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Abstract: We propose a Bayesian approach to estimating parameters in
multiclass functional models. Unordered multinomial probit, ordered multi-
nomial probit and multinomial logistic models are considered. We use finite
random series priors based on a suitable basis such as B-splines in these
three multinomial models, and classify the functional data using the Bayes
rule. We average over models based on the marginal likelihood estimated
from Markov Chain Monte Carlo (MCMC) output. Posterior contraction
rates for the three multinomial models are computed. We also consider
Bayesian linear and quadratic discriminant analyses on the multivariate
data obtained by applying a functional principal component technique on
the original functional data. A simulation study is conducted to compare
these methods on different types of data. We also apply these methods to
a phoneme dataset.
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1. Introduction

Functional data analysis (FDA) deals with the analysis of data occurring in
the form of functions. Wang et al. (2016) gave an overview of FDA including
functional principal component analysis, functional linear regression, clustering
and classification of functional data. FDA is increasingly drawing attention in
many areas, such as biomedicine, environmental studies, and economics (Ul-
lah and Finch, 2013). Mallor, Moler and Urmeneta (2018) proposed a model
based on functional principal component analysis to predict household electric-
ity consumption. Wagner-Muns et al. (2018) proposed a method that uses func-
tional principal components analysis to forecast traffic volume. Classification of
functional data, especially when the data units can come from more than two
categories, is a fundamental problem of interest. Generalized linear models are
often used to classify the functional data (Müller and Stadtmüller, 2005; James,
2002). The linear discriminant analysis is also used for functional data classifi-
cation (James and Hastie, 2001). Preda, Saporta and Lévéder (2007) proposed
the partial least squares regression on functional data for linear discriminant
analysis. Rossi and Villa (2006) adapted support vector machines to functional
data classification. Li and Yu (2008) proposed a functional segment discriminant
analysis (FSDA), which combines the classical linear discriminant analysis and
support vector machines. Wavelets approaches are also applied to classify and
cluster functional data (Ray and Mallick, 2006; Antoniadis et al., 2013; Chang,
Chen and Ogden, 2014; Suarez and Ghosal, 2016). There are also nonparamet-
ric approaches for functional data classification (Biau, Bunea and Wegkamp,
2005; Ferraty and Vieu, 2003). However, there are only a few approaches pro-
posed in the context of Bayesian classification for functional data. Wang, Ray
and Mallick (2007) developed a Bayesian hierarchical model which combines
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the adaptive wavelet-based function estimation and the logistic classification.
Zhu, Vannucci and Cox (2010) proposed a Bayesian hierarchical model that
takes into account random batch effects and selects effective functions among
multiple functional predictors. Stingo, Vannucci and Downey (2012) proposed
a Bayesian conjugate normal discriminant model on the wavelet transform of
the functional data. Zhu, Brown and Morris (2012) introduced two Bayesian ap-
proaches: the Gaussian, wavelet-based functional mixed model and the robust,
wavelet-based functional mixed model.

In this paper, we consider a response Y taking values k = 1, . . . ,K, with
functional covariate {X(t), t ∈ [0, 1]}. The main problem is to estimate the
probability P(Y = k|X), which can be conveniently modeled by a function of∫
β(t)X(t)dt

P(Y = k|X) = Hk

(∫
β(t)X(t)dt

)
, (1.1)

where Hk is a cumulative distribution function, and β(·) is an unknown (pos-
sibly vector of) coefficient function(s). Ordered multinomial probit, unordered
multinomial probit and multinomial logistic models are considered in this pa-
per which correspond to different choices of Hk, k = 1, . . . ,K. For an or-
dered multinomial probit model, there are additional order restrictions, and
Hk is expressed as in (2.1). For the unordered multinomial probit model, β(·)
is a vector of coefficient functions β1(·), . . . , βK(·), and Hk is in the form of
F (
∫
βk(t)X(t) dt−

∫
βl(t)X(t) dt), where F is the cumulative distribution func-

tion of εl− εk for l �= k. For the multinomial logistic model, β(·) is also a vector
of coefficient functions β1(·), . . . , βK(·), and Hk is expressed as in (2.6). Finite
random series priors (Shen and Ghosal, 2015) are applied to the three multi-
nomial models. We compare these methods with Bayesian linear and quadratic
discriminant analyses applied on the data reduced to multivariate form by a
functional principal component technique. Following a Bayesian approach, the
posterior distribution of the parameters are obtained using the training data,
and then the classification rules are applied to the test data using the posterior
probability of class membership.

The primary goal of a basis expansion method is to reduce a more complex
problem to a simpler problem which has either a known solution or is likely to
be easier to solve. A prior on the target function through a finite random series
is a standard tool in nonparametric Bayesian inference, but in the context of
functional data, the technique has not been utilized to its fullest potential, espe-
cially regarding the study of theoretical properties of Bayesian methods. Only
one paper (Shen and Ghosal, 2015) has an example of functional linear regres-
sion treated using finite random series priors. We take that idea but develop it
in the context of functional data classification. Characterizing contraction rates
is a major goal of this paper. For this, we need to estimate the complexity of
the model and the prior concentration. Even though, the model reduces to the
finite dimensional setting from the computational point of view, the effect of
the residual bias in the approximation of function must be properly addressed.
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Hence the treatment substantially differs from that of a parametric problem.
In particular, the dimension of the basis must be adapted with the smooth-
ness and the sample size by using a prior on it. The two inference problems
are fundamentally different even though the resulting rates are similar. In Shen
and Ghosal (2015), (one of) the problems was nonparametric binary regression,
with a scalar response but nonparametric response probability function. A finite
random series prior was used on the response probability function. In contrast,
in this paper, the predictor variable is functional and the response probability
function is a parametric function of the linear combination. Depending on the
choice of the parametric model (ordered multinomial probit, unordered multino-
mial probit, and multinomial logistic), we get different problems and those need
to be treated differently. The linear coefficient function is an unknown smooth
function which makes the problem infinite-dimensional in spite of the paramet-
ric response probability function. Thus other than some similarity in the looks
and in the obtained rates, the two problems are very different.

The paper is organized as follow. In Section 2, the three functional multino-
mial models are described. Section 3 gives the description of applying the finite
random series prior to these models. The marginal likelihood estimation is de-
scribed in Section 4. In Section 5, the posterior contraction rates of the three
functional multinomial models with finite random series priors are computed.
Section 6 describes the Bayesian discriminant analysis of functional data, which
is used to compare with the proposed models. In Section 7, a simulation study is
conducted on various types of data. In Section 8, the three multinomial models
and Bayesian discriminant analysis are tested on a phoneme dataset.

2. Model

2.1. Ordered multinomial probit model

Let Xi(t), i = 1, . . . , n, t ∈ [0, 1], be the observed functional data associated
with a categorical variable Yi taking possible values 1, . . . ,K. We assume that
(Xi, Yi), i = 1, . . . , n, are independent and identically distributed (i.i.d) obser-
vations.

Following Albert and Chib (1993), we consider the model described implicitly
as follows: there exists a latent variable Wi distributed as N(

∫
β(t)Xi(t)dt, 1),

for i = 1, . . . , n, and that Yi = k if γk−1 < Wi ≤ γk, where k = 1, . . . ,K.
The latent variables Wi, i = 1, . . . , n, are independent. The coefficient function
β(·) is unkown. The cut-points γk are also unknown except that γ0 = −∞ and
γK = ∞. To ensure identifiability, we set γ1 = 0. Under the assumed model, the
probability of choosing a category k is given by

P(Yi = k|Xi) = Φ

(
γk −

∫
β(t)Xi(t)dt

)
− Φ

(
γk−1 −

∫
β(t)Xi(t)dt

)
, (2.1)

where Φ stands for the distribution function of the standard normal distribution.
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2.2. Unordered multinomial probit model

Let Xi(t), i = 1, . . . , n, be the same as in the Section 2.1, and also same for
Section 2.3.

The unordered multinomial probit model can be described by the following
data augmentation method. As in Albert and Chib (1993), let W ′

i = (W ′
i1, . . . ,

W ′
iK)T , i = 1, . . . , n, be latent variable, such that W ′

il follows a linear model

W ′
il =

∫
β′
l(t)Xi(t)dt+ ε′il, (2.2)

where ε′il ∼ N(0, 1), i = 1, . . . , n, l = 1, . . . ,K, are i.i.d. standard normal random
variables. Consider the latent variables Wi = (Wi1, . . . ,WiK−1)

T , Wil = W ′
il −

W ′
iK ,

Wil =

∫
β′
l(t)Xi(t)dt−

∫
β′
K(t)Xi(t)dt+ εil, (2.3)

where εil = ε′il − ε′iK , and l = 1, . . . ,K − 1. Let εi = (εi1, . . . , εiK−1)
T . Then

εi follows N(0,Σ), where Σ is a (K − 1) × (K − 1) matrix with 2 at diagonal
entries and 1 at all off-diagonal entries.

The probability of choosing the kth (k = 1, . . . ,K − 1) alternative is given
by

P(Yi = k|Xi) = P(Wik > Wil, for all l �= k, andWik > 0), (2.4)

and the probability of choosing alternative K is given by

P(Yi = K|Xi) = P(Wil < 0 for all l = 1, . . . ,K − 1). (2.5)

2.3. Multinomial logistic model

In this model, the probability of choosing category k is given by

P(Yi = k|Xi) =
exp[

∫
βk(t)Xi(t)dt]∑K

l=1 exp[
∫
βl(t)Xi(t)dt]

. (2.6)

To ensure model identification, set βK(t) = 0. Then the probability of choos-
ing categoty k (k = 1, . . . ,K − 1) is given by

P(Yi = k|Xi) =
exp[

∫
βk(t)Xi(t)dt]

1 +
∑K−1

l=1 exp[
∫
βl(t)Xi(t)dt]

, (2.7)

and the probability of choosing category K is given by

P(Yi = K|Xi) =
1

1 +
∑K−1

l=1 exp[
∫
βl(t)Xi(t)dt]

. (2.8)
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3. Finite random series prior

The functional coefficient β(t) (or β1(t), . . . , βK(t) for unordered multinomial
probit and multinomial logistic models) is given a prior which is a finite linear

combination of a certain chosen basis functions: β(t) =
∑J

j=1 θjψj(t), where
{ψ1(t), . . . , ψJ(t)} is a basis, for example, formed by B-splines, Fourier func-
tions, or wavelets. A prior is put on the unknown coefficients (θ1, . . . , θJ). The
number of basis functions J is also unknown and should be given a hyper-
prior. Instead of sampling across the different dimensions using reversible jump
MCMC (Green, 1995) which has computational difficulty for complicated mod-
els, we can implement MCMC for a given J value, and repeat it for relevant J
values. Thus, we can compute the marginal likelihood m(Y |J) for potentially
interested values of J , and obtain the posterior probability of J , which are
discussed in Section 4.

The advantage of a using finite random series prior is that the inner prod-
uct between the functional coefficient and the functional data

∫
β(t)Xi(t)dt is

reduced to a simple linear combination

∫
β(t)Xi(t)dt =

∫ J∑
j=1

θjψj(t)Xi(t)dt =
J∑

j=1

θjZij , (3.1)

where Zij =
∫
ψj(t)Xi(t)dt is known, and can be computed by Simpson’s rule.

3.1. Ordered multinomial probit model

Using a finite random series β(t) =
∑J

j=1 θjψj(t), the model in (2.1) can be
rewritten as

P(Yi = k|Xi) = Φ

⎛
⎝γk −

J∑
j=1

θjZij

⎞
⎠− Φ

⎛
⎝γk−1 −

J∑
j=1

θjZij

⎞
⎠ . (3.2)

Define θ = (θ1, . . . , θJ)
T , and Zi = (Zi1, . . . , ZiJ)

T . Then (3.2) can be written
compactly as

P(Yi = k|Xi) = Φ(γk − ZT
i θ)− Φ(γk−1 − ZT

i θ). (3.3)

Clearly the unobserved latent variable Wi follows N(ZT
i θ, 1). Assign a conjugate

prior θ ∼ NJ(θ0, B0), where NJ stands for the J-variate normal distribution, θ0
is J × 1 mean vector, and B0 is a J × J covariance matrix. Then the posterior
distribution of θ is given by

θ|Y,W ∼ NJ(θn, Bn), Bn = (B−1
0 + ZTZ)−1, θn = Bn(B

−1
0 θ0 + ZTW ), (3.4)

where Z = (ZT
1 , . . . , Z

T
n )

T , and W = (W1, . . . ,Wn)
T .
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We follow the scheme introduced by Albert and Chib (1993). The posterior
distribution of Wi is given by

Wi|(θ, γ, Yi = k) ∼ TN(ZT
i θ, 1, γk−1, γk), (3.5)

where TN(ZT
i θ, 1, γk−1, γk) is the truncation of the (univariate) normal distri-

bution with mean ZT
i θ, and variance 1 to the interval (γk−1, γk).

Albert and Chib (1993) assigned a diffuse prior on the cut-points. However,
model averaging needs a proper prior. A normal prior is not appropriate due to
the order restriction on γ1, . . . , γK . Albert and Chib (1997) proposed a trans-
formation of γ = (γ1, . . . , γK) which avoids the order restriction.

α1 = log γ2, αj = log(γj+1 − γj), 2 ≤ j ≤ K − 2. (3.6)

Note that γ1 = 0 and by the inverse map

γj =

j−1∑
l=1

eαl , 2 ≤ j ≤ K − 1. (3.7)

Then γ can be reparameterized by α = (α1, . . . , αK−2). Assign a multivariate
normal prior with mean α0, and covariance A0 on α. To sample γ, apply the
following steps of Metropolis-Hastings algorithm.

1. Sample α′ from a proposal distribution q(α′, α|Y, θ,W ). Here we allow the
proposal density to depend on the data and the two remaining blocks for
the convenience of computing the marginal likelihood in the future.

2. Move to α′ from the current α with probability

ρ(α, α′|Y, θ,W ) = min
{f(Y |α′, θ,W )π(α′, θ)

f(Y |α, θ,W )π(α, θ)

q(α′, α|Y, θ,W )

q(α, α′|Y, θ,W )
, 1
}
. (3.8)

3. Compute γ by the inverse map (3.7).

To implement the MCMC sampling, first draw γ by the above steps. Then
sample from the posterior distributions (3.5) and (3.4).

The values of γ sampled from the Metropolis-Hastings algorithm converges
quickly. We demonstrate it on the real data in Section 8 by plotting the sampling
values of γ.

3.2. Unordered multinomial probit model

Let β′
l(t) =

∑J
j=1 θ

′
ljψj(t), where l = 1, . . . ,K. Then (2.3) can be rewritten as

Wil =

J∑
j=1

θ′ljZij −
J∑

j=1

θ′KjZij + εil =

J∑
l=1

(θ′jl − θ′jK)Zij + εil. (3.9)
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Let θlj = θ′lj − θ′Kj , where j = 1, . . . , J . Define θl = (θl1, . . . , θlJ)
T , and

Zi = (Zi1, . . . , ZiJ)
T . Then (3.9) is given by

Wil = ZT
i θl + εil, (3.10)

where i = 1, . . . , n, l = 1, . . . ,K − 1.

Define a J×(K−1) matrix Θ = (θ1, . . . , θK−1). Then we haveWi = ZT
i Θ+εi,

where Wi = (Wi1, . . . ,WiK−1)
T , εi = (εi1, . . . , εiK−1)

T , and εi ∼ N(0,Σ).

In the model described in Section 2.2, Σ is known with 2 on diagonal entries
and 1 on all off-diagonal entries. The only parameter needs to be estimated is
Θ. In order to draw the matrix Θ using the Gibbs sampling, we can stack the
data in a matrix form which is given by

W = ZΘ+ ε, (3.11)

where W = (WT
1 , . . . ,WT

n )T is an n× (K−1) matrix, Z = (ZT
1 , . . . , Z

T
n )

T is an
n× J matrix, and ε = (εT1 , . . . , ε

T
n )

T is an n× (K − 1) matrix.

This results in a matrix normal distribution. The density function of matrix
normal distribution MNn×p(M,U, V ) is

(2π)−np/2|V |−n/2|U |−p/2 exp

(
−1

2
tr[V −1(X −M)TU−1(X −M)]

)
, (3.12)

where M is an n × p mean matrix, U is an n × n row variance matrix, V is a
p × p column variance matrix, tr stands for the trace of a matrix, and |U | and
|V | denote the determinants of U and V respectively.

Thus W |Θ ∼ MNn×(K−1)(ZΘ, In,Σ). Here the row variance-covariance ma-
trix In is an identity matrix of rank n, since W1, . . . ,Wn are independent. We
consider the matrix normal prior Θ ∼ MNJ×(K−1)(U0, V0,Σ). By a standard
conjugacy calculation, the posterior is given by

Θ|Y,W ∼ MNJ×(K−1)(Un, Vn,Σ),

Vn = (ZTZ + V −1
0 )−1, Un = Vn(Z

TW + V −1
0 U0).

(3.13)

To draw a sample of W , we use the method introduced by McCulloch and
Rossi (1994). Let Wi,−l denote (Wi1, . . . ,Wi,l−1,Wi,l+1, . . . ,WiK−1)

T , Zi,· de-
note the ith row of Z, the vector Θ·,l denote the lth column of Θ, the matrix
Θ·,−l denote Θ without the lth column, the scalar Σl,l denote the (l, l)th entry
of Σ, Σ−l,−l denote Σ without the lth row and the lth column, Σ−l,l denote the
lth column of Σ without the lth entry, and Σl,−l denote the lth row of Σ with-
out the lth entry. We draw Wil from the conditional truncation of the normal
distribution with the mean mil and variance τ2il to the interval (a, b) described



Functional data classification 4677

below:

Wil|(Wi,−l,Θ, Yi) ∼ TN(mil, τ
2
il, a, b),

mil = Zi,·Θ·,l +ΣT
−l,lΣ

−1
−l,−l(Wi,−l − Zi,·Θ·,−l),

τ2il = Σl,l − Σl,−lΣ
−1
−l,−lΣ−l,l,

(a, b) =

⎧⎪⎨
⎪⎩
(max{Wi,−l, 0},∞), if Yi = l, l = 1, . . . ,K − 1,

(−∞,max{Wi,−l}), if Yi �= l, l = 1, . . . ,K − 1,

(−∞, 0), if Yi = K,

i = 1, . . . , n, l = 1, . . . ,K − 1.

(3.14)

To implement the Gibbs sampling, we draw samples from (3.13) and (3.14).

3.3. Multinomial logistic model

Let βk(t) =
∑J

j=1 θkjψj(t). Then (2.7) and (2.8) can be rewritten as

P(Yi = k|Xi) =
exp[

∑J
j=1 θkjZij ]

1 +
∑K−1

l=1 exp[
∑J

j=1 θljZij ]
, k = 1, . . . ,K − 1, (3.15)

P(Yi = K|Xi) =
1

1 +
∑K−1

l=1 exp[
∑J

j=1 θljZij ]
. (3.16)

Define θk = (θk1, . . . , θkJ )
T ,k = 1, . . . ,K−1, and Zi = (Zi1, . . . , ZiJ)

T . Then
(3.15) and (3.16) are given by

P(Yi = k|Xi) =
exp[ZT

i θk]

1 +
∑K−1

l=1 exp[ZT
i θl]

, k = 1, . . . ,K − 1, (3.17)

P(Yi = K|Xi) =
1

1 +
∑K−1

l=1 exp[ZT
i θl]

. (3.18)

For each θk, k = 1, . . . ,K − 1, we assign a multivariate normal prior
NJ(μk,Σk), and apply Metropolis-Hastings algorithm to sample θk.

1. Sample θ′k from the proposal distribution q(θ′k, θk|Y, θ−k).
2. Move to θ′k from the current θk with probability

ρ(θk, θ
′
k|Y, θ−k) = min

{f(Y |θ′k, θ−k)π(θ
′
k, θ−k)

f(Y |θk, θ−k)π(θk, θ−k)

q(θ′k, θk|Y, θ−k)

q(θk, θ′k|Y, θ−k)
, 1
}
,

(3.19)

where θ−k denotes all the blocks except the kth one.
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4. Marginal likelihood and model averaging

In Section 3, we described the MCMC sampling technique for a given J value,
which we need to repeat it for all possible J values. In the actual computation,
however, it is impossible to consider all values of J . With a given prior on J , for
example, geometric or Poisson distribution, the posterior probabilities for very
small or very large values of J decay to zero very quickly. Thus, we do not need
to consider these J values. Let J1, . . . , JS denote the values of J we need to
consider. If we can get the marginal likelihood m(Y |Js), then we can compute
the posterior probability of Js using Bayes’s rule

P(Js|Y ) =
m(Y |Js)p(Js)∑S
l=1 m(Y |Jl)p(Jl)

, (4.1)

where p(Js), s = 1, . . . , S, is the prior probability for J = Js.
For each given Js, we have a misclassification rate rs, which is defined as the

ratio of the number of falsely classified data to the total number of data. Then
we can obtain the average misclassification rate r̄ for each multinomial model:

r̄ =
S∑

s=1

P(Js|Y ) · rs. (4.2)

We call it the model averaging method.
The marginal likelihood can be written as the normalizing constant of the

posterior density

m(Y |Js) =
f(Y |Js, B)π(B|Js)

π(B|Y, Js)
, (4.3)

where B is a convenient value of the parameter in the context of the support
of the posterior distribution such as the posterior mean, because (4.3) holds
for any B. The numerator is the product of the likelihood and the prior. The
denominator is the posterior density of B. For a given B∗, the posterior den-
sity π(B∗|Y, Jm) can be estimated from the Gibbs output (Chib, 1995) and
the Metropolis-Hasting output (Chib and Jeliazkov, 2001). Then the estimated
marginal likelihood in the logarithm scale is

log m̂(Y |Js) = log f(Y |Js, B∗) + log π(B∗|Js)− log π̂(B∗|Y, Js). (4.4)

The details of π(B∗|Y, Js) estimation for each model are described in Ap-
pendix A.

5. Posterior contraction rate

For a classification problem, the most important object to study is the mis-
classification rate. By examining convergence to the true distribution, it follows
that the Bayes procedure has misclassification rate close to that of the ora-
cle procedure which uses the true values of the regression functions and other
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parameters (if any), e.g., cut-points in the ordered multinomial probit model.
In the Bayesian nonparametric setting, Hellinger convergence is established by
applying the general theory (Ghosal and van der Vaart, 2017). Thus, in this
section, we only consider the contraction rate of the posterior distribution with
respect to a metric on the probability of categories, which is equivalent with
the Hellinger distance on the joint distribution. The posterior contraction rates
of the three multinomial models with finite random series priors can be ob-
tained using calculation similar to those in Shen and Ghosal (2015) on posterior
contraction rates for finite random series.

We use � to denote an inequality up to a constant multiple, f � g for

f � g � f . For a vector θ ∈ R
d, ‖θ‖p = {

∑d
i=1 |θi|p}1/p, where 1 ≤ p <

∞, and ‖θ‖∞ = max1≤i≤d|θi|. Similarly, for a function f with respect to a
measure G, we define ‖f‖p,G = {

∫
|f(x)|pdG}1/p, where 1 ≤ p < ∞, and

‖f‖∞,G = supx|f(x)|. Let N (ε, T, d) denote the ε-covering number of a set T
for a metric d. Let h2(p, q) =

∫
(
√
p−√

q)2dμ be the squared Hellinger distance,

K(p, q) =
∫
p log(p/q)dμ, V (p, q) =

∫
p log2(p/q)dμ be the Kullback-Leibler

(KL) divergences.
Suppose that (Xi, Yi), i = 1, . . . , n, are the independent observations. Let p

denote the joint probability of (X,Y ), where Y takes values 1, . . . ,K, and p0 de-
note the true joint probabilty. Let (X(n), Y (n)) be the vector of n obeservations
following the probability p(n). Let πk(X) = P(Y = k|X) be the probability of
the kth category conditioned onX, and π0k be the true probablity of the kth cat-
egory conditioned on X. Define the probability vector π = (π1, . . . , πK)T , where

πK = 1 −
∑K−1

k=1 πk, and π0 = (π01, . . . , π0K)T , where π0K = 1 −
∑K−1

k=1 π0k.
Assume that the distribution of X is G, and ν denotes the counting measure
on {1, . . . ,K}. For these multinomial models, the KL divergences K(p0, p), and
V (p0, p) can be reduced to

K(p0, p) =

∫ ∫
p0(x, y) log

p0(x, y)

p(x, y)
dν(y) dx

=

∫ ∫
π0(y|x) log

π0(y|x)
π(y|x) dν(y) dG(x)

= EX

{ K∑
k=1

π0k(X) log
π0k(X)

πk(X)

}
= K(π0, π), say;

(5.1)

V (p0, p) =

∫ ∫
p0(x, y) log

2 p0(x, y)

p(x, y)
dν(y) dx

=

∫ ∫
π0(y|x) log2

π0(y|x)
π(y|x) dν(y) dG(x)

= EX

{ K∑
k=1

π0k(X) log2
π0k(X)

πk(X)

}
= V (π0, π), say.

(5.2)
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Similarly, the squared Hellinger distance h2(p1, p2) can be reduced to

h2(p1, p2) =

∫ ∫ (√
π1(y|x)−

√
π2(y|x)

)
dν(y) dG(x)

= EX

{ K∑
k=1

(√
π1k(X)−

√
π2k(X)

)2}
= h2(π1, π2), say.

(5.3)

We define a metric by

d(π, π0) =

√√√√ K∑
k=1

EX |πk(X)− π0k(X)|2. (5.4)

Then we have the following general posterior contraction theorem suitable in
our context.

Theorem 1. Assume that π0 is bounded away from zero. Let εn ≥ ε̄n be two
sequences of positive numbers satisfying εn → 0 and nε̄2n → ∞. Let X0 be such
that P(X ∈ X0) = 1 and πk(x), k = 1, . . . ,K for x ∈ X0 is bounded away from
0. Let Wn be a subset of the parameter space such that the following conditions
hold for some positive constants a2 and a1 > a2 + 2:

logN (εn,Wn, h) � nε2n, (5.5)

Π(π �∈ Wn) ≤ exp{−a1nε̄
2
n}, (5.6)

− log Π

(
K∑

k=1

‖πk − π0k‖2∞,X0
≤ ε̄2n

)
≤ a2nε̄

2
n, (5.7)

where ‖πk−π0k‖∞,X0
= supx∈X0

|πk(x)− π0k(x)|. Then for every Mn → ∞, we

have Π
(
d(π, π0) ≥ Mnεn|X(n), Y (n)

)
→ 0 in probability.

The proof follows from Theorem 4 of Ghosal and van der Vaart (2007a), by
observing that

h2(π, π0) = EX

K∑
k=1

|πk(X)− π0k(X)|2

|
√
πk(X) +

√
π0k(X)|2

� EX

K∑
k=1

|πk(X)− π0k(X)|2,

(5.8)

and by expanding in Taylor’s expansion

max{K(π0, π), V (π0, π)} �
K∑

k=1

‖πk − π0k‖2∞,X0
. (5.9)

Let Π be a generic notation for priors on the number J of basis functions.
As in Shen and Ghosal (2015), the priors on J and the coefficients of the basis
functions θ = (θ1, . . . , θJ)

T need to satisfy the conditons (A1) and (A2). For the
ordered multinomial probit model, we add condition (A3).
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(A1) For some c1, c2 > 0, 0 ≤ t2 ≤ t1 ≤ 1, exp{−c1j log
t1 j} ≤ Π(J = j) ≤

exp{−c2j log
t2 j}.

(A2) Given J , Π(‖θ − θ0‖2 ≤ ε) ≥ exp{−c3J log(1/ε)} for every ‖θ0‖∞ ≤
H, where c3 is some positive constant, H is chosen sufficiently large,
and ε > 0 is sufficiently small. Also, assume that Π(θ �∈ [−M,M ]J) ≤
J exp{−CM t3} for some cosntant C, t3 > 0.

(A3) Given K categories, Π(‖γ − γ0‖2 ≤ ε) ≥ exp{−c4K log(1/ε)}, where c4 is
some positive constant.

Geometric distribution with t1 = t2 = 0, and Poisson distribution with t1 =
t2 = 1 on J satisfy (A1). The multivariate normal distribution on θ and γ
satisfy (A2) and (A3) respectively.

To obtain the posterior contraction rate, we need to verify the conditions
(5.5)–(5.7), and we also need additional assumptions on the basis. We use θTψ(t)
to approximate β(t), where θ = (θ1, . . . , θJ)

T , and ψ(t) = (ψ1(t), . . . , ψJ(t))
T .

Let β0(t) be the true value, and r = 2 or ∞. Assume that there exist a θ0 ∈ R
J ,

‖θ0‖∞ ≤ H and K0 ≥ 0 such that

‖β0(·)− θT0 ψ(·)‖r � J−α, (5.10)

‖θT1 ψ(·)− θT2 ψ(·)‖r � JK0‖θ1 − θ2‖2, θ1, θ2 ∈ R
J . (5.11)

Remark 2 of Shen and Ghosal (2015) gave examples of bases satisfying rela-
tions (5.10) and (5.11). For B-splines, the relations hold when K0 = 1/2 with
r = 2, and K0 = 1 with r = ∞.

Remark 1. Parameter estimation plays a secondary role here. The problem of
estimating model parameters is interesting in its own right but is not necessary
for good classifications. Cai and Hall (2006) and Yuan and Cai (2010) showed
that the parameter function estimation and the prediction from an estimator of
the parameter function have different characteristics.

5.1. Ordered multinomial probit model

Let γ = (γ1, . . . , γK)T be the vector of the threshold points, and γ0 = (γ01, . . . ,
γ0K)T be the vector of the true values of the threshold points. Let β(t) be the
parameter function on [0, 1], and β0(t) be the true parameter function on [0, 1].
Let

πk(X) = Φ
(
γk −

∫
β(t)X(t)dt

)
− Φ

(
γk−1 −

∫
β(t)X(t)dt

)
, (5.12)

and

π0k(X) = Φ
(
γ0k −

∫
β0(t)X(t)dt

)
− Φ

(
γ0k−1 −

∫
β0(t)X(t)dt

)
. (5.13)

Theorem 2. Assume that ‖X‖1 =
∫
|X(t)| dt is a bounded random variable,

the priors satisfy the conditons (A1), (A2) and (A3), and that the basis ψ(t)
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satisfies (5.10) and (5.11) with r = ∞. Then the posterior contraction rate of
the ordered multinomial probit model is εn � n−α/(2α+1)(log n)α/(2α+1)+(1−t2)/2

relative to d(π, π0). More explicitly, for every Mn → ∞, Π(β : ρ(β, β0) ≥
Mnεn|X(n), Y (n)) → 0 in probability, where ρ(β, β0) = EX |

∫
(β(t) −

β0(t))X(t) dt|, and Π(γ : maxj |γj − γ0j | ≥ Mnεn|X(n), Y (n)) → 0 in proba-
bility.

Proof. For any x ∈ X0 = {
∫
|X(t)| dt ≤ M}, say, by the Lipschitz continuity of

Φ, we have

|πk(x)− π0k(x)| � max
k

|γk − γ0k|+
∣∣∣∣
∫

(β(t)− β0(t)x(t)dt

∣∣∣∣
� ‖γ − γ0‖∞ + ‖β(·)− β0(·)‖∞

∫
|x(t)| dt

� ‖γ − γ0‖∞ + ‖β(·)− β0(·)‖∞.

(5.14)

Observe that with the finite random series prior, the L∞-distance between
β(·) and β0(·) is bounded by

‖β(·)− β0(·)‖∞ = ‖θTψ(·)− θT0 ψ(·) + θT0 ψ(·)− β0(·)‖∞
≤ ‖θTψ(·)− θT0 ψ(·)‖∞ + ‖θT0 ψ(·)− β0(·)‖∞.

(5.15)

Then we have

Π
( K∑
k=1

‖πk − π0k‖2∞,X0
≤ ε̄2n

)

≥ Π(‖γ − γ0‖ ≤ ε̄n/
√
2)Π(‖β(·)− β0(·)‖∞ ≤ ε̄n/

√
2)

≥ Π(‖γ − γ0‖ ≤ ε̄n/
√
2)Π(‖θ − θ0‖ ≤ ε̄n/(2

√
2J̄n

K0))

� exp
{
−K log(

√
2/ε̄n)

}
exp

{
−J̄n log(2

√
2J̄n

K0/ε̄n)
}
.

(5.16)

To satisfy the relation (5.7), we need J̄−α
n � ε̄n and

K log(
√
2/ε̄n) + J̄n log(2

√
2J̄n

K0/ε̄n) � nε̄2n. (5.17)

Thus (5.17) leads to the conditions that J̄n log n � nε̄2n. Then we obtain the
preliminary contraction rate ε̄n � n−α/(2α+1)(logn)α/(2α+1), for J̄n � (n/
logn)1/(2α+1).

Using (5.14), we obtain

logN (εn,Wn, h) � logN (εn,Wn, ‖ · ‖∞) � nε2n. (5.18)

According to Theorem 2 of Shen and Ghosal (2015), to satify (5.18), we need

Jn{(K0 + 1) log Jn + logMn + C0 logn} ≤ nε2n, (5.19)

for some positive constant C0. To satify (5.6), we need

bnε̄2n ≤ Jn log
t2 Jn, log Jn + nε̄2n ≤ M t3

n , (5.20)
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for some b > 0. For Mn = n1/t3 , (5.20) implies that Jn log
t2 n � nε̄2n. Thus Jn �

n1/(2α+1)(log n)2α/(2α+1)−t2 . Relation (5.19) implies that Jn logn � nε2n. As a
result, the posterior contraction rate is εn � n−α/(2α+1)(logn)α/(2α+1)+(1−t2)/2

relative to d(π, π0).
Further, by Jensen’s inequality, we have

EX |πk(X)− π0k(X)|2 ≥
{
EX |πk(X)− π0k(X)|

}2

. (5.21)

If k = 1, by the mean value theorem and the uniform positivity of Φ on compact
interval, then

EX |π1(X)− π01(X)| = EX

∣∣∣∣Φ(−
∫

β(t)X(t)dt)− Φ(−
∫

β0(t)X(t)dt)

∣∣∣∣
� EX

∣∣∣∣
∫

β(t)X(t)dt−
∫

β0(t)X(t)dt

∣∣∣∣ .
(5.22)

Hence if EX |π1(X)− π01(X)|2 ≤ ε2n, then EX

∣∣∫ β(t)X(t)dt−
∫
β0(t)X(t)dt

∣∣ �
εn. If k = 2, we have

EX |π2(X)− π02(k)| = EX

∣∣∣∣Φ(γ2 −
∫

β(t)X(t)dt)− Φ(γ02 −
∫

β0(t)X(t)dt)

− Φ(−
∫

β(t)X(t)dt) + Φ(−
∫

β0(t)X(t)dt)

∣∣∣∣
� EX

∣∣∣∣Φ(γ2 −
∫

β(t)X(t)dt)− Φ(γ02 −
∫

β0(t)X(t)dt)

∣∣∣∣
− EX

∣∣∣∣Φ(−
∫

β(t)X(t)dt)− Φ(−
∫

β0(t)X(t)dt)

∣∣∣∣ .
(5.23)

From (5.22), we know that EX

∣∣Φ(− ∫ β(t)X(t)dt)− Φ(−
∫
β0(t)X(t)dt)

∣∣ � εn,
and if EX |π2(X)− π02(X)|2 ≤ ε2n, then

EX

∣∣∣∣Φ(γ2 −
∫

β(t)X(t)dt)− Φ(γ02 −
∫

β0(t)X(t)dt)

∣∣∣∣ � εn (5.24)

By the mean value theorem and the uniform positivity of Φ on compact interval,
we have

EX

∣∣∣∣Φ(γ2 −
∫

β(t)X(t)dt)− Φ(γ02 −
∫

β0(t)X(t)dt)

∣∣∣∣
� EX

∣∣∣∣γ2 − γ02 −
∫

β(t)X(t)dt+

∫
β0(t)X(t)dt

∣∣∣∣
� |γ2 − γ02| − EX

∣∣∣∣
∫

β(t)X(t)dt−
∫

β0(t)X(t)dt

∣∣∣∣ .
(5.25)

Hence |γ2−γ02| � εn. Similarly, we can prove that |γk−γ0k| � εn for any k.
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5.2. Unordered multinomial probit model

Note that by (A.10)

πk(X) =
1√
π

∫ ∞

0

{K−1∏
l=1

Φ(−z
√
2−

∫
βl(t)X(t)dt)

+

K−1∏
l=1

Φ(z
√
2−

∫
βl(t)X(t)dt)

}
e−z2

dz

(5.26)

Theorem 3. Assume that ‖X‖1 =
∫
|X(t)| dt is a bounded random variable,

the priors satisfy the conditons (A1) and (A2), and that the basis ψ(t) satis-
fies (5.10) and (5.11) with r = ∞. Then the posterior contraction rate of the
unordered multinomial probit model is εn � n−α/(2α+1)(log n)α/(2α+1)+(1−t2)/2

relative to d(π, π0).

Proof. For some M > 0, P(X0) = 1 for X0 = {
∫
|X(t)| dt ≤ M}. For any

x ∈ X0, by the Lipschitz continuity of the function Φ, we have

|πk(x)− π0k(x)| �
∣∣∣∣
∫

βk(t)x(t)dt−
∫

β0k(t)x(t)dt

∣∣∣∣
�
∫

|βk(t)− β0k(t)| |x(t)| dt

� ‖βk(·)− β0k(·)‖∞.

(5.27)

The L∞-distance between βk(·) and β0k(·) is bounded by

‖βk(·)− β0k(·)‖∞ = ‖θTk ψ(·)− θT0kψ(·) + θT0kψ(·)− β0k(·)‖∞
≤ ‖θTk ψ(·)− θT0kψ(·)‖∞ + ‖θT0kψ(·)− β0k(·)‖∞.

(5.28)

Then we have

Π
( K∑

k=1

‖πk − π0k‖2∞,X0
≤ ε̄2n

)
≥ Π

( K∑
k=1

‖βk(·)− β0k(·)‖2∞ ≤ ε̄2n

)

≥ Π(‖θk − θ0k‖ ≤ ε̄n/(2
√
KJ̄n

K0))

� exp
{
−J̄n log(2

√
KJ̄n

K0/ε̄n)
}
.

(5.29)

To satisfy the relation (5.7), we need J̄−α
n � ε̄n and

J̄n log(2
√
KJ̄n

K0/ε̄n) � nε̄2n. (5.30)

Thus, (5.30) leads to the conditions that J̄n logn � nε̄2n. Then we obtain the
preliminary contraction rate ε̄n � n−α/(2α+1)(logn)α/(2α+1), for J̄n � (n/
logn)1/(2α+1).

Following the same arguments as (5.18)–(5.20), the posterior contraction rate
is εn � n−α/(2α+1)(log n)α/(2α+1)+(1−t2)/2 relative to d(π, π0).
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5.3. Multinomial logistic model

Let βk(t), k = 1, . . . ,K − 1, be the coefficient functions on [0, 1], and β0k(t),
k = 1, . . . ,K − 1, be the true coefficient functions on [0, 1].

Theorem 4. Assume that ‖X‖1 =
∫
|X(t)| dt is a bounded random variable,

the priors satisfy the conditons (A1) and (A2), and that the basis ψ(t) satis-
fies (5.10) and (5.11) with r = ∞. Then the posterior contraction rate of the
multinomial logistic model is εn � n−α/(2α+1)(logn)α/(2α+1)+(1−t2)/2 relative to
d(π, π0).

Proof. The proof is similar to that of Theorem 3.

6. Discriminant analysis

As a comparison to those multinomial models, we use Bayesian discriminant
analysis to classify the functional data. Instead of modeling the class probability
directly, the discriminant analysis uses Bayes’s rule to compute the marginal
likelihood of Yi (Gelman et al., 2013). The classical discriminant analysis applies
only to multivariate data. For functional data, we can use certain orthogonal
linear functions to determine the classification probabilities:

(fi1, . . . , fim)T =

(∫
β1(t)Xi(t)dt, . . . ,

∫
βm(t)Xi(t)dt

)T

(6.1)

Ideally these β1(t), . . . , βm(t) are unknown, but putting a prior on these
functions with identifiability restrictions is complicated. We instead consider
β1(t), . . . , βm(t) to be known as the first m principal components (Ramsay and
Silverman, 2005), but let the means and the covariance matrices be unknown.
Then discriminant analysis can be applied to the m principal components.

6.1. Linear discriminant analysis

Linear discriminant analysis assumes that for each of the K categories, the
set of linear function (f1, . . . , fm) follows a normal distribution with the same
covarince matrix: (fil1, . . . , film)T ∼ N(μl,Σ), where μl is the population mean
of category l, l = 1, . . . ,K, i = 1, . . . , nl, and nl is the number of data in category
l. Then the probability of choosing category k is given by

P(Yi = k|Xi) =
pk · φ(fik1, . . . , fikm;μk,Σ)∑K
l=1 pl · φ(fil1, . . . , film;μl,Σ)

, (6.2)

where φ(f1, . . . , fm;μ,Σ) is the multivariate normal density function with mean
μ and covariace Σ, and pl, l = 1, . . . ,K, is the probability of choosing category
l.

The variables fil1, . . . , film are the m principal components of Xi(t) in cat-
egoty l, where l = 1, . . . ,K. Define fil = (fil1, . . . , film)T , where i = 1, . . . , nl,
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and
∑K

l=1 nl = n. To estimate the mean μl for each category l, and the common
covariance Σ among all categories, we use the conjugate normal-inverse-Wishart
prior with hyperparameters (Gelman et al., 2013) for (μl,Σ)

Σ ∼ IWν0(Λ
−1
0 ), μl|Σ ∼ N(μl0,Σ/κ0). (6.3)

Then the posterior distribution of (μl,Σ) can be obtained in the following order

Σ|Y ∼ IWνn(Λ
−1
n ), μl|Σ, Y ∼ N(μln,Σ/κn), (6.4)

where νn = ν0 + n, f̄l =
∑nl

i=1 fil/nl, S =
∑K

l=1

∑nl

i=1(fil − f̄l)(fil − f̄l)
T ,

Λn = Λ0 + S +

K∑
l=1

κ0nl

κ0 + nl
(f̄l − μl0)(f̄l − μl0)

T , (6.5)

and

κn = κ0 + n, μln =
κ0μl0 + nlf̄l

κ0 + nl
, l = 1, . . . ,K. (6.6)

6.2. Quadratic discriminant analysis

Quadratic discriminant analysis is defined in a similar way, except that it has
a different covariance matrix for each category. The probability of choosing
category k is given by

P(Yi = k|Xi) =
pk · φ(fik1, . . . , fikm;μk,Σk)∑K
l=1 pl · φ(fil1, . . . , film;μl,Σl)

. (6.7)

To estimate the mean μl and the covariance Σl for each category l, where
l = 1, . . . ,K, we use the conjugate normal-inverse-Wishart prior with hyperpa-
rameters for (μl,Σl)

Σl ∼ IWνl0
(Λ−1

l0 ), μl|Σl ∼ N(μl0,Σl/κl0), (6.8)

for l = 1, . . . ,K. Then the posterior distribution of (μl,Σl) can be obtained in
the following order

Σl|Y ∼ IWνln
(Λ−1

ln ), μl|Σl, Y ∼ N(μln,Σl/κln), (6.9)

where νln = νl0 + nl, f̄l =
∑nl

i=1 fil/nl, Sl =
∑nl

i=1(fil − f̄l)(fil − f̄l)
T ,

Λln = Λl0 + Sl +
κl0nl

κl0 + nl
(f̄l − μl0)(f̄l − μl0)

T , (6.10)

and

κln = κl0 + nl, μln =
κl0μl0 + nlf̄l

κl0 + nl
, l = 1, . . . ,K. (6.11)



Functional data classification 4687

Fig 1. Coefficient functions for the multinomial models.

7. Simulation

7.1. Data generation

The simulated data are generated following different data generating process.
All of the simulated data have three categories. In all cases considered be-
low, we generate the functional data from a Gaussian process at discrete time
points 0, 0.01, . . . , 0.99, 1, with the mean function sin t and variation kernel
100 exp{−100(ti − tj)

2}, where ti and tj were the discrete time point 0, 0.01,
. . . , 0.99, 1.

For the ordered multinomial probit data, the coefficient function β(t) is plot-
ted in Figure 1 (a), and the four threshold points are chosen to be −∞, 0, 8, ∞.
The four cut-off points construct three intervals. If the inner product of a func-
tional data and the coefficient function plus a standard normal variable falls in
the kth interval (γk−1, γk), then the functional data attributes to the category
k.

For unordered multinomial probit data, the coefficient functions β1(t), β2(t),
β3(t) are plotted in Figure 1(b)–(d). The inner product of a functional data
and the three coefficient functions are added with standard normal variables,
respectively. We sample from these three normal variables, and obtain the cor-
responding probabilities. Then the functional data belongs to the category with
the largest probability.
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Fig 2. Posterior probabilities of J = 5, . . . , 15, for ordered multinomial probit data under
different models.

For the multinomial logistic data, the coefficient functions β1(t), β2(t) are
plotted in Figure 1(e)–(f), and the third coefficient function β3(t) can be as-
sumed to be zero everywhere. We compute the probabilities of a functional data
falling into each category. Then the data attributes to the category with the
largest probability.

To generate data satisfying the assumption of the linear discriminant analysis,
we use three Gaussian processes with different mean functions sin t+2 cos t, sin t,
and sin t− 3 cos t, but the same variation kernel exp{−30(ti − tj)

2}.
To generate data satisfying the assumption of the quadratic discriminant

analysis, we use three Gaussian processes with different mean functions and
different variation kernels. The mean functions are sin t+2 cos t, sin t, and sin t−
3 cos t, and the variation kernels are exp{−2 sin2(π(ti−tj))}, exp{−30(ti−tj)

2},
and exp{−|ti − tj |}, respectively.

In this simulation study, we generate total 900 (300 for each category) func-
tional data for each type of dataset. We constructe the training data with 720
(240 for each category) of them and the testing data with the remaining 180
(60 for each category) of them.

7.2. Basis functions

For models using the finite random series prior, we consider the B-spline basis.
The B-spline basis functions on interval [0, 1] can be created using the R package
fda. In this simulation study, we put a geometric prior with p = 0.5 on J .
We only consider the possible number of B-spline basis functions to be J =
5, . . . , 15, since the probability outside this range is too small. Figure 2 shows
the posterior probabilities of J = 5, . . . , 15 for the simulated ordered multinomial
probit data under ordered multinomial probit, unordered multinomial probit,
and multinomial logistic models. We can see that the posterior probabilities
for small and large values of J decay to zero very quickly. Similarly for other
types of data under these models, the posterior probabilites of J also decay very
quicky outside of this range. The B-spline basis functions are generated at the
same discrete time points as the functional data, that is 0, 0.01, . . . , 0.99, 1.
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Table 1

Averaged misclassification rates for simulated data

Dataset OMP Model UMP Model MLO Model LDA QDA SVM

OMP 7.69% 30.56% 28.33% 38.89% 48.89% 15.00%

UMP 38.96% 7.22% 7.78% 21.11% 21.11% 10.56%

MLO 49.44% 4.75% 3.89% 32.22% 36.11% 7.78%

LDA 26.32% 25.69% 26.11% 5.00% 5.00% 7.78%

QDA 24.28% 21.95% 21.67% 10.56% 9.44% 8.33%

7.3. Results

Under the chosen models, we apply Baysian estimation methods described in
Section 3 on the training data. In this study, 5000 MCMC iterations are ob-
tained, and the first 1000 of them are discarded as burn-in. We use the last
4000 MCMC output of the parameter B to classify the 180 transformed test-
ing data, where B = (θ, γ2, γ3) for the ordered multinomial probit model,
B = Θ for the unorederd multinomial probit model, B = (θ1, θ2) for the logistic
model, B = (μ1, μ2, μ3,Σ) for the linear discriminant analysis model, and B =
(μ1, μ1, μ3,Σ1,Σ2,Σ3) for the quadratic discriminant analysis model. A trans-

formed testing data zi or fi is in categoty k if
∑4000

g=1 1(Yi = k|zi or fi, B(g)) >∑4000
g=1 1(Yi = l|zi or fi, B(g)), where l �= k. Then we use the techniques described

in Section 4 to average the results from the multinomial models. As a compari-
son with the Bayesian method, the linear support vector machine (SVM) is also
applied to the principal components of these training data, and made predic-
tions on the testing data. To apply SVM, we use the R package e1071. Table
1 shows the averaged misclassification rates for each data type under different
models.

8. Application

We also test our models on a phoneme dataset. This dataset can be found in the
R package fds, and can also be found at https://www.math.univ-toulouse.
fr/staph/npfda/. The original data has 2000 (X,Y ) pairs, and five categories.
For computational efficiency, we only use 900 of them from three categories.
We split the data into training and testing set by randomly sampling from each
class, and keeping the same percentage of samples of each class as the complete
set. The size of the testing data is 20% of the total data size. That is we have
240 data for each class in the training set, and 60 data for each class in the
testing set. We put a geometric prior with p = 0.5 on J , and it is enough
for us to consider the number of B-spline basis functions to be J = 5, . . . , 15.
We obtain 5000 MCMC iterations and discard the first 1000 of them as burn-
in.

According to Table 2, the unordered multinomial probit model is the best
model for the phoneme data. For this data, the categories are not naturally
ordered, and hence ordered multinomial probit model is not natural for this

https://www.math.univ-toulouse.fr/staph/npfda/
https://www.math.univ-toulouse.fr/staph/npfda/
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Table 2

Averaged misclassification rates for phoneme data

OMP Model UMP Model MLO Model LDA QDA
9.84% 0.56% 5.56% 7.78% 5.00%

Fig 3. γ2 sampled from Metropolis-Hastings when J = 5− 7 and 13− 15.

Table 3

Estimate and standard error of the posterior mean for the ordered multinomial model
(J = 6)

γ2 θ
Estimate 3.87 (52.12,−9.60,−8.89,−0.19,−4.91, 2.85)

Standard error 0.03 (0.34, 0.11, 0.13, 0.08, 0.10, 0.10)

problem, but we include it in the analysis for comparison. Figure 3 displays
the cut-point γ2 sampled by Metropolis-Hastings under different J , and we
can tell that γ2 converges around 500 iterations. Tables 3, 4, and 5 show the
estimate and standard error of the posterior mean of the phoneme data under
ordered multinomial probit model, multinomial logistic model, and unordered
multinomial probit model, when J = 6, J = 10, and J = 14, respectively.
We choose these J values because under these values the model has the largest
posterior probability P(J |Y ). Although ordered multinomial probit model is not
intuitive in this context, its performance is not too inferior.
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Table 4

Estimate and standard error of the posterior mean for the multinomial logistic model
(J = 10)

θ2
Estimate (13.10, 18.25, 6.04,−15.29, 15.52, 1.30,−5.81, 4.65,−28.24,−16.91)

Standard error (0.94, 1.08, 0.64, 0.63, 0.75, 0.66, 0.37, 0.48, 0.70, 1.03)
θ3

Estimate (39.42, 34.30,−3.47, 5.26,−7.36, 0.38,−17.99,−4.43,−11.23, 2.44)
Standard error (1.21, 1.44, 0.42, 0.31, 1.08, 0.27, 0.53, 0.33, 0.93, 0.32)

Table 5

Estimate and standard error of the posterior mean for the unordered multinomial model
(J = 14)

estimate standard error

Θ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15.40 49.92
35.78 79.79
45.94 32.11
4.97 −0.76

−23.23 −12.58
−15.09 −14.88
23.43 −21.71
−11.87 1.67
−0.96 −5.06
−0.27 −9.82
1.58 −7.46

−12.43 −14.68
−28.97 −7.74
−28.49 −3.38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.93 0.85
0.52 0.81
0.58 0.75
0.66 0.73
0.60 0.71
0.62 0.67
0.68 0.73
0.74 0.80
0.63 0.64
0.63 0.69
0.70 0.78
0.57 0.60
0.64 0.69
0.53 0.57

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Appendix A: Posterior density estimation from MCMC output

A.1. Ordered multinomial probit model

There are two parameter blocks in this model, θ and α, where α is the transfor-
mation of γ as in (3.6). Given θ∗ = G−1

∑G
g=1 θ

(g), and α∗ = G−1
∑G

g=1 α
(g),

where {θ(g), α(g)}Gg=1 are from the MCMC output, the joint posterior density
can be written as

π(θ∗, α∗|Y, Js) = π(α∗|Y, Js)π(θ∗|Y, Js, α∗), (A.1)

where

π(θ∗|Y, Js, α∗) =

∫
π(θ∗|Y, Js, α∗,W )π(W |Y, Js, α∗)dW. (A.2)

The Monte Carlo estimate of π(θ∗|Y, Js, α∗) is

π̂(θ∗|Y, Js, α∗) = M−1
M∑

m=1

π(θ∗|Y, Js, α∗,W (m)), (A.3)

where {W (m)}Mm=1 are sampled from distribution [W |Y, Js, α∗]. The draws of W
from the Gibbs sampler are from the distribution [W |Y, Js], so π(θ∗|Y, Js, α∗,W )
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cannot be averaged directly by the Gibbs sampling output. Additional sampling
for W is needed. We sample {θ(m)} from the density π(θ|Y, Js, α∗,W ), and given
that θ(m), we sample {W (m)} from π(W |Y, Js, θ, α∗).

The explicit distribution of α∗ given (Y, Js) is unknown, and hence the draws
of α are obtained from a Metropolis-Hastings sampling. By the local reversibility
condition (see Chib and Jeliazkov (2001) for details), the posterior density of α
can be written as

π(α∗|Y, Js) =
E1{ρ(α, α∗|Y, Js, θ,W )q(α, α∗|Y, Js, θ,W )}

E2{ρ(α∗, α|Y, Js, θ,W )} , (A.4)

where ρ(α, α∗|Y, Js, θ,W ) is defined in (3.8), q(α, α∗|Y, Js, θ,W ) is the proposal
density, the expectation E1 is with respect to the distribution π(θ, α,W |Y, Js),
and E2 is with respect to the distribution π(θ,W |Y, Js, α∗)×q(α∗, α|Y, Js, θ,W ).

Then an estimate of π(α∗|Y, Js) is given by

G−1
∑G

g=1 ρ(α
(g), α∗|Y, Js, θ(g),W (g))q(α(g), α∗|Y, Js, θ(g),W (g))

M−1
∑M

m=1 ρ(α
∗, α(m)|Y, Js, θ(m),W (m))

, (A.5)

where {θ(g), α(g),W (g)}Gg=1 are obtained from the MCMC output. {θ(m),W (m)}
are obtained from π(θ|Y, Js, α∗,W ) and π(W |Y, Js, θ, α∗), and then given {θ(m),
W (m)}, sample α(m) from q(α∗, α|Y, Js, θ(m),W (m)).

A.2. Unordered multinomial probit model

The only unknown parameter is Θ. For Θ∗ = G−1
∑G

g=1 Θ
(g), where {Θ(g)} are

from the Gibbs sampling output, the posterior density of Θ at Θ∗ can be written
as

π(Θ∗|Y, Js) =
∫

π(Θ∗|Y, Js,W )π(W |Y, Js)dW. (A.6)

Then the Monte Carlo estimate of π(Θ∗|Y, Js) is

π̂(Θ∗|Y, Js) =
G∑

g=1

π(Θ∗|Y, Js,W (g)), (A.7)

where {W (g)}Gg=1 are from the Gibbs sampling output.
For the unordered multinomial probit model, we also need to estimate the

likelihood at some convenient values in the support of the posterior distribution.
From Section 3.2, Θ = (θ1, . . . , θK−1), where θl = θ′l − θ′K , l = 1, . . . ,K − 1.
Then (2.5) can be rewritten as

P(Y = K)

=
1

(2π)(K−1)/2|Σ|1/2
∫ −ZTΘ·,1

−∞
. . .

∫ −ZTΘ·,K−1

−∞
exp

(
− 1

2
UTΣ−1U

)
dU,

(A.8)
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where Θ·,l denotes the lth column of Θ.
For l �= K, let Θl = (θ1 − θl, . . . , θl−1 − θl, θl+1 − θl, . . . , θK−1 − θl,−θl), then

P(Y = l)

=
1

(2π)(K−1)/2|Σ|1/2
∫ −ZTΘl

·,1

−∞
. . .

∫ −ZTΘl
·,K−1

−∞
exp

(
− 1

2
UTΣ−1U

)
dU.

(A.9)

Due to the exchangeable correlation structure of Σ, (A.9) can be reduced to
a one dimensional integral (Dunnett, 1989) given by

P(Y = l)

=
1√
π

∫ ∞

0

{K−1∏
k=1

Φ(−u
√
2− ZTΘl

·,k) +
K−1∏
k=1

Φ(u
√
2− ZTΘl

·,k)
}
e−u2

du.

(A.10)

The expression in (A.8) can also be reduced to the same form as in (A.10).
Then (A.10) can be approximated by a Gaussian quadrature as follows

P(Y = l) ≈ 1

2
wq

{K−1∏
k=1

Φ(−
√

2xq − ZTΘl
·,k) +

K−1∏
k=1

Φ(
√
2xq − ZTΘl

·,k)
}
,

(A.11)

where wq and xq are the weights and roots of the Laguerre polynomial of order
Q.

Thus, the likelihood of this unordered multinomial probit model can be ap-
proxiamted using (A.11).

A.3. Multinomial logistic model

There are K−1 unknown parameters: θ1, . . . , θK−1. Given θ∗k = G−1
∑G

g=1 θ
(g)
k ,

k = 1, . . . ,K − 1, where {θ(g)k }Gg=1 are from the Metropolis-Hastings sampling
output, the joint posterior density can be written as

π(θ∗1 , . . . , θ
∗
K−1|Y, Js) =

K−1∏
i=1

π(θi|Y, Js, θ∗1 , . . . , θ∗i−1). (A.12)

By the local reversibility, each full conditional density can be written as

π(θi|Y, Js, θ∗1 , . . . , θ∗i−1)

=
E1{ρ(θi, θ∗i |Y, Js,Ψ∗

i−1,Ψ
i+1)q(θi, θ

∗
i |Y, Js,Ψ∗

i−1,Ψ
i+1)}

E2{ρ(θ∗i , θi|Y, Js,Ψ∗
i−1,Ψ

i+1)} ,
(A.13)

where Ψi−1 = (θ1, . . . , θi−1), Ψ
i+1 = (θi+1, . . . , θK−1), ρ(θi, θ

∗
i |Y, Js,Ψ∗

i−1,Ψ
i+1)

is defined in (3.19), q(θi, θ
∗
i |Y, Js,Ψ∗

i−1,Ψ
i+1) is the proposal density, E1 is the
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expectaion with respect to the distribution π(θi,Ψ
i+1|Y, Js,Ψ∗

i−1), and E2 is
that with respect to π(Ψi+1|Y, Js,Ψ∗

i−1, θ
∗
i )× q(θ∗i , θi|Y, Js,Ψ∗

i−1,Ψ
i+1).

Then an estimate of π(θi|Y, Js, θ∗1 , . . . , θ∗i−1) is given by

π̂(θi|Y, Js, θ∗1 , . . . , θ∗i−1)

=
G−1

∑G
g=1 ρ(θ

(g)
i , θ∗i |Y, Js,Ψ∗

i−1,Ψ
i+1,(g))q(θ

(g)
i , θ∗i |Y, Js,Ψ∗

i−1,Ψ
i+1,(g))

M−1
∑M

m=1 ρ(θ
∗
i , θ

(m)
i |Y, Js,Ψ∗

i−1,Ψ
i+1,(m))

,

(A.14)

where {θ(g)i ,Ψi+1,(g)}Gg=1 are obtained from π(θi,Ψ
i+1|Y, Js,Ψ∗

i−1). {Ψi+1,(m)}
are obtained from π(Ψi+1|Y, Js,Ψ∗

i−1, θ
∗
i ), and then for each {Ψi+1,(m)}, sample

θ
(m)
i from q(θ∗i , θi|Y, Js,Ψi+1,(m)).
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