, we have∣∣q(
x(st,1)|x(ij,1)) − q

(
x(st,1)|x(ij,0))∣∣

≤
(

k∑
�=1

β�

(
�st�ij t�(x)

))

×
(

1 ∧
[

sech2(�(a∗))
4

+
(
ε + 1

n

)
C2

4

k∑
�=2

β�e�(e� − 1)

])
.

Now summing over edges st �= ij , using (3.4), (3.2) and the mean value theorem,
we find

∑
st �=ij

(
�st�ij t�(x)

) ≤ ∑
e∈H�

�ij t (H� \ e, x)

n(n − 1) · · · (n − v� + 3)

≤ 2e�(e� − 1)
((

a∗)e�−2 + ε(e� − 2)
)
.

We now have

k∑
�=1

β�

∑
st �=ij

(
�st�ij t�(x)

) ≤ 2�′(a∗) + 2ε�′′(1),

and combining the bounds above yields the lemma. �

We prove a quantitative version of Bhamidi, Bresler and Sly ((2011), Lem-
ma 18).

LEMMA 3.2. If x ∈ {0,1}(n
2) satisfies the hypotheses of Lemma 3.1, then

there is a coupling of two realisations of one step of the embedded discrete time
Markov chain for the Glauber dynamics for ERGM(β), denoted (U [x,ij ](m),

V [x,ij ](m))m=0,1, such that U [x,ij ](0) = x(ij,1), V [x,ij ](0) = x(ij,0) and

EdH
(
U [x,ij ](1),V [x,ij ](1)

) ≤ (1 − ρ),

where

ρ = 1 − 1
2 |�|′(1)(n

2

) .

If β� > 0 for � = 2, . . . , k, then the same inequality holds with

ρ = 1 − 1
2 [�′(a∗) + ε�′′(1)](1 ∧ [sech2(�(a∗)) + C2(ε + n−1)�′(1)])(n

2

) .
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PROOF. At the first step, we choose a common edge at random and update
with the optimal coupling of Bernoulli variables, which is unsuccessful for edge
st with probability |q(x(st,1)|x(ij,1)) − q(x(st,1)|x(ij,0))|. Now note that

dH
(
U [x,ij ](1),V [x,ij ](1)

) − dH
(
U [x,ij ](0),V [x,ij ](0)

)
is −1 if edge ij is chosen, is 1 if another edge is chosen and the coupling fails, and
is otherwise 0. Thus

EdH
(
U [x,ij ](1),V [x,ij ](1)

)

= 1 −
(
n

2

)−1

+
(
n

2

)−1 ∑
st �=ij

∣∣q(
x(st,1)|x(ij,1)) − q

(
x(st,1)|x(ij,0))∣∣,

and the result now follows immediately from Lemma 3.1. �

With these lemmas, we can prove Theorem 1.6.

PROOF OF THEOREM 1.6. Note that 0 ≤ rH (y; st) ≤ 1 for any graph H and
y ∈ {0,1}(n

2), and so setting ε = A∗, we have that (3.2) is automatically satisfied
and Lemma 3.2 applies with ρ = γ /

(n
2

)
> 0; the positivity by the assumption of

the theorem. Applying Theorem 1.1 and using symmetry of the edges proves the
result. �

PROOF OF THEOREM 1.7. Lemma 3.2 applies with ρ = (1 − 1
2 |�|′(1))/

(n
2

)
>

0, so Theorem 1.1 and edge symmetry yields the result. �

PROOF OF PROPOSITION 1.11. Let k = 2 and H2 be a two-star. Applying
Theorem 1.7, we compute

|�|(a) = |β1| + 2|β2|a, |�|′(a) = 2|β2|.
The condition (1.12) is the same as |β2| < 1, and the result now follows after noting
1
2�ij t (H2,Z)

d= B1 + B2, where B1,B2 ∼ Bi(n − 2, a∗) and are independent, and
so Var(�ij t (H2,Z)) = 8(n − 2)a∗(1 − a∗). �

PROOF OF PROPOSITION 1.12. Let k = 2 and H2 be a triangle. Applying
Theorem 1.7, we compute

|�|(a) = |β1| + 3|β2|a2, |�|′(a) = 6|β2|a,

and |�|′(1) = 6|β2|. Then we can apply Theorem 1.7 assuming (1.12), which is
the same as |β2| < 1/3. The result now follows after noting that 1

6�ij t (H2,Z) ∼
Bi(n − 2, (a∗)2) and so Var(�ij t (H2,Z)) = 36(n − 2)(a∗)2(1 − (a∗)2). �
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PROOF OF THEOREM 1.13. As Bhamidi, Bresler and Sly (2011) showed, the
ERGM chain may not be contracting over the entire state space in the high temper-
ature regime. Thus we will not use Theorem 2.1, but instead combine and apply
Lemmas 2.4 and 2.5 directly.

For each m ≥ 0, let (U [x,ij ](m),V [x,ij ](m)) be a coupling of the Glauber
dynamics of the ERGM(β), with initial states U [x,ij ](0) = x(ij,1), V [x,ij ](0) =
x(ij,0). Lemma 2.5 implies that∣∣�ijfh(x)

∣∣ ≤ ‖�h‖ ∑
st∈[n]2m≥0

P
(
U

[x,ij ]
st (m) �= V

[x,ij ]
st (m)

)

≤ ‖�h‖
[ ∑

m<tn

EdH
(
U [x,ij ](m),V [x,ij ](m)

)
(3.7)

+
(
n

2

) ∞∑
m≥tn

P
(
U [x,ij ](m) �= V [x,ij ](m)

)]
,(3.8)

where we set tn := cn2 log(n)2, with c to be chosen large enough (for (3.9) below).
The main idea of the proof is to bound (3.8) by using that the chain mixes in
n2 log(n) steps, and to bound (3.7) separately for the two cases where the x is such
that the chain stays in a contracting region for tn steps with high probability, and
where x is not. Then we show the former case occurs with high probability under
the Erdős–Rényi distribution.

To bound (3.8), we use Bhamidi, Bresler and Sly ((2011), Theorem 5), which
states that the 1/4-mixing time tmix of these Glauber dynamics is of order tmix =
O(n2 log(n)) and thus, using Levin, Peres and Wilmer ((2009), Exercise 4.3 and
Formula (4.33)), there are couplings for m ≥ tn, such that for some d > 0,

P
(
U [x,ij ](m) �= V [x,ij ](m)

) ≤ P

(
U [x,ij ]

(⌊
m

tmix

⌋
tmix

)
�= V [x,ij ]

(⌊
m

tmix

⌋
tmix

))

≤ 2
−� m

tmix
�

≤ (
e
− d

n2 log(n)
)m

.

We now easily find that for a constant d ′ not depending on c,

(3.9)

(
n

2

) ∞∑
m≥tn

P
(
U [x,ij ](m) �= V [x,ij ](m)

) ≤ d ′n4 log(n)n−dc.

Now, assume n is large enough so that there is an ε > 0 such that (3.3) is less
than one; call the right-hand side of (3.3) α < 1. This is always possible since (3.3)
decreases as both ε → 0 and n → ∞, and has limit ϕ′(a∗), which is strictly less
than one by assumption. For ν > 0, let Eν be the set of x ∈ {0,1}(n

2) such that for
all ij ∈ [n]2 and H as in Lemma 3.1, (3.2) with ε replaced by ν is satisfied. We
only consider ν ≤ ε, so that the chain is contracting while in Eν .
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Let 0 ≤ m < tn, and (U [x,ij ](m),V [x,ij ](m)) be the coupling from Bhamidi,
Bresler and Sly (2011). Denote the event that the coupling (and hence the path
coupling by monotonicity) stays in the region Eν up to time tn by

Bν := ⋂
m<tn

{
U [x,ij ](m) ∈ Eν,V

[x,ij ](m) ∈ Eν

}
.

Combining (18) of Bhamidi, Bresler and Sly (2011) and the comment before
Claim 15 of Bhamidi, Bresler and Sly (2011), as well as the comment before
Lemma 16 of Bhamidi, Bresler and Sly (2011), we find that for any μ > 0, δ > 0
small enough, if x ∈ E2μ \ Eμ, then there is a d ′′ > 0 such that

(3.10) P
(
Bc

2μ+δ

) ≤ t4
ne−d ′′n.

If x ∈ Eμ, then in order for either chain to leave E2μ+δ it must first enter E2μ \ Eμ,
and so the Markov property and the argument above implies that (3.10) holds also
for x ∈ Eμ. Now, choosing μ, δ so that 2μ + δ < ε and, in particular, Bc

ε ⊆ Bc
2μ+δ ,

with Lemma 3.1 we find that for m < tn,

EdH
(
U [x,ij ](m),V [x,ij ](m)

) ≤ I[x ∈ Eμ]P[Bε]
(

1 − (1 − α)

(
n

2

)−1)m

+ (
I[x /∈ Eμ] + P

[
Bc

ε

])(n

2

)
.

Combining these last two displays with (3.10), (3.9), (3.8), (3.7), noting the chain
is contracting under Bε , and choosing c large enough yields

∣∣�ijfh(x)
∣∣ ≤ ‖�h‖

(
n

2

)({
(1 − α)−1 + o(1)

}
I[x ∈ Eμ] + tnI[x /∈ Eμ]).

Now applying Lemma 2.4 and noting that |qX(·|y) − qY (·|y)| ≤ 1, we have∣∣Eh(X) −Eh(Z)
∣∣

≤ ‖�h‖
{(

(1 − α)−1 + o(1)
)

× ∑
ij∈[n]2

E
[
I[Z ∈ Eμ]∣∣qX

(
Z(ij,1)|Z) − qZ

(
Z(ij,1)|Z)∣∣]

+ tn
∑

ij∈[n]2

P(Z /∈ Eμ)

}
.

The first term (after dropping the indicator) is bounded the same as in the proof
of Theorem 1.6 and Corollary 1.10. For the second term, we show that for all H

under consideration and st �= ij , both rH (Z(ij,1), st) and rH (Z(ij,0), st) are highly
concentrated, and then the result follows from a union bound.
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From the definition of rH and elementary considerations of the function of the
function [0,1] � w �→ w1/(eH −1), we have

P
(∣∣rH (

Z(ij,·), st
) − a∗∣∣ > μ

)
≤ P

(∣∣∣∣ �st t (H,Z(ij,·))
2eHn(n − 1) · · · (n − vH + 3)

− (
a∗)eH −1

∣∣∣∣ > μeH −1
)
.

Since

�st t (H,Z(ij,·))
2eHn(n − 1) · · · (n − vH + 3)

= �st t (H,Z)

2eHn(n − 1) · · · (n − vH + 3)
+ O

(
n−1)

= �st t (H,Z)

2eH (n − 2) · · · (n − vH + 1)
+ O

(
n−1)

,

we instead bound

(3.11) P

(∣∣∣∣ �st t (H,Z)

2eH (n − 2) · · · (n − vH + 1)
− (

a∗)eH −1
∣∣∣∣ > μ′

)
,

for sufficiently large n and small μ′ > 0. Using the argument of Ruciński ((1988),
equation (5), page 6); see also Remark 1.9; we have that for fixed a∗, and fixed
� ≥ 1,

E
[(

�st t (H,Z) −E�st t (H,Z)
)2�] = O

(
n�(2|v(H)|−5)).

Now noting that

E�st t (H,Z) = 2eH (n − 2) · · · (n − vH + 1)
(
a∗)eH −1

,

we use Markov’s inequality in (3.11) to find that for fixed μ′,

P

(∣∣∣∣ �st t (H,Z)

2eH (n − 2) · · · (n − vH + 1)
− (

a∗)eH −1
∣∣∣∣ > μ′

)
= O

(
n−�).

By choosing � large enough and using a union bound, we have that P(Z /∈ Eμ) =
O(n−1/2), as desired. �
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