
Statistical Science
2018, Vol. 33, No. 3, 386–412
https://doi.org/10.1214/18-STS648
© Institute of Mathematical Statistics, 2018

Piecewise Deterministic Markov Processes
for Continuous-Time Monte Carlo
Paul Fearnhead, Joris Bierkens, Murray Pollock and Gareth O. Roberts

Abstract. Recently, there have been conceptually new developments in
Monte Carlo methods through the introduction of new MCMC and sequential
Monte Carlo (SMC) algorithms which are based on continuous-time, rather
than discrete-time, Markov processes. This has led to some fundamentally
new Monte Carlo algorithms which can be used to sample from, say, a poste-
rior distribution. Interestingly, continuous-time algorithms seem particularly
well suited to Bayesian analysis in big-data settings as they need only access
a small sub-set of data points at each iteration, and yet are still guaranteed
to target the true posterior distribution. Whilst continuous-time MCMC and
SMC methods have been developed independently we show here that they
are related by the fact that both involve simulating a piecewise deterministic
Markov process. Furthermore, we show that the methods developed to date
are just specific cases of a potentially much wider class of continuous-time
Monte Carlo algorithms. We give an informal introduction to piecewise deter-
ministic Markov processes, covering the aspects relevant to these new Monte
Carlo algorithms, with a view to making the development of new continuous-
time Monte Carlo more accessible. We focus on how and why sub-sampling
ideas can be used with these algorithms, and aim to give insight into how
these new algorithms can be implemented, and what are some of the issues
that affect their efficiency.

Key words and phrases: Bayesian statistics, big data, Bouncy Particle Sam-
pler, continuous-time importance sampling, control variates, SCALE, Zig-
Zag Sampler.

1. INTRODUCTION

Monte Carlo methods, such as MCMC and SMC,
have been central to the application of Bayesian statis-
tics to real-world problems (Robert and Casella, 2011,
McGrayne, 2011). These established Monte Carlo
methods are based upon simulating discrete-time
Markov processes. For example, MCMC algorithms

Paul Fearnhead is Professor of Statistics, Department of
Mathematics and Statistics, Lancaster University (e-mail:
p.fearnhead@lancaster.ac.uk). Joris Bierkens is Assistant
Professor, DIAM, TU Delft (e-mail:
joris.bierkens@tudelft.nl). Murray Pollock is Assistant
Professor, Department of Statistics, University of Warwick
(e-mail: M.Pollock@warwick.ac.uk). Gareth O. Roberts is
Professor of Statistics, Department of Statistics, University
of Warwick (e-mail: Gareth.O.Roberts@warwick.ac.uk).

simulate a discrete-time Markov chain constructed to
have a target distribution of interest, the posterior dis-
tribution in Bayesian inference, as its stationary distri-
bution. Whilst SMC methods involve propagating and
reweighting particles so that a final set of weighted par-
ticles approximate a target distribution. The propaga-
tion step here also involves simulating from a discrete-
time Markov chain.

In the past few years, there have been new de-
velopments in MCMC and SMC methods based on
continuous-time versions of these Monte Carlo meth-
ods. For example, continuous-time MCMC algorithms
have been proposed (Peters and de With, 2012,
Bouchard-Côté, Vollmer and Doucet, 2017, Bierkens
and Roberts, 2017, Bierkens, Fearnhead and Roberts,
2016) that involve simulating a continuous-time
Markov process that has been designed to have a tar-

386

http://www.imstat.org/sts/
https://doi.org/10.1214/18-STS648
http://www.imstat.org
mailto:p.fearnhead@lancaster.ac.uk
mailto:joris.bierkens@tudelft.nl
mailto:M.Pollock@warwick.ac.uk
mailto:Gareth.O.Roberts@warwick.ac.uk

CONTINUOUS-TIME MONTE CARLO 387

get distribution of interest as its stationary distribu-
tion. These continuous-time MCMC algorithms were
originally motivated as they are examples of nonre-
versible Markov processes. There is substantial evi-
dence that nonreversible MCMC algorithms will be
more efficient than standard MCMC algorithms that
are reversible (Neal, 1998, Diaconis, Holmes and Neal,
2000, Neal, 2004, Bierkens, 2016), and there is empir-
ical evidence that these continuous-time MCMC algo-
rithms are more efficient than their discrete-time coun-
terparts [see, e.g., Bouchard-Côté, Vollmer and Doucet
(2017)]. Similarly, a continuous-time version of SMC
has also been recently proposed (Fearnhead et al.,
2016), which involves propagating particles using a
continuous-time Markov process. The original motiva-
tion for this was to be able to target distributions related
to infinite-dimensional stochastic processes, such as
diffusions, without resorting to any time-discretisation
approximations. However, we show below that one ap-
plication of this methodology is to generate weighted-
samples from a target distribution of interest, giving
an alternative interpretation of the recently proposed
SCALE algorithm of Pollock et al. (2016).

The purpose of this paper is to show that continuous-
time MCMC and continuous-time SMC methods are
linked as both are based upon simulating continuous-
time processes called piecewise-deterministic Markov
processes. These are processes that evolve determinis-
tically between a countable set of random event times.
The stochasticity in the process is due to the random-
ness of when these events occur, and possibly random
dynamics at the event times. These processes are nat-
ural building blocks of continuous-time Monte Carlo
methods, as they involve a finite amount of computa-
tion to simulate as only a finite number of events and
transitions occur in any fixed time-interval.

Furthermore, we aim to show that the methods that
have been developed to date are just specific exam-
ples of a much wider class of potential continuous-
time MCMC and SMC methods that are based on
piecewise-deterministic Markov processes. By giving
an informal introduction to the theory of piecewise-
deterministic Markov processes, with emphasis on as-
pects most relevant to the development of valid Monte
Carlo methods, we hope to make the development of
new continuous-time Monte Carlo methods more ac-
cessible and help stimulate work in this area.

One aspect of continuous-time Monte Carlo that
is particularly relevant for modern applications of
Bayesian statistics is that they seem well suited to big-
data problems. If we denote our target distribution by

π(x), then the dynamics of these methods depend on
the target through ∇ logπ(x). If π(x) is a posterior
distribution, it will often be in product-form, where
each factor relates to a data point or set of data points.
This means that ∇ logπ(x) is a sum, and hence is easy
to approximate unbiasedly using sub-samples of the
data. It turns out we can use these unbiased estimators
within continuous-time Monte Carlo methods without
affecting their validity. That is, the algorithms will still
target π(x). This is in comparison to other discrete-
time MCMC methods that use sub-sampling (Welling
and Teh, 2011, Bardenet, Doucet and Holmes, 2017,
Ma, Chen and Fox, 2015, Quiroz, Villani and Kohn,
2015), where the approximation in the sub-sampling
means that the algorithms will only target an approx-
imation to π(x). It also compares favourably with
big-data methods that independently run MCMC on
batches of data, and then combines the MCMC sam-
ples in some way (Neiswanger, Wang and Xing, 2014,
Scott, Blocker and Bonassi, 2016, Srivastava et al.,
2015, Li, Srivastava and Dunson, 2017). As the combi-
nation steps involved will also introduce some approx-
imation error.

The outline of the paper is as follows. In the next
section, we give an informal introduction to piecewise
deterministic Markov processes. Our aim is to cover
key relevant concepts linked to these processes whilst
avoiding technical details. Those interested in a more
rigorous introduction should see Davis (1984) and
Davis (1993). Sections 3 and 4 then cover continuous-
time versions of MCMC and SMC, respectively. These
have been written so that either section could be read
independently of the other. Our aim for each section
is to introduce the continuous-time Monte Carlo algo-
rithm, show how it relates to a piecewise determinis-
tic Markov process and how we can use the theory
for these processes to see that the Monte Carlo algo-
rithms target the correct distribution. We also cover
how these algorithms can be implemented using sub-
sampling ideas, and highlight the importance of low-
variance sub-sampling estimators for obtaining highly
efficient samplers for big data.

2. PIECEWISE DETERMINISTIC MARKOV
PROCESSES

The continuous-time versions of SMC, or sequen-
tial importance sampling, and MCMC that we will
consider later are all examples of time-homogeneous
piecewise-deterministic Markov processes. We will
henceforth call these piecewise deterministic processes
or PDPs.

388 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

A PDP is a continuous-time stochastic process.
Throughout we will denote the state of a PDP at time
t by Zt . The dynamics of the PDP involves random
events, with deterministic dynamics between events
and possibly random transitions at events. These dy-
namics are thus defined through specifying three quan-
tities:

(i) The deterministic dynamics. We will assume
that these are specified through an ordinary differential
equation:

(1)
dz

(i)
t

dt
= �i(zt),

for i = 1, . . . , d , for some known vector-valued func-
tion � = (�1(z), . . . ,�d(z)). This will lead to a deter-
ministic transition function, so that the solution of the
differential equation starting from value zt and run for
a time interval of length s will give

zs+t = �(zt , s)

for some function � .
(ii) The event rate. Events will occur singularly at a

rate, λ(zt), that depends only on the current position of
the process. The probability of an event in interval in
[t, t + h] given the state at time t , zt , is thus λ(zt)h +
o(h).

(iii) The transition distribution at events. At each
event, the state of the process will change, according
to some transition kernel. For an event at time τ , if zτ−
denotes the state immediately prior to the event, then
the state at time τ will be drawn from a distribution
with density q(·|zτ−).

To define a PDP process, we will also need to specify
its initial condition. We will assume that Z0 is drawn
from some known distribution with density function
p0(·).
2.1 Simulating a PDP

To be able to use a PDP as the basis of an importance
sampling or MCMC algorithm, we will need to be able
to simulate from it. A general approach to simulating a
PDP is to iterate the following steps:

(S1) Given the current time, t , and state of the PDP,
zt , simulate the next event time, τ say.

(S2) Calculate the value of the process immediately
before the next event time

zτ− = �(zt , τ − t).

(S3) Simulate the new value of the process, imme-
diately after the event, from q(zτ |zτ−).

The simulation algorithm is initiated with a current
time t = 0 and with Z0 drawn from the initial distri-
bution of the process. To simulate the process for a
time interval T , these steps can be iterated until the
first event time after T . If we wish to then simulate the
value of the process at a time, s say, between events we
just find the event time, τ , immediately prior to s; the
value of the process immediately after the event, zτ ;
and then set

zs = �(zτ , s − τ).

If s is a time before the first event, we would use τ = 0.
Below we will assume that our PDP has been chosen

so that �(·, ·) is known analytically and that the pro-
posal distribution at events, q(·|·), can be easily sim-
ulated from. Thus the only challenging step to simu-
lating a PDP will be simulating the next event in step
S1. This involves simulating the next event in a time-
inhomogeneous Poisson process.

The first thing to note is that the event rate in (S1) can
be written as a deterministic function of time, as the
state dynamics are deterministic until the next event. If
we are currently at time t with state zt , then for any
future time t + s before the next event, the state will be
zt+s = �(zt , s). Thus the event rate will be

λ(zt+s) = λ
(
�(zt , s)

) = λ̃zt (s),

for a suitably defined function λ̃zt (·). We can simulate
the time until the next event, s, as the time of the first
event in a Poisson process of rate λ̃zt (u).

If the event rate is a simple function, then we can
simulate events directly. Define �z(s) = ∫ s

0 λ̃z(u)du.
We simulate a the time of an event, s say, by (i) simu-
lating u, the realisation of an exponential random vari-
able with rate 1, and (ii) finding s > 0 the solution of
�z(s) = u [e.g., Çinlar (1975)].

For more complicated rate functions either calculat-
ing �z(s) or solving the equation in step (ii) may not
be tractable. In such cases, the most general approach
to simulating event times is by thinning, or adaptive
thinning [e.g., Lewis and Shedler (1979)].

If we can upper bound the event rate, λ̃zt (u) <

λ+(u), then thinning works by simulating possible
events of a Poisson process of rate λ+(u) and ac-
cepting a possible event at time u as an actual event
with probability λ̃zt (u)/λ+(u). The time of the first ac-
cepted event will be the time until the next event for our
PDP. This requires the upper bound λ+(u) to be such
that simulating events from a Poission process of rate
λ+(u) is straightforward, for example, λ+(u) is con-
stant or linear in u, or piecewise constant or piecewise
linear. Obviously, the lower the bound λ+ the more
computationally efficient this approach will be.

CONTINUOUS-TIME MONTE CARLO 389

2.2 Analysing a PDP

We now give informal introductions to some of the
mathematical tools for analysing a PDP. These are
introduced as they are used later to show that the
continuous-time Monte Carlo methods we review have
appropriate properties. For example, we introduce the
generator of a PDP in the following section, and this
is used to show that the continuous-time importance
samplers of Section 4 produce properly weighted sam-
ples (Liu and Chen, 1998). We then introduce the
Fokker–Planck equation for a PDP, which can be used
to showed that the continuous-time MCMC methods
of Section 3 have the correct invariant distribution.
Understanding both the generator of a PDP and its
Fokker–Planck equation is important if we wish to de-
velop new versions of these continuous-time Monte
Carlo methods. For further details on generators, see
Section 14 of Davis (1993), and for further informa-
tion on calculating the invariant distribution if a PDP,
see Section 34 of Davis (1993).

2.2.1 The generator. The generator of a continuous-
time, time-homogeneous, Markov process is an opera-
tor that acts on functions of the state variable. We will
denote the generator by A. For suitable functions f (z),
the generator is defined by

Af (z) = lim
δt→0

E(f (Zt+δt)|Zt = z) − f (z)
δt

.

The set of suitable functions, which are the functions
for which this limit exists for all z, is called the domain
of the generator.

The fact that the process is time-homogeneous
means that the right-hand side does not depend on t .
We can interpret the generator applied to a function
f (z), as giving the derivative of the expectation of
f (Zt) conditional on the current value of Zt . As the
generator specifies how the expectation of any suitable
function f (·) changes over time, it uniquely defines the
dynamics of the underlying continuous-time stochastic
process, in a similar way that knowing the moment
generating function of a random variable will uniquely
determine its distribution (Ethier and Kurtz, 2005).

If we are interested in the derivative of the expecta-
tion of a function of our PDP at a time t , then we can
write this as

dE(f (Zt))

dt

= lim
δt→0

E(f (Zt+δt)) − E(f (Zt))

δt

= lim
δt→0

Et

(
Et+δt |t (f (Zt+δt)|Zt) − f (Zt)

δt

)
,

where in the last expression the inner expectation is
with respect to Zt+δt given Zt and the outer expecta-
tion with respect to Zt . Assuming we can exchange the
outer expectation and the limit, we get

(2)
dE(Zt)

dt
= Et

(
Af (Zt)

)
.

Thus the derivative of the expectation of our function is
the expectation of the generator applied to the function.

Davis (1984) gives the generator for a piecewise de-
terministic process:

(3)
Af (z) = �(z) · ∇f (z)

+ λ(z)
∫

q
(
z′|z)[

f
(
z′) − f (z)

]
dz′,

for functions f (·) such that t �→ f (�(z, t)) is abso-
lutely continuous. The form of the generator has a sim-
ple interpretation. The first term on the right-hand side
relates to the deterministic dynamics. For determinis-
tic dynamics, the generator is just the time-derivative
of f (zt), which by the product rule is

df (zt)

dzt

=
d∑

i=1

∂f (zt)

∂z(i)
t

∂z(i)
t

∂t
= �(z) · ∇f (z),

where �(z) is defined in (1). The second term on
the right-hand side is the change in expectation at
events. The probability of an event in time [t, t + h]
is λ(zt)h + o(h) and the change in expectation condi-
tional on event occurring, up to terms of o(h), is given
by the integral on the right-hand side.

2.2.2 The forward operator and Fokker–Planck
equation. We can define the adjoint of a generator of
a continuous-time Markov process, A∗, such that for
suitable functions g(z) and f (z)∫

g(z)Af (z)dz =
∫

f (z)A∗g(z)dz.

Now if we define the density function of our conti-
nuous-time Markov process at time t to be pt(z) then
from (2) we get that, for suitable functions f , the
derivative of the expectation of f (Zt) with respect to t

is

dE(Zt)

dt
= Et

(
Af (Zt)

)
=

∫
pt(z)Af (z)dz

=
∫

f (z)A∗pt(z)dz.

390 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

However, we can equally write this derivative as

dE(Zt)

dt
= d

dt

∫
pt(z)f (z)dz =

∫
∂pt (z)

∂t
f (z)dz,

again assuming we can interchange differentiation and
integration. This gives that∫ dpt(z)

dt
f (z)dz =

∫
f (z)A∗pt(z)dz.

As this holds for sufficiently many functions f (z), we
get

∂pt (z)
∂t

= A∗pt(z).

This is a partial differential equation for the distribution
of the stochastic process, known as the Fokker–Planck
or forward Kolmogorov equation.

It is straightforward to show that the adjoint of the
generator of a PDP (3) is

(4)

A∗g(z)

= −
d∑

i=1

∂�i(z)g(z)
∂z(i)

+
∫

g
(
z′)λ(

z′)q(
z|z′) dz′ − g(z)λ(z).

The first term equates to the adjoint of the first term
of the generator, and is obtained using integration by
parts. The second term equates to the adjoint of the
second-term of the generator, and can be obtained by
using a change of variables within the integral.

If p(z) is an invariant distribution of our PDP, then it
will satisfy A∗p(z) = 0, which gives

−
d∑

i=1

∂�i(z)p(z)
∂z(i)

+
∫

p
(
z′)λ(

z′)q(
z|z′) dz′ − p(z)λ(z) = 0.

The first term here relates to the change in probability
mass caused by the deterministic dynamics, the second
term relates to the probability flow into state z and the
final term the probability flow out of state z. For an
invariant distribution, these will cancel for all states z.

3. CONTINUOUS-TIME MCMC

We first consider continuous-time versions of
MCMC. These algorithms involve simulating a PDP
process which has a given target distribution, π(x), as
its stationary distribution. Such algorithms were origi-
nally of interest as they are nonreversible processes. As

mentioned in the Introduction, there is substantial evi-
dence that nonreversible MCMC algorithms are more
efficient than standard, reversible MCMC. Intuitively,
this is because nonreversible MCMC suppresses the
random-walk behaviour of reversible MCMC, and thus
can more rapidly explore the state-space. Furthermore,
it has been shown that continuous-time MCMC is suit-
able for using sub-sampling ideas, similar to those in
Section 4.3. Thus these methods are also promising for
big-data applications of MCMC.

3.1 The Continuous-Time Limit of MCMC

To help build intuition for continuous-time MCMC,
and to see how it links to discrete-time MCMC algo-
rithms, we will first derive a continuous-time algorithm
as a limiting form for a simple nonreversible discrete-
time MCMC algorithm (Gustafson, 1998, Diaconis,
Holmes and Neal, 2000). This MCMC algorithm will
target a joint distribution of (x,v), where v can be
viewed as a velocity. For our specific algorithm, we
will consider only velocities of a fixed, say unit, speed,
and hence v could equally be defined as a direction.
Our MCMC will target a distribution π(x)pu(v) where
pu(v) will be the uniform distribution over all veloci-
ties with unit speed.

The MCMC algorithm will have two types of move.
The first involves two deterministic proposals:

(1a) Propose a move from (x,v) to (x + hv,−v).
Accept this with the standard Metropolis–Hastings ac-
ceptance probability, which simplifies to

min
{

1,
π(x + hv)

π(x)

}
.

(1b) Move from (x′,v′) to (x′,−v′).

Both the moves in (1a) and (1b) are reversible, and
can be shown to satisfy detailed balance. To make step
(1a) reversible, we have to propose a move which flips
the velocity, and hence in (1b) we flip the velocity
back again. So the net affect of applying both (1a)
and (1b) is that the velocity is unchanged if we accept
the proposed move in step (1a) but flips if we reject
the move. This is a standard approach in Hamiltonian
Monte Carlo (Neal, 2011). In fact, this algorithm can
be viewed as a type of Hamiltonian Monte Carlo move,
but based on the dynamics of an approximate potential
for x which is uniform (and hence the velocity is not
changed other than by the flip).

Whilst this move keeps π(x)pu(v) invariant, it leads
to a reducible Markov chain if the dimension of x is
greater than 1, as it only proposes moves along the

CONTINUOUS-TIME MONTE CARLO 391

direction given by v. Thus we need a second type of
move to produce an irreducible MCMC algorithm with
the required asymptotic distribution. The second move
we use is an update of v, from some transition kernel
that has pu(v) as its stationary distribution. We will
imagine applying N transitions of type 1 between each
of these updates just of v.

Under this framework, we can then consider letting
h → 0 while keeping s = hN a constant. We will scale
time so that the ith MCMC transition will occur at time
ih, and define (xt ,vt) to be the value of the state after
the ith MCMC transition for ih ≤ t < (i + 1)h.

Now for each move in step (1a) the rejection proba-
bility for small h is

max
{
0,1 − exp

[
logπ(x + hv) − logπ(x)

]}
= max

{
0,1 − exp

[
v · ∇ logπ(x)h + o(h)

]}
= max

{
0,−v · ∇ logπ(x)h

} + o(h),

assuming that, for example, π(x) is twice differen-
tiable.

Thus in our limit as h → 0, rejections in step (1a)
will occur as events in a Poisson process of rate
λ(xt ,vt) = max{0,−vt · ∇π(xt)}. The dynamics be-
tween these events will be deterministic, with vt be-
ing constant and xt changing as in a constant velocity
model with velocity vt . At each event, the velocity will
just flip. Note that while the process is moving to areas
of higher probability density, as defined by π(x), the
rate of the Poisson process will be 0. Thus events will
only occur if the process is moving to areas of lower
probability mass.

This limiting process is just a PDP with constant
velocity dynamics between events, with the velocity
changing at event times.

It is natural to consider a general class of PDP pro-
cesses with these dynamics, and see what flexibility
there is in choosing the distribution of the event times,
and the distribution of the change of velocity at events,
so that we still have a process whose marginal station-
ary distribution for Xt is π(x). To do this, denote the
state of our PDP by Zt = (Xt ,Vt), and assume our
PDP has the following dynamics:

(i) The deterministic dynamics. For i = 1, . . . , d ,

dx
(i)
t

dt
= v

(i)
t , and

dv
(i)
t

dt
= 0.

The solution of these dynamics is given by (xt+s,

vt+s) = (xt + svt ,vt) for any s > 0.
(ii) The event rate. Events will occur at a rate, λ(zt).

(iii) The transition distribution at events. At an
event at time τ , xτ = xτ− and vτ is drawn from some
transition density q(·|xτ−,vτ−).

We now need to consider how to choose the event rate
and the transition density so that π(x) is the marginal
stationary distribution.

3.2 The Stationary Distribution of the PDP

A necessary condition for π(x) to be the marginal
stationary distribution of our PDP is that it is the
marginal of an invariant distribution for the PDP. We
will use the adjoint of the generator of our PDP to de-
rive a condition on both the event rate and the transition
distribution at events for the PDP to have π(x) as the
marginal of an invariant distribution.

As above, let z = (x,v). Denote the invariant dis-
tribution of our PDP by p(z). We can factorise this as
the product of the marginal stationary distribution for x
times the conditional for v given x, and we wish to have
p(z) = π(x)p(v|x). If A∗ is the adjoint of the genera-
tor of our PDP, as p(z) in an invariant distribution we
have A∗p(z) = 0. This gives

(5)

−π(x)p(v|x)
[
v · ∇x logπ(x)

+ v · ∇x logp(v|x) + λ(z)
]

+
∫

λ
(
x,v′)q(

v|x,v′)π(x)p
(
v′|x)

dv′ = 0.

In the above, ∇x denotes the vector of first partial
derivative with respect to the components of x.

To date, all continuous-time MCMC algorithms have
been designed so that under the invariant distribution
v is independent of x, and thus all components of
∇x logπ(v|x) will be 0. If we wish to design such a
process, we need to choose λ(x,v) and q(v′|x,v) such
that, by rearranging (5),

(6)
pv(v)λ(x,v) −

∫
λ
(
x,v′)q(

v|x,v′)pv

(
v′) dv′

= −pv(v)v · ∇x logπ(x),

for some distribution pv(v) for the velocity. The left-
hand side is measuring the net probability flow out of
states with velocity v, this must offset the change in
probability mass for V caused by the deterministic dy-
namics, which is the term on the right-hand side.

If we integrate (6) with respect to v, the left-hand
side is 0. So we get E(V) · ∇ logπ(x) = 0, where the
expectation is with respect to the invariant distribution
for the velocity. As this will need to hold for all x, we
can see that the invariant distribution for all compo-
nents of the velocity must have zero mean.

392 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

The processes we describe in the next section all al-
low velocities within some symmetrical set, and are de-
signed so that pv(v) is uniform on this set. They ensure
(6) holds through deterministic dynamics at events.
They introduce a “flip” operator, Fx say, that can de-
pend on x and which satisfies Fx(Fx(v)) = v. They
then only allow transitions between pairs of veloci-
ties, v and v′ that satisfy v′ = Fx(v) and, by definition
of Fx, v = Fx(v′). Under this constraint on the transi-
tions at events, we get a simple set of equations that
we need the event rates to satisfy. For any v, and with
v′ = Fx(v), it is straightforward to show that (6) holds
if and only if

(7) λ(x,v) − λ
(
x,v′) = −v · ∇x logπ(x),

for all x. As this equation must also hold for v′, we
immediately see that only flip operators for which
Fx(v) · ∇x logπ(x) = −v · ∇x logπ(x) are allowable.
The rates only depend on the target through the term
∇x logπ(x), which means that π(x) is only needed to
be known up to proportionality. Also note that (7) does
not uniquely define the rates. If we have a set of rates,
λ(x,v) that satisfy (7), then λ(x,v) + γ (x,v) will also
satisfy (7) for any positive function γ (x,v) for which
γ (x,v) = γ (x,Fx(v)).

A natural choice of rates which satisfy (7) are
those which are smallest. This will give λ(x,v) =
max{0,−v ·∇x logπ(x)}. We will call these the canon-
ical rates. Theoretical justification for the canonical
rates when d = 1 is given in Bierkens and Duncan
(2017), who show that the asymptotic variance of
Monte Carlo estimators is minimised when using these
rates.

3.2.1 Different continuous-time MCMC algorithms.
We now describe a number of choices of flip operator,
and the corresponding PDPs. We start with the limiting
process we derived in Section 3.1, and then describe
two continuous MCMC processes that have been re-
cently proposed. These three choices all lead to iden-
tical PDPs for a one-dimensional target, but differ in
terms of how they extend to higher dimensions. Each
assume the target is defined on an unbounded domain;
for extensions of these methods to bounded domains,
see Bierkens et al. (2017). We will finish with some
discussion of alternative schemes that are possible.

Pure reflection and refresh. The continuous-time
limit we derived in Section 3.1 corresponds to Fx(v) =
−v, with the canonical rates. Such a process we call a
pure reflection process. For a multi-dimensional target
distribution, this process would be reducible, as it can

only explore positions x that lie on a straight-line de-
fined by the initial velocity. As such this is an example
where π(x) would be a marginal invariant distribution
but not the marginal stationary distribution. To over-
come this we need an additional move, which refreshes
v. Such a refresh move would need to have pu(v) as its
stationary distribution. The times of refreshing could
be either deterministic or random.

Bouncy Particle Sampler. The Bouncy Particle Sam-
pler of Bouchard-Côté, Vollmer and Doucet (2017),
based on an algorithm of Peters and de With (2012),
is an adaption of the pure reflection process, which
minimises the change in velocity, ‖Fx(v) − v‖, at each
event. It does this by defining Fx(v) to be

(8)
Fx(v) = v − 2

v · ∇ logπ(x)

∇ logπ(x) · ∇ logπ(x)

· ∇ logπ(x).

This flips the component of v that is in the direction
of ∇ logπ(x) but leaves the components of v that are
orthogonal to ∇ logπ(x) unchanged. They again use
the canonical rates. As with the pure reflection process,
this means that events only occur if the PDP is moving
to areas of lower probability mass according to π(x).

The original sampler of Peters and de With (2012)
just simulates this PDP. However, Bouchard-Côté,
Vollmer and Doucet (2017) shows that, for some tar-
gets, such a sampler can be reducible. This means that,
depending on how the process is initiated, there may
be parts of the state-space that the PDP cannot reach.
As a result, the invariant distribution, π(x), of the PDP
may not be its unique asymptotic distribution.

The Bouncy Particle Sampler introduces refresh
events. Refresh events occur as events of an indepen-
dent Poisson process of constant rate, and at a re-
fresh event we simulate a new velocity from pv(v).
Bouchard-Côté, Vollmer and Doucet (2017) show that
for any nonzero rate of this refresh process, the result-
ing sampling will have π(x) as its unique asymptotic
distribution.

Zig–Zag Sampler. The Zig–Zag Sampler (Bierkens
and Roberts, 2017, Bierkens, Fearnhead and Roberts,
2016) considers a discrete set of velocities. If x is
d-dimensional, then v = ∑d

i=1 θiei , where each θi ∈
{−1,1} and e1, . . . , ed are a set of orthogonal basis vec-
tors for Rd . The invariant distribution for v is defined
as the uniform distribution over this set of 2d possible
values.

The Zig–Zag Sampler can be viewed as having d-
distinct event types, each with its own rate, and each

CONTINUOUS-TIME MONTE CARLO 393

with its own deterministic change to the velocity. The
ith event will have a flip, F (i), that switches θi to −θi ,
but keeps the velocity in the other d − 1 directions un-
changed. If we denote λi(x,v) to be the rate of events
of type i, then this corresponds to our general formu-
lation of a PDP but with λ(x,v) = ∑d

i=1 λi(x,v), and
with the transition distribution at an event being a dis-
crete distribution over the d transitions that correspond
to the d different flips. Flip i occurs with probability
λi(x,v)/λ(x,v). Substituting this into (6) shows that
we need to choose λi(x,v) so that

d∑
i=1

{
λi(x,v) − λi

(
x,F (i)(v)

)} = −
d∑

i=1

θi

∂ logπ(x)

∂x(i)
.

Here, we have assumed that x(i) is the component of x
in direction ei . This can be achieved if we choose the
rates such that

λi(x,v) − λi

(
x,F (i)(v)

) = −θi

∂ logπ(x)

∂x(i)
.

As above, this does not uniquely define the rates, only
the difference between rates for velocities that differ in
terms of their component in the ei direction.

It is a challenging goal to show that the Zig–Zag
Sampler is ergodic, that is that its invariant distribution
is also its unique asymptotic distribution, in full gen-
erality. So far, it is established rigorously in Bierkens,
Fearnhead and Roberts (2016) that the Zig–Zag Sam-
pler is ergodic in any of the following cases: (i) one-
dimensional target distributions, (ii) factorized target
distributions and (iii) switching rates that are positive
everywhere (which can be obtained by adding a con-
stant ε > 0 to the canonical switching rates). Experi-
ments suggest that ergodicity holds in much more gen-
erality.

Note that the above argument easily generalises to
allowing velocities of the form v = ∑m

i=1 θiei , where
the ei are not constrained to be orthogonal, and we can
even allow m > d directions. Whether there are advan-
tages in using such a set of possible velocities is not
clear.

Alternatives. There is substantial extra flexibility in
choosing the event rates and the type of transition at
events beyond the three examples we have detailed. For
example, we could consider transitions at an event that
does not depend on the current velocity. If we allow v
to be any unit vector, then it is straightforward to show
that choosing λ(x,v) = max{0,−v · ∇x logπ(x)}, and,
at each event, sampling a new velocity from the distri-
bution

q
(
v′|x,v

) ∝ max
{
0,v′ · ∇x logπ(x)

}
,

will lead to a PDP with invariant distribution that has
π(x) as its marginal.

More substantial alternatives are also possible. For
example, we could consider processes which allow the
invariant distribution of V to depend on x—something
that Girolami and Calderhead (2011) has shown to be
beneficial for Hamiltonian Monte Carlo methods. For
a proposed distribution π(v|x), we would then need to
find a set of event rates and transitions that satisfy (5).

3.3 Simulation and Use of Skeletons for
Continuous MCMC

So far we have described a number of different PDPs
that will have π(x) as their marginal invariant distri-
bution. For these to be useful in practice, we need to
be able to simulate them efficiently. How to do this
in practice will depend on the form of π(x), but is
likely to use the ideas briefly described at the end of
Section 2.1. For further detail, see the discussion of
this, and suggestions, in Bouchard-Côté, Vollmer and
Doucet (2017) and Bierkens, Fearnhead and Roberts
(2016).

The output of simulating a PDP will be a set of event
times and the values of the state at those event times.
We wish to use this output to obtain Monte Carlo es-
timates of expectations of functions of X, where X is
distributed according to π(x). Assume we have simu-
lated the PDP for some time interval T . We will discard
the value of the process during some burn-in period of
length tb. Assume there were N events in the time-
interval [tb, T]. Denote these as τi for i = 1, . . . ,N ,
and let τ0 = tb and τN+1 = T .

There are two approaches to obtain a Monte Carlo
estimate of

∫
π(x)g(x)dx for some function g(x) of in-

terest. The first is to calculate the average of this func-
tion along the path of the PDP:

1

τN+1 − τ0

N∑
i=0

∫ τi+1−τi

0
g(xτi

+ svτi
)ds.

Here, each integral corresponds to the integrals of
g(xt) for t in [τi, τi+1], and uses the fact that for such
a t , xt = xτi

+ (t − τi)vτi
.

The above approach is difficult if the integrals are
not easy to evaluate. In this case, we can resort to a
standard Monte Carlo approximation. Choose an inte-
ger M > 0, define h = (τN+1 −τ0)/M and then use the
Monte Carlo estimator

1

M

M∑
j=1

g(xτ0+jh),

394 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

where we can trivially calculate xτ0+jh using the set of
event times and the values of the PDP at those event
times.

3.4 Example: Robust Regression

To demonstrate the difference between the Bouncy
Particle Sampler and the Zig–Zag Sampler, and to
compare these methods with more traditional MCMC
methods, we will consider their application to a robust
regression model. We model the mean of each data
point as a linear function of d − 1 covariates and an in-
tercept, but model the errors as a mixture of a standard
normal random variable and a normal random variable
with mean equal to 0 but a variance equal to 102. Ap-
pendix gives details of the log-posterior for this model
and how we can bound the event rate of, and hence sim-
ulate events for, either the Bouncy Particle or Zig–Zag
Sampler.

We first compare the dynamics of the Zig–Zag Sam-
pler and the Bouncy Particle Sampler. To do this, we
consider the d = 2 case, so that we have a bivariate tar-
get distribution whose contours we can plot. We sim-
ulated n = 500 data points, with the covariates values
being independent draws from a standard normal dis-
tribution. We simulated half the data points with pa-
rameter values (2,1) and half with parameter values
(6,1), with the simulated residuals being from a stan-
dard normal distribution. This choice was made so as to
produce a posterior distribution with multiple modes—
corresponding to the intercept term being either 2, 6 or
4, the average of these values.

Example output from the Bouncy Particle Sampler
and the Zig–Zag Sampler are shown in Figure 1.
We tried three implementations of the Bouncy Par-
ticle Sampler, each with substantially different rates
at which we refresh the velocity. These show the po-
tential pitfalls of choosing this rate either too low or
too high. In the former case, (top-left plot) either all
(if the refresh rate is 0 as here) or almost all of the
changes of velocity will be at bounce events. If the
posterior has contours that are close to elliptical, as
they are in the tails of our model, then this will pro-
duce dynamics with strong structure which can slow
down mixing. We see this here with the PDP dynam-
ics circling around in the tails of the posterior. As
mentioned above, Bouchard-Côté, Vollmer and Doucet
(2017) give examples where setting the refresh rate to
0 leads to a sampler which is reducible, and, depend-
ing on the initial conditions, will not be able to reach
some parts of the state-space. By comparison, if we
use a refresh-rate that is too high (bottom-left) then

FIG. 1. Plots of output from the Bouncy Particle Sampler (top
row and bottom left) and Zig Zag Sampler (bottom right) for the
robust regression model with d = 2. In each case, we plot the con-
tinuous-time output of the position component of each sampler on
top of a heat-map of the posterior for the two parameters (which
are denoted β1, β2). The Bouncy Particle Sampler output is for dif-
ferent refresh rates: no refresh event (top left) refresh rate 1 (top
right) and refresh rate 100 (bottom left).

the resulting process resembles a reversible MCMC
algorithm, and loses the potential advantages of non-
reversible dynamics that we obtain with a more rea-
sonable choice of refresh rate (top-right plot). Notice
that the Zig–Zag Sampler’s dynamics (bottom right)
are qualitatively similar to the Bouncy Particle Sam-
pler’s dynamics when a reasonable refresh rate is cho-
sen. Though the Zig–Zag Sampler is restricted to move
in certain directions, with the resulting “Zig–Zag” na-
ture of the output giving the algorithm its name.

We now compare the Bouncy Particle Sampler to
a Metropolis adjusted Langevin Algorithm [MALA,
Roberts and Rosenthal (1998)], and consider how the
two methods compare in both a low-dimensional, d =
8, and high-dimensional, d = 128, setting. We simu-
lated the covariates for each observation from an AR(1)
process with lag-1 correlation of 0.5. In both cases, we
set all co-efficients in the linear model to 0 except for
those associated with the intercept and first covariate.
We simulated 500 observations, 300 from a model with
(β1, β2) = (2,1) and 200 from a model with (β1, β2) =
(6,1), and with standard normal residuals in each case.
This produces a complex log-posterior whilst ensuring
that the posterior has a single main mode, which means
that auto-correlation summaries of MCMC output are
more reliable for estimating the efficiency of the algo-
rithm. We tuned the MALA algorithm to have an ac-
ceptance probability close to 0.5 (Roberts and Rosen-
thal, 1998), and run both MALA and the Bouncy Par-
ticle Sampler so that they each had 50,000 iterations
(where an iteration for the Bouncy Particle Sampler

CONTINUOUS-TIME MONTE CARLO 395

FIG. 2. Auto-correlation plot for the intercept parameter from a
run of MALA (top row) and the Bouncy Particle Sampler (bottom
row), for d = 8 (left column) and d = 128 (right column).

corresponds to a proposed event-time). The resulting
samplers had similar computational costs, with MALA
taking slightly longer. For each sampler we removed
the first 40% of the output as burn-in. For the Bouncy
Particle Sampler we then sampled 30,000 values of the
parameters at equally spaced time-points, so that both
algorithms gave an identical form of output.

Auto-correlation plots for for the intercept parame-
ter are shown in Figure 2. Both samplers mix quickly
for the low-dimesional case (see left-hand column).
However the Bouncy Particle Sampler shows negative
auto-correlation. We believe this is caused by the sam-
pler’s dynamics which tends to move from one tail of
the posterior to the other [behaviour that is particularly
pronounced for 1-dimensional unimodal target distri-
butions; see Bierkens and Duncan (2017)]. As a re-
sult of this negative correlation, estimates of the auto-
correlation time for the Bouncy Particle Sampler are
slightly small than for MALA. However, as the di-
mension increases, we tend to see bigger advantages
from using the Bouncy Particle Sampler – perhaps due
to its nonreversible dynamics. This can be seen from
the auto-correlation plots for d = 128 (see right-hand
column). For this run of the two algorithms the es-
timated auto-correlation times are approximately 670
for MALA and 130 for the Bouncy Particle Sampler,
suggesting a 5-fold gain in efficiency from using the
latter algorithm. Key to the strong performance of the
Bouncy Particle Sampler for this example is the fact
that we can efficienctly simulate the event times using
thinning—with the method described in the Appendix;
with around 30% of proposed event times being ac-
cepted.

3.5 Exact Approximation Versions and
Subsampling

Exact approximate algorithms (Andrieu and Roberts,
2009) are MCMC algorithms that use estimators of the
target distribution within the accept-reject step. If im-
plemented correctly, and if these estimators are both
positive and unbiased, then it can be shown that the re-
sulting MCMC algorithms are exact: in the sense they
still have the target distribution as their stationary dis-
tribution. It turns out that exact approximate versions
of the continuous-time MCMC algorithms detailed in
the previous section are also possible.

3.5.1 Exact approximation for pure reflection and
zig zag. For concreteness and ease of presentation, we
will consider an exact approximate version of the pure
reflection process. Though the ideas we detail extend
trivially to the Zig–Zag Sampler [and see Bierkens,
Fearnhead and Roberts (2016), for more details of an
exact approximate version of Zig–Zag].

For the pure reflection process the requirement on
the rates of events is that for any velocity v

λ(x,v) − λ(x,−v) = −v · ∇ logπ(x).

For a given choice of rates, such as the canonical rates
λ(x,v) = max{0,−v · ∇ logπ(x)}, we would often use
thinning to simulate the event times (see Section 2.1).
Thus if our current state is (xt ,vt) we would introduce
a bound on the event rate for s > 0

λ̃+(s) ≥ λ(xt + svt ,vt),

simulate potential events at rate λ̃+(s) and accept them
with probability λ(x + sv,v)/λ̃+(s). The time until the
next event is just the time until the first accepted event.

Now assume we have a estimator of −∇ logπ(x),
which we will denote U(x). This estimator is a random
variable, and examples of how it could be constructed
are given below. We further introduce a random rate
function

λ̂(x,v) = max
{
0,v · U(x)

}
.

This is just the canonical event rate, but replacing
−∇ logπ(x) with its unbiased estimator. The idea of an
exact-approximate version is to simulate events using
thinning, with a bound on the event rate that satisfies

λ̃+(s) ≥ λ̂(xt + svt ,vt)

almost surely, and where we accept points using the
random acceptance probability λ̂(xt + svt ,vt)/λ̃

+(s).
As the overall acceptance probability will be the ex-

pectation of the random acceptance probability, it is

396 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

straightforward to show that simulating events in this
way is equivalent to simulating events at a rate

(9) λ(x,v) = E
(
max

{
0,v · U(x)

})
,

where expectation is with respect to the random vari-
able U(x). Furthermore if we now calculate the differ-
ence in rates, λ(x,v) − λ(x,−v), we have

λ(x,v) − λ(x,−v)

= E
(
max

{
0,v · U(x)

}) − E
(
max

{
0,−v · U(x)

})
= E

(
max

{
0,v · U(x)

} − max
{
0,−v · U(x)

})
= E

(
max

{
0,v · U(x)

} + min
{
0,v · U(x)

})
= E

(
v · U(x)

)
.

Thus provided U(x) is an unbiased estimator of
−∇ logπ(x), the resulting process will have π(x) as
its marginal invariant distribution.

Using an unbiased estimator of
−∇ logπ(x) does not come without cost, as the re-
sulting process will, in general, be less efficient. This
loss of efficiency comes as the rates that are used for
events, E(max{0,v · U(x)}), will, in general, be larger
than the canonical rates. The only exception being if
U(x) has the same sign as −∇ logπ(x) with probabil-
ity one. Using larger rates appears to reduce the rate
of mixing of the process [see Bierkens and Duncan
(2017), Bierkens, Fearnhead and Roberts (2016)]. Fur-
thermore, the bound on the rates, used when imple-
menting thinning, will also tend to be larger. This will
increase the cost of simulating the process. Intuitively,
we would expect both these losses of efficiency to in-
crease as the variability of our estimator increases.

3.5.2 Exact approximation for the Bouncy Particle
Sampler. The idea of an exact approximation version
of the Bouncy Particle Sampler is slightly more com-
plicated, due to the fact that the flip operator used also
depends on ∇ logπ(x). To implement such an exact ap-
proximation version we need to use the same estimate
of ∇ logπ(x) in the flip operator as was used in decid-
ing to accept the event. So, using the notation of the
previous section, at a potential event at time s, simu-
lated from a Poisson process with rate λ̃+(s) we will
now:

(1) Simulate u, a realisation of U(xt + svt).
(2) Accept the event with probability

λ̂(xt + svt ,vt)

λ̃+(s)
= max{0,u · vt }

λ̃+(s)
.

(3) If we accept the potential event, this corresponds
to an event at time t + s, with new state being xt+s =
xt + svt and

vt+s = vt − 2
vt · u
u · u

u.

Note that the same realisation, u, is used in both steps
(2) and (3).

This leads to an algorithm where the transition at an
event is random. We will assume that U is a discrete
random variable, which is consistent with the use of
sub-sampling discussed in Section 3.5.3. It is straight-
forward to show that the resulting PDP has events oc-
curring at rate (9) as before, but with a transition prob-
ability mass function at an event that is

q
(
v′|x,v

) = p(u|x)
max{0,u · v}

E(max{0,v · U(x)}) ,

where p(u|x) is the probability mass of simulating u,
and v′ = v − 2u(v · u)/(u · u). Now substituting these
values into the equation for the stationary distribution
of the PDP (5), it is simple to show that the resulting
process will have an invariant distribution π(x)pv(v),
where pv(v) is uniform on the set of velocities of fixed
speed.

3.5.3 Use of sub-sampling. An example of an
exact-approximate version of these continuous-time
MCMC algorithms arises if we use sub-sampling of
data points at each iteration when performing Bayesian
inference in a big-data setting. This was first suggested
for the Zig Zag Sampler by Bierkens, Fearnhead and
Roberts (2016). Bouchard-Côté, Vollmer and Doucet
(2017) has shown that sub-sampling can be used within
the Bouncy Particle Sampler [see also Pakman et al.
(2017)], though they derive this as a special case of
what they call the local Bouncy Particle Sampler. This
local Bouncy Particle Sampler also allows efficient im-
plementation when the target can be written as a prod-
uct of factors, each of which only depends on a few
components of x.

We will consider a target density of the form

π(x) ∝
n∏

i=1

πi(x).

In this case, the simplest unbiased estimator of
−∇ logπ(x) is just

(10) −n∇ logπI (x),

where I is drawn uniformly from 1, . . . , n. However,
to increase the efficiency of sub-sampling methods we

CONTINUOUS-TIME MONTE CARLO 397

would want to try and minimise the variance of our
estimator, for example, by using control variates. One
approach that is commoly used [e.g., Bardenet, Doucet
and Holmes (2017), Dubey et al. (2016), Baker et al.
(2017)] is to have a pre-processing step that finds x̂,
a value of x that is near the posterior mode. We then
calculate and store ∇ logπ(x̂), and use the following
estimator:

(11) −∇ logπ(x̂) + n
(∇ logπI (x̂) − ∇ logπI (x)

)
.

If x is within a distance of O(1/
√

n) of x̂ and if π(x)

is sufficiently smooth, we would expect the variance
of this estimator to only increase linearly with n. By
comparison the variance of the simple estimator (10)
will increase like O(n2).

3.6 Example: Mixture Model

To demonstrate some of the properties of the use
of sub-sampling within continuous-time MCMC algo-
rithms, we apply them to a simple mixture model. As-
sume we have IID data from a mixture distribution,
where for j = 1, . . . , n

Yj ∼
{

N
(
0,102)

, with probability p,

N
(
x,12)

, otherwise.

Our interest is inference for x, and we assume a Gaus-
sian prior with mean 0 and variance 4. In the following
we simulate data with x = 4.

This involves inference for a univariate parame-
ter, and for this case each of the three versions of
continuous-time MCMC introduced earlier are equiva-
lent. Furthermore, we do not need to introduce any re-
freshing of the velocity, as used within the Bouncy Par-
ticle Sampler, to ensure ergodicity (Bierkens and Dun-
can, 2017). Our aim is to show how the continuous-
time MCMC algorithms can be implemented, how the
choice of the bounding process that simulates potential
event times can affect efficiency, and give some insight
into how and when the sub-sampling ideas can lead to
gains in efficiency.

We will first look at implementing continuous-time
MCMC using a global bound on the event rates. For
this model, if we write π(x) ∝ ∏n

i=1 πi(x), where πi

is the likelihood of the ith observation times the 1/nth
root of the prior, then

logπi(x)

= log
(

p

10
exp

{
− 1

200
y2
i

}

+ (1 − p) exp
{
−1

2
(x − yi)

2
})

− 1

8
x2.

We will fix p = 0.95 in the simulations we present.
We can bound |∇ logπi(x)| for each i, and this bound
increases with |yi |. If we let j be the observation with
largest absolute value, then the simplest global bound
on the event rates will be

(12) λ+ = nmax
x

∣∣∇ logπj (x)
∣∣,

which we can calculate numerically.
We can then simulate the path of our continous-time

MCMC algorithm by iterating the following steps. As-
suming we are currently at time t with state (xt , vt):

(1) Simulate the time until the next putative event,
s, a realisation of an exponential distribution with rate
λ+.

(2) Calculate xt+s = xt + svt , and the actual rate of
an event at position xt+s :

λ(xt+s, vt) = max
{
0,−vt∇ logπ(xt+s)

}
.

(3) With probability λ(xt+s, vt)/λ
+ switch the sign

of the velocity, vt+s = −vt and store the value (xt+s,

vt+s). Otherise vt+s = vt .

This simulates using the canonical rates. To use the
simplest version of sub-sampling, we just replace the
calculation of the actual rate in step (2) by

λ(xs+t , vt) = nmax
{
0,−vt∇ logπI (xs+t)

}
,

for I sampled uniformly from {1, . . . , n}. Note that our
choice of λ+ can still be used with sub-sampling, as it
bounds the above rate for all I and xs+t .

The above algorithm has similarities to one itera-
tion of a standard MCMC algorithm. Steps (1) and
(2) can be viewed as simulating a new state, and step
(3) is a form of accept-reject step. However there are
fundamental differences. First, the probability in step
(3) depends on the target through ∇ logπ(x), as com-
pared to the acceptance probability in MCMC which
depend on π(x). Second, the algorithm moves from xs

to xs+t regardless of the outcome in step (3). Step (3)
only affects the velocity component. Finally, as men-
tioned in Section 3.3 the use of the output is different.
For continuous-time MCMC, we have to take averages
with respect to the continuous-time path, or with re-
spect the value of the process at equally-spaced time-
points. By comparison, MCMC would average with re-
spect to the value of the chain at the end of each itera-
tion.

We now turn to how the use of sub-sampling im-
pacts on the efficiency of continuous-time MCMC. For
our above implementation, the average number of iter-
ations needed to simulate a path over a time-interval of

398 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

length T will be T/λ+ for both the canonical and sub-
sampling versions. Sub-sampling will involve a smaller
cost in step (2) as the rate depends on just a single data
point rather than all n data point. However, this compu-
tational saving comes at the cost of an overall increased
rate of switching velocity. This is shown in Figure 3,
where we give examples of ∇ logπ(x) for two simu-
lated data sets, of size n = 150 and n = 1500, respec-
tively, and each simulated with the true value of x = 4.
We also show the canonical rate of switching from a
negative to a positive velocity, and the expected rate of
switching when we use sub-sampling. The canonical
implementation has uniformly lower rates.

The impact of these different rates can be seen in
Figure 4, where we show trace autocorrelation plots
for analysing the data set with n = 150. Using sub-
sampling leads to paths of the sampler that switch ve-
locity substantially more frequently. As a result, the
canonical implementation is more efficient in terms of
suppressing random walk behaviour, and this is seen in
terms of better mixing and lower autocorrelation. The
autocorrelation plots suggest we need to run the sub-
sampling version for roughly 5 times as long to obtain

FIG. 3. Plots of ∇ logπ(x) for the mixture example (left-hand
column), and rates at which the continuous-time MCMC algorithm
will switch from a negative to a positive velocity (right-hand col-
umn). For the latter plots, we show rates for the canonical process
(full lines), simple sub-sampling (dashed lines) and sub-sampling
with control variates (dotted lines). The vertical dotted line shows
the value of x̂. Top row is for 150 data points, and the bottom row
for 1500 data points. Plots are restricted to areas of nonnegligible
posterior mass.

FIG. 4. Trace plots (top row) and autocorrelation plots (bottom row) for three implementations of continuous-time MCMC: canonical pro-
cess (left-hand column); simple sub-sampling (middle column) and sub-sampling with control variates (right-hand column). Auto correlation
plots are values sampled every unit time-step from the continuous sample paths.

CONTINUOUS-TIME MONTE CARLO 399

the same accuracy as using the canonical implementa-
tion.

We can improve the computational efficiency of both
these implementations of continuous-time MCMC
through using a lower bounding rate, λ+. The possibil-
ity for lowering λ+ is greater, however, for the canon-
ical version, and this is a second advantage it has over
using sub-sampling. For example, with an additional
pre-processing cost, we could choose

(13) λ+ =
n∑

i=1

max
x

∣∣∇ logπi(x)
∣∣.

Such a choice can be used with sub-sampling if our
estimate of the rate uses nonuniform sampling of data
points:

λ(x, v) = λ+ max
{

0,−v
∇ logπI (x)

maxx |∇ logπI (x)|
}
,

where we sample I from 1, . . . , n, with value i hav-
ing probability proportionally to maxx |∇ logπi(x)|.
For the canonical implementation we can reduce the
rate further if we are able to use the actual maximum
of |∇ logπ(x)|, but such a choice is not valid with
sub-sampling. For our example, using (13) rather than
(12) will reduce the number of iterations required by
a factor of 5.3. If we used the actual maximum of
|∇ logπ(x)| for the canonical version, we would re-
duce the number of iterations by a factor of nearly 30
when compared to using (12). Note that for all these
options for choosing λ+, the underlying stochastic pro-
cess we are simulating is unchanged—it is just the ef-
ficiency of the simulation algorithm that is affected.

If we compare the best implementation of continous-
time MCMC with subsampling, using (13), to the best
version of the canonical implementation we get that
for the same accuracy the we would need just over 25
times as many iterations using subsampling. Each it-
eration would be quicker, however, as it would need
access to just one, out of 150, data points.

To see any substantial gains from using subsam-
pling, we need to have a lower variance estimator of
∇ logπ(x), using, for example, control variates (11).
To implement this, we need to upper bound our esti-
mator of the rate. This is possible as the absolute value
of the second derivate of logπi(x) is bounded. Assume
we can find a bound, C say, then we use a bounding
rate

(14) λ+(x) = ∣∣∇ logπ(x̂)
∣∣ + nC|x − x̂|.

To implement the resulting algorithm, we can again
iterate the three steps given above. The only changes

are that in step (1) we need to simulate the inter-event
time from a point process with rate

λ̃+(s) = ∣∣∇ logπ(x̂)
∣∣ + nC|xt + vt s − x̂|,

and in step (3) the probability of switching the velocity
is(
max{0,−v[∇ logπ(x̂) + n(∇ logπI (xt+s)

− ∇ logπI (x̂))]})(|∇ logπ(x̂)| + nC|xt+s − x̂|)−1
.

We can get some insight into the advantage of us-
ing control variates by calculating the expected rate of
switching the velocity for the resulting algorithm and
comparing with this rate for the other two implemen-
tations. This comparison is shown in Figure 3. We see
a much lower rate of switching when we use control
variates if x is close to x̂ as compared to the simple
sub-sampling approach. However, the rate is actually
larger if x is far from x̂. Thus we see the importance
of x̂ being close to the mode of the posterior. This pic-
ture is the same for both small, n = 150, and larger,
n = 1500, data sets. However for larger data sets the
posterior mass close to the posterior mode increases.
As such the amount of time that algorithm will be in
regions where using control variates is better will in-
crease as we analyse larger data sets.

In Figure 4, we see output from the algorithm using
control variates for n = 150. For such a small sample
size, there appears to be little advantage in using con-
trol variates. The mixing in the tails is poor, due to the
large variability of our esimators of the switching rate
when x is not close to x̂. Note that we can avoid this
issue by using a hybrid scheme that estimates the rates
using control variates when |x − x̂| is small, and uses
simple sub-sampling otherwise.

We see advantages from using control variates as
we analyse larger data sets. A comparison of our three
implementations of continuous-time MCMC is shown
in Table 1, where we look at their computational cost
per effective sample size (ESS), a standard measure of
MCMC performance. First, note that for the canoni-
cal implementation, the amount of PDP time, t , we
need to run the continuous-time MCMC for decreases
with sample size. This is as described in the scaling
limits discussed in Bierkens, Fearnhead and Roberts
(2016). The intuition is that for larger n the posterior is
more concentrated, and thus the underlying PDP pro-
cess needs less time to explore the posterior. This prop-
erty is also seen if we use sub-sampling with control
variates. Without control variates, the actual switching
rates of the underlying PDP increase quickly with n

400 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

TABLE 1
Comparison of different implementations of continuous-time MCMC: canonical, subsampling, and sub-sampling with control variates; and

how they vary as sample size, n, increases. Both canonical and sub-sampling use a global bound on the event rate to simulate possible
events, we give results for canonical using both (13) and maxx |∇ logπ(x)| as this bound. We give estimates of both the stochastic process
time-length, t , that the MCMC algorithm needs to be run per effective sample size (ESS); and the average number of iterations (proposed
event times) per t . The product of these is then the number of iterations needed per ESS. The sub-sampling and control variate versions

require calculating the gradient associated with a single data point per iteration, whereas standard implementation requires n such
evaluations; for each n we also give the average number of such evaluations per ESS

Canonical Canonical Sub-sampling Control variate

Bounding rate (13) maxx |∇ logπ(x)| (13) (14)

n = 150 t per ESS 3.3 3.3 14 22
Iterations per t 57 11 57 210
Iterations per ESS 190 36 800 4600
Observation-gradient evaluations per ESS 28,000 5400 800 4600

n = 1500 t per ESS 0.43 0.43 8.6 2.1
Iterations per t 570 15 570 1000
Iterations per ESS 245 6.4 4900 2100
Observation-gradient evaluations per ESS 370,000 9600 4900 2100

n = 15,000 t per ESS 0.13 0.13 9.1 0.91
Iterations per t 5600 100 5600 3800
Iterations per ESS 730 13 51,000 3500
Observation-gradient evaluations per ESS 11,000,000 195,000 51,000 3500

which slows down the mixing of the algorithm, and the
amount of time, t , that we need to simulate the under-
lying PDP for does not change much with n.

The computational cost of each algorithm also de-
pends on the number of iterations, that is the number
of proposed event-times, of the algorithm per t ; and
the cost of each iteration. The former increases with n

for all implementations. Overall, the number of itera-
tions per ESS remains roughly constant when we use
control variates. As the computation cost per iterations
is O(1) we see evidence that this algorithm has a com-
putational cost that does not increase with n. By com-
parison the number of iterations per ESS appears to in-
crease roughly linearly with n if we use subsampling
without control variates. [See Bouchard-Côté, Vollmer
and Doucet (2017), for further empirical evidence of
these scalings when we use sub-sampling with or with-
out control variates.]

For the canonical implementation, even using the
best possible global bound on the event rate, we have
the number of iterations per ESS remaining constant
but the computational cost per iteration is O(n). Thus
its overall computational cost will increase linearly
with n. We see some evidence of these scalings if we
look at the number of gradient evaluations associated
with each observation that needs to be calculated per

ESS. In situations where these gradients are expen-
sive, this would be a good proxy for the overall com-
putational cost—and these results suggest using sub-
sampling with control variates will be particularly use-
ful for models where this is the case.

4. CONTINUOUS-TIME SEQUENTIAL
IMPORTANCE SAMPLING

We now consider continuous-time versions of se-
quential importance sampling. Such algorithms were
first developed to solve the problem of simulating from
a diffusion [see Øksendal (1985), for an introduction
to diffusions]. In this situation we have a diffusion pro-
cess, Xt , defined as the solution to an SDE

dXt = b(Xt)dt + σ(Xt)dBt ,

where b(x) is the d-dimensional drift, Bt is d dimen-
sional Brownian motion, and σ(x) is a d by d matrix
that defines the instantaneous variance of the process.
We have an initial distribution p0(x) for the diffusion,
and wish to sample from the distribution of the process
at some future time or times. If we denote the density
of this process at time t by pt(x), then the challenge is
to sample from pt(x) for diffusion processes where we
cannot write down what pt(x) is.

The Exact Algorithm (Beskos and Roberts, 2005,
Beskos, Papaspiliopoulos and Roberts, 2006) and its

CONTINUOUS-TIME MONTE CARLO 401

variants (Beskos, Papaspiliopoulos and Roberts, 2008,
Pollock, Johansen and Roberts, 2016) have given a
number of algorithms for simulating from such a dif-
fusion process, but only under strong conditions on
the drift and instantaneous variance. For example, it
is commonly required that σ(x) is constant, and that
the drift can be written as the gradient of some poten-
tial function. Almost all uni-variate diffusion processes
can be transformed to satisfy these requirements, but
few multivariate diffusion processes can.

Whilst we do not know what pt(x) is for any t > 0,
we do know that it solves the Fokker–Planck equation
for the diffusion

∂pt (x)

∂t
= −

d∑
i=1

∂bi(x)pt (x)

∂xi

+ 1

2

d∑
i=1

d∑
j=1

∂2�ij (x)pt (x)

∂xixj

,

where � = σT σ . This motivates the following ques-
tion: can we use our knowledge of the Fokker–Planck
equation for the process of interest in order to develop
a valid importance sampling algorithm to sample from
pt(x)?

The continuous-time importance sampling (CIS)
procedure of Fearnhead et al. (2016), which we de-
scribe below, will in fact enable us to do so. We will
present it in a slightly more general form, in that we
will use CIS to sample from a distribution pt(x) that is
the solution to a partial differential equation

∂pt (x)

∂t
= L∗pt(x)

for some known operator L∗ and subject to a known
initial condition p0(x). This then allows for sampling
from more general continuous-time Markov processes,
where L∗ would be the adjoint of the generator for that
process. In the following we assume that this partial
differential equation has a solution, and the formal jus-
tification of the CIS algorithm requires that this solu-
tion is unique.

4.1 The CIS Algorithm

The idea of CIS is similar in spirit to a standard im-
portance sampler. We will choose a tractable proposal
process, for the problem of sampling from a diffusion
this is most naturally chosen to be Brownian motion.
This proposal process must have a known transition
density which is simple to sample from. We will sim-

ulate paths from this proposal process up to time t ,
and then construct an importance sampling weight. The
challenge is that we need to calculate an importance
sampling weight without knowing pt(x). The property
we want from our importance sampler is that if we sim-
ulate a value and weight at time t , (X,W), then for
suitable functions f (x) we will have that Wf (X) will
be an unbiased estimator of the expectation of f (Xt)

for our target process,

E
(
f (Xt)

) =
∫

f (x)pt (x)dx.

The original CIS algorithm can be derived by taking
a limit of a discrete-time sequential importance sam-
pler (Fearnhead et al., 2016). Below we give the gen-
eral form of the resulting CIS process. The key to mak-
ing this a valid importance sampler is choosing the in-
cremental weight (see step 2 below) appropriately. We
will show how we can derive the form of the incremen-
tal weight by viewing the CIS process as a PDP, and us-
ing the generator of the PDP to calculate expectations
with respect to the CIS process.

Denote the transition density of the proposal process
over time interval s as qs(x|y), and assume we have
chosen an event-rate λ̃(s) > 0 for s > 0. The CIS algo-
rithm is of the form:

(0) Set τ = 0, W0 = 1 and simulate X0 from the ini-
tial distribution of the target process, p0(x).

(1) Simulate a new event time τ ′ > τ , with the inter-
event time s = τ ′ − τ being drawn from a Poisson pro-
cess with rate λ̃(s).

(2) If τ ′ > t then simulate Xt from qt−τ (·|Xτ ′), and
set Wt = Wτ ′ . Otherwise simulate Xτ ′ from qs(·|Xτ)

and update the weight. The update of the weight will
take the form

(15) Wτ ′ = Wτ

[
1 + ρ(Xτ ′,Xτ , s)

λ̃(s)

]
,

where ρ is a function that will be derived in Sec-
tion 4.1.2. If τ ′ < t , set τ = τ ′ and go to (1).

Step (0) is just an initialisation step. The idea of the
algorithm is that we use random event times, simu-
lated in step (1), at which we evaluate the proposal
process. Based on the value of the process at both this
event and the preceeding event we then update the im-
portance sampling weight. As is standard in sequen-
tial importance sampling, the new weight (calculated
in step 2) is just the old weight multiplied by an incre-
mental weight. Figure 5 gives an example of the output
of this algorithm.

402 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

FIG. 5. Example of the CIS process. Left-hand column shows the original importance sampling process. Conceptually we think of a proposal
process, Xt (top plot), simulated in continuous-time. However, we need only simulate this process at event times (denoted by vertical dashed
lines) and at times we are interested in. The middle plot shows these simulated values. The weight process is shown in the bottom plot, and the
weight changes only at event times. The right-hand column shows the corresponding components of our PDP process: St (top); Yt (middle)
and Wt (bottom).

The key to making this a valid importance sampling
algorithm is working out an appropriate form of the
incremental weight. Without loss of generality we have
written the incremental weight in the form given inside
the square brackets in (15), as this will simplify the
derivation later. To specify the incremental weight, we
need to appropriately choose the function ρ.

4.1.1 CIS as a PDP. It can be seen that the CIS
process is just a piecewise deterministic Markov pro-
cess. The only randomness in the process is the tim-
ing of the events and the transitions at the events.
We can formalise this by defining a PDP with state

Zt = (Yt ,Wt , St) where Yt is the value of the CIS pro-
cess simulated at the most recent event prior to t , Wt is
the importance sampling weight at time t and St is the
time since the most recent event. See Figure 5 for an
example.

This PDP has deterministic dynamics given by dif-
ferential equations

dYt

dt
= 0,

dWt

dt
= 0, and

dSt

dt
= 1.

Events occur at a rate λ(Zt) = λ̃(St). At an event at
time τ we simulate Yτ from qSτ−(·|Yτ−), set Sτ = 0
and update Wτ as described in (15).

CONTINUOUS-TIME MONTE CARLO 403

The generator of Zt , given by (3), is

(16)

Ah(y,w, s)

= ∂h(y,w, s)

∂s

+ λ̃(s)

∫ {
h

(
y′,w

(
1 + ρ(y′,y, s)

λ̃(s)

)
,0

)

− h(y,w, s)

}
qs

(
y′ | y

)
dy′.

Given the state at time t , Zt = (Yt ,Wt , St), our esti-
mate of the expectation of f (Xt) under our target pro-
cess will be Wtf (X), where X is drawn from qSt (· |
Yt). The requirement that our algorithm is a valid im-
portance sampler then becomes that

EX,Z
(
Wtf (X)

) := EZ

(
Wt

∫
f (x)qSt (x|Yt)dx

)

=
∫

f (x)pt (x)dt.

Here, the first expectation is with respect to Z, the PDP
and X the simulated value for Xt , and the second ex-
pectation is just with respect to Z.

As this must hold for all appropriate functions f , we
need that for almost all x

E
(
WtqSt (x|Yt)

) = pt(x).

We will denote the left-hand side by p̃t (x). Due to the
initialisation of the CIS algorithm, we have p̃0(x) =
p0(x). Thus we need to choose the incremental weights
such that p̃t (x) satisfies the Fokker–Planck equation
for the target process

(17)
∂p̃t (x)

∂t
= L∗p̃t (x).

4.1.2 Obtaining the incremental weight. We will
give an informal outline of how to derive the func-
tion ρ. Throughout this argument, we will assume that
we can interchange expectation with various operators.
See Fearnhead et al. (2016), and the discussion below,
for conditions under which this is valid.

We need to choose ρ so that (17) holds. The right-
hand side of (17) is just

L∗p̃t (x) = E
(
L∗WtqSt (x|Yt)

)
.

The left-hand side of (17) is the derivative of an expec-
tation, and thus can be written in terms of the generator
of the PDP, A,

∂p̃t (x)

∂t
= ∂E(WtqSt (x|Yt))

∂t
= E

(
AWtqSt (x|Yt)

)
).

So both the left and right hand sides of (17) can be
written as an expectation of a function of the PDP. For
these expectations to be equal it is sufficient for the two
functions to be equal to each other.

Using the form of the generator for the CIS process
(16) we get that for current state z = (y,w, s),

Awqs(x|y)

= ∂wqs(x|y)

∂s

+ λ̃(s)

∫ {
w

(
1 + ρ(y′,y, s)

λ̃(s)

)
q0

(
x|y′)

− wqs(x|y)

}
qs

(
y′ | y

)
dy′

= w
∂qs(x|y)

∂s

+ wλ̃(s)

{∫ (
1 + ρ(y′,y, s)

λ̃(s)

)
q0

(
x|y′)

· qs

(
y′ | y

)
dy′ − qs(x|y)

∫
qs

(
y′ | y

)
dy′

}

= w
∂qs(x|y)

∂s

+ λ̃(s)

[
wqs(x|y)

(
1 + ρ(x;y, s)

λ̃(s)

)
− wqs(x|y)

]

= w
∂qs(x|y)

∂s
+ wqs(x|y)ρ(x,y, s).

The above argument is informal, as for s = 0 (a state
visited every time a jump occurs) the function qs(x|y)

does not exist. However it acts, informally, like a dirac
delta function. So for any function h(y′) we have∫

q0(x|y′)h(y′)dy′ = h(x), and this is used above. We
refer the reader to Fearnhead et al. (2016) for formal
justification of this step and others.

Thus for the two functions of the PDP that we are
taking expectations of to be equal we need

w
∂qs(x|y)

∂s
+ wqs(x|y)ρ(x,y, s) = L∗wqs(x|y),

which can be re-arranged to give

(18) ρ(x,y, s) = L∗qs(x|y) − ∂qs(x|y)
∂s

qs(x|y)
.

The incremental weight is then 1 + ρ(x,y, s)/λ̃(s).
The form of this incremental weight is quite intu-

itive. It is based on the difference between how transi-
tion densities change under the target process and un-
der the proposal process. The optimal proposal process

404 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

would, obviously, be the target process. For this choice
∂qs(x|y)/∂s = L∗qs(x|y), ρ(x,y, s) = 0, and the im-
portance sampling weights would always be equal to 1.
As expected, a proposal process that more closely
mimics the target process will have less variable in-
cremental weights. Furthermore we see a trade-off in
the choice of the event rate λ̃(s), as larger values of
this rate will lead to more events and a higher compu-
tational cost, but reduce the variance in the incremental
weight. If we were to double the event rate, we would
double the expected number of events, but the variance
of the incremental weight at an event would reduce by
a factor of 4. We expect that the net effect is an overall
reduction of Monte Carlo variance in the weights but
an increase in computational cost.

One issue with the CIS algorithm is that, for cer-
tain combinations of target and proposal processes, it
can be possible to get negative weights [similar, for ex-
ample, to the Russian roulette sampler of Lyne et al.
(2015)]. This can occur if it is possible for ρ(x,y, s)

to be smaller than −λ̃(s). For the applications of CIS
to simulating from a general diffusion process that are
described in Fearnhead et al. (2016), ρ(x,y, s) can-
not be bounded below, and thus negative weights are
possible. Obviously, the probability of getting negative
weights can be controlled, with larger λ̃(s) values re-
ducing this probability. This in turn leads to important
theoretical and practical issues. The above argument
for deriving the incremental weight required the inter-
change of expectation and operators. The main condi-
tion for justifying this is that the we need the impor-
tance sampling weights to be such that E(|Wt |) is fi-
nite for any t > 0. This condition may not hold due to
the possibility of negative weights. In fact, Fearnhead
et al. (2016), show that some naive implementations
of CIS will not have importance sampling weights that
satisfy this condition. Furthermore, for problems where
the target process is a diffusion, they give sufficient
conditions on both the proposal process and the event
rate that will ensure E(|Wt |) is finite. In general, and
within the more specific context of diffusion proposals
and targets, Fearnhead et al., 2016 provide conditions
under which Wt has pth moments for p ≥ 1. The pa-
per also gives practically implementable and intuitive
strategies for ensuring that these moments exist.

4.2 Continuous-Time Sequential Monte Carlo

To date, we have reviewed a continuous-time im-
portance sampling algorithm. This is most naturally

viewed as an extension of sequential importance sam-
pling (Liu and Chen, 1998) to continuous-time. How-
ever, it is then possible to extend this to a continuous-
time version of SMC. All we need to do is to jointly
simulate multiple CIS processes, and then introduce re-
sampling steps. The simplest implementation of this is
to choose a set of resampling times, say h,2h,3h, . . . ,

Kh, and a number of “particles”, N . The continuous-
time SMC algorithm will then proceed as follows:

(0) Initiate. Simulate x(1)
0 , . . . ,x(N)

0 independently

from p0(x). Set w
(i)
0 = 1 for i = 1, . . . ,N . Set t = 0

(1) Propagate and Reweight. For i = 1, . . . ,N run
the CIS process for a time interval of length h, with
initial values x(i)

t and w
(i)
t . Denote the output of the

CIS process at time u = t + h by x̃(i)
u and w̃

(i)
u .

(2) Resample. For i = 1, . . . ,N sample ki from
1, . . . ,N with probabilities proportional to |w̃(1)

u |, . . . ,
|w̃(N)

u |. Set x(i)
u = x̃(ki)

u and

w(i)
u = w̃

ki
u

|w̃ki
u |

1

N

N∑
j=1

∣∣w̃(j)
u

∣∣.
(3) Iterate. Set t = u. If t < Kτ go to step (1).

The resampling step is different from standard resam-
pling used in SMC to allow for the possibility of neg-
ative weights. The form of the weight after resampling
is defined so that resampling is unbiased, and this re-
quires the sign of the weight assigned to any parti-
cle value to be unchanged. It is simple to extend the
above use of resampling to allow for lower-variance
resampling schemes (Kitagawa, 1996, Carpenter, Clif-
ford and Fearnhead, 1999, Doucet, Godsill and An-
drieu, 2000) in step (2), and to allow resampling times
to depend on the SMC output, for example to be times
when the effective sample size of the weights drops be-
low some threshold (Liu and Chen, 1995).

The beneficial effect of resampling will be less when
we have negative weights. For example, it is easy to
show that E(|Wt |) is unchanged by resampling. Thus
resampling cannot counteract any increase in E(|Wt |)
with t , and this increase will necessarily imply deteri-
oration of Monte Carlo performance with t . Thus the
good long-term stability properties that SMC with re-
sampling often has (Del Moral and Guionnet, 2001,
Douc, Moulines and Olsson, 2014) will not be possi-
ble in the presence of negative weights. This issue with
negative weights is well known within related quantum
Monte Carlo methods (Foulkes et al., 2001), where it
is termed the fermion-sign problem.

CONTINUOUS-TIME MONTE CARLO 405

Fearnhead et al. (2016) suggest alternative resam-
pling approaches for step (2) that can reduce E(|Wt |)
at resampling times, and thus may lead to long-term
stability. Alternatively, we need to choose event rates
in CIS to be sufficiently large that negative weights are
rare over the time-scales that we wish to run an SMC
algorithm for.

4.3 CIS for Big Data: The SCALE Algorithm

Recently Pollock et al. (2016) presented SCALE,
an algorithm for sampling from a posterior distribu-
tion. The original derivation of SCALE was based
on constructing a killed Brownian-motion process
whose quasi-stationary distribution is the posterior dis-
tribution. The SCALE algorithm then samples from
this quasi-stationary distribution. A key property of
SCALE is that it only needs to use a small sub-sample
of the data at each iteration of the algorithm, and thus
it is suitable for large data applications.

Whilst the original derivation is very different, we
show here that SCALE can be viewed as a CIS, or
continuous-time SMC, algorithm. Our setting is that
we wish to sample from a posterior distribution which
we will assume can be written as

π(x) ∝
n∏

i=1

πi(x),

where, to keep notation consistent with our presenta-
tion of CIS, x is the parameter vector. Here, πi(x) is
the likelihood for the ith observation multiplied by the
1/nth power of the prior. As is common to Bayesian
inference, the posterior distribution is only known up
to a constant of proportionality. We wish to develop a
Monte Carlo algorithm for sampling from this poste-
rior that has good computational properties for large n.

The idea of SCALE and its link to CIS is as fol-
lows. We will use CIS to target a stochastic process
that has π(x) as its stationary distribution. To imple-
ment CIS, we only need to know the Fokker–Planck
equation for this process. If we run CIS (or in prac-
tice, a continuous-time SMC version) then after a suit-
able burn-in period this will give us weighted sam-
ples from π(x). A key property of the CIS algorithm
is that the incremental weights depend on the poste-
rior only through logπ(x). This is a sum, and it is easy
to use sub-sampling to unbiasedly estimate this sum.
Thus to deal with potentially large data we will imple-
ment a random weight version of CIS (Fearnhead, Pa-
paspiliopoulos and Roberts, 2008), where we use sub-
sampling to estimate the incremental weights. Using
unbiased random weights leads to a valid importance

sampler, but one with an increased Monte Carlo er-
ror. The next ingredient to the SCALE algorithm is to
use control variates to reduce the variance of our sub-
sampled estimates of the incremental weights, which in
turn helps to control the overall Monte Carlo error of
the algorithm. Finally, Pollock et al. (2016) use ideas
from the Exact algorithm to avoid the possibility of
negative weights. We now detail each of these steps.

The first step to SCALE is the choice of a stochas-
tic process that has π(x) as its asymptotical distribu-
tion. We need specify this process through its Fokker–
Planck equation. SCALE uses the stochastic process
for which

∂pt (x)

∂t
= 1

2

d∑
i=1

∂2pt(x)

∂x2
i

− 1

2π(x)

(
d∑

i=1

∂2π(x)

∂x2
i

)
pt(x).

It is trivial to see that π(x) is an invariant distribution
for this stochastic process, as on substituting pt(x) =
π(x) the two terms on the right-hand side cancel. The
actual underlying stochastic process can be interpreted
as Brownian motion with killing, conditioned on sur-
vival: see Pollock et al. (2016) for more details.

If we implement CIS for this target process, and use
Brownian motion as the proposal distribution, we have

qs(x|y) =
(

1√
2πs

)d

exp

{
−

d∑
i=1

(xi − yi)
2

2s

}
,

and

∂qs(x|y)

∂s
= 1

2

d∑
i=1

∂2qs(x|y)

∂x2
i

.

Thus from (18), the function that determines the in-
cremental weights is

ρ(x,y, s) = − 1

2π(x)

d∑
i=1

∂2π(x)

∂x2
i

= −1

2

d∑
i=1

[
∂2 logπ(x)

∂x2
i

+
(

∂ logπ(x)

∂xi

)2]
.

The right-hand side depends on π(x) only through
derivatives of

logπ(x) = constant +
n∑

i=1

logπi(x).

Importantly, these derivatives do not depend on the un-
known normalising constant of π(x). Furthermore, as

406 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

they are sums, it is simple to unbiasedly estimate the
derivatives. For example, given j and k, two indepen-
dent draws from a uniform distribution on 1, . . . , n, we
can estimate ρ(x,y, s) by

(19)

−1

2

d∑
i=1

[
n
∂2 logπj (x)

∂x2
i

+ n2
(

∂ logπj (x)

∂xi

)(
∂ logπk(x)

∂xi

)]
.

We can reduce the variance of our estimate of ρ,
and hence of the incremental weights, using control
variates. Pollock et al. (2016) suggest using a pre-
processing step that finds a values x̂ close to the
posterior mode. We precalculate the first and second
derivates of logπ(x) at x̂, and calculate the value, ρ̂, of
ρ at x̂. We then estimate of ρ at x as
(20)

−n

2

d∑
i=1

{[
∂2 logπj (x)

∂x2
i

− ∂2 logπj (x̂)

∂x2
i

]

+ n

[
∂ logπj (x)

∂xi

− ∂ logπj (x̂)

∂xi

]

·
[
∂ logπj (x)

∂xi

− ∂ logπj (x̂)

∂xi

+ 2
1

n

∂ logπ(x̂)

∂xi

]}

+ ρ̂,

where, as before, j and k are independent draws
from an uniform distribution on 1, . . . , n. The idea
behind this control-variate approach is that if x̂ is
within O(1/

√
n) of the posterior mode, then with high-

probability, at stationarity the CIS process will be at
an x value that is within O(1/

√
n) of x̂. If the first

and second derivatives of the logπj s are well behaved
this means that the terms in the square brackets will be
Op(1/

√
n), and thus ρ will be O(n) with high proba-

bility. This compares well with the naive sub-sampling
estimator of ρ (19), which will be Op(n2).

Finally, to avoid negative weights, the SCALE algo-
rithm then uses ideas from Beskos, Papaspiliopoulos
and Roberts (2008) and Burq and Jones, 2008, to simu-
late the proposal process in such a way that we know an
upper and lower bound the process takes within a given
time-interval. With such bounds we can then choose
our event-rate λ sufficiently high that negative weights
do not occur. This approach does come with a compu-
tational cost, as simulating Brownian motion together
with such a bound can be an order of magnitude, or
more, slower than just simulating Brownian motion.
Below we investigate the feasibility of implementing

a version of SCALE that allows for negative weights,
but that chooses event-rates to be sufficiently large that
they are rare.

4.4 Extensions

Here, we give two examples of how we can use the
theory for PDPs to easily obtain generalisations of the
basic CIS and SCALE algorithms.

4.4.1 Alternative proposal distributions. With any
importance sampling approach, the choice of proposal
distribution can have a substantial impact on the result-
ing Monte Carlo properties. The original derivation of
CIS used the idea of a continuous-time stochastic pro-
cess that was being used as a proposal process. How-
ever, our derivation of the CIS algorithm has not ac-
tually required us to specify a proposal process, just
a suitable family of transition densities, qs(x|y). This
family needs to have certain properties, such as being
differentiable with respect to s, so that the incremental
weight (18) can be calculated. This appears to make it
easy to consider alternative proposals, as we only need
to specify an appropriate family of densities. For ex-
ample, in standard importance sampling applications it
is often recommended to use heavy-tailed proposals, so
for CIS it is natural to consider transition densities that
are t-distributed, such as

(21)

qs(x|y)

∝ s−d/2 1

(1 + 1
ν

∑d
i=1(xi − yi)2/s)(ν+d)/2

,

for some appropriately chosen degrees of freedom
ν > 0.

4.4.2 Alternative SCALE processes. We can also
develop alternatives to the SCALE algorithm that dif-
fer in terms of the underlying stochastic process that
they target. For example, we can target the Langevin
diffusion, for which the Fokker–Planck equation is

∂pt (x)

∂t
= 1

2

d∑
i=1

∂2pt(x)

∂x2
i

− 1

2

d∑
i=1

[
∂

∂xi

(
pt(x)

∂ logπ(x)

∂xi

)]
.

Again, it is simple to see, by substituting pt(x) = π(x)

on the right-hand side, that π(x) is the invariant distri-
bution for this process. If we implement CIS to sample

CONTINUOUS-TIME MONTE CARLO 407

from this Langevin diffusion, and use Brownian mo-
tion as the proposal distribution, we get that the incre-
mental weights are 1 + ρ(x,y, s)/λ̃(s) with

ρ(x,y, s) = −1

2

d∑
i=1

[
(yi − xi)

s

∂ logπ(x)

∂xi

+ ∂2 logπ(x)

∂x2
i

]
.

We can unbiasedly estimate this using a sub-sample
of size 1. For example, if j is drawn uniformly from
{1, . . . , n}, one unbiased estimator is

ρ̂(x,y, s) = −n

2

d∑
i=1

[
(yi − xi)

s

∂ logπj (x)

∂xi

+ ∂2 logπj (x)

∂x2
i

]
.

Alternatively, we can develop lower-variance esimators
using control variates. The incremental weight is easier
to estimate than the incremental weight in SCALE as
it does not involve a square of the gradient of the log-
posterior. However, the (yi −xi)/s term has a variance,
under the Brownian motion proposal, that is 1/s, and
care is needed to control this term for small values of
the inter-event time, s.

4.5 Example: Inference for Mixture Models

To give an indication of how the SCALE algorithm
of Section 4.3 works, some of the issues with its imple-
mentation, and the importance of using control-variates
with the sub-sampling estimator or ρ, we will consider
the simple example of Section 3.6.

Initially, we implemented the SCALE algorithm
without any sub-sampling on a data-set of size n = 150
and p = 0.95. Figure 6 show the posterior distribu-
tion for x for this data set, the log-posterior and how ρ

varies as a function of x. Note that the average value of
ρ at stationarity is 0, so values where ρ is greater than
or less than 0 show regions where weights of particles
will increase or decrease relative to the average weight.
The key point in these figures is that while both the
posterior and log-posterior are relatively well behaved,
ρ has multiple pronounced modes.

This multi-modality can cause issues with mixing.
For example, a particle that is currently at a value of
−5 will have to traverse a prolonged region where ρ

is negative to reach the main region of posterior mass
at values of x close to 4. As it traverses this region, its
weight will reduce substantially, and it is likely to be
lost due to resampling. Thus we could have relatively
rare movement of particles from one mode of ρ to an-
other.

In practice, this means that initialisation of the
SCALE algorithm can be crucial. We implemented

FIG. 6. The posterior distribution (a); the log-posterior (b); and ρ (c) for a data set of size 150 from the mixture model. Note that for the
SCALE algorithm ρ(x, y, s) simplifies to a function only of x.

408 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

FIG. 7. Evolution of particles up to time 50 (left-hand column) and estimate of posterior (right-hand column) from SCALE algorithm. Top
row is for particles initiated from prior and bottom row for particles initiated uniformly on [−10,−5]. Estimates of posterior are show as
histograms based on the weighted particles from time 25 to 100, and the true posterior is overlain.

SCALE with 200 particles over a time interval of
length 100. We considered resampling at every integer
time-point, and resampled if the effective sample size
of the weights was less than 100. We ran SCALE with
a constant event rate of 12, and observed no negative
weights. The performance of SCALE appeared quite
sensitive to the event rate, with rates of 10 and less giv-
ing noticeably worse performance. Figure 7 shows out-
put from two runs of SCALE, one initialised with parti-
cles drawn from the prior, and the other initialised with
particles drawn uniformly on [−10,−5]. Figure 7(a)
and (c) show the evolution of the particles over the first
50 time-steps. They evolve according to Brownian mo-
tion, but accrue or lose weight depending whether ρ is
positive or negative at the particle values at event times.
Particles with low weights tend to be lost at resampling
times. For the case where we initialise particles from

the prior, we see particles are quickly lost in regions
aroung x = 0 where ρ is negative. More slowly, they
are also lost from regions around x = −5 which is a
local-maxima in ρ, as these particles, on average, attain
a smaller weight than those particles close to the pos-
terior mode. By about time 15, the SCALE algorithm
appears to have converged, and Figure 7(b) shows that
it gives a good approximation to the true posterior dis-
tribution. By comparison, when SCALE is initialised
with no particles close to the posterior mode, the par-
ticles appear to get stuck close to local mode of ρ at
x = −5.

We now turn our attention to the possibly benefits of
using subsampling to estimate ρ. First, to show the dif-
ference between sub-sampling with and without con-
trol variates, Figure 8(a) shows the variance of our the
sub-sampling estimate of ρ for our data set of size 150.

CONTINUOUS-TIME MONTE CARLO 409

FIG. 8. Variance of estimate of ρ using sub-sampling with (black full-line) and without (red dashed line) control variates (plot a); the
vertical line shows the value of x̂. Computational cost of estimating Wh, measured in terms of number of data point accessed, as a function
of n (plot b), and variance of Wh as a function of n (plot c). For these latter two plots, results are shown for no subsampling (red dashed line)
and sub-sampling with x̂ as the posterior mode (black full-line) the mode plus posterior standard deviation (green dotted line) and mode plus
three times the standard deviation (blue dot-dash line). Results calculated from 2000 estimates of Wh for each method and each value of n.

The control variate estimator (20) was implemented
with x̂ set to be the posterior mode. We see a substan-
tially lower variance for x close to x̂ when we use con-
trol variates. Though as x moves away from x̂ the vari-
ance increases, and eventually is worse than not using
control-variates. The key to why control variates works
for large data is that if x̂ is close to the posterior mode
then x will be very close to x̂ with high probabililty. In
such cases, the proportionate reduction in variance will
be O(n)—and thus the gains of using control variates
will increase for larger data sets.

To gain insight into the benefit of using sub-
sampling, we looked at the variance of the weight at
time h, Wh, of a particle sampled from the true pos-
terior, for different values of n both with and without
sub-sampling. For a fixed variance of Wh we wanted
to see how many data points need to be processed by
each algorithm. So without sub-sampling, each event
requires access to all n data points, whereas with sub-
sampling each event requires us to access only 2 data
points. We found that sub-sampling without control
variates performed substantially worse than the two al-
ternatives, with increasingly poor performance as n in-
creases. Thus we focus on comparing no sub-sampling
and sub-sampling with control variates.

As we increase n the posterior standard deviation
will decrease at a rate 1/

√
n, and thus we choose

h = 1/n so that the distance moved by the particle will
also be of order 1/

√
n. When using no sub-sampling

we chose the event rate to be n/2. For sub-sampling
with control variates we set x̂ to be the posterior mode

and let the event rate depend on the value of the parti-
cle at the most recent event, x ′ say, and be of the form
2n + 4n2(x′ − x̂)2. These choices gave variances of
Wh that were similar for both cases and also for dif-
ferent n. Figure 8(b) shows how the number of data
points accessed varied with n for the two methods and
Figure 8(c) shows the estimates of the variance of Wh.
As n increases we have that the computational cost
of using sub-sampling, as measured by the number of
data points accessed, remains constant. By compari-
son, without sub-sampling, to maintain a fixed variance
for Wh we need to increase the computational cost lin-
early.

Finally, we looked at how the choice of x̂ affected
the performance of sub-sampling with control variates.
We repeated the above study but setting x̂ to be ei-
ther one posterior standard-deviation or three posterior
standard-deviations from the mode. These correspond
to values in the body of the posterior and in the tail
of the posterior, respectively. From Figure 8(b) and (c)
we see that as x̂ moves away from the posterior mode,
the performance of the sub-sampler decreases both in
terms of computational cost and variance. However, for
a fixed variance of Wh both methods have a computa-
tional cost that is constant with n, as opposed to the
linearly increasing cost we have when sub-sampling is
not used.

5. DISCUSSION

We have shown how piecewise deterministic pro-
cesses can be used to derive continuous-time ver-

410 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

sions of sequential Monte Carlo and MCMC algo-
rithms. These algorithms are fundamentally different
from more standard discrete-time versions. Currently,
only a few specific algorithms, from a much wider
class of possibilities, have been suggested. Whilst we
have suggested a few extensions of existing methods,
these just touch the surface of the range of develop-
ments that are possible. Whilst not discussed here,
the continuous-time SMC methods seem particularly
well suited for implementation on a distributed com-
puting architecture, as the evolution of particles can
be carried out in parallel. As well as such potential
methodological developments, there are a wide range
of open theoretical questions. For example, can we get
results on how well continuous-time MCMC mixes?
For such results to be practically meaningful, they
would need to account for the computational cost of
simulating the underlying PDP, as opposed to just mea-
suring the mixing properties of the PDP itself. Can
we characterise the situations where continuous-time
MCMC is more efficient than its discrete-time counter-
part? Or understand which versions of continuous-time
MCMC are most efficient, and when? It is also of inter-
est to explore links between continuous-time MCMC
and discrete-time versions, with Sherlock and Thiery
(2017) and Vanetti et al. (2017) showing links between
the Bouncy Particle Sampler and both a delayed rejec-
tion MCMC algorithm (Tierney and Mira, 1999) and
the slice sampler (Neal, 2003).

We have also shown how sub-sampling ideas, where
we approximate the gradient of the log-posterior using
a small sample of data points, can be used with these
continuous-time methods. Unlike many other sub-
sampling approaches, the methods still remain “exact”,
in the sense that they still target the true posterior. Sub-
sampling reduces the computational cost per iteration
but does lead to a increase in Monte Carlo error for
a fixed number of iterations. In the examples we have
considered, it is only when using control variate ideas
to reduce the variance of our sub-sampling estimator of
the gradient of the log posterior that we see any overall
gain in efficiency of the algorithm. Furthermore, when
using suitable control variates, it appears possible to
obtain algorithms whose computational cost per effec-
tive sample size increases sub-linearly with the num-
ber of data points. This adds to existing evidence of the
importance of using control variates if we wish to have
some form of super-efficiency for big data problems
(Bardenet, Doucet and Holmes, 2017).

APPENDIX: DETAILS FOR ROBUST REGRESSION
EXAMPLE

Here, we give further details of the robust regression
example of Section 3.4, together with details as to how
we bound the event rates so that we can simulate a PDP
that samples from the posterior for this model.

To ease the exposition, we will slightly change no-
tation so that we can write the robust regression model
using standard statistical notation. We assume we have
n observations, the realisation of the vector random
variable Y = (Y1, . . . , Yn)

T . For each observation, we
have a set of covariates, with covariates (xi1, . . . , xid)

for observation i, and we have xi1 = 1. Let X be the
n × d matrix with entries xij , then our model is

Y = Xβ + ε,

where β = (β1, . . . , βj)
T is a d-vector of parameters

that we wish to infer, and ε is an n-vector of indepen-
dent, identically distributed noise random variables.
We assume the marginal distribution of one of these is
an equal mixture of a standard normal random variable
and a normal random variable with variance 102. Thus,
for this section we are using X to denote the covariates
and βT , the vector of parameters, will be the position
component of our PDP.

Fix the data set, y = (y1, . . . , yn)
T , and assume in-

dependent improper uniform priors on βj for j =
1, . . . , d . We will derive upper bounds on the event-rate
for the Bouncy Particle Sampler, with similar deriva-
tions available to bound the event-rates for the Zig–Zag
Sampler.

The log-posterior can be written in terms of the
residuals for each observation. Assume the current po-
sition of our PDP is βT and the current velocity is v.
Then, up until the next event-time, the residuals at time
t in the future, (e1(t), . . . , en(t)) will be(

e1(t), . . . , en(t)
) = yT − (

βT + vt
)
XT

= yT − βT XT − tvXT .

Minus the log-posterior can be written as∑n
i=1 g(ei(t)), where

g(e) = − log
[
exp

{
−1

2
e2

}
+ 1

10
exp

{
− 1

200
e2

}]
.

Define U(βT + tv) to be the gradient of the log-
posterior at the corresponding time. The event-rate of
the Bouncy Particle Sampler depends on

v · U
(
βT + tv

) =
n∑

i=1

(
vXT)

ig
′(ei(t)

)
,

CONTINUOUS-TIME MONTE CARLO 411

where (vXT)i denotes the ith entry of the vector vXT

and g′(·) denotes the derivate of g(·). We can bound
the time-derivative of this quantity

d{v · U(βT + tv)}
dt

=
n∑

i=1

(
vXT)2

i g
′′(ei(t)

)

<

n∑
i=1

(
vXT)2

i

= vXT XvT ,

where g′′(·) denotes the second derivate of g(·). The
inequality comes from the fact that this second deriva-
tive is strictly less than 1—this bound being straight-
forward, albeit tedious, to obtain. [It is possible to get
a slightly stronger bound using the fact that maximum
of g′′(·) is g′′(0).]

This bound on the derivative can be used to get a
piecewise linear bound on the event rate of the Bouncy
Particle Sampler [see Bierkens, Fearnhead and Roberts
(2016)] as follows:

min
{
0,v · U

(
βT + v

)} ≤ min
{
0,v · U

(
βT)

+ tvXT XvT }
.

It is possible to simulate events from a Poisson process
with event rate given by a piecewise linear function via
inversion. Thus we can simulate events in the Bouncy
Particle Sampler by proposing events with the above
rate and using thinning.

ACKNOWLEDGEMENTS

The authors thank the Engineering and Physical Sci-
ences Research Council for support through grants
EP/K014463/1 (i-Like) and EP/D002060/1 (CRiSM).

REFERENCES

ANDRIEU, C. and ROBERTS, G. O. (2009). The pseudo-marginal
approach for efficient Monte Carlo computations. Ann. Statist.
37 697–725. MR2502648

BAKER, J., FEARNHEAD, P., FOX, E. B. and NEMETH, C. (2017).
Control Variates for Stochastic Gradient MCMC. ArXiv e-
prints, 1706.05439.

BARDENET, R., DOUCET, A. and HOLMES, C. (2017). On
Markov chain Monte Carlo methods for tall data. J. Mach.
Learn. Res. 18 Paper No. 47, 43. MR3670492

BESKOS, A., PAPASPILIOPOULOS, O. and ROBERTS, G. O.
(2006). Retrospective exact simulation of diffusion sample
paths with applications. Bernoulli 12 1077–1098. MR2274855

BESKOS, A., PAPASPILIOPOULOS, O. and ROBERTS, G. O.
(2008). A factorisation of diffusion measure and finite sample
path constructions. Methodol. Comput. Appl. Probab. 10 85–
104. MR2394037

BESKOS, A. and ROBERTS, G. O. (2005). Exact simulation of dif-
fusions. Ann. Appl. Probab. 15 2422–2444. MR2187299

BIERKENS, J. (2016). Non-reversible Metropolis–Hastings. Stat.
Comput. 26 1213–1228. MR3538633

BIERKENS, J. and DUNCAN, A. (2017). Limit theorems for the
zig-zag process. Adv. in Appl. Probab. 49 791–825. MR3694318

BIERKENS, J., FEARNHEAD, P. and ROBERTS, G. (2016). The
Zig–Zag Process and super-efficient sampling for Bayesian
analysis of big data. Ann. Statist. To appear. arXiv:1607.03188.

BIERKENS, J. and ROBERTS, G. (2017). A piecewise deterministic
scaling limit of lifted Metropolis–Hastings in the Curie–Weiss
model. Ann. Appl. Probab. 27 846–882. MR3655855

BIERKENS, J., BOUCHARD-COTE, A., DUNCAN, A.,
DOUCET, A., FEARNHEAD, P., ROBERTS, G. and
VOLLMER, S. (2017). Piecewise deterministic Markov
processes for scalable Monte Carlo on restricted domains.
Statist. Probab. Lett. To appear. arXiv:1701.04244.

BOUCHARD-CÔTÉ, A., VOLLMER, S. J. and DOUCET, A. (2017).
The bouncy particle sampler: A non-reversible rejection-free
Markov chain Monte Carlo method. J. Amer. Statist. Assoc. To
appear.

BURQ, Z. A. and JONES, O. D. (2008). Simulation of Brownian
motion at first-passage times. Math. Comput. Simulation 77 64–
71. MR2388251

CARPENTER, J., CLIFFORD, P. and FEARNHEAD, P. (1999). An
improved particle filter for non-linear problems. IEE Proc.
Radar Sonar Navig. 146 2–7.

ÇINLAR, E. (1975). Introduction to Stochastic Processes. Prentice-
Hall, Englewood Cliffs, NJ. MR0380912

DAVIS, M. H. A. (1984). Piecewise-deterministic Markov pro-
cesses: A general class of nondiffusion stochastic models. J.
Roy. Statist. Soc. Ser. B 46 353–388. MR0790622

DAVIS, M. H. A. (1993). Markov Models and Optimization.
Monographs on Statistics and Applied Probability 49. Chapman
& Hall, London. MR1283589

DEL MORAL, P. and GUIONNET, A. (2001). On the stability of
interacting processes with applications to filtering and genetic
algorithms. Ann. Inst. Henri Poincaré B, Probab. Stat. 37 155–
194. MR1819122

DIACONIS, P., HOLMES, S. and NEAL, R. M. (2000). Analysis of
a nonreversible Markov chain sampler. Ann. Appl. Probab. 10
726–752. MR1789978

DOUC, R., MOULINES, E. and OLSSON, J. (2014). Long-term sta-
bility of sequential Monte Carlo methods under verifiable con-
ditions. Ann. Appl. Probab. 24 1767–1802. MR3226163

DOUCET, A., GODSILL, S. J. and ANDRIEU, C. (2000). On se-
quential Monte Carlo sampling methods for Bayesian filtering.
Stat. Comput. 10 197–208.

DUBEY, K. A., REDDI, S. J., WILLIAMSON, S. A., POCZOS, B.,
SMOLA, A. J. and XING, E. P. (2016). Variance reduction in
stochastic gradient Langevin dynamics. In Advances in Neural
Information Processing Systems 1154–1162.

ETHIER, S. N. and KURTZ, T. G. (2005). Markov Processes:
Characterization and Convergence. Wiley Series in Probability
and Statistics. Wiley, New York.

FEARNHEAD, P., PAPASPILIOPOULOS, O. and ROBERTS, G. O.
(2008). Particle filters for partially observed diffusions. J. R.
Stat. Soc. Ser. B. Stat. Methodol. 70 755–777. MR2523903

FEARNHEAD, P., LATUSZYNSKI, K., ROBERTS, G. O. and SER-
MAIDIS, G. (2016). Continuous-time importance sampling:

http://www.ams.org/mathscinet-getitem?mr=2502648
http://www.ams.org/mathscinet-getitem?mr=3670492
http://www.ams.org/mathscinet-getitem?mr=2274855
http://www.ams.org/mathscinet-getitem?mr=2394037
http://www.ams.org/mathscinet-getitem?mr=2187299
http://www.ams.org/mathscinet-getitem?mr=3538633
http://www.ams.org/mathscinet-getitem?mr=3694318
http://arxiv.org/abs/arXiv:1607.03188
http://www.ams.org/mathscinet-getitem?mr=3655855
http://arxiv.org/abs/arXiv:1701.04244
http://www.ams.org/mathscinet-getitem?mr=2388251
http://www.ams.org/mathscinet-getitem?mr=0380912
http://www.ams.org/mathscinet-getitem?mr=0790622
http://www.ams.org/mathscinet-getitem?mr=1283589
http://www.ams.org/mathscinet-getitem?mr=1819122
http://www.ams.org/mathscinet-getitem?mr=1789978
http://www.ams.org/mathscinet-getitem?mr=3226163
http://www.ams.org/mathscinet-getitem?mr=2523903

412 FEARNHEAD, BIERKENS, POLLOCK AND ROBERTS

Monte Carlo methods which avoid time-discretisation error.
Available at https://arxiv.org/abs/1712.06201.

FOULKES, W., MITAS, L., NEEDS, R. and RAJAGOPAL, G.
(2001). Quantum Monte Carlo simulations of solids. Rev. Mod-
ern Phys. 73 33.

GIROLAMI, M. and CALDERHEAD, B. (2011). Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 73 123–214. MR2814492

GUSTAFSON, P. (1998). A guided walk Metropolis algorithm. Stat.
Comput. 8 357–364.

KITAGAWA, G. (1996). Monte Carlo filter and smoother for non-
Gaussian nonlinear state space models. J. Comput. Graph.
Statist. 5 1–25. MR1380850

LEWIS, P. A. W. and SHEDLER, G. S. (1979). Simulation of non-
homogeneous Poisson processes by thinning. Nav. Res. Logist.
Q. 26 403–413. MR0546120

LI, C., SRIVASTAVA, S. and DUNSON, D. B. (2017). Simple, scal-
able and accurate posterior interval estimation. Biometrika 104
665–680. MR3694589

LIU, J. S. and CHEN, R. (1995). Blind deconvolution via se-
quential imputations. J. Amer. Statist. Assoc. 90 567–576.
MR3363399

LIU, J. S. and CHEN, R. (1998). Sequential Monte Carlo meth-
ods for dynamic systems. J. Amer. Statist. Assoc. 93 1032–1044.
MR1649198

LYNE, A.-M., GIROLAMI, M., ATCHADÉ, Y., STRATHMANN, H.
and SIMPSON, D. (2015). On Russian roulette estimates for
Bayesian inference with doubly-intractable likelihoods. Statist.
Sci. 30 443–467. MR3432836

MA, Y.-A., CHEN, T. and FOX, E. (2015). A complete recipe for
stochastic gradient MCMC. In Advances in Neural Information
Processing Systems 2917–2925.

MCGRAYNE, S. B. (2011). The Theory That Would Not die: How
Bayes’ Rule Cracked the Enigma Code, Hunted down Russian
Submarines, & Emerged Triumphant from Two Centuries of
Controversy. Yale Univ. Press, New Haven, CT. MR3235684

NEAL, R. M. (1998). Suppressing random walks in Markov
chain Monte Carlo using ordered overrelaxation. In Learning
in Graphical Models 205–228. Springer, Berlin.

NEAL, R. M. (2003). Slice sampling. Ann. Statist. 31 705–767.
MR1994729

NEAL, R. M. (2004). Improving asymptotic variance of MCMC
estimators: non-reversible chains are better Technical report,
No. 0406, Department of Statistics, University of Toronto.

NEAL, R. M. (2011). MCMC using Hamiltonian dynamics.
In Handbook of Markov Chain Monte Carlo. Chapman &
Hall/CRC Handb. Mod. Stat. Methods 113–162. CRC Press,
Boca Raton, FL. MR2858447

NEISWANGER, W., WANG, C. and XING, E. P. (2014). Asymp-
totically exact, embarrassingly parallel MCMC. In Proceedings
of the Thirtieth Conference on Uncertainty in Artificial Intelli-
gence 623–632. AUAI Press, Arlington.

ØKSENDAL, B. (1985). Stochastic Differential Equations. Univer-
sitext. Springer, Berlin. MR0804391

PAKMAN, A., GILBOA, D., CARLSON, D. and PANINSKI, L.
(2017). Stochastic bouncy particle sampler. In Proceedings of
ICML.

PETERS, E. A. J. F. and DE WITH, G. (2012). Rejection-free
Monte Carlo sampling for general potentials. Phys. Rev. E (3)
85 026703.

POLLOCK, M., JOHANSEN, A. M. and ROBERTS, G. O. (2016).
On the exact and ε-strong simulation of (jump) diffusions.
Bernoulli 22 794–856. MR3449801

POLLOCK, M., FEARNHEAD, P., JOHANSEN, A. and
ROBERTS, G. O. (2016). An unbiased and scalable
Monte Carlo method for Bayesian inference for big data.
arXiv:1609.03436.

QUIROZ, M., VILLANI, M. and KOHN, R. (2015). Speeding up
MCMC by efficient data subsampling. J. Amer. Statist. Assoc.
To appear. Available at https://www.tandfonline.com/doi/abs/
10.1080/01621459.2018.1448827.

ROBERT, C. and CASELLA, G. (2011). A short history of Markov
chain Monte Carlo: Subjective recollections from incomplete
data. Statist. Sci. 26 102–115. MR2849912

ROBERTS, G. O. and ROSENTHAL, J. S. (1998). Optimal scaling
of discrete approximations to Langevin diffusions. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 60 255–268. MR1625691

SCOTT, S. L., BLOCKER, A. W., BONASSI, F. V., CHIP-
MAN, H. A., GEORGE, E. I. and MCCULLOCH, R. E. (2016).
Bayes and big data: The consensus Monte Carlo algorithm. Int.
J. Manag. Sci. Eng. Manag. 11 78–88.

SHERLOCK, C. and THIERY, A. H. (2017). A discrete bouncy par-
ticle sampler. arXiv:1707.05200.

SRIVASTAVA, S., CEVHER, V., TRAN-DINH, Q. and DUN-
SON, D. B. (2015). WASP: Scalable Bayes via barycenters of
subset posteriors. In AISTATS.

TIERNEY, L. and MIRA, A. (1999). Some adaptive Monte Carlo
methods for Bayesian inference. Stat. Med. 18 2507–2515.

VANETTI, P., BOUCHARD-CÔTÉ, A., DELIGIANNIDIS, G. and
DOUCET, A. (2017). Piecewise deterministic Markov chain
Monte Carlo. arXiv:1707.05296.

WELLING, M. and TEH, Y. W. (2011). Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings of the
28th International Conference on Machine Learning (ICML-11)
681–688.

https://arxiv.org/abs/1712.06201
http://www.ams.org/mathscinet-getitem?mr=2814492
http://www.ams.org/mathscinet-getitem?mr=1380850
http://www.ams.org/mathscinet-getitem?mr=0546120
http://www.ams.org/mathscinet-getitem?mr=3694589
http://www.ams.org/mathscinet-getitem?mr=3363399
http://www.ams.org/mathscinet-getitem?mr=1649198
http://www.ams.org/mathscinet-getitem?mr=3432836
http://www.ams.org/mathscinet-getitem?mr=3235684
http://www.ams.org/mathscinet-getitem?mr=1994729
http://www.ams.org/mathscinet-getitem?mr=2858447
http://www.ams.org/mathscinet-getitem?mr=0804391
http://www.ams.org/mathscinet-getitem?mr=3449801
http://arxiv.org/abs/arXiv:1609.03436
https://www.tandfonline.com/doi/abs/10.1080/01621459.2018.1448827
http://www.ams.org/mathscinet-getitem?mr=2849912
http://www.ams.org/mathscinet-getitem?mr=1625691
http://arxiv.org/abs/arXiv:1707.05200
http://arxiv.org/abs/arXiv:1707.05296
https://www.tandfonline.com/doi/abs/10.1080/01621459.2018.1448827

	Introduction
	Piecewise Deterministic Markov Processes
	Simulating a PDP
	Analysing a PDP
	The generator
	The forward operator and Fokker-Planck equation

	Continuous-Time MCMC
	The Continuous-Time Limit of MCMC
	The Stationary Distribution of the PDP
	Different continuous-time MCMC algorithms
	Pure reﬂection and refresh
	Bouncy Particle Sampler
	Zig-Zag Sampler
	Alternatives

	Simulation and Use of Skeletons for Continuous MCMC
	Example: Robust Regression
	Exact Approximation Versions and Subsampling
	Exact approximation for pure reﬂection and zig zag
	Exact approximation for the Bouncy Particle Sampler
	Use of sub-sampling

	Example: Mixture Model

	Continuous-Time Sequential Importance Sampling
	The CIS Algorithm
	CIS as a PDP
	Obtaining the incremental weight

	Continuous-Time Sequential Monte Carlo
	CIS for Big Data: The SCALE Algorithm
	Extensions
	Alternative proposal distributions
	Alternative SCALE processes

	Example: Inference for Mixture Models

	Discussion
	Appendix: Details for Robust Regression Example
	Acknowledgements
	References

