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1. Introduction

Unsupervised classification consists in partitioning a data set into a series of
groups (or clusters) each of which may then be regarded as a separate class of
observations. This task enables practitioners in many disciplines to get a first in-
tuition about their data by identifying meaningful groups of observations or can
be used as an intermediate tool to perform data analysis (see for example Loubes
and Pelletier (2017) where clustering is used to estimate conditional distribu-
tions). The tools available for unsupervised classification are various. Depending
on the nature of the problem, one may rely on a strategy consisting in modeling
the unknown distribution of the data as a mixture of known distributions with
unknown parameters to be estimated. Another approach, model-free, is embod-
ied by the well known k-means clustering scheme. This paper focuses on the
stability of this clustering scheme with respect to the unknown distribution of
the data.

1.1. Quantization and the k-means clustering scheme

The k-means clustering scheme prescribes to classify observations according
to their distances to chosen representatives. This clustering scheme is strongly
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connected to the field of quantization of probability measures and this paragraph
shortly recalls how these concepts interact. Suppose our data modeled by n i.i.d.
random variables X1, . . . , Xn, taking their values in some metric space (E, d),
and with same distribution P as (and independent of) a generic random variable
X. Let k ≥ 1 be an integer fixed in advance, representing the prescribed number
of clusters, and define a k-points 1 quantizer as any mapping q : E → E such
that2 |q(E)| = k. Denoting c1, . . . , ck the values taken by q, the sets {x ∈ E :
q(x) = cj}, 1 ≤ j ≤ k, partition the space E into k subsets (or cells) and
each point cj (called indifferently a center, a centroid or a code point) stands
as a representative of all points in its cell. Given a quantizer q, associated data
clusters are defined, for all 1 ≤ j ≤ k, by

Cj(q) := {x ∈ E : q(x) = cj} ∩ {X1, . . . , Xn}.

The performance of this clustering scheme is naturally measured by the aver-
age square distance, with respect to P , of a point to its representative. In other
words, the risk of q (also referred to as its distortion) is defined by

R(q) :=

∫
E

d(x, q(x))2 dP (x). (1.1)

Quantizers of special interest are nearest neighbor (NN) quantizers, i.e. quan-
tizers such that, for all x ∈ E,

q(x) ∈ argmin
c∈q(E)

d(x, c).

The interest for these quantizers relies on the straightforward observation that
for any quantizer q, a NN quantizer q′ such that q(E) = q′(E) satisfies R(q′) ≤
R(q). Hence, attention may be restricted to NN quantizers and any optimal
quantizer

q� ∈ argmin
q

R(q), (1.2)

(where q ranges over all quantizers k-points quantizers) is necessarily a NN
quantizer. We will denote Qk the set of all k-points NN quantizers and, unless
mentioned explicitly, all quantizers involved in the sequel will be considered as
members of Qk. For q ∈ Qk, the value of its risk is entirely described by its
image. Indeed, if q ∈ Qk takes values c1, . . . , ck, then

R(q) =

∫
E

min
1≤j≤k

d(x, cj)
2 dP (x). (1.3)

Denoting c = {c1, . . . , ck}, referred to as a codebook, we will often denote by
R(c) the right hand side of (1.3) with a slight abuse of notation.

1The integer k is supposed fixed throughout the paper and all quantizers considered below
are supposed to be k-points quantizers.

2For a set A, notation |A| refers to the number of elements in A.
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A few additional considerations, relative to NN-quantizers, will be useful in
the paper. Given c = {c1, . . . , ck}, denote Vj(c) the set of points in E closer to
cj than to any other c�, that is

Vj(c) := {x ∈ E : ∀� ∈ {1, . . . , k} , d(x, cj) ≤ d(x, c�) } .

These sets do not partition the space E since, for i 	= j, the set Vi(c) ∩ Vj(c)
is not necessarily empty. A Voronoi partition of E relative to c is any partition
W1, . . . ,Wk of E such that, for all 1 ≤ j ≤ k, Wj ⊂ Vj(c) up to relabeling.
For instance, given q ∈ Qk with image c, the sets Wj = q−1(cj), 1 ≤ j ≤ k,
form a Voronoi partition relative to c. We call frontier of the Voronoi diagram
generated by c the set

F(c) :=
⋃
i �=j

Vi(c) ∩ Vj(c). (1.4)

Given an optimal quantizer q� with image c� = {c�1, . . . , c�k}, a remarkable prop-
erty, known as the center condition, states that for all 1 ≤ j ≤ k, and provided
|supp(P )| ≥ k,

P (Vj(c
�)) > 0 and c�j ∈ argmin

c∈E

∫
Vj(c�)

d(x, c)2 dP (x). (1.5)

From now on, the probability measure P will be supposed to have a support of
more than k points.

We end this subsection by mentioning that computing an optimal quantizer
requires the knowledge of the distribution P . From a statistical point of view,
when the only information available about P consists in the sample X1, . . . , Xn,
reasonable quantizers are empirically optimal quantizers, i.e. NN quantizers
associated to any codebook ĉ = {ĉ1, . . . , ĉk} satisfying

ĉ ∈ argmin
c={c1,...,ck}

R̂(c) where R̂(c) =
1

n

n∑
i=1

min
1≤j≤k

d(Xi, cj)
2. (1.6)

In other words, empirically optimal quantizers minimize the risk associated to
the empirical measure

Pn :=
1

n

n∑
i=1

δXi .

The computation of empirically optimal centers is known to be a hard problem,
due in particular to the non-convexity of c �→ R̂(c), and is usually performed
by Lloyd’s algorithm. For works establishing convergence guarantees for Lloyd’s
algorithm and related questions, we refer the reader to Kumar and Kannan
(2010); Tang and Monteleoni (2016); Lu and Zhou (2016) and Levrard (2018).

1.2. Risk bounds

The performance of the k-means clustering scheme, based on the notion of risk,
has been widely studied in the literature. Whenever (E, |.|) is a separable Hilbert
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space, the existence of an optimal codebook, i.e. of c� = {c�1, . . . , c�k} such that

R(c�) = R� = inf
c={c1,...,ck}

R(c),

is well established (see, e.g, Theorem 4.12 in Graf and Luschgy, 2000) provided
E|X|2 < +∞. In this same context, works of Pollard (1981, 1982a) and Abaya
and Wise (1984) imply that R(ĉ) → R� almost surely as n goes to +∞, where ĉ
is as in (1.6). The non-asymptotic performance of the k-means clustering scheme
has also received a lot of attention and has been studied, for example, by Chou
(1994); Linder, Lugosi and Zeger (1994); Bartlett, Linder and Lugosi (1998);
Linder (2000, 2001); Antos (2005); Antos, Györfi and György (2005) and Biau,
Devroye and Lugosi (2008). For instance Biau, Devroye and Lugosi (2008) prove
that in a separable Hilbert space, and provided |X| ≤ L almost surely, then

ER(ĉ)−R� ≤ 12kL2/
√
n,

for all n ≥ 1. A similar result is established in Cadre and Paris (2012) relaxing
the hypothesis of bounded support by supposing only the existence of an ex-
ponential moment for X. In the context of a separable Hilbert space, Levrard
(2015) establishes a stronger result under some conditions involving the quantity
p(t) defined as follows.

Definition 1.1 ( Levrard, 2015 ). Let M be the set of all c� = {c�1, . . . , c�k} such
that R(c�) = R�. For t ≥ 0, we define

p(t) := sup
c�∈M

P (F(c�)t), (1.7)

where, for any set A ⊂ E, the notation At stands for the t-neighborhood of A
in E defined by At = {x ∈ E : d(x,A) ≤ t} and where F(c�) is defined in (1.4).

For any codebook c = (c1, . . . , ck), P (F(c)t) corresponds to the probability mass
of the frontier of the associated Voronoi diagram inflated by t (see Figure 1).
Under some slight restrictions and supposing p(t) does not increase too rapidly
with t, it appears that the excess risk is of order O(1/n) as described below.

Theorem 1.2 ( Proposition 2.1 and Theorem 3.1 in Levrard, 2015 ). Suppose
that (E, |.|) is a (separable) Hilbert space. Denote

B = inf
c�∈M,i �=j

|c�i − c�j | and pmin = inf
c�∈M,1≤j≤k

P (Vj(c
�)).

(1) Suppose that P (x : |x| ≤ L) = 1 for some L > 0. Then B > 0 and pmin > 0.

(2) Suppose in addition that there exists r0 > 0 such that, for all 0 < t ≤ r0,

p(t) ≤ Bpmin

128L2
t, (1.8)

where p(t) is as in (1.7). Then, for all x > 0, and any ĉ minimizing the empirical
risk as in (1.6),

R(ĉ)−R� ≤ C(k + x)L2

n
,
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with probability at least 1− e−x, where C > 0 denotes a constant depending on
auxiliary (and explicit) characteristics of P .

Fig 1. For k = 5, the figure represents k centers in the Euclidean plane. The black solid
lines define the frontier of the associated Voronoi diagram. The light-green area, inside the
red dashed lines, corresponds to the t-neighborhood of this frontier for some small t.

1.3. Stability

For a quantizer q ∈ Qk, the risk R(q) describes the average square distance of
a point x ∈ E to its representative q(x) whenever x is drawn from P . The risk
of q characterizes therefore an important feature of the clustering scheme based
on q and defining optimality of q in terms of the value of its risk appears as a
reasonable approach. However, an important though simple observation is that
the excess risk R(q) − R(q�), for an optimal quantizer q�, isn’t well suited to
describe the geometric similarity between the clusterings based on q and q�. For
one thing, there might be several optimal codebooks. Also, even in the context
where there is a unique optimal codebook, quite different configurations of cen-
ters c may give rise to very similar values of the excess risk R(c)−R(c�). This
observation relates to the difference between estimating the optimal quantizer
and learning to perform as well as the optimal quantizer and is relevant in a
more general context as briefly discussed in Appendix B below. The idea of
stability we present next consists in identifying situations where having centers
c with small excess risk guarantees that c isn’t far from an optimal center c�

geometrically speaking. We formalize this idea below.
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Definition 1.3. Consider functions F : Qk×Qk → R+ and φ : R+ → R+. The
clustering problem discussed in subsections 1.1 and 1.2 is called (F, φ)-stable if,
for any optimal quantizer q� and any auxiliary quantizer q,

F (q�, q) ≤ φ(R(q)−R(q�)). (1.9)

We say that the clustering problem is strongly stable for F if φ is linear.

Note first that, for some chosen F , the notion of stability defined above
characterizes a property of the underlying distribution P . Here, properties of
the function F are deliberately unspecified as, in practice, F can be chosen in
order to encode very different properties, of more or less geometric nature. An
important property of this notion is that stable clustering problems are such that
ε-minimizers of the risk are “close” (in the sense of F ) to an optimal quantizer
(see Corollary 2.5 below). Note also that if φ(0) = 0 and if F is a metric on Qk,
then (F, φ)-stability imposes uniqueness of the optimal quantizer q�.

Remark 1.4. The notion of stability described above differs from the notion of
algorithm stability studied in Ben-David, Von Luxburg and Pál (2006) and Ben-
David, Pál and Simon (2007). Their notion of stability is defined for a function
(called algorithm) A :

⋃
n E

n → Qk that maps any data set {X1, . . . , Xn} to a
quantizer A({X1, . . . , Xn}). In this context, the stability of A is defined by

Stab(A,P ) = lim
n→∞

ED(A({X1, . . . , Xn}), A({Y1, . . . , Yn})),

where the Xi’s and Yi’s are i.i.d. random variables of common distribution P
and D is a (pseudo-) metric on Qk. Then, an algorithm is said to be stable for
P if Stab(A,P ) = 0. According to this definition, any constant algorithm A = q
is stable. A notable difference, is that our notion of stability includes a notion
of consistency. Indeed, since q �→ R(q) is continuous (for a proper choice of
the metric on Qk), our notion of stability measures the rate at which q → q�

whenever R(q) → R�. Thus, we focus only on the behaviour of algorithms A
such that R(A({X1, . . . , Xn})) → R�.

A first rather obvious choice for F is given by

F1(q
�, q) := min

σ
max
1≤j≤k

d(c�j , cσ(j)), (1.10)

where q(E) = {c1, . . . , ck}, q�(E) = {c�1, . . . , c�k} and where the minimum is
taken over all permutations σ of {1, . . . , k} (see Figure 3 for a graphical inter-
pretation).

Remark 1.5. Note that F1(q
�, q) does not always coincide with the Hausdorff

distance dH(c�, c) between c = {c1, . . . , ck} and c� = {c�1, . . . , c�k}. Indeed, Fig-
ure 2 presents a configuration of codebooks c and c� that have small Hausdorff
distance but define NN quantizers q and q� with large F1(q

�, q). However, it may
be seen that inequality

dH(c�, c) ≤ F1(q
�, q)
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always holds and that, provided

dH(c�, c) <
1

2
min
i �=j

|c�i − c�j |,

we obtain dH(c�, c) = F1(q
�, q). The proof of these statements is reported in

Appendix A.1.

Fig 2. In this simple case, where k=3, the set of black dots and the set of white dots have
small Hausdorff distance but define two NN quantizers, say q1 and q2, for which F1(q1, q2)
is large.

Whenever (E, |.|) is Euclidean, it follows from the previous remark and Pol-
lard (1982b) that, provided the optimal codebook c� is unique,

F1(q
�, q̂) −→

n→+∞
0, a.s.,

when q̂ is any quantizer minimizing the empirical risk R̂. In Levrard (2015),
under the conditions of Theorem 1.2, it is proven that for any optimal quantizer
q�, and any q ∈ Qk such that q(E) ⊂ {x : |x| ≤ L},

F1(q
�, q)2 ≤ pmin

2
(R(q)−R(q�)),

provided F1(q
�, q) ≤ Br0/4

√
2L which proves in this case (a local version of)

the stability of the clustering scheme for F1 (constants are defined in Theorem
1.2). In the same spirit, when E = Rd and for a measure P with bounded
support, Rakhlin and Caponnetto (2007) show that F1(qn, q

′
n) → 0 as n → ∞

whenever qn and q′n are optimal quantizers for empirical measures Pn and P ′
n

whose supports differ by at most o(
√
n) points. In addition, their Lemma 5.1

shows that, for P with bounded support,

dH(c�, c) ≤ C E[||X − q(X)|2 − |X − q�(X)|2|] 1
d+2 ,

for some constant C > 0. Note that, since E[||X − q(X)|2 − |X − q�(X)|2|] ≥
R(q) − R(q�), our main result (Theorem 2.3) improves this inequality under
suitable conditions discussed below.

While F1 captures distances between the images of the two quantizers, it is
however totally oblivious to the amount of wrongly classified points. From this
point of view, a more interesting quantity is described by

F2(q
�, q) := min

σ
P

⎡⎣⎛⎝ k⋃
j=1

Vj(c
�) ∩ Vσ(j)(c)

⎞⎠c ⎤⎦ , (1.11)
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where the minimum is taken over all permutations σ of {1, . . . , k} (see Figure
3). This quantity measures exactly the amount of points that are misclassified
by q compared to q�, regarding P .

In the present paper, we study a related quantity, of geometric nature, defined
simply as the average square distance between a quantizer q and an optimal
quantizer q�, i.e.

F(q�, q)2 :=

∫
E

d(q(x), q�(x))2 dP (x). (1.12)

As discussed later in the paper (see Subsection 2.2), this quantity may be seen as
an intermediate between F1 and F2 incorporating both the notion of proximity
of the centers and the amount of misclassified points. The general concern of
the paper will be to establish conditions under which the clustering scheme is
strongly stable for this function F2.

To conclude this section, it is worth mentioning that if q� is an optimal
k-points quantizer for P , identity F(q�, q)2 = 0 imposes that q = q� P -a.s.
and that q(E) = q�(E) (according to the center condition (1.5)). In particular,
uniqueness of the optimal codebook c� = q�(E) for P is necessary for (F, φ)-
stability to hold (in the sense of Definition 1.3) when φ(0) = 0. Hence, this
uniqueness assumption will be made throughout the rest of paper and does not
restrict generality.

2. Stability results

In this section, we present our main results. In the sequel, we restrict ourselves
to the case where E is a (separable) Hilbert space with scalar product 〈., .〉 and
associated norm |.|. For any E-valued random variable Z, we’ll denote

‖Z‖2 := E|Z|2,

for brevity.

2.1. Absolute margin condition

We first address the issue of characterizing the stability of the clustering scheme
in terms of the function F defined in (1.12). The next definition plays a central
role in our main result. Recall that X denotes a generic random variable with
distribution P .

Definition 2.1 (Absolute margin condition ). Suppose that
∫
|x|2dP (x) < +∞

and that P has a unique (P -a.s.) optimal k-points quantizer q�. For λ ≥ 0,
define

A(λ) = {x ∈ E : q�(x+ λ(x− q�(x))) = q�(x)} .
Then, P is said to satisfy the absolute margin condition with parameter λ0 > 0,
if both the following conditions hold:
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Fig 3. The image of q� (resp. q) is represented by the black (resp. blue dots). The quantity
F1(q�, q) corresponds to the length of the longest pink segment in the first (left) figure. The
quantity F2(q�, q) is the P measure of the light green area in the second (right) figure.

1. P (A(λ0)) = 1.
2. For any 0 ≤ λ < λ0, the law of

Xλ := X + λ(X − q�(X))

has a unique optimal k-quantizer qλ ∈ Qk.

The second condition means that every probability measure, in a neighbor-
hood of P (including of course P ), has a unique optimal k-quantizer. Note that
A(0) = E and that A(λ) ⊂ A(λ′) for λ′ ≤ λ. Letting c� = q�(E), the first point
of this definition states that the neighborhood E \ A(λ0) of the frontier F(c�)
is of probability zero (see Figure 4). The next remark discusses the geometry
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Fig 4. The figure represents an optimal codebook (the black dots) for a distribution P , the
frontier of the associated Voronoi diagram (the solid black line) and, for a fixed value of λ > 0,
the set A(λ) (the light blue area). For points x in A(λ) (blue dots), the figure represents the
associated point x+ λ(x− q�(x)) (tip of the arrows) which, by definition of A(λ), belongs to
A(λ).
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of the set A(λ), involved in the previous definition, in comparison with the sets
F(c�)t used in Definition 1.1. In particular, it follows from the next remark that,
for appropriate 0 < t1 < t2, the set E \A(λ) satisfies

F(c�)t1 ⊂ (E \A(λ0)) ⊂ F(c�)t2 .

Remark 2.2. Let c = {c1, . . . , ck} ⊂ E and let q ∈ Qk be the NN quantizer
with codebook c. Denote

m(c) = min
i �=j

|ci − cj | and M(c) = max
i �=j

|ci − cj |.

For all λ ≥ 0 and t > 0, let

A(λ) := {x ∈ E : q(x+ λ(x− q(x))) = q(x)} and B(t) := E \ F(c)t.

Then the following statements hold.

1. For all 0 < t < M(c)/2,

B(t) ⊂ A

(
2t

M(c)− 2t

)
.

2. For all λ > 0

A(λ) ⊂ B

(
m(c)λ

2(1 + λ)

)
.

It follows from this observation that, when P has bounded support, the abso-
lute margin condition introduced in Definition 2.1 is essentially more restrictive
than the margin condition (1.8). Note indeed that the absolute margin condition
could also be stated in terms of the function p(t), as defined in Levrard (2015),
in the form of “p(t) = 0 for t ≤ t0 and some t0 > 0” (this would involve the
smallest and largest distance between optimal centroids).

We are now in position to state the main result of this paper.

Theorem 2.3. Suppose that
∫
|x|2dP (x) < +∞ and that P has a unique (P -

a.s.) optimal k-points quantizer q�. Suppose that P satisfies the absolute margin
condition 2.1 with parameter λ0 > 0. Then, for any q ∈ Qk, it holds that

F(q�, q)2 ≤ 1 + λ0

λ0
(R(q)−R(q�)).

Remark 2.4. The above theorem states that the clustering scheme is strongly
stable for F2 provided the absolute margin condition holds. Here, we briefly
argue that this result is optimal in the sense that strong stability requires that
both hypotheses of the absolute margin condition 2.1 hold in general.

1. The following example shows that the first point of the absolute margin
condition cannot be dropped. Take P uniform on [−1, 1]× [−1/2, 1/2] and
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fix k = 2. Then the first point of the absolute margin condition is clearly
not satisfied. The codebook

c� = {(−1/2, 0), (1/2, 0)}

defines the unique optimal quantizer. For ε > 0, consider now

cε = {(−1/2, ε), (1/2,−ε)}.

Then it can be checked through straightforward computations that F(q�,
qε) = ε and that R(qε) − R(q�) ≤ ε2, so that there exists no λ > 0 for
which inequality

F(q�, qε)
2 ≤ 1 + λ

λ
(R(qε)−R(q�))

holds for all ε > 0.

2. If there is no unique optimal quantizer for P , then the result clearly can-
not hold as mentioned at the end of the previous section. However, this
uniqueness property is not enough. To illustrate this statement, suppose
P = (μ1 + μ2)/2 where μ1 is uniform on [−1; 1]× {1} and μ2 is uniform
on [−1; 1]× {−1}. For k = 2, the codebook

c� = {(0, 1), (0,−1)}

defines the unique optimal quantizer for P . The distribution P satisfies
the first point of the absolute margin condition for any λ > 0, but fails to
satisfy the second point for large λ. It can be understood from details in
the proof of Theorem 2.3 that the desired inequality cannot hold for large
λ. Therefore, the second point of the absolute margin condition can not be
simply dropped either.

An interesting consequence of Theorem 2.3 holds in the context of empirical
measures for which the absolute margin condition always holds. Consider a
sample X1, . . . , Xn composed of i.i.d. variables with distribution P and let

Pn =
1

n

n∑
i=1

δXi .

The next result ensures that an ε-empirical risk minimizer (i.e. a quantizer qε
such that Rn(qε) ≤ infq Rn(q) + ε) is at a distance (in terms of F) at most
ε(1 + λ)/λ to an empirical risk minimizer for some λ depending only on Pn.

Corollary 2.5. Let Pn be the empirical measure of a measure P , associated
with sample {X1, . . . , Xn}. Then, Pn has a unique optimal quantizer q̂ if and
only if there exists some λn > 0 such that

F(q̂, q)2 ≤ 1 + λn

λn

(
R̂(q)− R̂(q̂)

)
.
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Remark that F here, relates to the measure Pn and not P . And the result
actually holds for any finitely supported measure Pn.

The proof is quite straightforward from Theorem 2.3, and is postponed in
Section 3. The interpretation of this corollary is that any algorithm producing
a quantizer q with small empirical risk R̂(q) will be, automatically, such that
F(q̂, q) is small if λn is large. The parameter λn of the absolute margin condition
thus provides a key feature for stability of the k-means algorithm. A nice prop-
erty of the previous result is that λn is of course independent of the ε-minimizer
qε. However, an important remaining problem, of large practical value, would
be to provide a lower bound for λn (valid with high probability) to assess the
size of the coefficient (1 + λn)/λn. This is left for future research.

2.2. Comparing notions of stability

This subsection describes some relationships existing between the function F
involved in our main result, with the two functions F1 and F2 mentioned earlier
in section 1.3. Below, we restrict attention to the case where there is a unique
optimal quantizer q�. Comparing F and F2 can be done straightforwardly. Let

m = inf
i �=j

|c�i − c�j | and M = sup
i �=j

|c�i − c�j |.

Observe that, for F1(q
�, q) small enough, the permutation reaching the minimum

in the definitions of F1 and F2 is the same and can be assumed to be the identity
without loss of generality. Then, it follows that, for F1(q

�, q) small enough,

F(q�, q)2 =

k∑
i,j=1

P (Vi(c
�) ∩ Vj(c))|c�i − cj |2

≤
k∑

i=1

P (Vi(c
�) ∩ Vi(c))|c�i − ci|2

+
∑
i �=j

P (Vi(c
�) ∩ Vj(c))(|c�j − cj |+M)2

≤ F1(q
�, q)2 + F2(q

�, q)(F1(q
�, q) +M)2,

and similarly, when m ≥ F1(q
�, q),

F(q�, q)2 ≥
k∑

i=1

P (Vi(c
�) ∩ Vi(c))|c�i − ci|2

+

k∑
i �=j=1

P (Vi(c
�) ∩ Vj(c))(m− |c�j − cj |)2

≥ F2(q
�, q)(m− F1(q

�, q))2.

These two inequalities imply that F2 and F2 are comparable whenever F1 is
small enough.
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Comparing F1 and F requires more effort, although one inequality is also
quite straightforward. Recall the notation pmin = infi P (Vi(c

�)). Suppose again
that the optimal permutation in the definition of F1 is the identity. Then, remark
that F1(q

�, q) ≤ m/2, implies |c�i − ci| ≤ |c�i − cj |, for all i, j. Thus, in this case,

F(q�, q)2 = E|q�(X)− q(X)|2

=

k∑
i,j=1

P (Vi(c
�) ∩ Vj(c))|c�i − cj |2

≥
k∑

i=1

k∑
j=1

P (Vi(c
�) ∩ Vj(c))|c�i − ci|2

≥ pminF1(q
�, q)2.

In view of providing a more detailed result, we define the function p�, similar
in nature to the function p introduced by Levrard (2015) and defined in 1.1.

Definition 2.6. For a metric space (E, d) and a probability measure P on E,
let X be a random variable of distribution P . Denote q� an optimal quantizer
of P with image c� = {c�1, . . . , c�k} and ∂Vi(c

�) the frontier of the Voronoi cell
associated to c�i . Then, for all t > 0, we let

p�(t) := P

(
k⋃

i=1

{
md(X, ∂Vi(c

�)) ≤ 2d(X, q�(X))t+ 2t2
})

,

where m = infi �=j |c�i − c�j |.
While p(t) corresponds to the probability of the t-inflated frontier of the

Voronoi cells (defined in Definition 1.1), p�(t) corresponds to a similar object
in which the inflation of the frontier gets larger as the points go further from
their representative in the codebook c�. These two functions can thus differ
significantly, in general. However, since m/4 ≤ d(X, q�(X)) for X such that
d(X, ∂Vi(c

�)) < m/4, it follows that

p(t) ≤ p� (2t) ,

whenever 0 < t < m/4. And when the probability measure P has its support in
a ball of diameter R > 0, it can be readily seen that for all t > 0

p�(t) ≤ p
(
m−1

[
2Rt+ 2t2

])
.

If the support of P is not contained in a ball, the comparison is not as straight-
forward.

We can now state the last comparison inequality.

Proposition 2.7. In the setting of Definition 2.6,

F(q�, q)2 ≤ F1(q
�, q)2 + p�(F1(q

�, q))(M + F1(q
�, q))2.
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A consequence of this proposition, and Theorem 1.2, is the following.

Corollary 2.8. Under the conditions of Theorem 1.2, with high probability,

F(q�, q̂)2 = O

(
1

n

)
+ p�

(
O

(
1√
n

))
,

for any empirical risk minimizer q̂.

Note that, if P has a bounded support, under the absolute margin condition,

the term p�
(
O
(

1√
n

))
is 0, for n large enough and the result becomes

F(q�, q̂)2 = O

(
1

n

)
.

3. Proofs

This section gathers the proofs of the main results of the paper. Additional
proofs are postponed to the appendices.

3.1. Proof of Theorem 2.3

Recall that E is a Hilbert space with scalar product 〈., .〉, norm |.| and that,
for an E-valued random variable Z with square integrable norm, we denote
‖Z‖2 = E|Z|2 for brevity. For λ > 0, set

xλ = x+ λ(x− q�(x)).

As E is a Hilbert space, we have for all y, z ∈ E and all t ∈ [0, 1],

|ty + (1− t)z|2 = t|y|2 + (1− t)|z|2 + t(1− t)|y − z|2.

Now for all x ∈ E, any quantizer q ∈ Qk and any λ > 0, using the previous
inequality with y = xλ − q(x), z = q�(x) − q(x) and t = (1 + λ)−1, it follows
that

|q�(x)− q(x)|2 =
1 + λ

λ
(|x− q(x)|2 − |x− q�(x)|2)

+
|xλ − q�(x)|2 − |xλ − q(x)|2

λ

≤ 1 + λ

λ
(|x− q(x)|2 − |x− q�(x)|2)

+
|xλ − q�(x)|2 − |xλ − q(xλ)|2

λ
,

where the last inequality follows from the fact that q is a nearest neighbor
quantizer. Integrating this inequality with respect to P , we obtain

F(q�, q)2 ≤ 1 + λ

λ
(R(q)−R(q�)) +

1

λ
cq(λ), (3.1)
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where we have denoted

cq(λ) := ‖Xλ − q�(X)‖2 − ‖Xλ − q(Xλ)‖2.

Observe that λ �→ cq(λ) is continuous. Now, define

c∞(λ) := sup
q

cq(λ),

where the supremum is taken over all k-points quantizers q ∈ Qk. The function
λ �→ c∞(λ) satisfies obviously c∞(λ) ≥ cq�(λ) ≥ 0, for all λ > 0. To prove
the theorem, we will show that c∞(λ0) ≤ 0, whenever P satisfies the absolute
margin condition with parameter λ0 > 0. To that aim, we provide two auxiliary
results.

Lemma 3.1. Suppose there exists R > 0 such that P (B(0, R)) = 1. For all
λ > 0, denote qλ any quantizer such that cqλ(λ) = c∞(λ) and denote q� an
optimal quantizer of the law of X. Suppose the first point of absolute margin
condition holds for λ0 > 0. Then, for all 0 < λ1 < λ0, there exists ε > 0 such
that for all 0 < λ < λ1, if F1(qλ, q

�) < ε, then

q� = qλ.

Proof of lemma 3.1. The main idea of the proof is that since the Voronoi cells
are well separated (inflated borders have probability 0), when a quantizer is
close enough to the optimal one, it shares its Voronoi cell (on the support of P )
and thus, centroid condition requires that quantizer have to be centroid of its
cell to be optimal.

Set qλ(E) = {c1, ..., ck} and {c�1, . . . , c�k} = q�(E). Suppose without loss of
generality that the optimal permutation in the definition of F1 is the identity.
The absolute margin condition implies that, with probability one, for each 1 ≤
i ≤ k, on the event q�(X) = c�i , the inequality |Xλ0 − c�i |2 ≤ |Xλ0 − c�j |2 holds,
or equivalently

2(1 + λ0)〈X − c�i , c
�
j − c�i 〉 ≤ |c�i − c�j |2. (3.2)

However,

|Xλ0 − ci|2 =(1 + λ0)
2|X − c�i |2 + |c�i − ci|2 + 2(1 + λ0)〈X − c�i , c

�
i − ci〉

|Xλ0 − cj |2 =(1 + λ0)
2|X − c�i |2 + |c�i − cj |2 + 2(1 + λ0)〈X − c�i , c

�
i − cj〉

so that |Xλ0 − ci|2 ≤ |Xλ0 − cj |2 if

2(1 + λ0)〈X − c�i , cj − ci〉 ≤ |c�i − cj |2 − |c�i − ci|2.

Since (3.2) holds, for all λ1 < λ0, there exists therefore ε = ε(λ0, λ1, R,max{|c�i−
c�j | : i 	= j}) such that, if F1(q

�, q) < ε, then for all λ ≤ λ1,

|Xλ − ci|2 < |Xλ − cj |2,
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on the event q�(X) = c�i . As a result,

P

(
k⋃

i=1

{q�(X) = c�i } ∩ {qλ(Xλ) = ci}
)

= 1.

This means that q� and qλ share the same cells on the support of P . Thus,

‖Xλ − qλ(Xλ)‖2 = (1 + λ)2
k∑

i=1

E1{q�(X)=c�i }

∣∣∣∣X − λc�i + ci
1 + λ

∣∣∣∣2

≥ (1 + λ)2
k∑

i=1

E1{q�(X)=c�i } |X − c�i |
2

(3.3)

= ‖Xλ − q�(X)‖2,

where inequality (3.3) follows from the center condition (1.5). Therefore, since qλ
minimizes ‖Xλ−q(Xλ)‖2 amongst NN quantizers, (3.3) is an equality. Therefore,
ci = c�i i.e. q� = qλ, since optimal centroids (c�i )i and (ci)i are minimizers of
a �→ E1q�(X)=c�i

|X − a|2 - it is the centroid condition (Theorem 4.1 of Graf and
Luschgy, 2000).

Lemma 3.2. Suppose X satisfies the conditions of Lemma 3.1. Denote

λ− = min{λ : c∞(λ) > 0}.

Then λ− ≥ λ0.

Proof of lemma 3.2. The idea of the proof of this lemma is that uniqueness
condition of the margin condition implies continuity of the optimal quantizer
with respect to λ and previous lemma states that the only optimal quantizers
for Xλ that is close to q� is q�.

Suppose λ− < λ0 in order to prove a contradiction. Then, by second point
of the margin condition (Definition 2.1), there exists only one quantizer qλ−

such that c∞(λ−) = cqλ− (λ−) - it is the optimal quantizer of the law of Xλ− .
By definition of λ−, cqλ− (λ) ≤ 0 for λ < λ−. Therefore, by continuity of λ �→
cqλ− (λ),

cqλ− (λ−) = 0,

and thus; by the second point of absolute margin condition, qλ− = q�, since
cq�(λ

−) = 0. Now, for all λ > λ−, denote by qλ any quantizer such that cqλ(λ) =
c∞(λ), which exists by Lemma A.1. Then by Lemma A.1 again, F1(qλ, qλ−) → 0
as λ → λ−, so that for all λ − λ− > 0 small enough, Lemma 3.1 applies and
states qλ = qλ− = q�; which contradicts the definition of λ−.

Therefore, c∞(λ0) = 0, and thus (3.1) gives

F(q�, q)2 ≤ 1 + λ0

λ0
(R(q)−R(q�)).
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Finally, by a continuity argument, the result still holds without the assump-
tion of boundedness P(|X| ≤ R) = 1.

Indeed, it is straightforward to check that, given a random variable Y of
distribution Q and optimal k-quantizer qQ, the distribution Q−λ of

Y −λ := Y − λ

1 + λ
(Y − qQ(Y )),

satisfies the absolute margin condition with parameter λ. Then, for large r > 0,
denote Pλ

r the distribution of

Xλ = X + λ(X − q�(X)),

conditioned to Xλ ∈ B(0, r). Thus,
(
Pλ
r

)−λ
satisfies the absolute margin condi-

tion with parameter λ. Denote qr,λ the optimal quantizer of
(
Pλ
r

)−λ
– which is

the same as the optimal quantizer of Pλ
r . Hence, we have proved

F(qr,λ, q)
2 ≤ 1 + λ

λ
(Rr(q)−Rr(qr,λ)), (3.4)

whereRr denotes the risk with respect to
(
Pλ
r

)−λ
. Clearly, for λ < λ0, P

λ
r → Pλ,

in the topology of the Wasserstein distance, as r → ∞. Therefore, for λ < λ0,
Theorem 9 of Pollard (1982b) ensures that qr,λ → q� as r → ∞. Hence, in

Wasserstein topology, for λ < λ0,
(
Pλ
r

)−λ → P , as r → ∞. Thus, for all λ < λ0,
as r → ∞, (3.4) becomes

F(q�, q)2 ≤ 1 + λ

λ
(R(q)−R(q�)).

The proof ends letting λ → λ0.

3.2. Proof of Corollary 2.5

First, remark that it is straightforward that inequality

F(q̂, q)2 ≤ 1 + λn

λn

(
R̂(q)− R̂(q̂)

)
,

for any quantizer q, imply that minimizer q̂ of R̂ is unique.
Then, using Theorem 2.3, it just remains to show that Pn satisfies the absolute

margin condition. The first point of the absolute margin condition follows easily
from Theorem 4.2 in Graf and Luschgy (2000) (stating that Pn(F(ĉ)) = 0, for
ĉ = q̂(E), and thus Pn(A(λ)) = 1 for some λ > 0). For a measure Q denote Qλ

the distribution of
Yλ = Y + λ(Y − qQ(Y )),

where Y has distribution Q and qQ stands for an optimal quantizer of Q. Then,
denoting qλ an optimal quantizer of Pλ

n , letting λ → 0 implies that qλ → q� (by
Theorem 9 of Pollard, 1982b), so that Lemma 3.1 ensures that qλ = q� for λ
small enough. Hence qλ is unique for λ small enough (otherwise, one would have
to extract a subsequence of qλ not converging to q�, which contradicts Theorem
9 of Pollard, 1982b).
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3.3. Proof of Proposition 2.7

The following proof borrows some arguments from the proof of Lemma 4.2 of
Levrard (2015). Recall that m = infi �=j |c�i − c�j |. Take 1 ≤ i, j ≤ k and consider
the hyperplane

h�
i,j := {x ∈ E : |x− c�i | = |x− c�j |}.

Then, for all x ∈ Vi(c
�),

d(x, h�
i,j) =

|〈c�i + c�j − 2x, c�i − c�j 〉|
2|c�i − c�j |

≤
|〈c�i + c�j − 2x, c�i − c�j 〉|

2m

=
|x− c�j |2 − |x− c�i |2

2m
. (3.5)

Without loss of generality, suppose now for simplicity that the permutation σ
achieving the minimum in the definition of F1(q

�, q) is the identity, σ(j) = j, so
that

F1(q
�, q) = max

i
|c�i − ci|.

Then, it follows that for x ∈ Vi(c
�) ∩ Vj(c),

|x− c�j |2 − |x− c�i |2 ≤ (|x− cj |+ |cj − c�j |)2 − |x− c�i |2

≤ (|x− ci|+ |cj − c�j |)2 − |x− c�i |2

≤ (|x− c�i |+ |ci − c�i |+ |cj − c�j |)2 − |x− c�i |2

= 2|x− c�i |(|ci − c�i |+ |cj − c�j |) + (|ci − c�i |+ |cj − c�j |)2

≤ 4|x− c�i |F1(q
�, q) + 4F1(q

�, q)2. (3.6)

Thus, using the fact that, for all x ∈ Vi(c
�), we have

d(x, ∂Vi(c
�)) = min

i �=j
d(x, h�

i,j),

we deduce from the previous observations that, for all i 	= j,

Vi(c
�)∩Vj(c) ⊂

{
x ∈ E : md(x, ∂Vi(c

�)) ≤ 2|x− q�(x)|F1(q
�, q) + 2F1(q

�, q)2
}
.

The right hand side being independent of j, we obtain in particular,⋃
j �=i

Vi(c
�) ∩ Vj(c)

⊂
{
x ∈ E : md(x, ∂Vi(c

�)) ≤ 2|x− q�(x)|F1(q
�, q) + 2F1(q

�, q)2
}
.

Therefore,

E|q�(X)− q(X)|2 =

k∑
i,j=1

P (Vi(c
�) ∩ Vj(c))|c�i − cj |2
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=

k∑
i=1

P (Vi(c
�) ∩ Vi(c))|c�i − ci|2

+

k∑
i �=j,i=1,j=1

P (Vi(c
�) ∩ Vj(c))|c�i − cj |2

≤
k∑

i=1

P (Vi(c
�) ∩ Vi(c))|c�i − ci|2

+

k∑
i �=j,i=1,j=1

P (Vi(c
�) ∩ Vj(c))(|c�j − cj |+M)2

≤ F1(q
�, q)2 + p�(F1(q

�, q))(F1(q
�, q) +M)2

which shows the desired result.

Appendix A: Technical results

A.1. Proofs for Remark 1.5

Recall that, for any two sets A, B ⊂ E, their Hausdorff distance is defined by

dH(A,B) := inf{ ε > 0 : A ⊂ Bε and B ⊂ Aε },

where Aε = {x ∈ E : d(x,A) ≤ ε}. The fact that dH(c�, c) ≤ F1(q
�, q) then

follows easily from definitions. Now, to prove the second statement, observe
that, in the context of the finite sets c and c�, the infimum in the definition
of δ := dH(c�, c) is attained so that, for any i ∈ {1, . . . , k}, there exists some
j ∈ {1, . . . , k} such that c�j ∈ B(ci, δ) = {x ∈ E : |x − ci| ≤ δ}. Now suppose
that

δ <
1

2
min
i �=j

|c�i − c�j |.

Then, the balls B(ci, δ) are necessarily disjoint and therefore contain one and
only one element of c�, denoted c�σ(i). As a result,

F1(q
�, q) ≤ max

i
|ci − c�σ(i)| = δ,

where the last equality follows by construction. This implies the desired result.

A.2. Proof for Remark 2.2

Let x ∈ E and denote ci = q(x). First, it may be checked that assumption
d(x,F(c)) > ε holds if, and only if,

∀ j 	= i :
〈x− ci, cj − ci〉

|cj − ci|
<

|cj − ci|
2

− ε. (A.1)
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Similarly, observe that q(xλ) = q(x) if and only if, for j 	= i, we have |xλ− ci| <
|xλ − cj |. Using the definition of xλ, this last condition may be equivalently
written, for all j 	= i, as

(1 + λ)2|x− ci|2 < |x− cj |2 + 2λ〈x− ci, x− cj〉+ λ2|x− ci|2

= (1 + λ2)|x− ci|2 + 2〈x− ci, λ(x− cj) + ci − cj〉+ |ci − cj |2.
(A.2)

After simplification in (A.2), we therefore obtain that q(xλ) = q(x) if, and only
if,

∀ j 	= i : 0 < |ci − cj | − 2(1 + λ)
〈x− ci, cj − ci〉

|cj − ci|
. (A.3)

The result now easily follows from combining (A.1) and (A.3).

A.3. A consistency result

The next result is adapted from Theorems 4.12 and 4.21 in Graf and Luschgy,
2000.

Lemma A.1. Suppose X ∈ L2(P). Then, letting q� be an optimal k-points
quantizer for the distribution of X and denoting Xλ = X + λ(X − q�(X)), the
following statements hold.

1. For any λ ≥ 0, there exists a k-points NN quantizer qλ such that

‖Xλ − qλ(Xλ)‖2 = min
q

‖Xλ − q(Xλ)‖2,

where the minimum is taken over all k-points quantizers.
2. For all λ0 ≥ 0, if qλ0 is unique,

lim
λ→λ0

F1(qλ, qλ0) = 0.

Proof of lemma A.1. We state the result for a measure with bounded support
and refer to Graf and Luschgy (2000) for unbounded case.

1. Let qn be a sequence of quantizers such that

‖Xλ − qn(X)‖2 → inf
q
‖Xλ − q(X)‖2,

as n → ∞. Since balls in E are weakly compact, the centers qn(E) =
{cn1 , . . . , cnk} weakly converge to some limit {c1, . . . , ck} up to a subse-
quence. Denote q0(Xλ) a limit of a weakly converging subsequence of
qn(Xλ), realizing the limit lim inf ‖X − qn(Xλ)‖2 then, by Fatou Lemma,

lim inf ‖Xλ − qn(Xλ)‖2

≥ E lim inf |Xλ − qn(Xλ)|2
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= ‖Xλ − q0(Xλ)‖2 +E lim inf |q0(Xλ)− qn(Xλ)|2

≥ inf
q
‖Xλ − q(Xλ)‖2 +E lim inf |q0(Xλ)− qn(Xλ)|2,

which shows that q0 realizes the minimum of infq ‖Xλ − q(X)‖2.
2. Similarly, for any sequence λn → λ0 as n → ∞, qλn(Xλn) has a weak limit

q0(Xλ0) (up to subsequence). Then,

‖Xλ0 − qλ0(Xλ0)‖2

= lim inf
n→∞

‖Xλn − qλ0(Xλn)‖2

≥ lim inf
n→∞

‖Xλn − qλn(Xλn)‖2

≥ E lim inf |Xλn − qλn(Xλn)|2

≥ ‖Xλ0 − q0(Xλ0)‖2 +E lim inf |q0(Xλ0)− qλn(Xλn)|2

≥ ‖Xλ0 − qλ0(Xλ0)‖2 +E lim inf |q0(Xλ0)− qλn(Xλn)|2.

The last inequality holds because qλ0 is optimal. This shows
E lim inf |q0(X) − qn(X)|2 = 0, and since qλ0 is supposed to be unique
q0 = qλ0 and therefore, every subsequence converges to the same limit
qλ0 ; so F1(qλ, qλ0) → 0.

Appendix B: Stability of a learning problem

In this section, we briefly argue that the problem considered in the paper, while
of special interest in the context of unsupervised learning, finds a natural ex-
tension in a more general framework of learning theory, namely the context of
contrast minimization. Let Z be a measurable space equipped with a probability
distribution P and let T be a given set of parameters. Suppose given a sam-
ple Z1, . . . , Zn of i.i.d. variables with common distribution P . Given a contrast
function

C : Z× T → R+,

consider the problem of designing a data driven t, based on the sample Z1, . . . ,
Zn, achieving a small value of the risk function

R(t) :=

∫
C(z, t) dP (z).

This general problem, known as contrast minimization, is a classical way to
unify the supervised and unsupervised learning approaches as illustrated in the
next example.

Example B.1. Classical examples include the following.

• Supervised learning. The supervised learning problem corresponds to
the contrast minimization problem where Z = X × Y, where T is a class
of candidate functions t : X → Y and where, for a given loss function
� : Y2 → R+, the contrast is

C((x, y), t) = �(y, t(x)).
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• Unsupervised learning. The unsupervised learning problem discussed
earlier in the present paper corresponds to the contrast minimization prob-
lem where Z is a metric space (E, d), where T is the set Q of all k-points
quantizers, for a given integer k, and where the contrast function is

C(x, q) = d(x, q(x))2. (B.1)

Given the general problem of contrast minimization, formulated above, one
may naturally extend the question discussed in the present paper by considering
the following notion of stability.

Definition B.2. Consider a function F : T 2 → R+ and an increasing function
φ : R+ → R+. Then, the contrast minimization problem is called (F, φ, ε)-stable
if, for any t� minimizing the risk on T ,

F (t�, t) ≤ ε ⇒ F (t�, t) ≤ φ(R(t)−R(t�)).

Our main result, Theorem 2.3, proves the stability of the contrast minimiza-
tion problem for the contrast function defined in (B.1). The following result
proves the stability of the supervised learning problem for a strongly convex
loss function.

Example B.3. Consider the supervised learning problem described in the ex-
ample above. Suppose there exists α > 0 such that, for all y ∈ Y, the function
u ∈ Y �→ �(y, u) is α-strongly convex. Then, for any convex class T of functions
t : X → Y and any t� minimizing the risk on T , we have∫

(t− t�)2 dμ ≤ 4

α
(R(t)−R(t�)),

for any t ∈ T , where μ is the marginal of P on X. In particular, for all ε > 0,
this learning problem is (ε, φ)-stable for the L2(μ) metric with φ(u) = 2

√
u/

√
α.
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