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Rejoinder: A Review of Self-Exciting
Spatio-Temporal Point Processes
and Their Applications
Alex Reinhart

I would first like to thank the discussants for their
interesting and insightful comments. I was first moti-
vated to write a review when I noticed the diversity of
applications of self-exciting processes and the interest-
ing innovations being made in widely separate fields,
so it has been rewarding to read such a broad range of
perspectives from the discussants.

I broadly agree with many of the points brought up
by the discussants, so here I would like to focus on a
few topics that point to areas of future research.

1. CAUSALITY AND MUTUALLY EXCITING
PROCESSES

Professor Ogata raises an important topic otherwise
omitted from my review: “the modeling of point pro-
cesses for causality analysis from a stochastic process
including another point process.” He discusses models
whose intensity function depends not just on the past
history of the process but the past history of another
process, for example, models of earthquake events in-
corporating stress change or fault-weakening events,
and the use of AIC and other techniques to perform
model selection and test hypotheses about earthquake
precursors.

This resembles the “leading indicators” incorporated
by Mohler (2014) to allow events such as disorderly
conduct and public drunkenness to be used as predic-
tors for more serious crimes, though Mohler did not
perform extensive inference on these leading indica-
tors to test specific hypotheses. I agree with Ogata that
modeling of such leading indicators is essential for an-
swering important questions in many areas of appli-
cation, and would like to note some recent theoretical
developments which may help with the task.
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If we have multiple separate processes, such as earth-
quake events and precursor events, or records of sev-
eral different types of crimes, we can consider them as
a single multivariate point process. As noted in Sec-
tion 2.3 of the review, a multivariate point process is
simply a marked point process in which the mark space
is a finite set {1, . . . ,m}. In a mutually exciting multi-
variate process, instead of a single triggering function
g, there is a matrix of functions gij specifying the ef-
fect of event type j on the intensity of process i.

There has been a recent surge in methods for detect-
ing causality in multivariate point processes, though
largely focused on purely temporal processes. Eichler,
Dahlhaus and Dueck (2017) recently demonstrated that
the triggering functions gij have a direct connection
to Granger causality: events of type i do not Granger-
cause events of type j if and only if gji(t) = 0 for all
t ∈ R. This can be used to define a Granger causality
graph G whose directed edges satisfy the property

i → j /∈ G ⇐⇒ gji(t) = 0 for all t ∈R,

indicating the Granger causality relationships between
the mutually exciting processes.

There are now several competing methods for esti-
mating the causality graph G and testing hypotheses
about its edges [e.g., Chen, Witten and Shojaie (2017),
Xu, Farajtabar and Zha (2016), Achab et al. (2017)],
again focusing on purely temporal processes. It would
be quite interesting to see these methods extended to
spatio-temporal mutually exciting processes and used
in applications, where G may answer substantive sci-
entific questions and the use of leading indicator pro-
cesses could improve predictions.

2. STOCHASTIC RECONSTRUCTION

Professor Zhuang points out that the goodness-of-fit
methods given in the review evaluate the fit of the en-
tire model, either on all the data or over specific space-
time regions (like the residual methods of Section 3.6),
leaving an important gap: it may be necessary to assess
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specific components of the model formulation, such as
the form of the triggering function g or of the back-
ground model μ. Stochastic reconstruction [Zhuang,
Ogata and Vere-Jones (2004)] promises to allow this
kind of careful model evaluation.

The procedure is intuitively straightforward, exploit-
ing the cluster process representation and the triggering
probabilities in equations (9) and (10) of the review.
Suppose we have fit a particular parametric model to
data and wish to validate one component, like the dis-
tribution of time between a parent event and the off-
spring event it triggers. Following Zhuang, Ogata and
Vere-Jones (2004), Section 6.2, we can reconstruct a
probability density function for this distribution from
the data:

ĝ(t) =
∑

i,j Pr(ui = j)I(|(ti − tj ) − t | < �t/2)

�t

∑
i,j Pr(ui = j)

,

where �t is a small positive number. ĝ is hence an esti-
mate of the distribution of times between an event i and
prior events j , weighted by the probability that event j

triggered event i. Similar estimators can be made for
the distribution of distances between parent events and
offspring, or for the expected number of events trig-
gered by any event. The reconstructed distributions can
be compared to the distributions implied by the partic-
ular triggering function g assumed by the model.

An example will illustrate the procedure and also
illustrate my misgivings. Consider a spatio-temporal
model of the form

λ(s, t) = ν + ∑

i:ti<t

g(s − si, t − ti),

where the true triggering function g is such that off-
spring events are normally distributed in space and
χ2(6)-distributed in time, relative to their parent event.
Suppose, however, that we fit the model with an in-
correct g∗ which implies offspring events are normally
distributed in space but exponentially distributed in
time. The distributions chosen are shown in Figure 1.

We then simulate from the true spatio-temporal
model with χ2(6)-distributed offspring times, and fit
the misspecified exponential model g∗ to the data. Af-
ter stochastic reconstruction, we obtain the distribution
ĝ of offspring times shown in the left panel of Figure 2.
The distribution matches quite closely to the exponen-
tial distribution assumed by the model, with only a few
small deviations. However, it is quite different from
the true χ2(6) offspring distribution used to simulate
the data.

FIG. 1. The true χ2(6) distribution of times to offspring events,
in blue, compared to the incorrect exponential distribution fit to the
data, in dashed orange, for the simulation shown in the left panel
of Figure 2.

The right panel of Figure 2 shows the result of a re-
versed simulation: the true offspring distribution is ex-
ponential, but we choose a model g∗ which assumes it
is χ2(6). (The degrees of freedom here are not fit to the
data but assumed outright.) After stochastic reconstruc-
tion, the estimated ĝ matches a χ2(6) much better than
it matches the true exponential distribution. There are
deviations suggesting a problem, but from the devia-
tions alone we could not intuit that the true distribution
is exponential.

The problem is that ĝ is constructed using Pr(ui =
j), which is calculated with the assumed g∗ using
equations (9) and (10). The reconstructed time dis-
tribution hence implicitly assumes the truth of g∗.
These simulations suggest that it can be difficult to
use stochastic reconstruction to validate specific fea-
tures of a self-exciting model. Zhuang (2006) suggests
an iterative procedure, repeatedly using ĝ to recalcu-
late Pr(ui = j) and obtain a new ĝ, and I would be in-
terested to see similar simulation studies to determine
its ability to detect different types of model misspeci-
fication, along with further study of methods to detect
model misspecification.

3. ESTIMATION

I wholly agree with Professor Schoenberg about the
challenges of maximum likelihood estimation of self-
exciting models: I perhaps naively implied that one can
simply write down the likelihood, work out the EM up-
date steps and forget about estimation thereafter, but it
is not quite so easy. Beyond the integral term pointed
out by Schoenberg, one must also worry about multi-
modal likelihoods, spatial and temporal boundary ef-
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FIG. 2. Distributions (log scale) of time to offspring events, after stochastic reconstruction. At left, the reconstructed distribution ĝ fits quite
well to the exponential distribution assumed by the model, even though the true distribution is χ2(6). At right, the reconstructed distribution
ĝ does not quite fit the assumed χ2(6), but its deviations do not hint at the true underlying exponential distribution.

fects and the computational cost of repeatedly eval-
uating the likelihood. [Ogata notes faster procedures
to evaluate the likelihood of temporal processes in
Ogata, Matsu’ura and Katsura (1993), including an ac-
curate approximation to the integral term, and there are
other approximations for spatio-temporal processes,
like Oates (2015).] Implementing maximum likelihood
estimation for a new model and exploring its behavior
may take months of work.

New estimation procedures—and flexible general-
purpose software packages implementing them, like
those discussed by Dr. Meyer—will be essential to
make self-exciting models practical for a wider range
of problems. Further understanding of boundary ef-
fects, which may be arbitrarily confounded with rele-
vant covariates or other feature of the process, will also
be essential.

Dr. Meyer notes the problems of underreporting
and aggregation in public health data, which present
other obstacles to estimation and bias parameter esti-
mates. These problems also appear in crime forecast-
ing, where crimes are reported at unknown rates which
may vary across space and time, and where publicly
available data may be aggregated to various levels of
resolution and contain events with uncertain times or
locations (e.g., when a burglary is reported, the actual
time the burglary occurred may not be known). The re-
porting rate may be of interest on its own, since it varies
with public trust in police and for many other complex
reasons.

Perhaps underreporting and boundary effects can be
considered manifestations of the same problem. Con-
sider a self-exciting process λ(s, t) and a function
r(s, t) representing the probability that an event occur-
ring at (s, t) would be reported. Boundary effects can

be modeled by setting r(s, t) = 0 for s or t outside the
observation region, implying that events occurring out-
side the region are never observed, and underreporting
corresponds to r(s, t) < 1 for s and t inside the ob-
servation region. For a given r , how would the esti-
mated model λ̂(s, t) from the reported data differ from
the true model λ(s, t)? Can anything be learned about
r from the observed data? Could r sometimes depend
on the history of the process? Can its effects on λ̂(s, t)

be bounded, perhaps by making assumptions about its
structure?

The existing literature has explored boundary ef-
fects, but the effects of other forms of underreporting
have not been widely studied, and a great deal of fur-
ther work will be necessary to answer these questions.

4. CONCLUSION

Self-exciting spatio-temporal point processes are an
active area of research across many fields of appli-
cation, and as the discussants—major contributors to
the field—have shown, there are still many interesting
open questions. I can only echo the discussants in hop-
ing that this review and discussion will trigger further
theoretical development; as methods advance and prac-
tical software becomes more widely available, I hope
to see new applications in many areas of science.
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