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Abstract: We study the signal detection problem in high dimensional
noise data (possibly) containing rare and weak signals. Log-likelihood ra-
tio (LLR) tests depend on unknown parameters, but they are needed to
judge the quality of detection tests since they determine the detection re-
gions. The popular Tukey’s higher criticism (HC) test was shown to achieve
the same completely detectable region as the LLR test does for different
(mainly) parametric models. We present a novel technique to prove this
result for very general signal models, including even nonparametric p-value
models. Moreover, we address the following questions which are still pend-
ing since the initial paper of Donoho and Jin: What happens on the border
of the completely detectable region, the so-called detection boundary? Does
HC keep its optimality there? In particular, we give a complete answer for
the heteroscedastic normal mixture model. As a byproduct, we give some
new insights about the LLR test’s behaviour on the detection boundary by
discussing, among others, Pitmans’s asymptotic efficiency as an application
of Le Cam’s theory.
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1. Introduction

Signal detection in huge data sets becomes more and more important in current
research. The number of relevant information is often a quite small part of the
data set and hidden there. In genomics, for example, the assumption is often
used that the major part of the genes in patients affected by some common
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diseases like cancer behaves like white noise and a minor part is differentially
expressed but only slightly ([8, 15, 21]). Consequently, the number of signals as
well as the signal strength is small. This circumstance makes it difficult to decide
whether there are any signals. Other application fields are disease surveillance
([30, 34]), local anomaly detection ([35]), cosmology and astronomy ([7, 27]).
In the last decade Tukey’s higher criticism (HC) test ([37, 38, 39]) modified
by Donoho and Jin [12] became quite popular for these kind of problems. The
reason for HC’s popularity is that the area of complete detection coincide for the
HC test and the log-likelihood ratio (LLR) test under different specific model
assumption ([2, 3, 5, 6, 12, 26]). The LLR test, which achieves the highest
power among all tests, cannot be applied since it requires the knowledge of
the unknown signal strength and proportion. But it serves as an important
benchmark and, in particular, determines which kind of signal alternatives are
completely detectable at all. That the HC test can completely separate every
completely detectable alternative was also shown within sparse linear regression
models and binary regression models ([1, 20, 33]). To overcome the problem of an
unknown noise distribution Delaigle et al. [9] used a bootstrap version of HC.
Moreover, Jager and Wellner [23] suggested a whole family of different tests
sharing HC’s complete detectability behaviour for the heterogeneous normal
mixture model. Recently, Ditzhaus [11] verified that the same is true beyond
this specific model. A lot of related literature about HC’s possibilities, even
beyond signal detection, can be found in the survey paper of Donoho and Jin
[13]. For instance, Hall et al. [18] applied HC for classification.

There are (only) a few results concerning the asymptotic power behaviour of
the LLR test on the detection boundary, which separates the area of complete
detection and the area of no possible detection, see Cai et al. [5] and Ingster
[19] for the heteroscedastic and heterogeneous normal mixture models. Since
Donoho and Jin [12] the following questions is pending: How does HC perform
on the detection boundary? Does it keep its optimality? Donoho and Jin [12]
specially pointed out: ”Just at the critical point where r = ρ∗ (1 + o(1)), our
result says nothing; this would be an interesting (but very challenging) area for
future work.”

Our paper’s purpose is twofold. First, we want to fill the theoretical gap
concerning the tests’ power behaviour on the detection boundary and give an
answer to the question mentioned before. We quantify the asymptotic power of
the LLR test by giving the LLR statistic’s limit distribution. On the detection
boundary the LLR test has nontrivial asymptotic power, whereas the HC test
does not. Consequently, HC is not overall powerful. However, our message is
not to scrap the idea of HC. Its power behaviour is still optimal beyond the
detection boundary for a long list of models. The second purpose of our paper
is to add a p-value model with signals coming from a nonparametric alternative
to this list of models.

The paper is organized as follows. In Section 1.1 we introduce the general
model and the detection testing problem. For the readers’ convenience we add
to our paper the illustrative Section 1.2. There, all main results are presented
by discussing our prime example. The asymptotic results about the benchmark
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LLR tests appear in Section 2. The following Section 3 is devoted to the HC
statistic and introduce an ”HC complete detection” as well as a ”trivial HC
power” Theorem. Whereas the previous two sections develop the general ma-
chinery, Section 4 contains the applications. We discuss a generalizations of the
illustrative results from Section 1.2 as well as the heteroscedastic normal mix-
ture model. Although the latter was already studied in great detail we can give
some new insights for it. Further examples can be found in Ditzhaus [10, 11].
All proofs are relegated to Appendix B.

1.1. The model

Let {kn : n ∈ N} ⊂ N, where kn → ∞ represents the number of observations.
Throughout this paper, if not stated otherwise all limits are meant as n → ∞.
Let the following three mutually independent triangular arrays consisting of
rowwise independent random variables are given, where values in different spaces
are allowed:

• (Zn,i)i≤kn representing the noisy background, where the distribution Pn,i

of Zn,i is assumed to be known. In the applications we often assume that
Pn,i = P0 depends neither on i nor on n, and P0 may stand for a distri-
bution of p-values under the null.

• (Xn,i)i≤kn representing the signals, where the signal distribution μn,i of
Xn,i is typically unknown.

• (Bn,i)i≤kn representing the appearance of a signal, where Bn,i is Bernoulli
distributed with typically unknown success probability 0 ≤ εn,i ≤ 1.

Instead of these random variables we observe

Yn,i =

{
Xn,i if Bn,i = 1

Zn,i if Bn,i = 0

for all 1 ≤ i ≤ kn. The vector (Yn,1, . . . , Yn,kn) represents the noise data con-

taining a random amount
∑kn

i=1 Bn,i of signals. It is easy to check that the
distribution Qn,i of Yn,i is given by

Qn,i = (1− εn,i)Pn,i + εn,iμn,i = Pn,i + εn,i(μn,i − Pn,i). (1.1)

The additional index i, for instance, μn,i instead of μn, allows to treat two-
sample or more general kinds of signal alternatives. We are interested whether
there are any signals in the noise data, i.e., whether Bn,i = 1 for at least one
i = 1, . . . , kn. To be more specific, we study the testing problem

H0,n : εn,i = 0 for all i versus H1,n : εn,i > 0 for at least one i, (1.2)

where we observe pure noise (Yn,1, . . . , Yn,kn) = (Zn,1, . . . , Zn,kn) under the null.
We are especially interested in the case of rare signals in the sense that

max
1≤i≤kn

εn,i → 0. (1.3)
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In this setting, we distinguish between the sparse (
∑kn

i=1 ε
2
n,i → 0), the classical

(limn→∞
∑kn

i=1 ε
2
n,i ∈ (0,∞)) and the dense signal case (

∑kn

i=1 ε
2
n,i → ∞). In the

rowwise identical setting, where all quantities, εn,i = εn etc., are independent
of i the parametrization εn = n−β for β ∈ (0, 1) is standard. Then β < 1/2
and β > 1/2 correspond to the dense and sparse case, respectively. We denote
εn = n−1/2, or in other words β = 1/2, as the classical case since it is the usual
rate of convergence when discussing contiguous alternatives. In the classical
case nontrivial power results can be obtained by choosing a signal distribution
μn = μ �= P0 = Pn, whereas in the sparse case, where less signals are present,
only asymptotically singular μn and Pn lead to nontrivial power results. At the
same time, asymptotically merging μn and Pn lead to nontrivial results in the
dense case, where, relatively, a lot of signals occur. While our applications focus
on the most interesting sparse case, the technical machinery applies for all three
cases. A huge class of examples for the dense case is examined by Ditzhaus [11].

Another typical assumption in the signal detection literature is

μn,i � Pn,i for all 1 ≤ i ≤ kn, (1.4)

which we also suppose throughout this paper. In Section 2.4 we discuss what
happens if the assumption of absolute continuity is violated. Following the ideas
of Cai and Wu [6] we explain that every model can be reduced to a model such
that (1.4) is fulfilled.
Convention and Notation: Observe that

dQn,i

dPn,i
= 1 + εn,i

( dμn,i

dPn,i
− 1

)
.

The distributions Pn,i, μn,i, Qn,i and the densities
dQn,i

dPn,i
◦pri shall lie on the same

product space, where the projections pri on the ith coordinate are suppressed
throughout the paper to improve the readability. Moreover, we introduce the
product measures

Q(n) =

kn⊗
i=1

Qn,i and P(n) =

kn⊗
i=1

Pn,i.

1.2. Illustration of the results and the main contents

In this illustrative section we give an overview of our results by studying a
special nonparametric p-values model. For simplicity we set kn = n and re-
strict to the rowwise identical case, i.e., μn,i = μn etc. Testing results are of-
ten presented in terms of p-values since they allow a comparison of different
data types on the same platform. In our context, a quantile transformation like
pn,i = Pn((Yn,i,∞)) or pn,i = Pn((−∞, Yn,i]) may be used to get p-values. As
long as the noise distribution Pn is continuous the p-values pn,1, . . . , pn,n fol-
low under the null a uniform distribution P0, say, on the unit interval (0, 1).
To benefit from this universal platform without too many or too specific model
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assumptions, we consider in this illustrative section from the beginning that
p-values are present and, in particular, Pn = P0.

Typically, small p-values indicates that the alternative is true, or in our case
that signals are present. Respecting this we suggest signal distributions μn with
a shrinking support [0, κn], where

κn = n−r and εn = n−β (1.5)

for some r > 0. Clearly, μn and P0 are asymptotically singular. Hence, this
setting is an example for the sparse case and we restrict our considerations to
β ∈ (1/2, 1). In order to obtain such μn the interval (0, κn) is blown up to (0, 1)
and a nonparametric shape function h is used. Let h : (0, 1) → (0,∞) be a
Lebesgue probability density, i.e., we have

∫
h dP0 = 1, with

∫
h2 dP0 ∈ (0,∞)

and define the signal distribution by its rescaled Lebesgue density

dμn

dP0
(x) =

1

κn
h
( x

κn

)
1{x ≤ κn}, x ∈ (0, 1). (1.6)

Since it could be too restrictive in practice to consider only measures with a
shrinking support, in Section 4.1 we add a ”small” perturbation to the densities.
To sum up, we have a nonparametric testing problem which can be expressed
heuristically as

H0,n : εn = 0 versus H1,n : εn > 0, h ∈ L2(P0) with h ≥ 0,

∫
hdP0 = 1.

The alternative H1,n is composite since, for example in this specific setting, the
signal proportion εn and the signal shape function h are unknown. When we
talk about the LLR test below then the LLR test corresponding to the true but
unknown εn,true and htrue is meant. This test is optimal for testing H0,n against

the simple alternative H̃1,n : {εn = εn,true, h = htrue}. In contrast to that, the
HC test is designed for the composite alternative while being asymptotically
as good as the specific LLR test based on the unknown εn,true and htrue. The
heuristic phrase ”being asymptotically as good as” is explained below in more
detail.

The following list of the seven problems I–VII and their solutions regarding
our prime example gives the reader a first impression and overview of the results
which can be obtained be the general machinery developed in Sections 3 and 2.

I. Determination of the detection boundary : Since the paper of Donoho and
Jin [12] the term detection boundary is of great interest for the detection
problem. This boundary splits the r-β parametrisation plane into the com-
pletely detectable and the undetectable area. For each pair (r, β) from the
completely detectable area the LLR test, the optimal test, can completely
separate the null and the alternative asymptotically. This means that there
is a sequence (ϕn)n∈N of LLR tests with nominal levels EP(n)

(ϕn) = αn

such that αn → 0 and the power EQ(n)
(ϕn) under the alternative tends

to 1. For each (r, β) from the undetectable area the null H0,n and the
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Fig 1. Left: Plot of x �→ dμn/dP0(x) for h(x) = (1 − a)x−a, a = 9/20, r = 2/3 and
n ∈ {10, 25, 50, 100}, see (1.6). Right: The nonparametric detection boundary is plotted. Above
the boundary is the completely detectable area and underneath is the undetectable area. The
limits of the LLR statistic are Gaussian on the solid line under the null as well as under the
alternative, and they are real-valued but non-Gaussian on the end of the line (solid circle).
The limit under the alternative is equal to ∞ with a positive probability.

alternative H1,n are asymptotically indistinguishable, i.e. the sum of error
probabilities tends to 1 for each possible sequence of tests. Hence, no test
yields asymptotically better results than a constant test ϕ ≡ α ∈ (0, 1).
For the illustrative model we have a nonparametric detection boundary
which is independent of the shape function h and given by

ρ(β) = 2β − 1 for β ∈
(1
2
, 1
]
. (1.7)

The area where r > ρ(β) (r < ρ(β), resp.) corresponds to the completely
detectable area (undetectable area, respectively), see Figure 1.

II. Gaussian limits on the detection boundary? For some parametric models
the limit distribution of the log-likelihood ratio test statistic Tn, see below,
was determined, e.g. for the heteroscedastic and heterogeneous normal
mixture model, see Cai et al. [5] and Ingster [19]. For our model with
1/2 < β < 1 and r = ρ(β) we have

Tn = log
dQ(n)

dP(n)

d−→
{

ξ1 ∼ N(−σ2(h)
2 , σ2(h)) under H0,n,

ξ2 ∼ N( σ2(h)
2 , σ2(h)) under H1,n,

where σ2(h) =
∫ 1

0
h2 dP0. Observe that the limits only depend on the

second moment of h and not on its specific structure.
III. What happens if we choose the wrong h or β for the LLR statistic on

the boundary? Let (h1, β1) and (h2, β2) represent two specific models of
the illustrative example on the detection boundary, i.e. βi ∈ (1/2, 1) and
ri = ρ(βi) for i = 1, 2. Using Le Cam’s LAN theory we can determine
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the asymptotic power of the LLR test ϕn,β2,h2,α of the model (h2, β2) of
nominal level α ∈ (0, 1) if (h1, β1) is the true, underlying model:

EH1,n(h1,β1)(ϕn,β2,h2,α) → Φ
(
uα +

√
σ2(h1)ARE

)
,

where ARE =
(
∫ 1

0
h1h2 dP0)

2

σ2(h1)σ2(h2)
1{β1 = β2}

is Pitman’s asymptotic relative efficiency, see Hájek et al. [17], Φ denotes
the distribution function of a standard normal distribution and uα is the
corresponding α-quantile, i.e. Φ(uα) = α. This formula quantifies the
loss of power by choosing the wrong β or h. In particular, the LLR test
ϕn,β2,h2,α cannot separate the null and the alternative asymptotically, i.e
ARE= 0, if the supports of h1 and h2 are disjunct, or if β1 and β2 are
unequal.

IV. Beyond Gaussian limits on the detection boundary. Non-Gaussian limits
of Tn may occur ([5, 19]). Here, these limits can be observed if the second

moment assumption on h is violated, i.e., we have
∫ 1

0
h2 dP0 = ∞. In

this case the limits are infinitely divisible distributed with nontrivial Lévy
measure. These Lévy measures depend heavily on the special structure of
h, details can be found in Theorem 4.5.

V. Extension of the detection boundary: We discuss also the case β = 1,
whereas a lot of former research was focused (only) on β < 1. The case
β ≥ 1 was of minor interest reason since the probability that at least one
signal is present equals 1− (1−εn)

n, which tends to 1−e−1 and 0 if β = 1
and β > 1, respectively. In particular, the pair (β, r) with β > 1 and r > 0
always belongs to the undetectable area. Hence, β > 1 do not need to be
studied further. But β = 1 should be taken into account since a new class
of limits can be observed. To be more specific, for β = 1 and r > 1 we
have

Tn
d−→

{
ξ1 ≡ −1 under H0,n,
ξ2 ∼ e−1ε−1 + (1− e−1)ε∞ under H1,n,

where εa denotes the Dirac measure centered in a ∈ [−∞,∞], i.e. εa(A) =
1{x ∈ A}. As far as we know such nontrivial limits, where ξ2 equals ∞
with a positive probability, were not observed for the detection issue until
now.

VI. Optimality of HC. As already known for different mainly parametric mod-
els, we can show also for the illustrative nonparametric p-values model
that the completely detectable regions of the LLR and the HC test coin-
cide. By this we give a further reason why HC is a good candidate for the
signal detection problem.

VII. No power of HC on the boundary.We show that on the detection boundary,
i.e. β ∈ (1/2, 1) and r = ρ(β), the HC test cannot distinguish between the
null and the alternative alternative, whereas the LLR test has nontrivial
power, compare to II.
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Among others, we apply our results to the model (1.6) in a more general form,
e.g. hn,i, κn,i and εn,i may depend on i and n. We want to point out that these
kind of alternatives were already studied in the context of goodness-of-fit testing
by Khmaladze [28]. He used the name spike chimeric alternatives. Finally, we
want to mention that our general model and the upcoming results also include

VIII. discrete models as the Poisson model of Arias-Castro and Wang [2] (Note
that only the results concerning LLR tests apply for discrete models).

IX. the sparse (
∑kn

i=1 ε
2
n,i → 0), the classical (limn→∞

∑kn

i=1 ε
2
n,i ∈ (0,∞)) and

the dense case (
∑kn

i=1 ε
2
n,i → ∞).

2. Asymptotic power behaviour of LLR tests

In this section we discuss the asymptotic power behaviour of LLR tests. These
tests depend on the unknown signals and, hence, they are not applicable. But
they serve as an import benchmark and all new suggested tests should be com-
pare with the optimal LLR tests.

It is well known that at least for a subsequence Tn converges in distribution
to a random variable with values on the extended real line [−∞,∞] under the
null as well as under the alternative, see Lemma 60.6 of Strasser [36]. That is
why we can assume without loss of generality that

Tn =

kn∑
i=1

log
dQn,i

dPn,i
(Yn,i)

d−→
{

ξ1 under P(n) (null),
ξ2 under Q(n) (alternative),

(2.1)

where ξ1 and ξ2 are random variables on [−∞,∞]. Regarding the phase diagram
on the right side in Figure 1 we are interested in the following three different
regions/cases:

(i) (Completely detectable) The LLR test ϕn = 1{Tn > cn} with appropriate
critical values cn ∈ R can completely separate the null and the alternative
asymptotically, i.e. the sum of error probabilitiesEH0,n(ϕn)+EH1,n(1−ϕn)
tends to 0. We will see that this corresponds to ξ1 ≡ −∞ and ξ2 ≡ ∞.

(ii) (Undetectable) No test sequence (ψn)n∈N can distinguish between the
null and the alternative asymptotically, i.e we always have EH0,n(ϕn) +
EH1,n(1− ϕn) → 1. This case corresponds to ξ1 ≡ 0 ≡ ξ2.

(iii) (Detectable) The LLR test ϕn = 1{Tn > cn} with appropriate critical
values cn ∈ R can separate the null and the alternative asymptotically
but not completely, i.e. EH0,n(ϕn) + EH1,n(1− ϕn) → c ∈ (0, 1).

In the following we denote the completely detectable and the undetectable case
as the trivial cases since the limits of Tn are degenerated. We start by discussing
these and we present a useful tool to verify these trivial cases/limits of Tn. After
that we will see that the same tools can be used to determine the nontrivial limits
in the detectable case. In the last two subsections we consider the asymptotic
relative efficiency, compare to (III) from Section 1.2, and explain what to do
when the condition (1.4) is violated.
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2.1. Trivial limits

In the proofs we work with different distances for probability measure, among
others the Hellinger distance and the variational distance. Using theses dis-
tances we can classify the different detection regions. We refer the reader to
the Appendix B, for further details. Here, we only present our new tool. Let us
introduce for all x > 0 the following two sums

In,1,x =

kn∑
i=1

εn,iμn,i

(
εn,i

dμn,i

dPn,i
> x

)
(2.2)

and In,2,x =

kn∑
i=1

ε2n,iEPn,i

(( dμn,i

dPn,i

)2

1
{
εn,i

dμn,i

dPn,i
≤ x

}
− 1

)
. (2.3)

Theorem 2.1. Let τ > 0 be fixed.

(a) The completely detectable case is present if and only if In,1,τ or In,2,τ tends
to ∞.

(b) We are in the undetectable case if and only if In,1,τ as well as In,2,τ tends
to 0.

2.2. Nontrivial limits

It turns out that only a special class of distributions ν1 and ν2, say, of ξ1 and ξ2
may occur. The results fit in the more general framework of statistical experi-
ments: all nontrivial weak accumulation points with respect to the weak topology
of statistical experiments are infinitely divisible statistical experiments in the
sense of Le Cam [31], see Le Cam and Yang [32] and [24]. In the following we
explain what this means in our situation. Classical infinitely divisible distribu-
tions on (R,B) play a key role for our setting. That is why we want to recall
that the characteristic function ϕ of an infinitely divisible distribution on (R,B)
is given by the Lévy-Khintchine formula

ϕ(t) = exp
[
iγt− σ2t2

2
+

∫
R\{0}

(
exp(itx)− 1− itx

1 + x2

)
dη(x)

]
, t ∈ R,

where γ ∈ R, σ2 ∈ [0,∞) and η is a Lévy measure, i.e. η is a measure on R\{0}
with

∫
min(x2, 1) dη < ∞. The triple (γ, σ2, η) is called the Lévy-Khintchine

triple and is unique. See Gnedenko and Kolmogorov [16] for more details about
infinitely divisible distributions. The following theorem gives us a characterisa-
tion of all possible limits of Tn.

Theorem 2.2. (a) Either ξ1 is real-valued or ξ1 ≡ −∞ with probability one.
In case of the latter ξ2 ≡ ∞ with probability one.

(b) Suppose ξ1 is real-valued. Then a = P (ξ2 ∈ R) > 0 and we can rewrite
ν2 = aρ+(1− a)ε∞, where ρ(A) = a−1ν2(A∩R) for all A ∈ B([−∞,∞]).
Moreover, ν1 and ρ = a−1ν2|R are infinitely divisible distributions on
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(R,B). Let (γ1, σ2
1 , η1) and (γ2, σ

2
2 , η2) be the Lévy-Khintchine triplets of

ν1 and ρ = a−1ν2|R. Then we have:

(i) The Lévy measures η1 and η2 are concentrated on (0,∞), i.e.
ηj(−∞, 0) = 0. and

∫
(0,∞)

ex dη1(x) < ∞. Moreover, dη2

dη1
(x) =

ex for all x > 0.

(ii) The variances of the Gaussian parts of ξ1 and ξ2 coincide, i.e. σ2
1 =

σ2
2.

(iii) The drift parameters γ1 and γ2 fulfill the formulas:

log(a) = γ1 +
σ2
1

2
−
∫
(0,∞)

(
1− ex +

x

1 + x2

)
dη1(x), (2.4)

γ2 = γ1 + σ2
1 +

∫
(0,∞)

(ex − 1)
x

1 + x2
dη1(x). (2.5)

Remark 2.3. If ξ1 is real-valued then by Le Cam’s first Lemma the null (product)
measure P(n) is contiguous with respect to the alternative (product) measure
Q(n), i.e. Q(n)(An) → 0 implies P(n)(An) → 0. If additionally ξ2 is real-valued
then P(n) and Q(n) are mutually contiguous, i.e. Q(n)(An) → 0 if and only if
P(n)(An) → 0. Observe that under mutually contiguity a random variable is
asymptotically constant under the null P(n) if and only if this is the case under
the alternative Q(n).

According to Theorem 2.2(b) the Lévy-Khintchine triplets of ν and ρ =
a−1ν2|R are closely related to each other. This was already observed in the
context of statistical experiments by Janssen et al. [24].

Now, we know the class of all possible limits and, hence, the questions arises
naturally how to determine the distribution of ξ1 and ξ2 for a given setting. To
answer this question we first observe that by Theorem 2.2(i) the Lévy measures
η1 and η2 are uniquely determined by their difference M = η2 − η1. Combining
this, Theorem 2.2(ii) and Theorem 2.2(iii) yields thatM , σ2

1 and a = ν2(R) serve
to understand the distribution of ξ1 and ξ2 completely. We will see that these
three are determined by the limits of the sums given by (2.2) and (2.3). To give
a first impression why this is the case we explain briefly the impact of In,1,x.
Since the summands of Tn fulfill the so-called condition of infinite smallness,
i.e. a finite number of summands has no influence of the sum’s convergence
behaviour, well-known limit theorems to infinitely divisible distributed random
variable can be applied, see, for instance, Gnedenko and Kolmogorov [16]. In
the case of real-valued ξ1 we obtain from these theorems

kn∑
i=1

Pn,i

(
εn,i

dμn,i

dPn,i
> ex − 1 + εn,i

)
→ η1(x,∞) (2.6)

for all x from a dense subset of (0,∞). If additionally ξ2 is real valued then the
same holds for η2 when we replace Pn,i by Qn,i. Combining these and (1.3) shows
that In,1,ex−1 tends to M(x,∞) = (η2−η1)(x,∞) for all x coming from a dense
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subset of (0,∞) if both, ξ1 and ξ2, are real-valued. In the case of a = ν2(R) =
P (ξ2 ∈ R) < 1 a similar convergence can be observed, namely In,1,ex−1 tends to
(η2 − η1)(x,∞) +M(∞), where the mass M(∞) in the point ∞ characterizes a
uniquely.

Theorem 2.4. Let In,1,x and In,2,x, x > 0, be defined as in (2.2) and (2.3). ξ1
is real-valued if and only if the following (a) and (b) hold:

(a) There is a dense subset D of (0,∞) and a measure M on ((0,∞],B(0,∞])
such that for all x ∈ D

lim
n→∞

In,1,ex−1 = M(x,∞].

(b) For some σ2 ∈ [0,∞) we have

lim
x↘0

lim sup
lim inf
n→∞

In,2,x = σ2,

i.e. this equation holds for lim supn→∞ and lim infn→∞ simultaneously.

If (a) and (b) hold then using the notation from Theorem 2.2(b) we obtain
ν2(R) = exp(−M({∞})), σ2 = σ2

1 = σ2
2 and η2 − η1 = M|(0,∞).

Remark 2.5. (i) From Theorem 2.2(i) we get for all x > 0

dη1
dM

(x) =
1

exp(x)− 1
and

dη2
dM

(x) =
exp(x)

exp(x)− 1
. (2.7)

(ii) Consider the rowwise identical case with a noise distribution independent
on n, i.e. Pn,i = P0, μn,i = μn and εn,i = εn. Thus, Yn,1, . . . , Yn,kn are
identical P0-distributed under the null. By using techniques of extreme
value theory it is sometimes possible to show that

max
1≤i≤kn

{
εn

dμn

dP0
(Yn,i)

}
d−→ Ỹ

for a real-valued random variable Ỹ . Note that max1≤i≤kn{Pn,i(εn,i
dμn,i

dPn,i
>

τ)} ≤ τ−1 max1≤i≤kn εn,i → 0. Hence, regarding (2.6) we get the following
connection to the Lévy measure η1 of ξ1:

P (Ỹ > ex − 1) = exp(−η1(x,∞))

for all x coming from a dense subset of (0,∞). This may be useful to get
a first impression how to choose μn and εn to obtain nontrivial limits.

2.3. Asymptotic relative efficiency

In the case of normal distributed limits we have

Tn
d−→

{
ξ1 ∼ N(−σ2/2, σ2) under P(n) (null),
ξ2 ∼ N(σ2/2, σ2) under Q(n) (alternative),

(2.8)
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for some σ ∈ [0,∞), where N(0, 0) denotes the Dirac measure ε0 centered in 0.
In the case of σ = 0 no test sequence can separate between the null and the al-
ternative asymptotically, see Section 2.1. Observe that both normal distributed
limits depend only on one parameter, namely σ2. In Appendix A, see Theo-
rem A.1, we give many different equivalent conditions for normal distributed ξ1
and ξ2, even the conditions in Theorem 2.2 can be simplified in this case. Further
equivalent conditions and closely related results can be found in Section A3 and
A4 of Janssen [25]. In this section we restrict ourselves to these kind of limits,
excluding the trivial case σ = 0, and discuss the LLR test’s power behaviour
if the ”wrong” signal distributions and/or the ”wrong” signal probabilities are
chosen for the test statistic. To be more specific, we fix the triangular schemes of
noise distributions {Pn,i : 1 ≤ i ≤ n ∈ N} and consider for j = 1, 2 a triangular

scheme of signal distributions μ(j) = {μ(j)
n,i : 1 ≤ i ≤ n ∈ N} as well as one of

signal probabilities ε(j) = {ε(j)n,i : 1 ≤ i ≤ n ∈ N}. Let θ1 = (μ(1), ε(1)) be the

true, underlying model and θ2 = (μ(2), ε(2)) be the model pre-chosen by the
statistician for the LLR test. Denote by Tn(θj) and ϕn(θj) = 1{Tn(θj) > cn,j}
the LLR statistic and the LLR test for the model θj , j = 1, 2. Using Pitman’s
asymptotic relative efficiency, see Hájek et al. [17], we quantify the loss in terms
of the asymptotic power if ϕn(θ2) instead of the optimal ϕn(θ1) is used.

Theorem 2.6 (LLR power under Gaussian limits). Suppose that Tn(θj), j ∈
{1, 2}, converges to Gaussian limits, compare to (2.8), with σj > 0. Moreover,
assume that for j, r ∈ {1, 2} the limit

γ(θj ,θr) = lim
n→∞

kn∑
i=1

ε
(j)
n,iε

(r)
n,iCovPn,i

( dμ
(j)
n,i

dPn,i
,
dμ

(r)
n,i

dPn,i

)
(2.9)

exists in R. Suppose that γ(θj ,θj) = σ2
j . Let the critical values cn,j be chosen

such that both tests ϕn(θ1) and ϕn(θ2) are asymptotically exact of a pre-chosen
size α ∈ (0, 1), i.e. EH0,n(ϕn(θ1)) → α. Then the asymptotic power of the pre-
chosen LLR test ϕn(θ2) under the alternative H1,n(θ1) of the true, underlying
model θ1 is given by

EH1,n(θ1)(ϕn,θ2) → Φ
( γ(θ1,θ2)√

γ(θ2,θ2)
+ uα

)
= Φ

(
sign(γ(θ1,θ2))

√
γ(θ1,θ1)ARE + uα

)
,

where ARE =
γ(θ1,θ2)

2

γ(θ1,θ1)γ(θ2,θ2)
∈ [0, 1]

is Pitman’s asymptotic relative efficiency, see Hájek et al. [17].

Remark 2.7. The assumption γ(θj ,θj) = σ2
j is connected to the classical

Lindeberg-condition. It is often but not always fulfilled if (2.8) holds. For exam-
ple, it is violated in the case β = 3/4 and r = ρ(β) for the heterogeneous normal
mixture model, which is discussed in Section 4.2. The good news are that by a
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truncation argument we find for every model θ = (μ, ε), for which (2.8) holds,

another θ̃ = (μ̃, ε̃) such that the limit γ(θ̃, θ̃) from (2.9) exists and equals σ2

from (2.8), and, moreover, the test’s asymptotic behaviour is not effected by

replacing θ by θ̃. The details are carried out in Appendix A, see Lemma A.3.

Note that Theorem 2.6 gives the sharp upper bound of the asymptotic power
for all tests of asymptotic size α ∈ (0, 1) if (2.8) holds for the underlying model.
The asymptotic relative efficiency ARE is a good tool to quantify the loss of
power if the wrong LLR test is used. If ARE = 1 there is no loss of power by using
ϕn(θ2) and if ARE = 0 the test ϕn(θ2) cannot distinguish between the null and
the alternative asymptotically. Consider for a moment the rowwise identical

case, i.e. Pn,i = Pn,1, μ
(1)
n,i = μ

(1)
n,1 etc. If ARE ∈ (0, 1) then, heuristically,

(1−ARE) · 100% of the observations are wasted. To be more specific, it can be
shown that ϕn(θ2) based on all kn observations (Yn,1, . . . , Yn,kn) achieves the
same power as the optimal test does when only m = [(1−ARE)kn] observations
(Yn,1, . . . , Yn,m) are used, where [x] is the integer part of x ∈ R.

2.4. Violation of (1.4)

Here, we discuss how to handle a violation of (1.4). This issue was already
discussed by Cai and Wu [6], see their Section III.C, in terms of the Hellinger
distance to determine the detection boundary. Their idea can be used for our
purpose to determine, more generally, the limits of Tn, even on the boundary.
Instead of the original model it is sufficient to analyse a ”closely related” model
for which (1.4) is fulfilled.

By Lebesgues’ decomposition, see Lemma 1.1 of Strasser [36], there exist a
constant λn,i ∈ [0, 1], a Pn,i-null set Nn,i as well as probability measures μ̃n,i

and νn,i such that μ̃n,i � Pn,i, νn,i(Nn,i) = 1 and μn,i = (1−λn,i)μ̃n,i+λn,iνn,i.

Now, let Q̃n,i, Q̃(n) and T̃n defined as Qn,i, Q(n) and Tn replacing μn,i and εn,i
by μ̃n,i and ε̃n,i = (1− λn,i)εn,i, respectively. Clearly, for this new model (1.4)

is fulfilled and our results can be applied to determine the limits of T̃n. When
knowing these we can immediately give the ones of Tn:

Corollary 2.8. Suppose that (2.1) is fulfilled for T̃n, ξ̃1 and ξ̃2. Moreover,

assume that
∑kn

i=1 εn,iλn,i → c ∈ [0,∞]. Then (2.1) holds for Tn, ξ1 = ξ̃1 − c

and ξ2 = ξ̃2 + X, where X is independent of ξ̃2 with P (X = −c) = e−c and
P (X = ∞) = 1 − e−c. In particular, ξ1 ≡ −∞ and ξ2 ≡ ∞ if c = ∞, or if

ξ̃1 ≡ −∞ and ξ̃2 ≡ ∞.

We can state the results of Corollary 2.8 also in terms of distributions. Denote
by ν̃j the distribution of ξ̃j . Then ν1 = ν̃1∗ε−c and ν2 = e−cν̃2∗ε−c+(1−e−c)ε∞.

3. Power of the higher criticism test

In the previous section we discussed the LLR test which can be used to detect
simple alternatives from the null. An adaptive and applicable test for alterna-
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tives of the whole completely detectable area is Tukey’s HC test modified by
Donoho and Jin [12]. There are different versions of it. To relax the notation,
we decided to use the one dealing with continuously distributed p-values having
a quantile transformation in mind, see also the explanations at the beginning
of Section 1.2. The optimality of HC in a discrete model, namely the Poisson
means model, was shown by Arias-Castro and Wang [2]. Our results about the
LLR statistic in Section 2 are also valid for discrete models but in this section
we only regard continuous ones. The extension to discrete models is a possible
project for the future.

The HC statistic for outcomes pn,i ∈ [0, 1] is defined by

HCn = sup
t∈(0,1)

∣∣∣√kn
Fn(t)− t√
t(1− t)

∣∣∣,
where Fn is the empirical distribution function of the observation vector
(pn,i)i≤kn . For every t ∈ (0, 1) we compare the empirical distribution function
and the null/noise distribution function t �→ F (t) = t. This difference is normal-
ized in the spirit of the central limit theorem. For a fixed t the resulting fraction
is asymptotically standard normal distributed. The interval (0, 1), over which
the supremum is taken, can be replaced by (0, α0), (k

−1
n , α0) or (k

−1
n , 1−k−1

n ) for
some tuning parameter α0 ∈ (0, 1), see Donoho and Jin [12]. The test statistic
can also be defined without taking the absolute value of the fraction. All these
versions of the HC statistic would lead here to the same power results. To im-
prove the readability of this section we give the results only for the HC version
introduced above. By Jaeschke [22], see also Eicker [14], the limit distribution
of HCn is known under the null. We have

P(n)(anHCn − bn ≤ x) → Λ(x)2 = exp(−2 exp(−x)), x ∈ R, (3.1)

where Λ is the distribution function of a standard Gumbel distribution and the
following normalisation constants are used

an =
√

2 log log(kn) and bn = 2 log log(kn) +
1

2
log log log(kn)−

1

2
log(π).

Hence, the test ϕn,HC,α = 1{HCn > cn(α)} with

cn(α) =
− log(− log(α)/2) + bn

an
=
√
2 log log(kn)(1 + o(1))

is an asymptotically exact level α ∈ (0, 1) test, i.e. EH0,n(ϕn,HC,α) → α. But we
cannot recommend to use these critical values based on the limiting distribution
since the convergence rate is really slow, see Khmaladze and Shinjikashvili [29].
Since the noise distribution is known, standard Monte-Carlo simulations can be
used to estimate the α-quantile of HCn for finite sample size. Alternatively, you
can find finite recursion formulas for the exact finite distribution in the paper
of Khmaladze and Shinjikashvili [29].

In the following we present our tool for HC.
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Theorem 3.1 (Completely detectable by HC). Define for all v ∈ (0, 1/2)

Hn(v) =
|
∑kn

i=1 εn,i(μn,i(0, v]− v)|+ |
∑kn

i=1 εn,i(μn,i(1− v, 1)− v)|√
knv

. (3.2)

Let (vn)n∈N be a sequence in the interval (0, 1/2) such that a−1
n Hn(vn) → ∞

and lim infn→∞ knvn > 0. Then anHCn − bn → ∞ in Q(n)-probability.

Basically, we compare the tails near to 0 and 1 of the signal and the noise
distribution. This verification method for HC’s optimality is an extension of the
ones used by Cai et al. [5] and Donoho and Jin [12]. Under the assumptions
of Theorem 3.1 the sum of HC’s error probabilities tends to 0 for appropriate
critical values. In other words, HC can completely separate the null and the
alternative.

The same Hn(v) can be used to show that HC has no power under the
alternative, i.e. the sum of error probabilities tends to 1 independently how the
critical values are chosen.

Theorem 3.2 (Undetectable by HC). Suppose that Pn,i = Pn, εn,i = εn and
μn,i = μn do not depend on i. Define Hn(v) as in Theorem 3.1. Moreover,
assume that P(n) and Q(n) are mutually contiguous, compare to Remark 2.3. If

an sup{Hn(v) : v ∈ [rn, sn] ∪ [tn, un]} → 0, where (3.3)

log(rn)

log(kn)
→ −1,

log(un)

log(kn)
→ 0, and

log(sn)

log(kn)
,
log(tn)

log(kn)
→ κ ∈ (0, 1) (3.4)

for some sequences rn, sn, tn, un ∈ (0, 1) then

Q(n)(anHCn − bn ≤ x) → Λ(x)2 = exp(−2 exp(−x)), x ∈ R. (3.5)

Remark 3.3. Suppose that a2n
∑kn

i=1 ε
2
n,i → 0, which is usually fulfilled for sparse

signals. From Hölder’s inequality (an/
√
kn)

∑kn

i=1 εn,i → 0 follows. Hence, it is
easy to see that the statements of Theorems 3.1 and 3.2 remain true if Hn(v)
is replaced by

H̃n(v) =
1√
knvn

( kn∑
i=1

εn,i(μn,i(0, v] + μn,i(1− v, 1))
)
, v ∈

(
0,

1

2

)
.

4. Application to practical detection models

4.1. Nonparametric alternatives for p-values

Here, we discuss a generalisation of the p-values model (1.6). In particular,
we suppose Pn,i = P0 = λλ|(0,1). In contrast to Section 1.2, we now consider
that the shape function hn,i, the shrinking parameter κn,i > 0 and the signal
probability εn,i may depend on i. The assumption that the signal distribution
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has a shrinking support can be too restrictive for practice. But the approach
allows an extension of the model in the way that we add a perturbation rn,i.
Throughout this section we consider signal distributions μn,i given by

dμn,i

dP0
(u) =

1

κn,i
hn,i

( u

κn,i

)
+ rn,i(u) ≥ 0 with

∫ 1

0

rn,i dP0 = 0, (4.1)

where hn,i is close to some h ∈ L1(P0) and the perturbation rn,i is ”small” in
the sense that

kn∑
i=1

ε2n,i

∫ 1

0

r2n,i dP0 → 0. (4.2)

Instead of (1.5) we suppose that

max
1≤i≤kn

(εn,i + κn,i) → 0.

Since we already presented the results concerning this model for the rowwise
identical case μn,i = μn and εn,i = εn in Section 1.2, the theorems are stated
only in their general versions here.

Theorem 4.1. Suppose that

kn∑
i=1

ε2n,i
κn,i

→ K ∈ [0,∞] and max
1≤i≤kn

∫ 1

0

(hn,i − h)2 dP0 → 0 (4.3)

for some h, hn,i ∈ L2(P0). Without loss of generality we can suppose that

εn,1
κn,1

≤ εn,2
κn,2

≤ . . . ≤ εn,kn

κn,kn

.

(a) (Undetectable case) If K = 0 then the undetectable case is present.
(b) (Completely detectable case) If K = ∞,

kn∑
i=rn

εn,i → ∞ and

rn∑
i=1

ε2n,i
κn,i

→ ∞ (4.4)

for some rn ∈ {1, . . . , kn} then we are in the completely detectable case.

(c) If supn∈N

∑kn

i=1 εn,i < ∞ or K < ∞ then every accumulation point ξ1
(in the sense of convergence in distribution) of Tn, compare to (2.1), is
real-valued under the null. In particular, if K ∈ [0,∞) and

max
1≤i≤kn

εn,i
κn,i

=
εn,kn

κn,kn

→ 0 (4.5)

then the limits of Tn are Gaussian and (2.8) holds for σ2 = σ2(h) =

K
∫ 1

0
h2 dP0.
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(d) In the spirit of Section 2.3, let θj = {(h(j)
n,i, κ

(j)
n,i, ε

(j)
n,i)i≤kn : n ∈ N} denote

a model for j = 1, 2 such that (4.3) and (4.5) hold for some K(j) ∈ (0,∞)
and h(j) ∈ L2(P0). Then all assumptions of Theorem 2.6 are satisfied with

γ(θ1,θ2) = lim
n→∞

kn∑
i=1

ε
(1)
n,iε

(2)
n,i

κ
(1)
n,iκ

(2)
n,i

∫ min{κ(1)
n,i,κ

(2)
n,i}

0

h
(1)
n,i(x/κ

(1)
n,i)h

(2)
n,i(x/κ

(2)
n,i) dx

if this limit exists.

The detection boundary introduced in (1.7) follows immediately from The-
orem 4.1(a) and (b). The asymptotic behaviour on this boundary, discussed in
II, can be deduced from Theorem 4.1(c). As stated in V, the case β = 1 is of
special interest. If β = 1 and r < 1 then the pair (β, r) = (1, r) belongs to the
undetectable area by Theorem 4.1(a). But, if in addition to β = 1 we have either
r = 1 or r > 1 then we obtain non-Gaussian limits ξ1 and ξ2, note that (4.5)
is not fulfilled anymore. Details about the actual limits’ distributions are pre-
sented in the subsequent Theorem 4.3 and Remark 4.4. Using Theorem 4.1(d)
we can calculate the asymptotic relative efficiency ARE if the LLR test ϕn(θ2) is
used although θ1 is the underlying model, see III and the following Remark 4.2.
In addition to the rowwise identical scenario, the general formulation of Theo-
rem 4.1 allows also a discussion, for instance, of a two-sample alternative with
mainly εn,i = 0 and only sparse positive εn,i > 0.

Remark 4.2. Suppose the conditions of Theorem 4.1(d) are fulfilled.

(i) (No power under different shrinking) Assume that κ
(1)
n,i(κ

(2)
n,i)

−1 converges
uniformly for i ∈ {1, . . . , kn} to 0 or to ∞. From Cauchy Schwartz’s in-
equality we get γ(θ1,θ2) = 0 and, hence, ARE = 0.

(ii) If ε
(1)
n,i = ε

(2)
n,i and κ

(1)
n,i = κ

(2)
n,i in Theorem 4.1(d) then γ(θ1,θ2) can be

expressed in terms of K(1) = K(2), h(1) and h(2). In particular, we obtain

ARE =
< h(1), h(2) >2

< h(1), h(1) >< h(2), h(2) >
, where < f, g >=

∫ 1

0

fg dP0.

If εn,i = εn and κn,i = κn does not depend on i = 1, . . . , kn then (4.4) is
fulfilled for rn = [kn/2] if and only if K = ∞ and knεn → ∞. Combining this
and Theorem 4.1 yields the detection boundary presented in I from Section 1.2
and the Gaussian limits introduced in II on this boundary if β < 1. Next, we
give the generalisation of the result stated in IV from Section 1.2 concerning
the case β = 1.

Theorem 4.3 (Extreme case β = 1). Let κn,i = k−r
n , r > 0, and εn,i = k−1

n . Let
D be a dense subset of (0,∞) and M be a measure on (0,∞] with M({∞}) = 0
such that M(x,∞) < ∞ for all x ∈ D and

max
1≤i≤n

∣∣∣∫ 1

0

hn,i1{hn,i > ex − 1} dP0 −M(x,∞)
∣∣∣ → 0. (4.6)

Then (2.1) holds for ξ1 and ξ2 given as follows:
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(a) (Undetectable case) If r < 1 then ξ1 ≡ ξ2 ≡ 0.
(b) If r = 1 then ξj, j ∈ {1, 2}, is infinitely divisible with Lévy-Khintchine

triplet (γj , 0, ηj), where γj and ηj are given by (2.4), (2.5) and (2.7).
(c) If r > 1 then ξ1 ≡ −1 and ξ2 ∼ e−1ε−1 + (1− e−1)ε∞.

Remark 4.4. Let h ∈ L1(P0). Suppose that hn,i = hn,
∫ 1

0
|hn − h| dP0 → 0

and P0(u ∈ (0, 1) : h(u) = x) = 0 for all x > 0. Note that the latter is always
fulfilled for strictly monotone h. Then (4.6) holds for M given by M(x,∞) =∫ 1

0
h1{h > ex − 1} dP0. Consequently, if r = 1 then η1 = L(log(h + 1)|P0),

or in other words η1 equals the distribution of log(h(U) + 1) for a uniformly
distributed U on (0, 1).

Note that we need for the statements in Theorem 4.3 and Remark 4.4 only
h ∈ L1(P0), and not h ∈ L2(P0) as in Theorem 4.1. It is also possible to
determine the detection boundary if h /∈ L2(P0). In this case we get nontrivial
Lévy measures on the whole detection boundary depending heavily on the shape
of h comparable to the situation in Theorem 4.3(b). In the following we discuss
an example for h ∈ L1(P0) \ L2(P0).

Theorem 4.5. Let hn,i(x) = h(x) = (1 − α)x−α for all x ∈ (0, 1) and some
α ∈ [1/2, 1). Moreover, let kn = n, εn,i = n−β, β ∈ (1/2, 1), and κn,i = n−r,
r > 0. Then the detection boundary is given by

ρ#(β, α) = min
(
0,

β − α

1− α

)
. (4.7)

In detail, r < ρ#(β, α) (resp. r > ρ#(β, α)) leads to the undetectable case
(resp. completely detectable case). If r = ρ#(β, α) then Tn converges to infinitely
divisible ξj , j ∈ {1, 2}, with Lévy-Khintchine triplet (γj , 0, ηj) under H0,n and
H1,n, respectively. γj and ηj are uniquely determined by (2.4), (2.5) and

dηj
dλλ

(x) =
(1− α)

1
α

α
ex(ex − 1)−

1
α−1, x > 0,

The limit in Theorem 4.5 for r = ρ#(β, α) does not coincide with the one for
β = 1 from Theorem 4.3(b) with hn,i(x) = (1−α)x−α. Moreover, note that the
case α < 1/2 is included in Theorem 4.1, see also Figure 1 as well as I and II in
the introduction.

Let us now consider the HC test. Since the given model is one for p-values
the observations do not need to be transformed. Hence, the HC test is based on
pn,i = Yn,i.

Theorem 4.6 (Higher criticism). Consider the model

(i) from Section 1.2, where h ∈ L2+δ(P0) for some δ ∈ (0, 1), or
(ii) from Theorem 4.5.

Then the areas of complete detection of the HC and the LLR test coincide. HC
cannot distinguish between the null and the alternative asymptotically if r ≤ 1
and r = ρ(β) or r = ρ#(β, α), respectively, i.e. on the detection boundary.
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Moreover, under the model assumptions of Theorem 4.3 with hn,i = hn HC
cannot distinguish between the null and the alternative asymptotically if β =
r = 1.

4.2. Heteroscedastic normal mixtures

The heteroscedastic normal mixture model was already studied essentially in the
literature (e.g., [5, 12, 19]). Nevertheless, we can give, as a further application of
our results, some new insights about it concerning the extension of the detection
boundary and the asymptotic power of the HC test on the boundary. But we
first introduce the model. Let kn = n, Pn,i = P0 = N(0, 1) and μn,i = μn =
N(ϑn, σ

2
0), σ0 > 0, where the parametrisation εn,i = εn = n−β and ϑn =√

2r logn with β ∈ (1/2, 1) and r > 0 is used. The detection boundary given by

ρ(β, σ0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2− σ2

0)
(
β − 1

2

)
if 1

2 < β ≤ 1− σ2
0

4 , σ0 <
√
2, (I)(

1− σ0

√
1− β

)2
if 1− σ2

0

4 < β < 1, σ0 <
√
2, (II)

0 if 1
2 < β ≤ 1− 1

σ2
0
, σ0 ≥

√
2, (III)(

1− σ0

√
1− β

)2
if 1− 1

σ2
0
< β < 1, σ0 ≥

√
2, (IV)

(4.8)

and the limits of Tn on it were already determined by Cai et al. [5] and Ingster
[19]. The detection boundary is plotted for different σ0 in Figure 2. Moreover,
it was shown that the completely detectable areas of the LLR and HC tests
coincide, see Cai et al. [5], Donoho and Jin [12]. All these results can be proven
by using our methods, see Ditzhaus [10]. Note that the HC test is applied to the
vector (pn,i)i≤kn of p-values, which we get by transforming each observations
Yn,i to pn,i = 1− Φ(Yn,i).

Proposition 4.7 (see Theorems 5 and 6 of [5]). (a) If r < ρ(β, σ0) then we
are in the undetectable case, i.e. no test can distinguish between the null
H0,n and the alternative Hn,1 asymptotically.

(b) If r > ρ(β, σ0) then the LLR as well as the HC test can completely separate
the null and the alternative asymptotically.

(c) Suppose that r = ρ(β, σ0). Moreover, add a logarithmic term in the
parametrisation of εn as follows:

εn = n−β (log(n))
E(β,σ0) with E(β, σ0) =

{
0 on (I).
1
2 −

√
1−β
2σ0

else.
(4.9)

In the following we discuss the different parts (I), (II) and (IV) of the
detection boundary.

(i) (Gaussian limits) Consider part (I). Then (2.8) holds for

σ2 =
(
σ0

√
2− σ2

0

)−1(
1− 1

2
1
{
β = 1− σ2

0

4

})
.
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(ii) Consider the parts (II) and (IV). Then (2.1) holds for infinitely divis-
ible ξ1 and ξ2 with Lévy-Khintchine triplets (γ1, 0, η1) and (γ2, 0, η2),
respectively, where η1, η2 are given by

dη1
dλλ

(x) =
1

c1
(ex − 1)

c2−3
ex and

dη2
dλλ

(x) = ex
dη1
dλλ

(x), x > 0,

with c1 = 2
√
πσc3

0 c4, c2 = c−1
4 (σ0 − 2

√
1− β), c3 = c−1

4 σ0 −
√
1− β

and c4 = σ0 −
√
1− β, and γ1 and γ2 fulfill (2.4) and (2.5) with

σ2 = 0.

Remark 4.8. By carefully reading the proof of Cai et al. [5], see in particular
the top of page 658, there must be an additional factor 1/2 in the exponent of
the logarithmic term in their definition of εn as in our (4.9).

Applying our Theorem 3.2 we can show, as already postulated, that HC has
no asymptotic power on the boundary.

Theorem 4.9 (HC on the boundary). Let r = ρ(β, σ0) > 0, β ∈ (1/2, 1).
Moreover, reparametrize εn on the quadratic part of the boundary as we did in
(4.9). Then the HC test has no (asymptotic) power, whereas the LLR does so.

In (4.8) the detection boundary is (only) defined for β < 1. As we already
did in the previous section, we can extend this boundary for β = 1 by a infinite
vertical line starting in (r, β) = (1, 1), see Figure 2. Again, we observe on this
line unusual limits of Tn.

Theorem 4.10 (Detection boundary extension). Let β = 1. In this case we
use the original/non-reparametrized definition of εn, i.e., εn = n−1.

(i) If r < 1 then the pair (β, r) = (1, r) belongs to the undetectable region.
(ii) If β = 1 and r = 1 then ξ1 ≡ −1/2 and ξ2 ∼ e−1/2ε−1/2 + (1− e−1/2)ε∞.
(iii) If β = 1 and r > 1 then ξ1 ≡ −1 and ξ2 ∼ e−1ε−1 + (1− e−1)ε∞.

The results concerning ARE can also be applied for the heteroscedastic mod-
els. Fix the variance parameter σ0 > 0. Let θ1 = (β1, r1) and θ2 = (β2, r2)
represent two models from the linear part (I) of the detection boundary leading
to Gaussian limits of Tn. Suppose that the models are different, i.e. β1 �= β2.
By applying Theorem 2.6 and simple calculations, which are omitted to the
reader, ARE = 0 can be shown. That means that the LLR test ϕn(θ2) can not
distinguish between the null and the alternative asymptotically when θ1 is the
true, underlying model. As already mentioned γ(θj ,θj) = σ2

j does not hold if

βj = 1− σ2
0/4. In this case make use of the truncation Lemma A.3.

Cai et al. [5] already considered the dense case β < 1/2. In this case σ2
0 �= 1

always leads to the completely detectable case independently of how the sig-
nal strength ϑn is chosen. Thus, only the heterogeneous case σ2

0 = 1 is of real
interest. In this case the parametrisation ϑn = nr is used for r > 0. The cor-
responding detection boundary is given by ρ(β) = 1/2 − β and is plotted in
Figure 2. The HC test achieves the same region of complete detection, see Cai
et al. [5]. Our results concerning the tests’ power behaviour on the detection
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Fig 2. Detection boundaries for the heteroscedastic normal mixture model. Left: (Sparse case
for σ0 ∈ {0.4, 0.8, 1, 1.2,

√
2, 2, 4}) Above the boundary is the completely detectable area and

underneath is the undetectable area for both tests (LLR and HC). The limits ξ1 and ξ2 are
Gaussian on the linear part (solid) and non-Gaussian on the quadratic part (dashed). In both
cases the HC test has no asymptotic power. On the vertical dotted line P (ξ2 ∈ R) ∈ (0, 1).
Right: (dense case for σ2

0 = 1) Above the boundary is the undetectable area and underneath
is the completely detectable area for both tests. On the boundary the limits ξ1 and ξ2 are
Gaussian and the HC test has no power.

boundary can also be applied. In short, on the detection boundary (2.8) holds
for some σ > 0 and the HC test has no asymptotic power there. This is even
possible to a general class of one-parametric exponential families including the
dense heterogeneous normal mixtures. Further details concerning the dense case
can be found in Ditzhaus [10, 11].

Appendix A: Gaussian limits

Gaussian limits ξ1 and ξ2, compare to (2.8), are of special interest, for example
regarding Theorem 2.6. Recall that the degenerate case is included as σ = 0. In
the following we give several equivalent conditions for Gaussian limits.

Theorem A.1 (Gaussian limits). The conditions (a)-(i) are equivalent:

(a) ξ1 and ξ2 are Gaussian or ξ1 = ξ2 ≡ 0 with probability one.

(b) ξ1 ∼ N(−σ2

2 , σ2) for some σ2 ∈ [0,∞).

(c) ξ2 ∼ N(σ
2

2 , σ2) for some σ2 ∈ [0,∞).
(d) ξ2 is real-valued and ξ1 ∼ N(a, σ2) for some a ∈ R, σ2 ∈ [0,∞).
(e) ξ2 ∼ N(a, σ2) for some a ∈ R, σ2 ∈ [0,∞).
(f) Zn given by (A.1) converges in distribution under P(n) to some normal

distributed Z ∼ N(0, σ2) for some σ2 ∈ [0,∞):

Zn =

kn∑
i=1

εn,i

( dμn,i

dPn,i
− 1

)
d−→ Z. (A.1)
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(g) ξ2 is real-valued and max1≤i≤kn

dQn,i

dPn,i
→ 1 in P(n)-probability.

(h) ξ2 is real-valued and max1≤i≤kn εn,i
dμn,i

dPn,i
→ 0 in P(n)-probability.

(i) For some τ ∈ (0,∞) and all x > 0 we have In,1,x → 0 and In,2,τ → σ2 ∈
[0,∞).

If one of the conditions (b)–(f) or (i) is fulfilled for some σ2 ∈ [0,∞) then the
others do so for the same σ2.

Remark A.2. Theorem A.1(i) holds for some τ > 0 if and only if it does for all.

To apply Theorem 2.6 γ(θ,θ) = σ2 is needed, where σ2 comes from the
previous section and θ denotes the underlying model, compare to the notation
in Section 2.3. As already mentioned there are examples, for which this equation
fails although ξ1 and ξ2 are normal distributed. But by truncation we can always
ensure the equality without changing the asymptotic results.

Lemma A.3 (Truncation). Let the assumptions of Theorem A.1 and one of its
equivalent conditions (a)-(i) be fulfilled. In order to use a truncation argument
define

ε̃n,i = εn,iμn,i

(
εn,i

dμn,i

dPn,i
≤ τ

)
for some τ > 0

and let μ̃n,i be given as follows: if ε̃n,i = 0 then
dμ̃n,i

dPn,i
= 1, and otherwise

dμ̃n,i

dPn,i
=

dμn,i

dPn,i
1
{
εn,i

dμn,i

dPn,i
≤ τ

}[
μn,i

(
εn,i

dμn,i

dPn,i
≤ τ

)]−1

.

All our asymptotic results in this paper remain the same if we replace μn,i and
εn,i by μ̃n,i and ε̃n,i.

Appendix B: Proofs

In the following we give all the proofs. These are not given in the order of their
appearance since we apply, for example, Theorem 2.4 to verify Theorem 2.2. Be-
fore giving the proofs we introduce some useful properties of binary experiments
and generalise limit theorems of Gnedenko and Kolmogorov [16] to infinitely di-
visible distributions.

B.1. Binary experiments and distances for probability measures

Binary experiments classify different types of signal detectability. This gives us
a first rough insight in the different detection regions for our signal detection
problem. This standard approach is recalled for a sequence of binary experiments
{P̃(n), Q̃(n)}, n ∈ N ∪ {0}, where the underlying measurable spaces (Ωn,An)
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may change with n. Recall the equivalence of the weak convergences in (B.1)
and (B.2) on [−∞,∞]:

L
(
log

dQ̃(n)

dP̃(n)

∣∣∣P̃(n)

)
w−→ L

(
log

dQ̃(0)

dP̃(0)

∣∣∣P̃(0)

)
= ν1 (say), (B.1)

L
(
log

dQ̃(n)

dP̃(n)

∣∣∣Q̃(n)

)
w−→ L

(
log

dQ̃(0)

dP̃(0)

∣∣∣Q̃(0)

)
= ν2 (say). (B.2)

Following Le Cam we say that {P̃(n), Q̃(n)} converges weakly to {ν1, ν2} ({P̃(0),

Q̃(0)}, respectively) if and only if (B.1) or (B.2) is fulfilled. Note that every
sequence of binary experiments has at least one accumulation point in the sense
of weak convergence, see Lemma 60.6 of Strasser [36]. In general ν1 is a measure
on R ∪ {−∞} and ν2 is one on R ∪ {∞} connected by

dν2|R
dν1|R

(x) = ex and ν2({−∞}) = 1−
∫

ex dν1(x). (B.3)

Using the terminology of weak convergence of binary experiments we can express
the different types of (asymptotic) detectability as follows:

• completely detectable: {P(n), Q(n)} converges weakly to the so called full
informative experiment {ν1, ν2} = {ε−∞, ε∞}.

• undetectable: {P(n), Q(n)} converges weakly to the so called uninformative
experiment {ν1, ν2} = {ε0, ε0}.

• detectable: None (weak) accumulation point of {P(n), Q(n)} is the uninfor-
mative experiment {ν1, ν2} = {ε0, ε0}.

The variational distance of probability measures P̃ and Q̃ on a common measure
space (Ω̃, Ã) is given by

||P̃ − Q̃|| = sup{EP̃ (ϕ)− EQ̃(ϕ) : measurable ϕ : Ω̃ → [0, 1]}, (B.4)

see Lemma 2.3 of Strasser [36]. It is easy to show that weak convergence of

{P̃(n), Q̃(n)} to {P̃(0), Q̃(0)} implies convergence of the variational distance

||P̃(n) − Q̃(n)|| → ||P̃(0) − Q̃(0)||. Our three cases can be reformulated to:

• completely detectable: ||P(n) −Q(n)|| tends to 1.
• undetectable: ||P(n) −Q(n)|| tends to 0.
• detectable: We have lim infn→∞ ||P(n) −Q(n)|| > 0.

For product measures the Hellinger distance d is useful:

d2(P̃ , Q̃) =
1

2

∫ (( dP̃

dν

) 1
2 −

( dQ̃

dν

) 1
2
)2

dν = 1−
∫ ( dP̃

dν

dQ̃

dν

) 1
2

dν, (B.5)

where P̃ , Q̃ � ν. Since d2(P̃ , Q̃) ≤ ||P̃ − Q̃|| ≤
√
2 d(P̃ , Q̃), see Lemma 2.15 of

Strasser [36], we obtain from (1.1) and (1.3) that

max
i=1,...,kn

d2(Pn,i, Qn,i) ≤ max
1≤i≤kn

||Pn,i −Qn,i|| ≤ max
1≤i≤kn

εn,i → 0. (B.6)
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Consequently, d2(P(n), Q(n)) = 1−
∏kn

i=1(1− d2(Pn,i, Qn,i)) tends to b ∈ [0, 1] if
and only if − log(1− b) is the limit of

Dn =

kn∑
i=1

d2(Pn,i, Qn,i). (B.7)

To sum up, we get the following characterisation of the trivial detection regions.

Lemma B.1. (a) We are in the undetectable case if and only if Dn → 0.
(b) We are in completely detectable case if and only if Dn → ∞.

Note that from the connection between the variational distance and the
Hellinger distance we obtain

1

2

kn∑
i=1

ε2n,i ||Pn,i − μn,i||2 ≤ Dn ≤
kn∑
i=1

εn,i ||Pn,i − μn,i||. (B.8)

B.2. Limit theorems

For the readers’ convenience let us recall well known convergence results of Gne-
denko and Kolmogorov [16] which we use rapidly. Let (Yn,i)1≤i≤kn be a trian-
gular array of row-wise independent, infinitesimal, real-valued random variables
on some probability space (Ω,A, P ). In our case we have

kn∑
i=1

P (Yn,i ≤ x) = 0 (B.9)

for all fixed x < 0 if n ≥ Nx is sufficiently large. Combining this with (9)
of Chap. 3.18, Theorem 4.25.4 and the subsequent remark of Gnedenko and
Kolmogorov [16] yields:

Theorem B.2. We have distributional convergence

kn∑
i=1

Ykn,i
d−→ Y

to some real-valued Y on (Ω,A, P ) if and only if the following conditions (i)-(iii)
hold.

(i) There is a Lévy measure η on R \ {0} such that η(−∞, 0) = 0 and

kn∑
i=1

P (Ykn,i > x) → η(x,∞) ∈ R as n → ∞

for all x ∈ C+(η), i.e. for all continuity points of t �→ η(t,∞), t > 0.
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(ii) There exists some constant σ2 ∈ [0,∞) such that

σ2 = lim
ε↘0

lim sup
lim inf
n→∞

kn∑
i=1

∫
{|Ykn,i|<ε}

Y 2
kn,i dP −

kn∑
i=1

(∫
{|Ykn,i|<ε}

Ykn,i dP

)2

.

(iii) There is some constant γ ∈ R and τ0 ∈ C+(η) such that

lim
n→∞

kn∑
i=1

∫
Ykn,i1{|Ykn,i| < τ0} dP

= γ +

∫
(−τ0,τ0)\{0}

x3

1 + x2
dη(x)−

∫
R\[−τ0,τ0]

x

1 + x2
dη(x).

Under (i)-(iii) Y is infinitely divisible with Lévy-Khintchine triplet (γ, σ2, η).

As stated in Theorem 2.4, we have to deal also with positive weights in ∞
for the limits since ν2 = ρ+ (1− a)ε−∞, where a < 1 may occur.

Theorem B.3. Suppose that the conditions (ii) and (iii) of Theorem B.2 hold
for some τ0 ∈ C+(M0). Assume that the following (a) and (b) hold.

(a) There is a dense subset D of (0,∞) and a measure M0 on (0,∞] with

kn∑
i=1

P (Ykn,i > x) → M0(x,∞] ∈ R for all x ∈ D.

(b) There exists some τ1 > 0 such that

lim sup
n→∞

kn∑
i=1

∫
{|Ykn,i|<τ1}

Y 2
kn,i dP < ∞.

Then,

L
( kn∑
i=1

Yn,i

)
w−→ e−M0({∞})ν + (1− e−M0({∞}))ε∞,

where ν is a infinitely divisible measure on R with Lévy-Khintchine triplet
(γ, σ2, η) and Lévy measure η = M0|(0,∞).

Proof. Put η = M0|(0,∞). Let the sequence (Mn)n∈N consists of measures on

(0,∞] given by Mn(x,∞] =
∑kn

i=1 P (Yn,i > x), x > 0. Clearly, Mn|(0,∞)
w−→ η

and lim supn→∞
∫
(0,τ1)

t2 dMn(t) < ∞. Thus, we obtain
∫
min(t2, 1) dη(t) < ∞,

which proves that η is a Lévy measure. Define Zn,u =
∑kn

i=1 Yn,i1{Yn,i ≤ u}
for all u ∈ D, u > τ0. By Theorem B.2 Zn,u converges in distribution to Xu,
where Xu is infinitely divisible with Lévy-Khintchine triplet (γu, σ

2, ηu), Lévy
measure ηu = η(0,u] and shift term

γu = γ −
∫
(u,∞)

x

1 + x2
dη(x).
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Since η is Lévy measure it is easy to verify γu → γ as D � u → ∞. By this and
Theorem 3.19.2 of Gnedenko and Kolmogorov [16] Xu converges in distribution
to X as D � u → ∞, where X ∼ ν. Now, let (un)n∈N be a sequence in D which

tends to ∞ slowly enough such that
∑kn

i=1 P (Ykn,i > un) → M0({∞}). Stan-
dard arguments, see Theorem 3.2 of Billingsley [4], imply that Zn,un converges
in distribution to X since for all δ > 0

lim sup
n→∞

P
(∣∣∣Zn,u − Zn,un

∣∣∣ ≥ δ
)
≤ M0(u,∞) → 0 as D � u → ∞.

The basic idea to determine the limit distribution of
∑kn

i=1 Yn,i is to condition
on Cn = {max1≤i≤kn Yn,i ≤ un}. Note that for all t ∈ R

P
( kn∑
i=1

Yn,i ≤ t
)
= P (Zn,un ≤ t|Cn)P (Cn) + P

( kn∑
i=1

Yn,i ≤ t, max
1≤i≤kn

Yn,i > un

)
,

where the latter summand tends to 0. Moreover, observe that

1− P (Cn) =

kn∏
i=1

(
1− P (Yn,i > un)

)
→ e−M0({∞}).

It is remains to show that Zn,un tends to X conditioned on Cn. Conditioned

on Cn we have Zn,un =
∑kn

i=1 Yn,i1{Yn,i ≤ un} and (Yn,i1{Yn,i ≤ un})i≤kn

is a rowwise independent and infinitesimal triangular array. Hence, we can ap-
ply Theorem B.2 to Zn,un conditioned on Cn. Finally, by basic calculations
Theorem B.2(i)-(iii) are fulfilled for the same η, σ2 and γ given by the Lévy-
Khintchine triplet of the limit X of Zn,un , e.g. we have for all x ∈ D

kn∑
i=1

P
(
Yn,i1{Yn,i ≤ un} > x|Cn

)
=

kn∑
i=1

P (Yn,i > x)− P (Yn,i > un)

P (Yn,i ≤ un)
→ η(x,∞)

since min1≤i≤kn P (Yn,i ≤ un) ≥ 1−max1≤i≤kn P (Yn,i ≥ 1) → 1.

B.3. Proofs of Section 2 and Appendix A

B.3.1. Proof of Theorem 2.1

The statement of Theorem 2.1 follows immediately from the following lemma.

Lemma B.4. Let In,1,x and In,2,x, x > 0, be defined as in in (2.2) and (2.3),
respectively. Let Dn be defined as in (B.7). Then for all τ > 0 there exists a
constant Cτ > 0 such that

Dn ≤
(1
2
+ max

1≤i≤kn

εn,i

)
In,1,τ + In,2,τ , (B.10)

Dn ≥ Cτ max
{
In,1,τ , In,2,τ − 2

τ
In,1,τ max

1≤i≤kn

εn,i

}
. (B.11)
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Remark B.5. The idea and the proof of the upper bound of Dn in (B.10) is
based on the argumentation of Cai et al. [5] on pp. 21f.

Proof of Lemma B.4. To shorten the notation, we define

An,i,x =
{
εn,i

dμn,i

dPn,i
> x

}
for all x > 0. (B.12)

We can deduce from (B.5) that

Dn ≤
kn∑
i=1

EPn,i

(
1−

√
1− εn,i + εn,i

dμn,i

dPn,i
1(Ac

n,i,τ )

)
. (B.13)

Note that 1−
√
1 + t ≤ −t/2 + t2 for all t ≥ −1. Applying this (pointwisely) to

the integrand in (B.13) with t = εn,i(
dμn,i

dPn,i
1(Ac

n,i,τ )− 1) yields (B.10).

We split the proof of (B.11) into two steps. First, define for all x > 0

Ĩn,2,x =

kn∑
i=1

∫
Ac

n,i,x

ε2n,i

( dμn,i

dPn,i
− 1

)2

dPn,i. (B.14)

For εmax
n = max1≤i≤kn εn,i we can deduce from εmax

n ≥ (εmax
n )2 and

kn∑
i=1

Pn,i(Yn,i > x) ≤
kn∑
i=1

Pn,i(An,i,ex−1) ≤
1

ex − 1
In,1,ex−1 (B.15)

that − 2εmax
n

x
In,1,x ≤ Ĩn,2,x − In,2,x ≤ 2εmax

n In,1,x (B.16)

for all x > 0. Since dQn,i/dPn,i is bounded from above by 1 + τ on Ac
n,i,τ we

obtain

2Dn ≥
kn∑
i=1

∫ (
1− dQn,i

dPn,i

)2(
1 +

(dQn,i

dPn,i

)1/2)−2

1(Ac
n,i,τ ) dPn,i

≥ Ĩn,2,τ

(1 +
√
1 + τ)2

.

Combining this and (B.16) gives us the first bound in (B.14) for appropriate
Cτ . Second, set C = 1/(

√
τ/2 + 1 + 1) < 1/2. Note that on An,i,τ(dQn,i

dPn,i

)1/2

− 1 =
(dQn,i

dPn,i
− 1

)((dQn,i

dPn,i

)1/2

+ 1
)−1

≤ C

(
dQn,i

dPn,i
− 1

)
.

Consequently,

2Dn ≥
kn∑
i=1

EPn,i

((dQn,i

dPn,i
− 1− 2

((dQn,i

dPn,i

)1/2

− 1
))

1(An,i,τ )
)

≥ (1− 2C)
(
1− max1≤i≤kn εn,i

τ

) kn∑
i=1

εn,iμn,i (An,i,τ ) .
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B.3.2. Proof of Theorem 2.2(b)

The statements follows from Remark (8.6) and Lemma (8.7) of Janssen et al.
[24] as we explain in the following. Let C2

lok(R) be set of all bounded functions
f : R → R that are twice differentiable with continuous derivatives in some
neighbourhood of 0. Denote by f (k)(0) the kth derivative of f at 0. The Lévy-
Khintchine triplet of a infinitely divisible measure ν is equal to (γ, σ2, η) if and
only if the generating functional A : C2

lok(R) → R admits the Lévy-Khintchine
representation

A(f) = f (1)(0)γ + σ2f (2)(0) +

∫
R\{0}

(
f(x)− f(0)− f (1)(0)x

1 + x2

)
dη(x)

for all f ∈ C2
lok(R). For the actual definition of A and more details about it we

refer the reader to Janssen et al. [24], in particular to (8.1)-(8.4).

Lemma B.6. Let {ν̃1, ν̃2} be some binary experiment in its standard form,
compare to (B.1) and (B.2), such that ν̃1(R) = ν̃2(R) = 1 and ν̃1 is infinitely
divisible with Lévy-Khintchine triplet (γ, σ2, η). Then ν̃2 is also infinitely di-
visible with Lévy-Khintchine triplet (γ2, σ

2
2 , η2), where σ2

1 = σ2
2, η2 � η1 with

Radon-Nikodym derivative x �→ dη2/dη1(x) = ex and

γ1 +
σ2
1

2
−
∫ (

1− ex +
x

x2 + 1

)
dη1(x) = 0, (B.17)

γ2 = γ1 + σ2
1 +

∫
(ex − 1)

x

1 + x2
dη1(x). (B.18)

Remark B.7. Since
∫
x21(|x| ≤ 1) dη1(x),

∫
ex1(|x| ≥ 1) dη1(x) < ∞, see

Lemma (8.7)(a) of Janssen et al. [24], the integrals in (B.17) and (B.18) are
finite.

Proof of Lemma B.6. Let A be the generating functional of ν̃1. Combining∫
exp dν̃1 = ν̃2(R) = 1 and Lemma (8.7)(b) and (c) from Janssen et al. [24]

we deduce that A(exp) = 0 and C2
lok(R) � f �→ A(exp f) is the generating

functional of ν̃2 and, in particular, ν̃2 is infinitely divisible. Using the Lévy-
Khintchine representation of A immediately yields that A(exp) is equal to the
left side of (B.17), which proves (B.17). From f(0)A(exp) = 0 we get for all
f ∈ C2

lok(R)

A(f exp) = f (1)(0)
(
γ1 + σ2

1 +

∫
(ex − 1)

x

1 + x2
dη1(x)

)
+ f (2)(0)

σ2
1

2
+

∫ (
f(x)− f(0)− f (1)(0)x

1 + x2

)
ex dη1(x).

Consequently, the statements about (γ2, σ
2
2 , η2) follow.

Now, we prove Theorem 2.2(b). Since
dQn,i

dPn,i
≥ 1−max1≤i≤kn εn,i → 1 (B.9)

is fulfilled and by Theorem B.2 η1 is concentrated on (0,∞). Now, consider
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{ν̃1, ν̃2} = {ν1 ∗ ε− log(a), (a
−1ν2|R) ∗ ε− log(a)}. This binary experiment is in its

standard from since

dν̃2
dν̃1

(x) = a−1 dν2
dν1

(x+ log(a)) = exp(x), x ∈ R.

Clearly, ν̃1 is infinitely divisible with Lévy characteristic (γ1− log(a), σ2
1 , η1) and

ν̃1(R) = ν̃2(R) = 1. Applying Lemma B.6 proves that ν̃2 is infinitely divisible
and so is ρ = a−1ν2|R. Moreover, is easy to check that we obtain all statements
about the Lévy-Khintchine triplets.

B.3.3. Proof of Theorem 2.4

We carried out two different proofs for Theorem 2.4. The first one relies on in-
finitely divisible statistical experiments and accompanying Poisson experiments,
and arguments from Chap. 4, 5, 9, 10 of Janssen et al. [24] are used. The sec-
ond one is based on traditional limit theorems for real-valued random variables.
Since, probably, the second one is easier to follow for the readers who are not
experts in the field of statistical experiments we decided to present only the
second proof.

At the end of the proof we will verify the following lemma.

Lemma B.8. Suppose that (a) and (b) hold. Then the sums in Theorem B.2
(ii) and (iii) and in Theorem B.3(a) and (b) for Yn,i defined by

Yn,i = log
dQn,i

dPn,i
(B.19)

are upper bounded for every x > 0 and all sufficiently small τ0, τ1 ∈ D, re-
spectively, under P(n) as well as under Q(n). In particular, Theorem B.2(ii) is
fulfilled for σ2 under P(n).

Let us first assume that (a) and (b) are fulfilled. Define Yn,i as in (B.19).
Regarding Lemma B.8 and using typical sub-subsequence arguments we can
assume without loss of generality that Theorem B.2(i) and (ii) as well as The-
orem B.3(a) and (b) hold for a measure M1 (resp. M2), σ1 ≥ 0 (σ2 ≥ 0, resp.)
and γ1 ∈ R (γ2 ∈ R, resp.) under P(n) (Q(n), resp.). In particular, by Lemma
B.8 σ2

1 = σ2. Note that ηj = Mj|(0,∞) is a Lévy measure. From (B.15) we
obtain M1({∞}) = 0 and so ξ1, the limit of Tn under P(n), is real-valued.
Moreover, since max1≤i≤kn εn,i → 0 and εn,iμn,i(An,i,ex−1+εn,i) = Qn,i(Yn,i >
x) − (1 − εn,i)Pn,i(Yn,i > x) we can deduce that M|(0,∞) = η2 − η1 and
M2({∞}) = M({∞}). Finally, the proof for the first assertion is completed
by Theorem 2.2(b).

Now, let ξ1 be not equal to −∞ with probability one. By Theorem 2.1(a) we
have supn∈N In,1,τ + In,2,τ < ∞ for all τ > 0. Hence, for each subsequence there
is a subsequence such that (a) for some measure M and (b) for some σ2 are
fulfilled. From Theorem 2.2(b) and the first assertion proved above we obtain:
ξ1 is real-valued, and M and σ2 are uniquely determined by the distribution of
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ξ1 and so do not depend on the special choice of the subsequence, which proves
the second assertion (and Theorem 2.2(a)).

Proof of Lemma B.8. First, observe that by (B.15) the sum in Theorem B.3(a)
is upper bounded under P(n) as well as under Q(n) for all τ > 0. By (1.3)

Bn,i,τ = {|Yn,i| ≤ τ} = Ac
n,i,tn,i(τ)

(B.20)

if n ≥ Nτ is sufficiently large, where tn,i(τ) = eτ − 1+ εn,i ∈ [eτ − 1, eτ ]. Define

Ĩn,2,x as in (B.14). By Taylor’s formula there exists some random variable Rn,i,τ

with Rn,i,τ = 0 on Bc
n,i,τ such that we have on Bn,i,τ

Yn,i = εn,i

( dμn,i

dPn,i
− 1

)
− ε2n,i

( dμn,i

dPn,i
− 1

)2(1
2
+Rn,i,τ

)
(B.21)

and max1≤i≤kn |Rn,i,τ | ≤ Cτ for some constant Cτ ∈ (0,∞) with Cτ → 0 as
τ ↘ 0. Combining this and (B.15) yields∣∣∣ kn∑

i=1

∫
Bn,i,τ

Yn,i dPn,i

∣∣∣ ≤ (
1 +

1

eτ − 1

)
In,1,eτ−1 +

(1
2
+ Cτ

)
Ĩn,2,eτ ,

where by (B.16) the upper bound is bounded itself for all sufficiently small

τ > 0. Since Qn,i = (1− εn,i)Pn,i + εn,iμn,i and
dμn,i

dPn,i
≤ eτ on Bn,i,τ we obtain

similarly the following upper bound of |
∑kn

i=1

∫
Bn,i,τ

Yn,i dQn,i|:∣∣∣ kn∑
i=1

∫
Bn,i,τ

Yn,i dPn,i

∣∣∣+ In,1,eτ−1 +
(
1 +

(1
2
+ Cτ

)
eτ
)
Ĩn,2,eτ ,

which itself is bounded for all small τ > 0, see also (B.16). In the last step we dis-
cuss the sum in Theorem B.2(ii). On Bn,i,τ we obtain the following inequalities
from (B.21) for all sufficiently small τ > 0 such that Cτ ≤ 1

2 :

εn,i

∣∣∣ dμn,i

dPn,i
− 1

∣∣∣ (2− eτ − 2εn,i) ≤ |Yn,i| ≤ εn,i

∣∣∣ dμn,i

dPn,i
− 1

∣∣∣ (eτ + 2εn,i) .

From this, (B.16) and
dQn,i

dPn,i
≤ eτ +max1≤i≤kn εn,i on Bn,i,τ we conclude

lim
τ↘0

lim sup
lim inf
n→∞

kn∑
i=1

∫
Bn,i,τ

Y 2
n,i dQn,i ≤ lim

τ↘0

lim sup
lim inf
n→∞

kn∑
i=1

∫
Bn,i,τ

Y 2
n,i dPn,i = σ2.

Since (a+ b)2 ≤ 4a2 + 4b2 we have for all sufficiently small τ > 0 that

1

4

kn∑
i=1

(∫
Bn,i,τ

Yn,i dPn,i

)2

≤
kn∑
i=1

(
εn,i

∫
Bc

n,i,τ

1− dμn,i

dPn,i
dPn,i

)2

+
(∫

Bn,i,τ

ε2n,i

(dμn,i

dPn,i
− 1

)2

dPn,i

)2

≤
(

max
1≤i≤kn

εn,i

)
(1 + τ)In,1,eτ−1 + Ĩn,2,eτ (e

τ − 1 + max
1≤i≤kn

εn,i)
2.
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Hence, by (B.16) limτ↘0 lim supn→∞(
∫
Bn,i,τ

Yn,i dPn,i)
2 = 0 and, consequently,

Theorem B.2(ii) is fulfilled for σ2 under P(n).

B.3.4. Proof of Theorem 2.2(a)

We verified Theorem 2.2(a) while proving the second assertion of Theorem 2.4.

B.3.5. Proof of Theorem A.1

The equivalence of (a)-(e) follows from (B.3) and is standard for binary exper-
iments, see Strasser [36]. The equivalence of (g) and (h) follows from (1.1) and
(1.3). Define An,i,x as in (B.12).
Equivalence of (b) and (i): By Theorem 2.4 In,1,x → 0 for all x > 0 holds also
under (b). Hence, we can suppose that this convergence is fulfilled subsequently.
Fix τ > 0. Then

0 ≤ EPn,i

(
ε2n,i

( dμn,i

dPn,i

)2

1
{ dμn,i

dPn,i
∈ (x, τ ]

})
≤ τ εn,iμn,i(An,i,x)

holds for all x ∈ (0, τ ] and so In,2,x − In,2,τ → 0 does. Consequently, (i) holds if
and only if Theorem 2.4(a) and (b) do so for the same σ2 ∈ [0,∞) and M ≡ 0.
Hence, the equivalence of (b) and (i) follows from Theorem 2.4.

Equivalence of (f) and (i): Define Yn,i as in (B.19) and set Ỹn,i = f(Yn,i) for

f(x) = exp(x) − 1, x ∈ R. Note that f(0) = 0 and f ′(0) = f ′′(0) = 1. From
this, a Taylor expansion, compare to (B.21), and Theorem B.2 we obtain that∑kn

i=1 Yn,i converges in distribution to X with Lévy-Khintchine triplet (0, σ2, 0)

if and only if
∑kn

i=1 Ỹn,i does so to X̃ with Lévy-Khintchine triplet (−σ2/2, σ2, 0).
Equivalence of (d) and (h): Throughout this proof step we can assume that ξ2
is real-valued and so is ξ1, see Theorem 2.2(a). By the first Lemma of Le Cam
P(n) and Q(n) are mutually contiguous, see also Remark 2.3. Hence, (h) is true
if and only if for all x > 0

0 ← Q(n)

(
max

1≤i≤kn

εn,i
dμn,i

dPn,i
> x

)
= 1−

kn∏
i=1

(
1−Qn,i(An,i,x)

)
.

Combining this and (B.15) yields that (h) is fulfilled if and only if In,1,x → 0 for
all x > 0. Finally, note that ξ1 is normal distributed if and only if it has trivial
Lévy measure η1 ≡ 0, which by Theorem 2.4 is true if and only if In,1,x → 0 for
all x > 0.

B.3.6. Proof of Lemma A.3

Let Q̃n,i and Q̃(n) be defined as Qn,i and Q(n) replacing μn,i and εn,i by μ̃n,i and

ε̃n,i. For the statement in Lemma A.3 it is sufficient to show that {Q(n), Q̃n,i}
tend weakly to the uninformative experiment {ε0, ε0}. The main task for this

purpose is to verify
∑kn

i=1 ||Qn,i(θ)−Qn,i(θ̃)|| → 0, which is left to the reader.
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B.3.7. Proof of Theorem 2.6

Denote by Zn(θ1) and Zn(θ2) the statistic introduced in (A.1) for the model
θ1 and θ2, respectively. Since these statistics are linear, the multivariate cen-

tral limit theorem implies distributional convergence (Zn(θ1), Zn(θ2))
d−→ Z̃ ∼

N((0, 0), (γ(θi,θj))1≤i,j≤2) under P(n). In the next step we verify for j = 1, 2

Tn(θj) = Zn(θj)−
γ(θj ,θj)

2
+Rn,j , (B.22)

where Rn,j converges in P(n)-probability to 0. Let j ∈ {1, 2} be fixed. Define

Y
(j)
n,i = ε

(j)
n,i(dμ

(j)
n,i/ dP

(j)
n,i − 1). Note that by Taylor’s Theorem log(1 + x) =

x − x2

2 + (2/3)x3(1 + yx)
−3 for |yx| ≤ x. Since max1≤i≤kn Y

(j)
n,i → 0 in P(n)-

probability, see Theorem A.1, it remains to shown that
∑kn

i=1(Y
(j)
n,i )

2 → γ(θj ,θj)
in P(n)-probability. It is well know that this follows immediately if the Lindeberg

condition is fulfilled for the triangular array (Y
(j)
n,i )i≤kn under P(n). Observe that

combining Theorem A.1(f) and the assumption γ(θj ,θj) = σ2
j yields the desired

Lindeberg condition and, finally, (B.22).
From (B.22) and the asymptotic normality of the vector (Zn(θ1), Zn(θ2))

we obtain (Tn(θ1), Tn(θ2))
d−→ Ẑ ∼ N((−γ(θj ,θj)/2)j=1,2, (γ(θi,θj))1≤i,j≤2).

Consequently, by the third lemma of Le Cam we get under Q(n)(θ1)

(Tn(θ1), Tn(θ2))
d−→ Ẑ ∼ N

((−γ(θj ,θj)

2
+ γ(θ1,θj)

)
j=1,2

, (γ(θi,θj))1≤i,j≤2

)
.

Finally, the desired statement can be concluded.

B.3.8. Proof of Corollary 2.8

Define

ε∗n,i =
εn,i(1− λn,i)

1− εn,iλn,i
.

Now, let Q∗
n,i, Q

∗
(n) and T ∗

n defined as Q̃n,i, Q̃(n) and T̃n replacing ε̃n,i by ε∗n,i.

Since ε̃n,i = ε∗n,i(1 + an,i) with max1≤i≤kn |an,i| → 0 it can easily be seen by

Theorems 2.2 and 2.4 that (2.1) also holds for T ∗
n with the same limits ξ̃1 and

ξ̃2. Note that

dQn,i

dPn,i
= (1− εn,iλn,i)

dQ∗
n,i

dPn,i
+∞ 1Nn,i1{λn,i > 0}.

Since
⊗kn

i=1 Nn,i is a P(n)-null set we obtain that P(n)-almost surely

log
(dQ(n)

dP(n)

)
= log

(dQ∗
(n)

dP(n)

)
+

kn∑
i=1

log(1− λn,iεn,i).
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Combining this and
∑kn

i=1 log(1− λn,iεn,i) → −c yields that Tn
d−→ ξ̃1 − c = ξ1

under P(n). By Section B.1 we obtain that Tn converges in distribution to some
ξ2 under Q(n) and by (B.3) we get the desired representation ν2 = e−cν̃2 ∗ ε−c+
(1− e−c)ε∞ of ξ2’s distribution.

B.4. Proofs of Section 3

To shorten the notation we define

Zn(t) =
√
n

Fn(t)− t√
t(1− t)

, t ∈ (0, 1).

Then,

HCn = sup
t∈(0,1)

|Zn(t)|.

B.4.1. Proof of Theorem 3.1

First, note that

anHCn − bn =
√
2 log log (kn)

(
HCn√

log log(kn)
−
√
2 + o(1)

)
.

That is why it sufficient to show that for some γ > 0

Q(n)

( |Zn(vn)|√
log log kn

≤
√
2 + γ

)
→ 0 (B.23)

or Q(n)

( |Zn(1− vn)|√
log log kn

≤
√
2 + γ

)
→ 0. (B.24)

To verify this we apply Chebyshev’s inequality. Note that for every real-valued
random variable Z on some probability space (Ω,A, P ) with finite expectation
we have

P

(
|Z| ≤ |E(Z)|

2

)
= P

(
|Z − E(Z)| ≥ |E(Z)|

2

)
≤ 4

VarP (Z)

EP (Z)2
. (B.25)

Consequently, we need to determine first the expectation and variance for Zn(v)
for v ∈ {vn, 1− vn}:

EQ(n)
(Zn(v)) =

√
kn

k−1
n

∑kn

i=1 Qn,i(0, v]− v√
v(1− v)

=

∑kn

i=1 εn,i (μn,i (0, v]− v)√
kn v(1− v)

,

VarQ(n)
(Zn(v)) =

1

kn

∑kn

i=1 Qn,i(0, v] (1−Qn,i(0, v])

v(1− v)

≤ min
{∑kn

i=1 Qn,i(0, v]

kn v(1− v)
,

∑kn

i=1(1−Qn,i(0, v])

kn v(1− v)

}
= min

{ 1

1− v
+

EQ(n)
[Zn (v)]√

kn v(1− v)
,
1

v
−

EQ(n)
[Zn (v)]√

kn v(1− v)

}
.
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By assumption we have

|
∑kn

i=1 εn,i(μn,i(0, vn]− vn)|√
knvn log log(kn)

→ ∞ (B.26)

or
|
∑kn

i=1 εn,i(μn,i(1− vn, 1)− vn)|√
knvn log log kn

→ ∞. (B.27)

Suppose that (B.26) holds. Then∣∣∣∣∣EQ(n)
(Zn(vn))√

log log(kn)

∣∣∣∣∣ → ∞ and
VarQ(n)

(Zn(vn))

EQ(n)
(Zn(vn))2

→ 0.

Combining this and (B.25) yields that (B.23) is fulfilled for all γ > 0. Analo-
gously, if (B.27) is true then (B.24) holds for all γ > 0.

B.4.2. Proof of Theorem 3.2

Let Gn be the distribution function of Qn,1, i.e. Gn(v) = Qn,1([0, v]), v ∈ (0, 1).
Let U1, U2, . . . be a sequence of independent, uniformly on (0, 1) distributed ran-
dom variables on the same probability space (Ω,A, P ). Note (U1, . . . , Ukn) ∼
P(n) and (G−1

n (U1), . . . , G
−1
n (Ukn)) ∼ Q(n), where G−1

n denotes the left contin-
uous quantile function of Qn,1. Moreover, denote the interval (rn, sn) ∪ (tn, un)
by Jn,1 and [1 − un, 1 − tn] ∪ [1− sn, 1 − rn] by Jn,2. By (3.3) it is easy to see
that we can replace rn by any r′n ≥ rn such that log(r′n) = (−1 + o(1)) log(n).
In particular, we can assume without loss of generality that knrn ≥ 1 and, anal-
ogously, un < 1/2. From Corollaries 2 and 3 as well as (1) and (2) of Theorem

of Jaeschke [22], which also hold for the statistics Wn, V̂n, Ŵn introduced at the
beginning of subsection 2 therein, we can deduce that

an sup
v∈(0,1)\(Jn,1∪Jn,2)

{ ∣∣∣∑kn

i=1(1{Ui ≤ v} − v)√
knv(1− v)

∣∣∣}− bn
P−→ −∞ (B.28)

and an sup
v∈(0,1)

{ ∣∣∣∑kn

i=1(1{Ui ≤ v} − v)√
knv(1− v)

∣∣∣}− bn
d−→ Y, (B.29)

where the distribution function of Y equals Λ2, see (3.1). By (B.28), the mutually
contiguity of P(n) and Q(n) and the equivalence ”Gn(v) ≥ u ⇔ v ≥ G−1

n (u)” it
is sufficient for (3.5) to verify

an sup
v∈Jn,1∪Jn,2

{ ∑kn

i=1(1{Ui ≤ Gn(v)} − v)√
knv(1− v)

}
− bn

d−→ Y. (B.30)
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For this purpose we define

Δn,1(v) =

∑kn

i=1 (1{Ui ≤ Gn(v)} −Gn(v))√
nGn(v)(1−Gn(v))

,

Δn,2(v) =

√
Gn(v)

v
, Δn,3(v) =

√
1−Gn(v)

(1− v)
, Δn,4(v) =

√
kn

Gn(v)− v√
v(1− v)

.

Clearly,∑kn

i=1 (1{Ui ≤ Gn(v)} − v)√
kn v(1− v)

= Δn,1(v)Δn,2(v)Δn,3(v) + Δn,4(v).

Hence, the proof of (B.30) falls naturally into the following steps:

sup
v∈Jn,1∪Jn,2

|Δn,j(v)− 1| → 0 for j ∈ {2, 3}, (B.31)

an sup
v∈Jn,1∪Jn,2

|Δn,4(v)| → 0, (B.32)

an sup
v∈Jn,1∪Jn,2

{|Δn,1(v)|} − bn
d−→ Y. (B.33)

First, observe that (1− εn)v ≤ Gn(v) ≤ v + εn(1− v) for all v ∈ (0, 1). Hence,
we have for all v1 ∈ (0, 1/2] and v2 ∈ [1/2, 1) that

1−Gn(v1)

1− v1
,
Gn(v2)

v2
∈ (1− εn, 1 + εn).

Moreover, we have for all v1 ∈ Jn,1 and all v2 ∈ Jn,2 that∣∣∣∣Gn (v1)

v1
− 1

∣∣∣∣ = εn|μn(0, v1]− v1|
v1

≤ Hn(v1)√
knrn

≤ anHn(v1), (B.34)∣∣∣∣1−Gn (v2)

1− v2
− 1

∣∣∣∣ = εn|μn(v2, 1)− (1− v2)|
1− v2

≤ anHn(1− v2). (B.35)

Consequently, (B.31) follows. Similarly to the above, we obtain

|Δn,4(v1)| ≤
Hn(v1)√
1− un

≤ 1√
2
Hn(v1) and |Δn,4(v2)| ≤

1√
2
Hn(1− v2).

for all v1 ∈ Jn,1 and v2 ∈ Jn,2. From this we obtain (B.32). Clearly,

sup
v∈Jn,1∪Jn,2

|Δn,1(v)| = sup
v∈J̃n,1∪J̃n,2

∣∣∣∑kn

i=1(1{Ui ≤ v} − v)√
knv(1− v)

∣∣∣,
where J̃n,1 = [r̃n, s̃n] ∪ [t̃n, ũn] by Ĵn,2 = (1− ûn, 1− t̂n) ∪ (1− ŝn, 1− r̂n) with
r̃n = Gn(rn), s̃n = Gn(sn), t̃n = Gn(tn), ũn = Gn(un), r̂n = 1 − Gn(1 − rn),
ŝn = 1 − Gn(1 − sn), t̂n = 1 − Gn(1 − tn) and ûn = 1 − Gn(1 − un). From
(B.34), (B.35) and (3.3) we deduce that (r̃n,s̃n,t̃n,ũn) and (r̂n,ŝn,t̂n,ûn) fulfil
(3.4). Finally, (B.33) follows from (B.28) and (B.29) (with the new parameters).
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B.5. Proofs of Section 4.1

Before we prove the theorems stated in Section 4.1 we want to point out the
following: We can always assume that there is no perturbation, i.e. rn,i = 0 for
all i, n, see Lemma B.9. Note that we will assume this in all upcoming proofs
concerning Section 4.1 without recalling it every time.

Lemma B.9 (Perturbation). Let us consider the situation in Section 4.1. Let
μ∗
n,i, Q

∗
n,i and Q∗

(n) be defined as μn,i, Qn,i and Q(n) setting rn,i = 0 for all i, n.

Then (4.2) is a sufficient that {Q(n), Q
∗
(n)} converges weakly to the uninforma-

tive experiment {ε0, ε0}. In other words, if (4.2) is fulfilled then the perturbation
by (rn,i)i≤kn does not affect the asymptotic results.

Proof. It is sufficient to show that
∑kn

i=1 d
2(Qn,i, Qn,i(θ̃)) → 0 under (4.2). This

convergence follows immediately from the first representation of the Hellinger
distance in (B.5) and the third binomial formula:

2d2(Qn,i, Qn,i(θ̃))

=

∫ 1

0

(εn,irn,i)
2

(
√
(1− εn,i) + εn,ihn,i +

√
(1− εn,i) + εn,ihn,i + εn,irn,i)2

dλλ

≤
ε2n,i

1− εn,i

∫ 1

0

r2n,i dλλ.

B.5.1. Proof of Theorem 4.1

First, observe that

In,1,x =

kn∑
i=1

εn,i

∫ 1

0

hn,i 1
{ εn,i
κn,i

hn,i > x
}
dλλ, (B.36)

In,2,x =

kn∑
i=1

( ε2n,i
κn,i

∫ 1

0

h2
n,i 1

{ εn,i
κn,i

hn,i ≤ x
}
dλλ

)
−

kn∑
i=1

ε2n,i. (B.37)

Moreover, note that

In,1,x ≤ 1

x

kn∑
i=1

ε2n,i
κn,i

∫
h2
n,i 1

{ εn,i
κn,i

hn,i > x
}
dλλ, (B.38)

In,1,x + In,2,x ≤ max{1, x−1}
(

max
1≤i≤kn

∫ 1

0

h2
n,i dλλ

) kn∑
i=1

ε2n,i
κn,i

By these and Theorem 2.1 K = 0 corresponds to the undetectable case and
no accumulation point of {P(n), Q(n)} is full informative if K ∈ (0,∞). By

Lemma B.1(b) and (B.8) the latter is also valid if lim supn→∞
∑kn

i=1 εn,i <
∞. Consequently, (a) and the first statement in (c) are verified. Now, let us
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suppose that K ∈ (0,∞) and (4.5) holds. Clearly,
∑kn

i=1 ε
2
n,i → 0. By (B.37)

and (B.38) In,1,x → 0 and In,2,x → K
∫
h2 dP0 = σ2 for all x > 0. Hence,

applying Theorem 2.4 completes the proof of (c).
Now, let the assumptions of (b) hold. Without loss of generality we can

assume that
∑kn

i=1 ε
2
n,i → C1 < ∞ and εn,rn/κn,rn → C ∈ [0,∞] since otherwise

we use standard sub-subsequence arguments and make use of (B.8). If C ≥ 1
then for all sufficiently large n ∈ N

In,1,x ≥
kn∑

i=rn

εn,i

∫ 1

0

hn,i 1
{ εn,rn
κn,rn

hn,i > x
}
dλλ

≥
( kn∑
i=rn

εn,i

)
min

1≤i≤kn

∫ 1

0

hn,i 1
{1

2
hn,i > x

}
dλλ

and so by (4.3) In,1,x → ∞ for all sufficiently small x > 0. If C < 1 then

In,2,x ≥
( rn∑
i=1

ε2n,i
κn,i

)
min

1≤i≤kn

∫ 1

0

h2
n,i 1

{
2hn,i ≤ x

}
dλλ− C1

and so by (4.3) In,2,x → ∞ for all sufficiently large x > 0. Hence, applying

Theorem 2.1 verifies (b). Finally, note that K < ∞ implies
∑kn

i=1 ε
2
n,i → 0.

Keeping this in mind the proof of (d) is trivial (and omitted to the reader).

B.5.2. Proof of Theorem 4.3

By (B.37)

− 1

kn
≤ In,2,x ≤ x

kn

kn∑
i=1

∫ 1

0

hn,i1{kr−1
n hn,i ≤ x} dλλ ≤ x

and so lim
x↘0

lim sup
lim inf
n→∞

In,2,x = 0.

Combining (B.36) and (4.6) yields for all x ∈ D that In,1,ex−1 equals

1

kn

kn∑
i=1

∫ 1

0

hn,i 1
{
kr−1
n hn,i > ex − 1

}
dλλ → 1{r > 1}+M(x,∞)1{r = 1}.

Consequently, applying Theorem 2.4 and Theorem 2.1 completes the proof.

B.5.3. Proof of Theorem 4.5

It is easy to verify that by (B.36) and (B.37)

In,1,x = min
{
n1−β , n

1
α (α−β+r(1−α))

( x

1− α

)1− 1
α
}
, In,2,x ≤ n1−2β+r.
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Note that 1 − 2β + r < 0 if r < ρ∗(β, α), or if r = ρ∗(β, α) and α > 1/2.
Moreover, in the case of α = 1/2, r = ρ∗(β, α) = 2β − 1 we have

In,2,x =
1

2
log(2xn1−β)− n1−2β → 0.

Combining these, Theorem 2.4, Theorem 2.1 and (2.7) completes the proof.

B.5.4. Proof of Theorem 4.6

To shorten the notation, set μn = μn,1, κn = κn,i and εn = εn,i. Since the
support of μn is (0, κn) with κn → 0 and, clearly, anknε

2
n = ank

1−2β
n → 0 we

deduce from Remark 3.3 that we can replace Hn(v) in Theorems 3.1 and 3.2 by

Ĥn(v) = k
1
2−β
n v−

1
2μn(0, v) = k

1
2−β
n v−

1
2

∫ min{vkr
n,1}

0

h dλλ.

We give the proof for the model (i) and the one from Theorem 4.3 in the case
of r = 1. The model (ii) is much simpler and left to the reader.

First, consider β = r = 1. Let rn = k−1
n a3n, sn = tn and un = (log kn)

−1.
Clearly, (3.4) holds. Moreover,

an sup{Ĥn(v) : v ∈ [rn, un]} ≤ ank
1
2−β
n r

− 1
2

n → 0.

Hence, by Theorem 3.2 the HC test has no power asymptotically.
Now, consider the model from Section 1.2 with h ∈ L2+δ(P0) for some δ ∈

(0, 1). In particular, we have kn = n. First, let r > ρ(β) = 1 − 2β and β < 1.
Set vn = n−min{1,r}. Clearly, nrvn ≥ 1 and

a−1
n Ĥn(vn) = a−1

n n1/2−β+min{1,r}/2 → ∞.

By this, Theorems 3.1 and 4.1 the areas of complete detection (r > ρ(β)) co-
incide for the HC and the LLR test. It remains to discuss r = ρ(β) = 2β − 1

and β < 1. Set rn = n−1, sn = n−ra
−4(1+2/δ)
n , tn = n−ra4n and un = (log n)−1.

Clearly, (3.4) holds. By Hölder’s inequality there is some c0 > 0 such that

μn(0, v] ≤
(∫ 1

0

h2+δ dλλ

)1/(2+δ)
(∫ vnr

0

dλλ

)1−1/(2+δ)

≤ c0 (vn
r)1−1/(2+δ)

for all v ∈ (0, 1). Hence, we obtain

an
√
nεn sup

v∈[rn,sn]

{
μn(0, v]√

v

}
≤ an n

1/2−βc0s
1/2−1/(2+δ)
n nr−r/(2+δ) ≤ c0 a

−1
n → 0.

Moreover,

an
√
nεn sup

v∈[tn,un]

{
μn(0, v]√

v

}
≤ ann

1/2−β t−1/2
n = a−1

n → 0.

Finally, by Theorem 3.2 the HC test has no power asymptotically.
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B.6. Proofs for Section 4.2

B.6.1. Proof of Theorem 4.9

First, remind that we apply the HC statistic to pn,i = 1 − Φ(Yn,i). Hence,
without loss of generality we can write μn = N(ϑn, σ

2
0)

1−Φ. Note that

μn(0, v] = 1− Φ
(
−Φ−1(v) + ϑn

σ0

)
, v ∈ (0, 1). (B.39)

Moreover, we have for all v ∈ (0, 1/2)

μn(1− v, 1] = 1− Φ
(−Φ−1(v) + ϑn

σ0

)
≤ μn(0, v]. (B.40)

Observe that by Remark 2.3 and Proposition 4.7 P(n) and Q(n) are mutually
contiguous. Clearly, this is not affected by the transformation to p-values. Con-
sequently, by (B.40), Theorem 3.2 and Remark 3.3 it is sufficient to show that

an
√
nεn sup

v∈(n−1+λn ,1/2]

μn(0, v]√
v

→ 0 with λn =
(log log(n))2

log(n)
,

i.e. rn = n−1+λn , sn = tn and un = 1/2. Let δ > 0 be sufficiently small that
2δ < 1− r and 2δ ≤ β − 1/2− r/2, where 2β − 1− r is positive. Then

an
√
nεn sup

v∈(n−r−2δ,1/2]

{μn(0, v]√
v

}
≤ an(log(n))

E(β,σ0)n1/2−β+r/2+δ → 0.

Consequently, by Theorem 3.2 it remains to show that

ann
1/2−β(log(n))E(β,σ0) sup

κ∈[r+2δ,1−λn]

nκ/2μn(0, n
−κ] → 0.

For this purpose, a fine analysis of the tail behaviour of Φ is required.

Lemma B.10. We have

x√
2π(1 + x2)

exp
(
−1

2
x2
)
≤ 1− Φ(x) ≤ 1√

2πx
exp

(
−1

2
x2
)

(B.41)

for all x > 0. Moreover, there is some U > 0 such that for all u ∈ (0, U)

−Φ−1(u) = Φ−1(1− u) ≥
√

2 log(u−1)
(
1− 7 + log log(u−1)

4 log(u−1)

)
. (B.42)

Proof. From integration by parts we obtain for all x > 0

1− Φ(x) =

∫ ∞

x

1√
2π

1

t
te−t2/2 dt =

1

x
√
2π

e−x2/2 −
∫ ∞

x

1

t2
√
2π

e−t2/2 dt.
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Hence, the upper bound in (B.41) follows. Since the integral on the right-hand
side is smaller than x−2(1−Φ(x)) also the lower bound follows. Clearly, Φ−1 is
increasing and Φ−1(1−u) → ∞ as u ↘ 0. Let U > 0 such that Φ−1(1−U) > 1.
By applying (B.41) for x = Φ−1(1− u) with u ∈ (0, U)

Φ−1(1− u) ≤
√
−2 log(u

√
2πΦ−1(1− u)) ≤

√
−2 log(u). (B.43)

Obviously, by (B.41) we have (1/6x) exp(−x2/2) ≤ 1 − Φ(x) for all x > 1. By
setting again x = Φ−1(1 − u) for u ∈ (0, U) we obtain from this, (B.43) and√
1− y ≥ 1− y/2− y2 for all y ∈ (0, 1) that

Φ−1(1− u) ≥
√

2 log(u−1)

√
1− log(6) + log(2)/2 + log log(u−1)/2

log(u−1)

≥
√

2 log(u−1)
(
1− 3 + log log(u−1)/2

2 log(u−1)
−
(3 + log log(u−1)/2

log(u−1)

)2)
.

Finally, by choosing U > 0 sufficiently small we get (B.42).

From now on, let n ∈ N be sufficiently large such that n−1+λn < U and so
(B.42) holds for all u = n−κ, κ ≤ 1− λn. We obtain for all κ ∈ [r + 2δ, 1− λn]

−Φ−1(n−κ)− ϑn ≥
√
2 log(n)

(√
κ−

√
r − log(κ) + log log(n) + 7

4
√
κ log(n)

)
=: wn(κ).

Hence, by (B.39) and (B.41) there is c > 0 such that for all κ ∈ [r + 2δ, 1− λn]

n
1
2κμn(0, n

−κ] ≤ n
1
2κ
(
1− Φ

(wn(κ)

σ0

))
≤ n

1
2κ

σ0

wn(κ)
exp

(
− 1

2σ2
0

wn(κ)
2
)

≤ cnE1(κ)(log(n))E2(κ) with E2(κ) = −1

2
+

1

2

√
κ−√

r

σ2
0

√
κ

and E1(κ) =
1

2
κ+ σ−2

0 (2
√
κr − κ− r).

Since we are interested in the supremum of all κ ∈ [r + 2δ, 1 − λn] we need
to find the (uniquely) point κ∗

n ∈ [r + 2δ, 1 − λn] attaining the maximum of
[r + 2δ, 1− λn] � κ → E1(κ). For this purpose we need to discuss two cases.

First, let σ0 <
√
2 and r < (2− σ2

0)
2/4 (or equivalently β < 1− σ2

0/4). Then
E(β, σ0) = 0, εn = n−β and r = (2 − σ2

0)(β − 1/2). Without loss of generality
we assume that r + 2δ < 4r(2 − σ2

0)
−2 < (1 − δ)2 and δ(2 − σ2

0)/(4σ
2
0) < 1/8.

Then it is easy to verify that κ∗
n = κ∗ = 4r/(2− σ2

0)
2 and E1(κ

∗
n) = r/(2− σ2

0).
Since E2 is increasing we have for all sufficiently large n ∈ N that

an
√
nεn sup

κ∈[r+2δ,1−λn]

nκ/2μn(0, n
−κ] = an sup

κ∈[r+2δ,κ∗(1−δ)−2]

nκ/2+1/2−βμn(0, n
−κ]

≤ anc n
E1(κ

∗)+1/2−β(log(n))E2(κ
∗(1−δ)−2)

≤ anc (log(n))
−1/8 → 0.
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Second, let (β, σ0) ∈ (1−1/σ2
0 , 1)×(

√
2,∞) or (β, σ0) ∈ [1−σ2

0/4, 1)×(0,
√
2).

Clearly, E1 and E2 are increasing in [r + 2δ, 1]. Hence, κ∗
n = 1− λn. Since r =

(1−σ0

√
1− β)2, 1/2−1/σ2

0+2
√
r/σ2

0−r/σ2
0 = β−1/2 and

√
1− λn ≤ 1−λn/2

we obtain that

E1(1− λn) = β − 1

2
+ λn

( 1

σ2
0

− 1

2

)
+

2

σ2
0

√
r(
√
1− λn − 1)

≤ β − 1

2
−K(β, σ2

0)λn, where

K(β, σ2
0) =

1

2
− 1

σ0

√
1− β

{
= 0 if β = 1− 1

4σ
2
0 , σ0 <

√
2.

> 0 else.

Moreover, E2(1) = −1
4 < 0 if β = 1− σ2

0/4, σ
2
0 <

√
2. Consequently,

an
√
nεn sup

κ∈[r+2δ,1−λn]

nκ/2μn(0, n
−κ]

≤ anc n
E1(1−λn)+1/2−β(log(n))E2(1)+E(β,σ2

0)

≤ anc(log(n))
E2(1)+E(β,σ2

0)−K(β,σ2
0) log log(n) → 0.

B.6.2. Proof of Theorem 4.10

By careful calculations we obtain

1

n

dμn

dP0
(x+ ϑn) =

1

σ0
exp

(σ2
0 − 1

2σ2
0

x2 + x
√
2r log n+ (r − 1) logn

)
.

Define Cn,τ = {x ∈ R : n−1 dμn

dP0
(x + ϑn) > τ}, τ > 0. It is easy to see that

1{x ∈ Cn,τ} → 1{r = 1, x > 0}+1{r > 1} for x �= 0. From this and Lebesgue’s
dominated convergence theorem we deduce that

In,1,τ =

∫
1{x ∈ Cn,τ}dN(0, 1)(x) → 1{r > 1} − 1

2
1{r = 1}.

Moreover,

In,2,τ ≤ τ

∫
dμn

dP0
1
{ 1

n

dμn

dP0
≤ τ

}
dP0 ≤ τ.

Finally, combining Theorem 2.4 and Theorem 2.1 yields the statement.
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