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1. INTRODUCTION

The past three decades have seen significant growth
in the field of mathematical modeling of infectious
diseases, leading to substantial increase in our under-
standing of epidemiology and control of these diseases.
Ability to quickly unravel the dynamics of the spread
of infectious diseases is important for effective pre-
vention of future outbreaks and for control of ongo-
ing ones. Recent interest in infectious disease model-
ing was initially stimulated by the discovery of HIV in
the early 1980s and has been maintained by the need to
respond to other infectious disease related crises such
as, for example, foot-and-mouth disease and SARS
outbreaks, healthcare-associated infections, and ele-
vated risks of human influenza pandemics (e.g., risks
of global spread of avian and swine flu). Recent Ebola
and Zika outbreaks further underscored importance of
mathematical and statistical analyses of epidemic dy-
namics. As a result, mathematical infectious disease
modeling remains high on the global scientific agenda.

To respond to challenges posed by infectious dis-
eases the epidemic modeling community has become
very engaged in public health policy development, fur-
ther stimulating interest in models of disease trans-
mission. This involvement in practical applications of
infectious disease modeling was enabled by algorith-
mic advances and the continuing increase in computing
power. For example, it is now possible to perform sim-
ulations based on parameter rich and realistic agent-
based models that generate individual-level behavior,
infections, and recoveries of millions of individuals.
Moreover, analyses on infectious disease outbreak data
can now be performed using computationally inten-
sive methods such as maximum likelihood estima-
tion, Markov chain Monte Carlo (MCMC), sequential
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Monte Carlo (SMC), and approximate Bayesian com-
putation (ABC).

The transmissible nature of infectious diseases
makes them fundamentally different from noninfec-
tious diseases, and therefore it is difficult to analyze
disease outbreak data using off-the-shelf statistical
methods. This is mainly due to (i) presence of strong
and complex dependencies in the data and (ii) miss-
ing data significantly surpassing observed data in size,
because the actual transmission process cannot be di-
rectly observed. Therefore, specialized and problem-
specific methods are required. Despite recent signifi-
cant advances in fitting stochastic epidemic models to
data, there are still a number of challenges to over-
come.

In view of the ever growing research activity in the
area and the practical importance of effectively ana-
lyzing disease outbreak data, we have organized this
special section of Statistical Science in which the aim
is to provide an overview of the most recent develop-
ments as well as the current research challenges facing
the epidemic modeling community. We hope that read-
ers of the journal will get a broad idea of the field as
well as of its current research directions.

2. STOCHASTIC EPIDEMIC MODELS

There exist many forms of models to represent the
dynamics of infectious diseases. Most models are con-
cerned with a population consisting of individuals who
are potentially able to transmit the disease to one an-
other. In this section we focus on stochastic mod-
els. Although in some settings deterministic models
can approximate stochastic dynamics well, behavior
of stochastic and deterministic models can be qual-
itatively different in certain parameter regimes (e.g.,
when the disease is spreading in a small population).
This suggests that stochastic models should be pre-
ferred to deterministic ones if one wishes to stay true
to the stochastic nature of infectious disease dynamics.

Stochastic epidemic models are generally defined at
the level of individuals, for instance, specifying proba-
bility distributions that describe how long an individ-
ual remains infectious. A key aspect of any disease
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transmission model is the set of assumptions made
regarding transmission itself, that is, the mechanism
via which susceptible individuals become infected. Let
us consider a continuous-time Susceptible-Infective-
Removed (SIR) model, defined as a continuous-time
Markov chain whose state space is the numbers of in-
fected and susceptible individuals. The SIR model is
important because all mechanistic models of infectious
disease dynamics can be thought of as extensions of the
SIR model, yet this simple model fully illustrates sta-
tistical challenges arising during analyses of stochas-
tic epidemic models. The SIR model typically assumes
homogeneous mixing of individuals in the population,
leading to the law of mass action that says that the rate
of adding a new infection to the population is a product
of the numbers of susceptible and infected individu-
als and the infection rate β . Furthermore, all individ-
ual infectious periods are independent exponentially
distributed random variables with mean 1/γ . Equiva-
lently, the rate of introducing a new recovery/removal
in the population is γ times the number of currently in-
fected individuals. The SIR model has two parameters
of interest, namely the infection rate β and the removal
rate γ . If both the times at which individuals got in-
fected and removed where known, drawing inference
for β and γ would be trivial. However, in practice, dis-
ease symptoms develop well after the time of infection
and, as a result, infection times are almost always un-
known. Consequently, infectious disease outbreak data
are always incomplete, leading to a computationally
intractable likelihood of the observed data (e.g., re-
moval times). State-of-the-art methods deal with this
intractability using three main strategies: (1) maxi-
mum likelihood estimation, where missing data are in-
tegrated out with the help of SMC; (2) Bayesian data
augmentation with MCMC (possibly with embedded
SMC) targeting the joint distribution of model param-
eters and missing data; (3) ABC approach.

As mentioned before, the SIR model is a basic build-
ing block in stochastic epidemic modeling. There are
two main ways in which the basic SIR model can be
extended. First, the number of compartments and their
definitions can be tailored to a particular application.
For example, effects of demographic variables (e.g.,
age and sex) on disease transmission can be modeled
by creating S, I, and R compartments of multiple types.
The second way to extend the SIR model and its rela-
tives is to make infection rate and possibly other pa-
rameters time dependent. Such time inhomogeneous
models are used to account for seasonality and to incor-
porate effects of time varying environmental factors on

infectious disease dynamics. We will see both of these
extension types in the special section papers.

3. ARTICLES IN THIS SECTION

This special section consists of six articles which
present a general overview of the state-of-the-art in a
number of different topics concerning stochastic epi-
demic models for infectious disease data.

• McKinley, Vernon, Andrianakis, McCreesh, Oak-
ley, Nsubuga, Goldstein and White (“Approximate
Bayesian Computation and Simulation-Based Infer-
ence for Complex Stochastic Epidemic Models”)
first provide an overview of the more popular vari-
ants of ABC and then discuss some of the challenges
that one is faced with when applying ABC to high-
dimensional and computationally intensive models.
They then discuss an alternative approach—history
matching—that aims to address some of these chal-
lenges and provide a comparison between the two
different approaches.

• Gibson, Streftaris and Thong (“Comparison and As-
sessment of Epidemic Models”) consider a vari-
ety of stochastic representations of individual-based
continuous-time epidemic models and review the
range of model-comparison and model-assessment
approaches that are currently available. In particular,
they highlight some of the factors, such as lack of
replication, partial observation of processes and the
nonnested nature of models to be compared, that can
impede checking and criticism of epidemic models.

• Birrell, De Angelis and Presanis (“Evidence Syn-
thesis for Stochastic Epidemic Models”) provide an
overview of evidence syntheses in stochastic epi-
demic modeling where multiple types of data are ex-
plicitly used in an integrated analysis. The authors
discuss recent developments in this area and high-
light the ongoing and future challenges, such as po-
tential of conflicting evidence as well as computa-
tionally efficient methods for inference.

• Kypraios and O’Neill (“Bayesian Nonparametrics
for Stochastic Epidemic Models”) provide an
overview of Gaussian process-based Bayesian non-
parametrics applied to stochastic epidemic models.
In particular, the authors concentrate on estimating
changes of the per capita infection rate across time
and on replacing the law of mass action with non-
parametric estimation of the rate of infection.

• Bretó (“Modeling and Inference for Infectious Dis-
ease Dynamics: A Likelihood-based Approach”)
gives an overview of likelihood-based methods that
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allow for estimation of stochastic epidemic model
parameters. The author emphasizes maximum like-
lihood estimation and discusses importance of hier-
archical modeling to account for per capita infection
and recovery rate heterogeneity within the popula-
tion of interest.

• Kendall, Ayabina and Colijn (“Estimating Trans-
mission from Genetic and Epidemiological Data:
A Metric to Compare Transmission Trees”) review
methods that estimate transmission (“who infected
whom”) trees. The authors also present a new metric
that quantifies differences in two transimission trees
and demonstrate how this metric helps interpreting
the posterior distribution of transmission trees in
Bayesian analysis.

4. RESEARCH OUTLOOK

In spite of great progress in statistical analyses of in-
fectious diseases, many challenges remain. The major-
ity of the state-of-the-art methods for fitting stochastic
epidemic models to data do not scale well with model
and/or data complexity. For example, working with
epidemics spreading in large populations with many
compartments remains challenging. Several articles in
the special section address these challenges, but de-
veloping efficient algorithms for fitting stochastic epi-
demic models will remain an active research topic in
the foreseeable future.

There has been significantly more focus on devel-
oping methods for fitting stochastic epidemic mod-
els than on methods for model assessment. Although

there exist methods that in principle enable discrim-
ination between competing models, using, for exam-
ple, Bayes factors, their implementations are often
problem-specific and their adoption by the practition-
ers is slow. One future challenge is to promote use of
formal model comparison among epidemiologists. An-
other important goal is to develop methods for assess-
ing the goodness of model fit—a topic discussed by
one of the papers in the special section.

One of the papers in the special section discusses
integration of multiple data sources. An emerging ex-
ample of such integration is joint use of epidemiolog-
ical and genetic data. As genetic sequencing technolo-
gies become affordable and accessible, genetic data get
used routinely in infectious disease surveillance and
during responses to sudden outbreaks. However, sta-
tistical methods capable of integrating epidemiological
and genetic data in a fully probabilistic framework still
face significant computational challenges. Although
our special section papers do not review methodolog-
ical state-of-the-art of inferring infectious disease dy-
namics from genetic data, one of the papers provides
a useful overview of available methods for inferring
transmission networks from genetic data and discusses
challenges in epidemiologically meaningful interpreta-
tion of results produced by these methods. We predict
that use of genetic data and, more generally, data in-
tegration will remain an important research theme in
infectious disease epidemiology.
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