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THE ZEALOT VOTER MODEL1

BY RAN HUO AND RICK DURRETT

Duke University

Inspired by the spread of discontent as in the 2016 presidential election,
we consider a voter model in which 0’s are ordinary voters and 1’s are zealots.
Thinking of a social network, but desiring the simplicity of an infinite object
that can have a nontrivial stationary distribution, space is represented by a
tree. The dynamics are a variant of the biased voter: if x has degree d(x) then
at rate d(x)pk the individual at x consults k ≥ 1 neighbors. If at least one
neighbor is 1, they adopt state 1, otherwise they become 0. In addition at rate
p0 individuals with opinion 1 change to 0. As in the contact process on trees,
we are interested in determining when the zealots survive and when they will
survive locally.

1. Introduction. In the standard (linear) voter model, which was introduced
by Holley and Liggett [11], a site flips at a rate equal to the fraction of neighbors
that have the other opinion. Cox and Durrett [4] began the study of voter models
with non-linear flip rates. One of the most successful ideas from that paper is
the threshold-θ voter model in which sites flip at rate 1 if at least θ neighbors
have the opposite opinion. Liggett [14] obtained results for coexistence of opinions
when θ = 1, while Chatterjee and Durrett [2] showed that the model with θ ≥ 2
had a discontinuous phase transition on the random r-regular graph when r ≥
3. Lambiotte and Redner [13] studied the “vacillating voter model” in which a
voter looks at the opinions of two randomly chosen neighbors and flips if at least
one disagrees. At about the same time, Sturm and Swart, see [18, 19], considered
“rebellious voter models” in one dimension. In the one-sided case ξt (i) changes its
opinion at rate α if ξt (i + 1) �= ξt (i) and at an additional rate 1 − α if ξt (i + 1) �=
ξt (i + 2). They also considered a spatially symmetric version. In all these variants
of the voter moel, the process is symmetric under interchange of 0’s and 1’s. Our
zealot voter model does not have that symmetry.

In our process, space is represented by a tree T in which the degree of each
vertex x satisfies 3 ≤ dmin ≤ d(x) ≤ M . This guarantees that our trees are infi-
nite. Voters can be in state 0 (ordinary voter) or 1 (zealot). Given a probability
distribution pk on {0,1,2, . . . , dmin}, if k ≥ 1 then at rate d(x)pk the voter x picks
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k neighbors without replacement. As in the vacillating voter model the voter be-
comes 1 if at least one of the chosen neighbors is a 1, otherwise it becomes 0. In
addition at rate p0, voters change their opinion from 1 to 0.

If p0 = 0 then this model is a variant of the biased voter model. In that system,
a 0 at x changes to 1 at rate λ times n1(x) the number of neighbors of x that are in
state 1, and a 1 at x changes to 0 at rate n0(x) the number of neighbors of x that
are in state 0. If the degree is constant then the behavior of the process is easy to
understand. If we start from finitely many 1’s then the number of 1’s at time t , N1

t

decreases by 1 at a rate equal to Dt the number of (1,0) edges, and increases by
1 at rate λDt . Thus N1

t is a time change of a simple random walk that increases
by 1 with probability λ/(λ + 1) and decreases by 1 with probability 1/(λ + 1).
Using this observation it is easy to show that the critical value for the survival of
1’s λc = 1. In our setting sites do not have constant degree and we have a different
type of bias. This makes things more complicated, and it is hard to get precise
results on the location of phase transitions.

Our process is additive in the sense of Harris [10] and hence can be constructed
on a graphical representation with independent Poisson processes T x,i

n , n ≥ 1, 0 ≤
i ≤ dmin.

• The T x,0
n have rate p0. At these times we write a δ at x that will kill a 1 at the

site.
• The T x,i

n have rate d(x)pi . At time T
x,i
N we write a δ at x that will kill a 1 at

the site. In addition we draw oriented arrows to x from i neighbors y1, . . . , yi

chosen at random without replacement from the set of neighbors. If any of the
yi are in state 1, then x will be in state 1. Otherwise it will be in state 0.

We will often use coordinate notation for the process, i.e., ξt (x) gives the state
of x at time t . However it is also convenient to use the set-valued approach with ξA

t

giving the set of sites occupied by zealots at time t when the initial set of zealots
is A. Intuitively, the process ξA

t can be defined by introducing fluid at the sites
in A. The fluid flows up the graphical representation, being blocked by δ’s, and
flowing across edges in the direction of their orientations. The state at time t , ξA

t

is the set of points that can be reached by fluid at time t starting from some site in
A at time 0.

A nice feature of this construction is that it allows us to define a dual process in
which fluid flows down the graphical representation, is blocked by δ’s and flows
across edges in a direction opposite their orientations. We let ζB,t

s be the points
reachable at time t − s starting from B at time t . It is immediate from the con-
struction that

(1)
{
ξA
t ∩ B �= ∅

} = {
A ∩ ζ

B,t
t �= ∅

}
.

It should be clear from the construction that the distribution of ζB,t
s for 0 ≤ s ≤ t

does not depend on t , so we drop the t and write the duality as

(2) P
(
ξA
t ∩ B �=∅

) = P
(
A ∩ ζB

t �= ∅
)
.
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The dual ζB
t is a coalescing branching random walk (COBRA) with the follow-

ing rules. A particle at x dies at rate p0 and at rate d(x)pk it dies after giving
birth to offspring that occupy k of the neighboring sites chosen at random without
replacement. For more details see Griffeath [9].

In the case p0 = 0 this pair of dual processes has been studied by Cooper,
Radzik, and Rivera [3]. In their situation the zealot voter model is called a bi-
ased infection with a persistent source (BIPS). The phrase persistent source refers
to the fact that the BIPS model has one individual that stays infected forever. Their
main interest is in the cover time for COBRA, i.e., the time for the process to visit
all of the sites. By duality this is related to time for the BIPS to reach all 1’s.

In this paper, when we say that a process survives we mean that with positive
probability it avoids becoming ∅. We say a process survives locally if with positive
probability the root 0 is occupied infinitely many times.

When A = B = {0}, (2) implies

(3) P
(
0 ∈ ξ0

t

) = P
(
0 ∈ ζ 0

t

)
,

so local survival of one process implies local survival of the other. Taking one of
the sets = T and the other = {0} we get

P
(
ξ0
t �= ∅

) = P
(
0 ∈ ζ T

t

)
, P

(
ζ 0
t �=∅

) = P
(
0 ∈ ξTt

)
,

so survival of one process implies that the other has a nontrivial stationary distri-
bution obtained by letting t → ∞ in ζ T

t or ξTt . Our first result is very general.

THEOREM 1. On any tree with degrees 3 ≤ d(x) ≤ M , the zealot voter model
survives if ∑

k≥2

(k − 1)pk − p0 > 0.

The result is proved by comparing the growth of the process at the “fron-
tier” with a branching process. For the definition of frontier, see the text before
Lemma 2.1. Note that the degree distribution does not appear in the condition.

1.1. Results for d-regular trees. Let β = 1 − (d − 1)−2 be the probability that
two independent random walks on the d-regular tree that start at distance two never
hit. See Lemma 3.1 for a proof of this.

THEOREM 2. On a d-regular tree the COBRA dies out if

(4) dβ
∑
k≥2

(k − 1)pk − p0 < 0.

When this holds the zealot voter model does not have a nontrivial stationary dis-
tribution.



THE ZEALOT VOTER MODEL 3131

To explain the condition, note that in the dual, a particle dies at rate p0 and
gives birth to k particles at rate dpk . To get an upper bound on the growth of the
dual (i) we ignore coalescence between individuals that are not siblings, and (ii) if
k particles are born we number them 1,2, . . . , k and ignore coalescence between
particles i > 1 and j > 1. This gives an upper bound on the dual COBRA.

THEOREM 3. If (4) holds then the zealot voter model dies out on a d-regular
tree.

PROOF. Theorem 2 is proved by showing the expected number of particles in
the COBRA, denoted as E|ζ 0

t |, converges to 0 as t → ∞. By symmetry,

E
∣∣ζ 0

t

∣∣ = ∑
x

P
(
x ∈ ζ 0

t

) = ∑
x

P
(
0 ∈ ζ x

t

) ≥ P
(
0 ∈ ζ 1

t

)
,

where ζ 1
t is the COBRA starting with all sites occupied. The last property follows

from the additivity of processes constructed on a graphical representation, i.e., if
A = ⋃

i Ai , a finite or infinite union, then

ξA
t = ⋃

i

ξ
Ai
t .

This implies that if (4) holds then COBRA has no stationary distribution, and by
duality the zealot voter model dies out. �

To study the local survival of our voter model, we use (3) to change the problem
to studying the local survival of the COBRA. Let μ = ∑

k kpk is the mean number
of offspring in the dual process

THEOREM 4. Given a d-regular tree T , the zealot voter model dies out locally
if

μ <
d(1 − p0) + p0

2
√

d − 1
.

If p0 = 0 this is μ < d/(2
√

d − 1).

This result is proved by comparing COBRA with a branching random walk by
ignoring coalescence. The second bound is sharp for the branching random walk
with no death. That is, the corresponding branching random walk visits the root
with positive probability if μ > d/(2

√
d − 1) and that the root is visited finitely

many times if μ < d/(2
√

d − 1). This result can be found in Pemantle and Stacey
[17]. There they studied the branching random walk on trees where each particle
gives birth at a rate λ independently onto each neighbor, and dies at rate 1. Since
our branching process has simultaneous births and deaths we modify their proof
to cover our situation and give the proof in Lemma 4.1.
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To give sufficient conditions for local survival, we follow a tagged particle in
the COBRA. If there is a particle produced on the site closer to the root, we follow
this particle; otherwise we follow a new particle chosen uniformly at random from
the offspring and ignore the rest. The recurrence of the tagged particle implies the
local survival of COBRA. Using this idea leads to a simple proof of a condition
for local survival, but the result is not very accurate.

THEOREM 5. On a d-regular tree the zealot voter model survives locally if
p0 = 0 and μ > d/2.

PROOF. Note that if i is the number of particles produced in a branching event
and qi is the probability all of them going further from to the root then

qi =
(d−1

k

)
(d
k

) = (d − 1)!
k!(d − 1 − k)! · k!(d − k)!

k! = d − k

d
.

Thus if we follow the particle that gets closer to the root then it jumps by −1 with
probability

∑
k

pk

k

d
= μ

d
,

and the tagged particle will be positive recurrent if μ > d/2. �

Our next Theorem, which uses some ideas from the proof of Lemma 4.57 in
Liggett’s 1999 book [15], gives a more precise result.

THEOREM 6. On a d-regular tree the zealot voter model survives locally if
p0 = 0 and

μ >
d√

d − 1 + 1
.

Combining this with Theorem 4, we notice that when p0 = 0 the phase transi-
tion of local survival μl satisfies

μl ∈
[

d

2
√

d − 1
,

d

1 + √
d − 1

]
.

1.2. Results for Galton–Watson trees. In a Galton–Watson process with Z0 =
1 each individual in generation n has an independent and identically distributed
number of children, which are members of generation n + 1. The Galton–Watson
tree is the genealogy of this process. The one member of generation 0 is the root.
Edges are drawn from each individual in generation n to their children. Let pk be
the probability of k children. We have assumed pk = 0 unless 3 ≤ dmin ≤ k ≤ M ,
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so the tree is infinite with probability 1, and all vertices have at most M chil-
dren.

To prove an analogue of Theorem 2, we formulate our model as a voter model
perturbation: let p̄i = εpi when i �= 1 and choose p̄1 to make the p̄i sum to 1.
A random walk that jumps to each neighbor at rate 1 has a reversible stationary
distribution that is uniform on the graph. Let πm be the fraction of vertices in the
tree with degree m, and let μm,k be the expected number of surviving particles in
the dual when we pick k neighbors of a vertex of degree m at random and run the
coalescing random walk to time ∞.

THEOREM 7. Let δ > 0. If ε is small then the COBRA dies out if∑
m

πm

∑
k

kpk(μm,k − 1) − p0 < −δ,

and survives if the last quantity is > δ.

This result can be easily proved using the techniques in [12]. The key idea is
that when ε is small most of the steps in the dual are random walk steps, and the
random walk is transient, so any coalescence occurs soon after branching, and the
dual is essentially a coalescing branching random walk. These ideas go back to
[6], where they were used on Z

d with d ≥ 3. More recent applications include [5,
12, 16]. The zealot voter model has an additive dual, so things are simpler, and we
can use the approach of [8]. In Section 4 we will provide more details about the
method.

REMARK. The last result concerns the survival of the dual, which is the same
as the existence of a nontrivial stationary distribution for the zealot voter model.

Our next result concerns local survival. Given any Galton–Watson tree T GW,
let M denote its maximal degree, and let T M be the tree in which each vertex has
M children. Let μl(G) denote the threshold for local survival of the COBRA on
graph G and let μ̄�(G) be the threshold for local survival of the BRW. Note the
expected number of new born particles at each time are the same on both trees.
Since particles on tree T M have more tendency to move further away from the
root, a simple comparison leads to

μ̄l

(
T GW) ≤ μ̄l

(
T M)

,

where ηt is the BRW without coalescence. The comments under Theorem 4 says
for p0 = 0,

μ̄l

(
T M) = M/(2

√
M − 1).

It follows immediately that
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THEOREM 8. If p0 = 0 and μ < M/(2
√

M − 1) then COBRA and the zealot
voter model both die out locally.

Next we look for conditions implying local survival. On a tree we define the
level �x of a vertex x to be its distance to the root. As on d-regular trees, our strat-
egy is to follow a tagged particle and seek conditions guaranteeing its recurrence.
Let Xt be the location of the tagged particle at time t . If φ is a harmonic function
for the tagged particle process Xt , i.e. φ(Xt) is a martingale, then it follows from
the optional stopping theorem that If T0 is the time to hit the root and TN is the
first time the walk hits a site at level N

(5) φ(1) ≥
(

min
x:lx=N

φ(x)
)
P1(TN < T0),

where the subscript 1 on P indicates that X0 is at level 1. From (5) we see that
if φ(x) goes to ∞ along all paths to ∞ in the tree, then the tagged particles is
recurrent. In order for φ to be a harmonic function

φ(x + 1) − φ(x) = px

1 − px

[
φ(x) − φ(x − 1)

] = μ

d(x) − μ

[
φ(x) − φ(x − 1)

]
,

where px = μ/d(x) is the probability the tagged particle moves closer to the root.
Taking logarithms, then this is

log
[
φ(x + 1) − φ(x)

] = log
[
φ(x) − φ(x − 1)

] + log
[

μ

d(x) − μ

]
.

As we will now explain, there is a natural mapping from the log-increments of
the harmonic function to a branching random walk on R. If we consider a particle
at level x to be at log[φ(x) − φ(x − 1)] on R then d(x) − 1 new particles will be
dispersed to

log
[
φ(x) − φ(x − 1)

] + log
[

μ

d(x) − μ

]
.

As a result along any genealogical path, the distance between two consecutive
generations is i.i.d. with law the same as log[μ/(d(x) − μ)].

This process just described is different from the usual branching random walk
in which children are dispersed independently from their parent. However Biggins
[1] has proved results for more general branching random walks that contain ours
as a special case. Let F(t) = E(ζ(−∞, t]) be the expected number of children that
lie in (−∞, t] and define the Laplace transform of the mean measure by

m(θ) =
∫

e−θt dF (t).

THEOREM 9. If minθ≥0 m(θ) < 1 then the leftmost particle in the branching
random walk goes to ∞. This implies φ goes to ∞ along all paths to ∞ in the tree
and we have local survival.
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FIG. 1. ν(0) as a function of q3. Local survival occurs when q3 ≥ 0.996 for μ = 1.6; q3 ≥ 0.97 for
μ = 1.7; q3 ≥ 0.91 for μ = 1.8; and q3 ≥ 0.82 for μ = 1.9.

To apply this result to our examples, we begin by noting that

m(θ) = ∑
j≥3

qj (j − 1)

(
j − μ

μ

)θ

.

It is not easy to use this formula with Theorem 9 to get explicit predictions, so we
focus on Galton–Watson tree with degrees only 3 and 4. Let μ = 3q3 + 4q4 and

ν(0) = min
θ≥0

m(θ).

We have computed the threshold for various μ in Section 4.3. See also Figure 1.

2. Proof of Theorem 1. There are four steps in the proof.

• We begin by deriving a differential equation for the expected number of occu-
pied sites.

• We define the frontier and the external boundary of a set of occupied sites and
prove lower bounds on their sizes.

• Combining the first two steps we obtain differential equations that lower bound
the number of occupied sites and the size of the frontier.

• We prove Theorem 1 by showing that the set of occupied sites dominates a
supercritical branching walk.

2.1. Step 1: Derivation of the ODE. Let dk(x) = (d(x) − 1) · · · (d(x) −
(k − 1)). Note that dk(x) is the number of ways of picking k − 1 things out of
d(x)−1 when the order of the choices is important. Using x ∗ (k −1) �= yk to indi-
cate that we sum over all ordered choices of k −1 different neighbors y1, . . . , yk−1
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of x that are not �= yk .

d

dt

∑
x

P
(
ξt (x) = 1

)

= −p0
∑
x

P
(
ξt (x) = 1

)

+ ∑
k>1

∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

[
P

(
ξt (x) = 1, ξt (yk) = 0

)

− P
(
ξt (x) = 1, all ξt (yi) = 0

)]
+ ∑

k>1

∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = ξt (yk) = 0, ξt (yi) = 1

for some i < k
)
.

(6)

Note that the second and third terms are ≥ 0.

PROOF. Breaking things down according to the value of k, treating births and
deaths separately, and noting that in the last four terms jumps occur at rate d(x)

d

dt
P

(
ξt (x) = 1

) = −p0P
(
ξt (x) = 1

)
− p1

∑
y∼x

P
(
ξt (x) = 1, ξt (y) = 0

)

+ p1
∑
y∼x

P
(
ξt (x) = 0, ξt (y) = 1

)

− ∑
k>1

∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = 1, ξt (yi) = 0(7)

for all 1 ≤ i ≤ k
)

+ ∑
k>1

∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = 0,

ξt (yi) = 1 for some 1 ≤ i ≤ k
)
.

If we sum over x then the second and third terms cancel. We now fix k and split
the last term into two

= −∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = 1, all ξt (yi) = 0

)
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+ ∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = 0, ξt (yk) = 1

)
(8)

+ ∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = ξt (yk) = 0, ξt (yi) = 1 for some 1 ≤ i < k

)
.

Recalling the definition of dk(x), the first sum can be written as∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = 0, ξt (yk) = 1

)

= ∑
x,yk∼x

pkP
(
ξt (x) = 0, ξt (yk) = 1

)

= ∑
yk,x∼yk

pkP
(
ξt (x) = 0, ξt (yk) = 1

)

= ∑
yk,x∼yk

pk

dk(yk)

∑
yk∗(k−1) �=x

P
(
ξt (x) = 0, ξt (yk) = 1

)
.

Interchanging the role of x and yk , the above

= ∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = 1, ξt (yk) = 0

)
.

Then (8) can be reformulated as

= − ∑
x

pk

dk(x)

∑
x∗k

P
(
ξt (x) = 1, ξt (yi) = 0 for all 1 ≤ i ≤ k

)

+ ∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = 1, ξt (yk) = 0

)

+ ∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = ξt (yk) = 0, ξt (yi) = 1 for some i < k

)
.

Combining the first two summations and summing over k > 1 gives the desired
result. �

2.2. Step 2: Frontier lower bounds. Pick a vertex from the tree to be the root
and call it x0. Given a vertex x in the tree we say that x′ is a child of x if it is
a neighbor of x and further away from the root than x is. We define the subtree
generated by x′, S(x′), to be all of the vertices that can be reached from x′ without
going through x. By definition, x′ ∈ S(x′). For any finite set on the tree A, define
its frontier F(A) as the set of sites x ∈ A that have a child x′ such that the subtree
S(x′) ∩ A = ∅ and define the exterior boundary of A, H(A) to be the set of all
such children x′. That is, x′ ∈ H(A) if and only if S(x′) ∩ A = ∅ and the parent
of x′ is in F(A). to help visualize the definitions, see Figure 2. Our next step is to
lower bound the sizes of the sets we just defined.
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FIG. 2. For simplicity we have only drawn the edges from vertices within distance 3 of the root that
are relevant to the definitions. • indicates sites in A. All the •s are in F(A)r except for x1. ∗s mark
the points in H(A).

LEMMA 2.1. |H(A)| ≥ |A| and |F(A)| ≥ |A|/(M − 1).

PROOF. We prove the first result by induction on the cardinality of |A|. If
|A| = 1, the result is trivial as |H(A)| ≥ d(x)− 1 ≥ 2. Suppose now that the result
is true for all B with |B| ≤ n − 1 and let |A| = n. Let x ∈ A be the point with the
largest distance to the root and let B = A\ {x}. Then by induction |H(B)| ≥ n−1.
Since none of the descendents of x are in A, but x might be in H(B).∣∣H(A)

∣∣ ≥ ∣∣H(B)
∣∣ − 1 + d(x) − 1 ≥ (n − 1) − 1 + 2 = n.

The second result follows from the first since |H(A)| ≤ (M − 1)|F(A)|. �

2.3. ODE lower bounds. Let At = {x : ξt (x) = 1}. Our next step is

LEMMA 2.2. Let γ = −p0 + ∑
k pk(k − 1) (which is > 0 by assumption).

d

dt
E|At | ≥ γE|At |.

PROOF. Let lx be the distance of x from the root. The expression on the second
line in (6) is ≥ 0. The third line is

= ∑
x,yk∼x

pk

dk(x)

∑
x∗(k−1) �=yk

P
(
ξt (x) = ξt (yk) = 0, some ξt (yi) = 1

)

≥ E
∑

x∈H(At ),lyk
>lx

pk

dk(x)

∑
yi∈F(At ) for some 1≤i≤k−1

1
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= E
∑

x∈H(At ),lyk
>lx

pk

dk(x)
· (

d(x) − 1
) · (k − 1) ·

(
d(x) − 2

k − 1

)

= (k − 1)pkE
∣∣H(At)

∣∣ ≥ (k − 1)pk|At |.
In the third line, d(x) − 1 gives the choices for yk . k − 1 is because we have
k − 1 choices from y1, . . . , yk−1 to be on the frontier. Suppose y1 is chosen to be
in the frontier, then the number of choices for y2, . . . , yk−1 is

(d(x)−2
k−1

)
. The final

inequality comes from Lemma 2.1. �

Choose a neighbor x1 of the root x0. (See Figure 2 for a picture.) Set all the sites
outside of S(x1) ∪ {x0} to be always equal to 0. Let ξ̄t be the process restricted to
S1 ≡ S(x1) ∪ {x0}. Let

Āt = {
x : ξ̄t (x) = 1

}
, A∗

t = Āt ∩ S(x1),

H ∗(Āt ) = H(Āt ) ∩ S(x1), F ∗(Āt ) = F(Āt ) ∩ S(x1).

LEMMA 2.3.
d

dt
E|Āt | ≥ γE|Āt | − (γ + 1)(M − 1).

PROOF. We repeat the proof of Lemma 2.2. The differential equation in (7)
remains valid but when we make the transition to (8) there is a term with k = 1
that does not cancel:

−p1
[
d(x0) − 1

]
P

(
ξ̄t (x0) = 1

)
.

Note that if x0 ∈ Āt , then x2, . . . , xd(x0) ∈ H(Āt ) so∣∣H ∗(Āt )
∣∣ ≥ ∣∣H(Āt )

∣∣ − [
d(x0) − 1

] ≥ |Āt | − (
d(x0) − 1

)
,

where the last inequality follows from Lemma 2.1. Using d(x0) ≤ M the desired
result follows. �

Let L = 2(γ + 1)(M − 1)/γ . Lemma 2.3 implies that once E|Āt | ≥ L it grows
exponentially with rate ≥ α = (γ + 1)(M − 1).

LEMMA 2.4. There exists ε0 > 0 such that

(9) P
(|Ā1| ≥ L

) ≥ ε0

for all trees T with 3 ≤ dmin ≤ d(x) ≤ M .

PROOF. Let GL be the event that at time 1 there is an occupied path from
the root x0 to distance L − 1. It is easy to see that there exists ε0 > 0 such that
P(GL) ≥ ε0 for all trees T with 3 ≤ dmin ≤ d(x) ≤ M . To see this note that the
worst case occurs when all sties have degree 3 but offspring are sent across an edge
with probability 1/M . �
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LEMMA 2.5. There exists t0 > 0 such that

(10) E
∣∣F ∗(Āt0)

∣∣ ≥ 2

for all trees with 3 ≤ dmin ≤ d(x) ≤ M .

PROOF. Conditioning on {|Āt | ≥ L} it follows that for all trees with 3 ≤
dmin ≤ d(x) ≤ M .

E|Āt | ≥ ε0e
α(t−1)].

Now |F ∗(Āt )| ≥ |F(Āt )| − 1 with equality if x0 is in state 1, so by Lemma 2.1

∣∣F ∗(Āt )
∣∣ ≥ ∣∣F(Āt )

∣∣ − 1 ≥ 1

M − 1
|Āt | − 1,

and the desired result follows. �

2.4. Step 4: Lower bounding BRW. Now define a lower bounding branch-
ing random walk Zn. Let Z0 = {x0}, where x0 is the root. Let Z1 = F ∗(Āt0) =
F(Āt0) ∩ S(x1). Inductively, given Zn, note that for any x ∈ Zn, x has a child
x′ such that S(x′) ∩ Ānt0 = ∅. Let F ∗(Āx,0

t0
) be the children of x, where the

superscript 0 means that to obtain Ā
x,0
t , we enforce 0-boundary condition on

sites above x. Hence all the neighbors of x except for x′ are in state 0 during
[nt0, (n + 1)t0]. Therefore all Ā

x,0
t ∀x ∈ Zn are independent and E|F ∗(Āx,0

t0
)| >

1 ∀x ∈ Zn by Lemma 2.4. Define the n + 1 th generation by

Zn+1 = ⋃
x∈Zn

F ∗(
Ā

x,0
t0

)
.

LEMMA 2.6. There exists Cv > 0 such that for all trees T with 3 ≤ d(x) ≤ M

for all x

E[Zn+1|Zn] ≥ 2Zn,(11)

Var(Zn+1|Zn) ≤ CvZn.(12)

PROOF. Given any tree T , note that Zn+1 = ⋃
x∈Zn

F ∗(Āx
t0
) and F ∗(Āx

t0
) ∩

F ∗(Āy
t0
) =∅ if x �= y. Then

(13) E[Zn+1|Zn,T ] = ∑
x∈Zn

E
[∣∣F ∗(

Āx
t0

)∣∣|Zn,T
]
> (1 + ε)Zn.

To prove (12), let ηt be a branching process where η0 = 1 and every particle gives
a birth at rate M without death. Then given any tree, |Āt | is stochastically bounded
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by |ηt |. So now, let T x denote the subtree consisting of x and its descendents. By
independence

var(Zn+1|Zn,T ) = ∑
x∈Zn

var
(∣∣Āx,0

t0

∣∣|T x)

≤ ∑
x∈Zn

E
[∣∣Āx,0

t0

∣∣2|T x]

≤ ∑
x∈Zn

E|ηt0 |2 = CvZn.

Since T is arbitrary, we have completed the proof. �

The next Lemma completes the proof of Theorem 1.

LEMMA 2.7. With positive probability

(14) lim inf
n→∞

Zn

(3/2)n
≥ 1.

PROOF. First by Lemma 2.6 and Chebyshev’s Inequality,

P
(
Zn+1 < (3/2)n+1|Zn ≥ (3/2)n

)
≤ P

(∣∣Zn+1 − E[Zn+1|Zn]
∣∣ > Zn/2|Zn ≥ (3/2)n

)
≤ E

(
CvZn

(Zn/2)2

∣∣∣Zn ≥ (3/2)n
)

≤ 4Cv · (2/3)n ≡ δn.

Pick n0 large enough so that δn0 < 1. It follows from the proof of Lemma 2.4 that
P(Zn0 ≥ (3/2)n0) > 0. Since δn is decreasing, we have

P

(
lim inf
n→∞

Zn

(3/2)n
≥ 1

∣∣∣Zn0 ≥ (3/2)n0

)
≥

∞∏
n=n0

(1 − δn) > 0

which proves the desired result. �

3. Results for d-regular trees.

3.1. Extinction. The first result is elementary but a proof is included for com-
pleteness.

LEMMA 3.1. Let h(x) be the probability two continuous time random walks
separated by x on a d-regular tree will hit.

h(x) =
(

1

d − 1

)x

.
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PROOF. If the two particles are at distance x > 0 then the probability they are
at distance x + 1 after the first jump is (d − 1)/d , while they are at distance x − 1
with probability 1/d .

(
1

d − 1

)x

= d − 1

d

(
1

d − 1

)x+1
+ 1

d

(
1

d − 1

)x−1

= 1

d

(
1

d − 1

)x

+ d − 1

d

(
1

d − 1

)x

=
(

1

d − 1

)x

i.e., if Xt is the distance between two coalescing random walks on a d-regular tree
then ((d −1)−Xt is a martingale. Since h(0) = 1, h(x) ≤ 1 for x ≥ 0 and h(x) → 0
as x → ∞ the desired result follows from the optional stopping theorem. �

Let β be the probability two newborn particles in the dual do not coalesce. Since
two newborn particles are at distance two from each other

β = 1 − 1

(d − 1)2 .

THEOREM 2. On a d-regular tree the COBRA dies out if

dβ
∑
k≥2

(k − 1)pk − p0 < 0.

PROOF. In COBRA, a particle dies at rate p0 and gives birth to k particles at
rate dpk . To make the dual process more like a branching random walk, when a
particle dies and gives birth to a positive number of particles, we declare that the
particle did not die but jumped to the location of particle 1. If no offspring were
produced then the particle dies. To get an upper bound on the growth of the dual
(i) we ignore coalescence between the lineages that are not siblings, and (ii) if k

particles are born we ignore coalescence between particles i > 1 and j > 1. Note
that particles 2, . . . , k each have probability at least β of not coalescing with 1.
Thus the expected number of the particles that do not coalesce with 1 is (k − 1)β .
If we use η0

t to denote the resulting system starting from a single particle then

d

dt
Eη0

t =
[
−p0 + d

∑
k

pk(k − 1)β

]
Eη0

t .

It is immediate that if dβ
∑

k≥2(k − 1)pk − p0 < 0 then E|ζ 0
t | ≤ E|η0

t | → 0. �
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3.2. Local survival. Recall that μ = ∑
k kpk is the mean number of offspring

in the dual.

THEOREM 4. Given a d-regular tree T , the zealot voter model dies out locally
if

(15) μ <
d(1 − p0) + p0

2
√

d − 1
.

If p0 = 0 this is μ < d/(2
√

d − 1).

PROOF. Using a superscript 0 to denote the process starting with only the root
occupied, we need to show

(16) P
(
ξ0
t ∩ {0} �= ∅

) −→ 0 as t → ∞.

By duality,

(17) P
(
ξ0
t ∩ {0} �= ∅

) = P
(
ζ 0
t ∩ {0} �=∅

)
.

Let η0
t ⊃ ζ 0

t be the BRW in which particles die at rate p0 and at rate dpk die and
give birth onto k neighbors chosen without replacement.

LEMMA 3.2. Let m(t, x) = Eη0
t (x) be the expected number of particles on

site x at time t . Then m(t, x) satisfies the equation

d

dt
m(t, x) = −αm(t, x) + ∑

y∼x

m(t, y)μ where α = d(1 − p0) + p0.

The solution is given by

(18) m(t, x) = e(μ−α)dtP
(
S0

t = x
)
,

where S0
t is the random walk on tree T starting from the root that jumps at rate

dμ to a neighbor chosen uniformly at random.

PROOF. To check (18), note that using RHS for the right-hand side of the
equation

d

dt
RHS = (μ − α)de(μ−α)dtP

(
S0

t = x
)

+ e(μ−α)dt

[
−dμP

(
S0

t = x
) + ∑

y∼x

dμ × 1

d
P

(
S0

t = y
)]

= −αde(μ−α)dtP
(
S0

t = x
) + ∑

y∼x

μe(μ−α)dtP
(
S0

t = y
)

= −αm(t, x) + ∑
y∼x

m(t, y)μ

which gives the desired result. �
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Let Xt = |S0
t | be the distance from the root. We couple Xt to a simple random

walk X̂t on Z that jumps to the left at rate μ and to the right at rate (d − 1)μ by
using the following recipe: X̂t follows the move of Xt if Xt �= 0; when Xt jumps
from 0 to 1, X̂t jumps to the left with probability 1/d . Clearly,

X̂t ≤ Xt ∀t ≥ 0

and hence

(19) P
(
S0

t = 0
) = P(Xt = 0) ≤ P(X̂t ≤ 0).

Note that if θ ≤ 0 then

P(X̂t ≤ 0) ≤ EeθX̂t

=
∞∑

k=0

e−dμt · (dμt)k

k!
(

1

d
e−θ + d − 1

d
eθ

)k

= exp
{
−dμt

[
1 −

(
1

d
e−θ + d − 1

d
eθ

)]}

= exp
{−μt

[
d − (

e−θ + (d − 1)eθ )]}
.

To optimize this bound we maximize the term in square brackets. To do this, we
set

0 = d

dθ

[
d − (

e−θ + (d − 1)eθ )] = e−θ − (d − 1)eθ .

Solving we have e2θ = 1/(d − 1) or eθ = 1/
√

d − 1, which leads to the bound

P(X̂t ≤ 0) ≤ exp
{−(d − 2

√
d − 1)μt

}
.

Using this with (18) and (19) we have

m(t,0) = e(μ−α)dtP
(
S0

t = 0
)

≤ exp
{[(

d − (d − 2
√

d − 1)
)
μ − dα

]
t
}

= exp
{
(2

√
d − 1μ − dα)t

}
.

Since α = p0 + d(1 − p0) our assumption (15) implies the exponent is negative.
We have completed the proof. �

THEOREM 6. On a d-regular tree the zealot voter model survives locally if

p0 = 0 and μ >
d√

d − 1 + 1
.
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PROOF. Choose a self-avoiding path {en,−∞ < n < ∞} in T d such that e0 =
0 is the root and |en − en+1| = 1. This gives an embedding of Z into T d . Now
define

u(n) = P(en ∈ ζt for some t)

for n ≥ 0. By the strong Markov property, for all n,m ≥ 0

u(n + m) ≥ u(n)u(m)

i.e., the sequence is supermultiplicative. This implies that

β(μ) ≡ lim
n→∞

[
u(n)

]1/n = sup
m≥1

[
u(m)

]1/m
.

Let S(e0) denote the subtree starting from e0 that does not include e−1. Consider
a lower bound ζ̄t on the dual COBRA where births are only allowed in S(e0). Our
next step is to state a result from the contact process. This is Lemma 4.53 in [15]
but the proof also works for our COBRA. �

LEMMA 3.3.

(20) lim
n→∞

[
sup

t
P (en ∈ ζ̄t )

]1/n = β(μ).

Since ζ̄t ⊂ ζt , the desired result follows from the next two Lemmas.

LEMMA 3.4. If β(μ) > 1/
√

d − 1, then inft P (e0 ∈ ζ̄t ) > 0.

LEMMA 3.5. If μ > d/(
√

d − 1 + 1), then β(μ) > 1/
√

d − 1.

PROOF OF LEMMA 3.4. The proof here is almost identical to the one on pages
99–100 of Liggestt [15]. According to Lemma 3.3 and our assumption, we can fix
constants a > 1/

√
d − 1, n ≥ 1 and s > 0 such that

(21) P(en ∈ ζ̄s) = an.

We now follow the proof of Proposition 4.57 in Liggett [15] to construct an embed-
ded branching process. Let B0 = {e} and B1 = {x ∈ ζ̄s : |x − e| = n}. We ignore all
the births outside S(x) and apply the same rules leading from B0 to B1 to obtain a
random subset B(x) of {y ∈ S(x) ∩ ζ̄2s : |y − e| = 2n}. Let B2 = ⋃

x∈B1
B(x). We

repeat the same rule to construct a branching process Bj . Note Bj ⊂ ζ̄js . Moreover
Bj is supercritical since by (21) the offspring distribution has mean (d−1)nan > 1.
Then

lim
j→∞

|Bj |
((d − 1)nan)j
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exists and is positive with positive probability. As a result, we can find an ε such
that for all sufficiently large j ,

P
(|Bj | > ε

(
(d − 1)a

)nj )
> ε.

We will show particles from the subchain {Bji}∞i=0’s are sufficient to make the
process survive locally. Since it takes time ijs to get to Bji , we let

(22) ri = P(0 ∈ ζ̄2ijs).

It follows from the strong Markov property that

(23) ri+1 ≥ P(x ∈ ζ̄2(i+1)js for some x ∈ Bj)P (enj ∈ ζ̄js).

Let �y� be the largest integer ≤ y and let N = �ε((d − 1)a)nj�. This is

≥ P
(|Bj | > N

)[
1 − (1 − ri)

N ]
P(enj ∈ ζ̄js)

≥ ε
[
1 − (1 − ri)

N ]
P(enj ∈ ζ̄js).

(24)

Using the strong Markov property on the last probability gives

(25) P(enj ∈ ζ̄js) ≥ [
P(en ∈ ζ̄s)

]j = anj .

Let f (r) = ε[1 − (1 − r)N ]anj . Combining (24), (25) and (23) gives

ri+1 ≥ f (ri).

Note f (r) is increasing over [0,1] with f (0) = 0. Moreover, f ′(r) = εanjN(1 −
r)N−1. So using the definition of N ,

f ′(0) = εanjN

≥ εanj [
ε
(
(d − 1)a

)nj − 1
]

= ε2[
a2(d − 1)

]nj − εanj .

Since a > 1/
√

d − 1 this is > 1 if j is chosen large enough. Thus f (r) has a fixed
point r∗ ∈ (0,1]. We will prove by induction that

(26) ri ≥ r∗, ∀i.

When i = 0, the inequality is trivial since r0 = 1. Suppose ri ≥ r∗. By the mono-
tonicity of f (r), we have

ri+1 ≥ f (ri) ≥ f
(
r∗) = r∗.

To generalize (26) to all time t . Note particles die at rate d . Precisely

P(e ∈ ζ̄t |e ∈ ζ̄2ijs) ≥ e−d(t−2ijs).

In particular

P(e ∈ ζ̄t ) ≥ e−djsri, if 2ijs < t < 2(i + 1)js.

We have completed the proof. �
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PROOF OF LEMMA 3.5. Consider a simple random walk on Z which takes
steps ⎧⎪⎨

⎪⎩
+1 with probability

d − μ

d
,

−1 with probability
μ

d
.

Repeating the proof of Lemma 3.1 shows that φ(x) = (
μ

d−μ
)x is a martingale. The

stopping time theorem for martingales shows

Pn(T0 < ∞) =
(

μ

d − μ

)n

.

Note

P(en ∈ ζt for some t > 0) ≥ Pen(Te < ∞) ≥
(

μ

d − μ

)n

,

where the second one is the probability that the COBRA initiated at en ever visits
the root. Then [

u(n)
] 1

n ≥ μ

d − μ
.

Since μ > d√
d−1+1

, by assumption we have

β(μ) = lim
n→∞

[
μ(n)

]1/n

≥ d

d − μ
− 1

>
d

d − d/(
√

d − 1 + 1)
− 1 = 1√

d − 1

which completes the proof of Lemma 3.5 and hence the proof of Theorem 6. �

4. Results for Galton–Watson trees.

4.1. Survival of COBRA. We will now prove Theorem 7. To lead up to that
we will describe the proof of the main result in [8] in dimensions d ≥ 3. The
model under consideration there is a biased voter model with small bias. Jumps at
x from 0 → 1 occur at rate (1 + ε)f1(x), where fi(x) is the fraction of neighbors
in state i, while jumps from 1 → 0 occur at rate f0(x). Suppose for concreteness
that the neighborhood consists of the 2d nearest neighbors. As in the case of the
zealot voter model the process is additive in the sense of Harris [10] and can be
constructed from a graphical representation with independent Poisson processes,
T x,i

n , n ≥ 1 for i = 1,2. Let e1, . . . , e2d be an enumeration of the nearest neighbors
of 0.
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• The T x,1
n have rate 1 and have associated independent random variables Ux,1

n

that are uniform on {1,2, . . . ,2d}. At time T x,i
n we write a δ at x that will kill a

1 at x and draw an arrow from x + e(Ux,i
n ) to x. By considering the four cases

for the states of x + e(Ux,i
n ) and x we can easily check that this gadget causes x

to imitate its neighbor.
• The T x,2

n have rate ε and have associated independent random variables Ux,2
n

that are uniform on {1,2, . . . ,2d}. At time T x,i
n we draw an arrow from x +

e(Ux,i
n ) to x which will cause x to be 1 if x + e(Ux,i

n ) is.

Since branching occurs at rate ε in dual, the suggests that we should run time at
rate 1/ε and scale space by 1/

√
ε to mkae the dual process converge to a branching

Brownian motion. One complication is that new born particles will coalesce with
their parent with a probability γ which is the probability a random walk started at
e1 returns to 0. It is not hard to show that the probability such a coalescence will
occur after time 1/

√
ε tends to 0. Thus in order for the sequence of processes to

be tight, we do not add the newly born particle until time 1/
√

ε has elapsed. Other
estimates in the proof show that it is unlikely for a particle to coalesce with another
particle that is not its parent, so the sequence of rescaled processes converges to a
branching random walk in which new particle are born at rate γ .

In [8] this observation is combined with a block construction to prove the exis-
tence of a stationary distribution in a “hybrid zone” in which the process on x1 ≥ 0
is a biased voter model that favors 1 and on x1 < 0 the process is a biased voter
model favoring 0. Things are simpler for the zealot voter model on trees. If we only
want to prove survival of the dual it is enough to prove that when time is run at
rate 1/ε the size of the dual converges to a supercritical branching process. Taking
into account the fraction of time a random walk spends at vertices of degree k we
arrive at:

THEOREM 7. Let δ > 0. If ε > 0 is small enough then the COBRA dies out if∑
k

pk(μm,k − 1) − p0 < −δ,

and survives if the last quantity is > δ.

4.2. Local survival.

4.2.1. Proof of Theorem 8. Since the branching random walk gives an upper
bound for the COBRA, it suffices to show

LEMMA 4.1. If p0 = 0, then on a d-regular tree, the threshold for the local
survival of η0

t satisfies

μl

(
T d) = d/(2

√
d − 1),

where η0
t is the branching random walk starting with 1 particle at the root.
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To prove this result, define M(v,n) to be the number of oriented loops of
length n starting from vertex v. It is well-known that the limit L = limn→∞ M(v,

2n)1/2n = supn→∞ M(v,2n)1/2n exists for all graphs, independent of the choice
of vertex. This follows from a simple supermultiplicativity argument. Further-
more, define an evolutionary walk from vertex u to vertex v to be a sequence
0 ≤ T

x0,i0
n0 < T

x1,i1
n1 < · · · < T

xm,im
nm < ∞ with x0 = u, xm = v. Precisely, this cor-

responds to a path in the graphical representation such that the fluid can flow from
u to v. By definition, for a fixed path of length n on the tree, the expected number
of evolutionary walks on this path is (μ/d)n. This is because when a branching
event occurs, the expected number of particles landing on a certain neighbor is
μ/d . We will show

LEMMA 4.2. Suppose L = limn→∞ M(v,2n)1/2n. Then μl(T d) = d/L.

PROOF. Let Xn be the number of evolutionary walks of length n starting and
ending at the root e0. Note {X2nk} dominates a branching process with offspring
distribution given by Xn. In particular,

EXn ≥ (μ/d)2nM(e0,2n).

So if μ > d/L, this branching process is supercritical if n is sufficiently large.
Choose n so that the above expectation is > 1. Note ∀T > 0, the expected number
evolutionary walks of length n by time T is

≤ �(d,n) = dn

(n − 1)!
∫ T

0
e−ssn−1 ds ≤ (dT )n

n! .

The �(d,n) comes from a sum of n exponential distributions with parameter d .
Note this is summable with respect to n. By Borel–Cantelli Lemma, the maximal
length of evolutionary walks within any finite time T is bounded and thus the root
has to be visited infinitely often. For the other direction, note the expected number
of evolutionary walks traversing e0 is bounded by

∞∑
n=1

(μ/d)nM(e0, n) < ∞, if μ < d/L.

The proof is complete. �

PROOF OF LEMMA 4.1. It remains to compute L. This is given by Pemantle
and Stacey [17]. To summarize, note for an oriented loop of length 2n, n steps are
up (i.e. closer to e0) n steps are down. At each step, there are d − 1 choices to
move farther away. Hence

M(0,2n) =
(

2n

n

)
(d − 1)n.

Use Stirling formula the desired result follows. �
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4.2.2. Condition for local survival. We will now prove Theorem 9. In what
follows, assume p0 = 0. Let px = μ/d(x) be the probability that the particle at x

will be replaced by a child moving closer to the root. Define a harmonic function
depending on the distance to the root by

(27) φ(x) = pxφ(x − 1) + (1 − px)φ(x + 1).

Note (27) is equivalent to

φ(x + 1) − φ(x) = px

1 − px

[
φ(x) − φ(x − 1)

]

= μ

d(x) − μ

[
φ(x) − φ(x − 1)

]
.

Suppose 0 = x0, x1, . . . , xn = x is the path from the root to x. We have

φ(xn) − φ(xn−1) =
n−1∏
k=1

μ

d(xk) − μ

[
φ(x1) − φ(0)

]
.(28)

This recursion allows us to impose function φ(x) on each vertex x ∈ G(V,E). By
Theorem 6.4.8 in [7], if φ(x) → ∞ for all lx → ∞ then the dual survives locally.
However, it is more convenient to pursue conditions such that the log increment
log[φ(x) − φ(x − 1)] → ∞ instead as we will see later.

Taking log of the recursion formula (28) gives

log
[
φ(xn) − φ(xn−1)

] = log
[
φ(x1) − φ(0)

] +
n−1∑
k=1

log
μ

d(xk) − μ
.

Suppose the Galton–Watson tree has degree distribution {qj }. Now consider
a branching random walk on R which has an initial particle at the origin. With
probability qj , it gives birth to j − 1 particles at log μ

j−μ
and this forms a point

process Z. The location of the first generation is denoted as {z1
r } where r is the

index of each individual. For each particle x in the first generation, it generates
new particles in a similar way. The location of its children has the same distribution
as {z1

r + x}. We obtain the second generation by taking all the children of the
first generation. Let {z2

r } be the locations of the second generation. The following
generations are produced under the same manner. Denote {zn

r } as the location of
the nth generation individuals. Let F(t) = E[Z(−∞, t]] be the expected number
of points in Z to the left of t . Define

m(θ) =
∫ ∞
−∞

e−θt dF (t) = ∑
j≥3

qj (j − 1)

(
j − μ

μ

)θ

.

To avoid notational confusion, we use ν(a) = inf{eθam(θ) : θ ≥ 0}. This is
(2.1) defined in [1]. It follows from Corollary (3.4) in [1] that ν(0) < 1 implies
log[φ(x) − φ(x − 1)] → ∞ for all lx → ∞. Hence ν(0) < 1 is a sufficient condi-
tion for local survival.
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REMARK. On the d-regular tree,

m(θ) = (d − 1)

(
d − μ

μ

)θ

.

Then v(0) < 1 iff μ > d/2, which gives another proof of Theorem 5.

4.3. Degree = 3 and 4. Our recursion is

φ(x+) − φ(x) = μ

d(x) − μ

(
φ(x) − φ(x−)

)
.

Here x− is neighbor closer to root and x+ is any neighbor further away.

m(θ) = 2q3

(
3 − μ

μ

)θ

+ 3q4

(
4 − μ

μ

)θ

,(29)

m′(θ) = 2q3

(
3 − μ

μ

)θ

log
(

3 − μ

μ

)
+ 3q4

(
4 − μ

μ

)θ

log
(

4 − μ

μ

)
.(30)

Reacall ν(0) = min{m(θ) : θ ≥ 0}.

4.3.1. μ > 2. Since μ/(3−μ) and μ/(4−μ) are both > 1, φ(xn) → ∞ along
any path xn → ∞, so the process survives strongly.

4.3.2. μ ≤ 3/2. Since μ/(3 − μ) and μ/(4 − μ) are both < 1, φ(xn) → 0
along any path xn → ∞. However this only tells us that the proof fails.

4.3.3. 3/2 < μ ≤ 2. Case 1. Note that if 2q3 > 1 there is a path to ∞ (which
may not start at the root) along which we take the products of μ/(3−μ) and hence
φ(xn) → 0, so the proof fails.

Case 2. (4 − μ)/μ > (3 − μ)/μ so if

m′(0) = 2q3 log
(

3 − μ

μ

)
+ 3q4 log

(
4 − μ

μ

)
> 0

then m′(θ) > 0 for all θ > 0 and the minimum occurs at 0. m(0) = 2q3 + 3q4 ≥ 2,
so again the proof fails. Let q3 = p and q4 = 1 − p. For fixed μ, m′(0) is linear in
p so the condition holds when

p < pc = 3 log((4 − μ)/μ)

3 log((4 − μ)/μ) + 2 log(μ/(3 − μ))
.

See Figure 3 for various μ.
Case 3. If m′(0) < 0 then a minimum at θ̄ > 0 exists. Using (30) we want

2q3

(
3 − μ

μ

)θ

log
(

μ

3 − μ

)
= 3q4

(
4 − μ

μ

)θ

log
(

4 − μ

μ

)
.
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FIG. 3. Local survival is possible only if μ′(0) < 0. This is q3 > 0.85 for μ = 1.6; q3 > 0.65 for
μ = 1.7; q3 > 0.45 for μ = 1.8 and q3 > 0.25 for μ = 1.9.

Cross multiplying

(
4 − μ

3 − μ

)θ

= 2q3 log(μ/(3 − μ))

3q4 log((4 − μ)/μ)
.

Let A be the numerator and B be the denominator of the fraction. m′(0) < 0 im-
plies A > B . The LHS is 1 at θ = 0 and increases → ∞ as θ → ∞ so a solution
exists. Taking logs

θ log
(
(4 − μ)/(3 − μ)

) = log(A) − log(B),

so we have

(31) θ̄ = log(A) − log(B)

log((4 − μ)/(3 − μ))
.

There does not seem to be a good formula for m(θ̄). To compute it numerically,
we choose μ = 1.6,1.7,1.8 and 1.9 for

ν(0) = m(θ̄) = 2q3 exp(θ̄ log
(
(3 − μ)/μ

) + 3q4 exp(θ̄ log
(
(4 − μ)/μ

)
.

Table 1 shows that the phase transition occurs at q3 = 0.996,0.97,0.91 and
0.82, respectively.
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TABLE 1
Values of m(θ̃). The critical value occurs in each column where the curve crosses 1, which occurs

between the two boldface numbers

q3 μ = 1.6 μ = 1.7 μ = 1.8 μ = 1.9

0.8 2.2 2.014149722 1.597069414 1.074539921
0.81 2.19 1.979137551 1.549560204 1.030929768
0.82 2.179999993 1.942042353 1.500601354 0.9867499619
0.83 2.169035962 1.902724759 1.450116162 0.941977346
0.88 2.079229445 1.666138794 1.171184237 0.708137684
0.89 2.052259329 1.608953028 1.109102792 0.659079066
0.9 2.021286727 1.547575636 1.044453965 0.609119574
0.91 1.985646496 1.481425138 0.976943138 0.558174592
0.92 1.944464056 1.409753116 0.906197761 0.506138592
0.93 1.896552634 1.331568175 0.831734216 0.452876792
0.94 1.840236437 1.245508443 0.752903513 0.398211752
0.95 1.773023132 1.14961228 0.668796138 0.341900422
0.96 1.690934707 1.040865809 0.578059943 0.283591365
0.97 1.586938026 0.914185487 0.478505588 0.222735055
0.98 1.446391322 0.759622966 0.366073412 0.158358633
0.99 1.227510494 0.551306428 0.23102478 0.088284998
0.995 1.037752234
0.996 0.98268267
0.997 0.915774891
0.998 0.828879261

REFERENCES

[1] BIGGINS, J. D. (1977). Chernoff’s theorem in the branching random walk. J. Appl. Probab. 14
630–636. MR0464415

[2] CHATTERJEE, S. and DURRETT, R. (2013). A first order phase transition in the threshold
θ ≥ 2 contact process on random r-regular graphs and r-trees. Stochastic Process. Appl.
123 561–578. MR3003363

[3] COOPER, C., RADZIK, T. and RIVERA, N. (2016). The coalescing random walk on expanders
and the dual epidemic process. Available at arXiv:1602.05768v1.

[4] COX, J. T. and DURRETT, R. (1991). Nonlinear voter models. In Random Walks, Brow-
nian Motion, and Interacting Particle Systems. Progress in Probability 28 189–201.
Birkhäuser, Boston, MA. MR1146446

[5] COX, J. T. and DURRETT, R. (2016). Evolutionary games on the torus with weak selection.
Stochastic Process. Appl. 126 2388–2409. MR3505231

[6] COX, J. T., DURRETT, R. and PERKINS, E. A. (2013). Voter Model Perturbations and Reac-
tion Diffusion Equations. Astérisque 349. Also available at arXiv:1103.1676. MR3075759

[7] DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Series in Statisti-
cal and Probabilistic Mathematics 31. Cambridge Univ. Press, Cambridge. MR2722836

[8] DURRETT, R. and ZÄHLE, I. (2007). On the width of hybrid zones. Stochastic Process. Appl.
117 1751–1763. MR2437727

[9] GRIFFEATH, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes
in Math. 724. Springer, Berlin. MR0538077

http://www.ams.org/mathscinet-getitem?mr=0464415
http://www.ams.org/mathscinet-getitem?mr=3003363
http://arxiv.org/abs/arXiv:1602.05768v1
http://www.ams.org/mathscinet-getitem?mr=1146446
http://www.ams.org/mathscinet-getitem?mr=3505231
http://arxiv.org/abs/arXiv:1103.1676
http://www.ams.org/mathscinet-getitem?mr=3075759
http://www.ams.org/mathscinet-getitem?mr=2722836
http://www.ams.org/mathscinet-getitem?mr=2437727
http://www.ams.org/mathscinet-getitem?mr=0538077


3154 R. HUO AND R. DURRETT

[10] HARRIS, T. E. (1976). On a class of set-valued Markov processes. Ann. Probab. 4 175–194.
MR0400468

[11] HOLLEY, R. A. and LIGGETT, T. M. (1975). Ergodic theorems for weakly interacting systems
and the voter model. Ann. Probab. 4 195–228.

[12] HUO, R. and DURRETT, R. (2018). Latent voter model on locally tree-like random graphs.
Stochastic Process. Appl. 128 1590–1614. MR3780690

[13] LAMBIOTTE, R. and REDNER, S. (2007). Dynamics of vacillating voters. J. Stat. Mech.
L10001. Available at arXiv:0710.0914.

[14] LIGGETT, T. M. (1994). Coexistence in threshold voter models. Ann. Probab. 22 764–802.
MR1288131

[15] LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-
cesses. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences] 324. Springer, Berlin. MR1717346

[16] MA, R. and DURRETT, R. (2018). A simple evolutionary game arising from the study of the
role of IGF-II in pancreatic cancer. Ann. Appl. Probab. 28 2896–2921. MR3847976

[17] PEMANTLE, R. and STACEY, A. M. (2001). The branching random walk and contact process
on Galton–Watson and nonhomogeneous trees. Ann. Probab. 29 1563–1590. MR1880232

[18] STURM, A. and SWART, J. (2008). Voter models with heterozygosity selection. Ann. Appl.
Probab. 18 59–99. MR2380891

[19] SWART, J. M. and VRBENSKÝ, K. (2010). Numerical analysis of the rebellious voter model.
J. Stat. Phys. 140 873–899. MR2673338

DEPARTMENT OF MATHEMATICS

DUKE UNIVERSITY

P.O. BOX 90320
DURHAM, NORTH CAROLINA 27708-0320
USA
E-MAIL: ran.huo@duke.edu

rtd@math.duke.edu

http://www.ams.org/mathscinet-getitem?mr=0400468
http://www.ams.org/mathscinet-getitem?mr=3780690
http://arxiv.org/abs/arXiv:0710.0914
http://www.ams.org/mathscinet-getitem?mr=1288131
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=3847976
http://www.ams.org/mathscinet-getitem?mr=1880232
http://www.ams.org/mathscinet-getitem?mr=2380891
http://www.ams.org/mathscinet-getitem?mr=2673338
mailto:ran.huo@duke.edu
mailto:rtd@math.duke.edu

	Introduction
	Results for d-regular trees
	Results for Galton-Watson trees

	Proof of Theorem 1
	Step 1: Derivation of the ODE
	Step 2: Frontier lower bounds
	ODE lower bounds
	Step 4: Lower bounding BRW

	Results for d-regular trees
	Extinction
	Local survival

	Results for Galton-Watson trees
	Survival of COBRA
	Local survival
	Proof of Theorem 8
	Condition for local survival

	Degree = 3 and 4
	µ>2
	µ<=3/2
	3/2<µ<=2


	References
	Author's Addresses

