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Abstract: We consider truncated SVD (or spectral cut-off, projection) es-
timators for a prototypical statistical inverse problem in dimension D. Since
calculating the singular value decomposition (SVD) only for the largest sin-
gular values is much less costly than the full SVD, our aim is to select a
data-driven truncation level m̂ ∈ {1, . . . , D} only based on the knowledge
of the first m̂ singular values and vectors.

We analyse in detail whether sequential early stopping rules of this type
can preserve statistical optimality. Information-constrained lower bounds
and matching upper bounds for a residual based stopping rule are provided,
which give a clear picture in which situation optimal sequential adaptation
is feasible. Finally, a hybrid two-step approach is proposed which allows
for classical oracle inequalities while considerably reducing numerical com-
plexity.
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1. Introduction and overview of results

1.1. Model

A classical model for statistical inverse problems is the observation of

Y = Aμ+ δẆ (1.1)
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where A : H1 → H2 is a linear, bounded operator between real Hilbert spaces
H1, H2, μ ∈ H1 is the signal of interest, δ > 0 is the noise level and Ẇ is a
Gaussian white noise in H2, see e.g. Bissantz et al. [1], Cavalier [5] and the ref-
erences therein. In any concrete situation the problem is discretised, for instance
by using a Galerkin scheme projecting on finite element or other approximation
spaces. Therefore we can assume H1 = RD, H2 = RP with possibly very large
D and P . Since the discretisation of μ is at our choice, we assume D ≤ P ,
and that A : RD → RP is one-to-one. We transform (1.1) by the singular value
decomposition (SVD) of A into the Gaussian vector observation model

Yi = λiμi + δεi, i = 1, . . . , D, (1.2)

where λ1 ≥ λ2 ≥ · · · ≥ λD > 0 are the nonzero singular values of A, (μi)1≤i≤D

the coefficients of μ in the orthonormal basis of singular vectors and (εi)1≤i≤D

are independent standard Gaussian random variables. The results will easily
extend to subgaussian errors as discussed below.

Working in the SVD representation (1.2), the objective is to recover the signal
μ = (μi)1≤i≤D with best possible accuracy from the data (Yi)1≤i≤D. A classical
method is to use the truncated SVD estimators (also called projection or spectral
cut-off estimators) μ̂(m), 0 ≤ m ≤ D, given by

μ̂
(m)
i = 1(i ≤ m)λ−1

i Yi, i = 1, . . . , D, (1.3)

which are ordered with decreasing bias and increasing variance (w.r.t. m).
Choosing a suitable truncation index m̂ = m̂(Y ) from the observed data is
the genuine problem of adaptive model selection. Typical methods use (gener-
alized) cross validation, see e.g. Wahba [19], unbiased risk estimation, see e.g.
Cavalier et al. [6], penalized empirical risk minimisation, see e.g. Cavalier and
Golubev [7], or Lepski’s balancing principle for inverse problems, see e.g. Mathé
and Pereverzev [15]. They all share the drawback that the estimators μ̂(m) have
first to be computed for all values of 0 ≤ m ≤ D, and then be compared to each
other in some way.

In this work, we are motivated by constraints due to the possible obstructive
computational complexity of calculating the full SVD in high dimensions. We
stress that the initial discretisation of the observation is generally based on a
fixed scheme which does not deliver a representation of the observation vector
Y in an SVD basis; nor is the full SVD basis of the discretized operator A a
priori available in general, so that it has to be computed on the fly. Since the
calculation of the largest singular value and its corresponding subspace is much
less costly, efficient numerical algorithms rely on deflation or locking methods,
which achieve the desired accuracy for the larger singular values first and then
iteratively achieve the accuracy also for the next smaller singular values. As
a basic example the popular power method can be considered, which usually
finds after a few vector-matrix multiplications the top eigenvalue-eigenvector
pair (with exponentially small error in the iteration number), so that by iterative
application the largest m singular values and vectors are computed with roughly
O(mD2) multiplications compared to O(D3) multiplications for a full SVD in a
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worst case scenario. We refer to the monograph by Saad [17] for a comprehensive
exposition of the numerical methods.

We investigate the possibility of an approach which is both statistically effi-
cient and sequential along the SVD in the following sense: we aim at early stop-
ping methods, in which the truncated SVD estimators μ̂(m) for m = 0, 1, . . . ,
are computed iteratively, a stopping rule decides to stop at some step m̂ and
then μ̂(m̂) is used as the estimator.

More generally, we envision our setting as a simple and prototypical model
to study the scope of statistical adaptivity using iterative methods, which are
widely used in computational statistics and learning. A notable feature of these
methods is that not only the numerical, but also the statistical complexity (e.g.,
measured by the variance) increases with the number of iterations, so that early
stopping is essential from both points of view. It is common to use stopping
rules based on monitoring the residuals because the user has access without
substantial additional cost to the residual norm. Observe that the computation
of the residual norm ‖Y −Aμ̂(m)‖2 = ‖Y ‖2 −

∑m
i=1 Y

2
i does not require the full

SVD, but only the knowledge of them first coefficient and of the full norm ‖Y ‖2,
which is readily available. The properties of such rules have been well studied
for deterministic inverse problems (e.g. the discrepancy principle, see Engl et
al. [10]). In a statistical setting, minimax optimal solutions along the iteration
path have been identified in different settings, see e.g. Yao et al. [20] for gradient
descent learning, Blanchard and Mathé [3] for conjugate gradients, Raskutti,
Wainwright and Yu [16] for (reproducing) kernel learning and Bühlmann and
Hothorn [4] for the application to L2-boosting. All these methods stop at a
fixed iteration step1, depending on the prior knowledge of the smoothness of
the unknown solution.

By contrast, our goal is to analyse an a posteriori early stopping rule based
on monitoring the residual, which corresponds to proposals by practitioners in
the absence of prior smoothness information. An analysis of such a stopping rule
for quite general spectral estimators like Landweber iteration is provided in the
companion paper [2]. Although the general results can also be adapted to the
truncated SVD method, we exhibit a more transparent analysis for this proto-
typical method which gives more satisfactory results: we establish coherent lower
bounds and we obtain adaptivity in strong norm via the oracle property, while
for more general spectral estimators only rate results over Sobolev-type classes
can be achieved. Moreover, a hybrid two-step procedure enjoys full adaptivity
for the truncated SVD-method.

1.2. Non-asymptotic oracle approach

Our approach is a priori non-asymptotic and concentrates on oracle optimality
analysis for individual signals. The oracle approach compares the error of μ̂(m̂)

1The stopping rule in [16] for a random design setting is data-dependent because the
distribution of the design is unknown. The stopping iteration becomes fixed when the design
distribution is known, the target function belonging to the unit ball of the kernel space.
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to the minimal error among (μ̂(m))m for any signal μ individually, which entails
optimal adaptation in minimax settings, see e.g. Cavalier [5].

The risk (mean integrated squared error) for a fixed truncated SVD estimator
μ̂(m) obeys a standard squared bias-variance decomposition

E
[
‖μ̂(m) − μ‖2

]
= B2

m(μ) + Vm ,

where ‖•‖ denotes the Euclidean norm in R
D, and

B2
m(μ) := E

[
‖E[μ̂(m)]− μ‖2

]
=

∑D
i=m+1 μ

2
i , (1.4)

Vm := E
[
‖μ̂(m) − E[μ̂(m)]‖2

]
= δ2

∑m
i=1 λ

−2
i . (1.5)

In distinction with the weak norm quantities defined below, we call Bm(μ) strong
bias of μ and Vm strong variance.

If we have access to the residual squared norm

R2
m := ‖Y −Aμ̂(m)‖2 = ‖Y ‖2−‖Aμ̂(m)‖2 =

∑D
i=1(Yi−λiμ̂

(m)
i )2 =

∑D
i=m+1 Y

2
i ,

(1.6)
then R2

m − (D −m)δ2 gives some bias information due to

E[R2
m − (D −m)δ2] = B2

m,λ(μ), with B2
m,λ(μ) :=

∑D
i=m+1 λ

2
iμ

2
i .

We call B2
m,λ(μ) the weak bias and similarly Vm,λ = mδ2 the weak variance.

They correspond to measuring the error in the weak norm (or prediction norm)

‖v‖2λ := ‖Av‖2 =
∑D

i=1 λ
2
i v

2
i , which usually (always if λ1 < 1) is smaller than

the strong Euclidean norm ‖•‖. The squared bias-variance decomposition for
the weak risk then reads E

[
‖μ̂(m)−μ‖2λ

]
= B2

m,λ(μ)+Vm,λ. Our setting is thus
a particular instance of the question raised by Lepski [13] whether adaptation
in one loss (here: weak norm) leads to adaptation in another loss (here: strong
norm). Our positive answer for truncated SVD or spectral cut-off estimation
will also extend the results by Chernousova et al. [8].

Intrinsic to the sequential analysis is the fact that at truncation index m we
cannot say anything about the way the bias decreases for larger indices: it may
drop to zero at m + 1 or even stay constant until D − 1. Even if we knew the
exact value of the bias until index m, we could not minimise the sum of squared
bias and variance sequentially. Instead, we should wait until the squared bias is
sufficiently small to equal (approximately) the variance. This leads to the notion
of the strongly balanced oracle

ms = ms(μ) := min{m ∈ {0, . . . , D} |Vm ≥ B2
m(μ)}, (1.7)

whose risk is always upper bounded by twice the classical oracle risk, see (3.5)
below.

1.3. Setting for asymptotic considerations

Risk estimates over classes of signals and asymptotics for vanishing noise level
δ → 0 often help to reveal main features. This way, we can also provide lower
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bounds for sequential estimation procedures and compare them directly to clas-
sical minimax convergence rates. In our setting, the magnitude of the discreti-
sation dimension D plays a central role, so that it is sensible to assume in an
asymptotic view that D = Dδ → ∞ as δ → 0. As classes of signals, we will
consider the Sobolev-type ellipsoids

Hβ(R,D) := {μ ∈ RD |
∑D

i=1 i
2βμ2

i ≤ R2}, β ≥ 0, R > 0, (1.8)

and we shall use the following polynomial spectral decay assumption

C−1
A i−p ≤ λi ≤ CAi

−p, 1 ≤ i ≤ D, (PSD(p, CA))

for p ≥ 0, CA ≥ 1. The spectrum is allowed to change withD and δ, but p, CA are
considered as fixed constants. Under these assumptions, standard computations
yield for μ ∈ Hβ(R,D), 1 ≤ m ≤ D:

B2
m(μ) ≤ R2m−2β ; Vm ≤ C−2

A δ2m2p+1 .

Balance between these squared bias and variance bounds is obtained for m of
the order of the minimax truncation “time”

tβ,p,R(δ) := (R−1δ)−2/(2β+2p+1), (1.9)

provided the condition D ≥ tβ,p,R(δ) holds. This gives rise to the risk rate

R∗
β,p,R(δ) := R(R−1δ)2β/(2β+2p+1),

which agrees with the optimal minimax rate in the standard Gaussian sequence
model (i.e. D = ∞). On the other hand, for D � tβ,p,R(δ) the choice m = D
is optimal on Hβ(R,D) and the rate degenerates to O(D2p+1δ2). This situa-
tion is indicative of an insufficient discretisation and will be excluded from the
asymptotic considerations.

1.4. Overview of results

Our results consist of lower and upper bounds for sequentially adaptive stopping
rules. The stopping rules permitted are most conveniently described in terms of
stopping times with respect to an appropriate filtration. Introduce the frequency
filtration

Fm := σ
(
μ̂(0), . . . , μ̂(m)

)
= σ

(
Y1, . . . , Ym

)
, (1.10)

F0 being the trivial sigma-field. Stopping rules with respect to the filtration
F = (Fm)0≤m≤D must decide whether to halt and output μ̂(m) based only on
the information of the first m estimators. Statistical adaptation will turn out
to be essentially impossible for such stopping rules (Section 2.1). If the residual
(1.6) is available at no substantial computational cost, taking this information
into account, we define the residual filtration

Gm := Fm ∨ σ(R2
0, . . . , R

2
m) = Fm ∨ σ

(
‖Y ‖2

)
, (1.11)

which is the filtration Fm enlarged by the residuals up to index m.
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Pushing some technical details aside, the main message conveyed by our
lower bounds is that oracle statistical adaptation with respect to the residual
filtration is impossible for signals μ such that the strongly balanced oracle ms(μ)
is o(

√
D). (Section 2.2). On the other hand, we establish in Section 3 that this

statement is sharp, in the sense that the simple residual-based stopping rule

τ = min
{
m ≥ m0 |R2

m ≤ κ
}
, (1.12)

with a proper choice of κ and m0 is statistically adaptive for signals μ such that
ms(μ) �

√
D. Let us stress that by minimax adaptive we always mean that the

procedure attains the optimal rate even among all methods with access to the
entire data, that is without information constraints.

Finally, in Section 4 we introduce a hybrid two-step approach consisting of
the above stopping rule with m0 ∼

√
D logD, followed by a traditional (non-

sequential) model selection procedure over m ≤ m0, in the case where τ = m0

(immediate stop hinting at an optimal index smaller than m0). This procedure
enjoys full oracle adaptivity at a computational cost of calculating on average
the first O(max(

√
D logD,ms(μ))) singular values, to be compared to the full

SVD with D singular values in non-sequential adaptation. Some numerical sim-
ulations illustrate the theoretical analysis. Technical proofs are gathered in an
appendix.

2. Lower bounds

2.1. The frequency filtration

Let τ be an F-stopping time, where F is the frequency filtration defined in
(1.10) and let2

R(μ, τ)2 := Eμ[‖μ̂(τ) − μ‖2].

By Wald’s identity, we obtain the simple formula

R(μ, τ)2 = Eμ

[ ∑D
i=τ+1 μ

2
i +

∑τ
i=1 λ

−2
i δ2ε2i

]
= Eμ

[
B2

τ (μ) + Vτ

]
, (2.1)

with B2
m(μ) and Vm from (1.4), (1.5). This implies in particular that an oracle

stopping time, i.e., an optimal F-stopping time constructed using the knowl-
edge of μ, coincides with the deterministic oracle argminm

(
B2

m(μ) + Vm

)
al-

most surely. The next proposition encapsulates the main argument for the lower
bound and merely relies on a two-point analysis. It clarifies that if the stopping
time τ yields a squared risk comparable to the optimally balanced risk for a
given signal μ, then this signal can be changed arbitrarily to μ̄ after the index
�3Cms(μ)�, while the risk for the rule τ always stays larger than the squared
bias of that part – which can be made arbitrarily large by “hiding” signal in
large-index coefficients.

2We emphasise in the notation the dependence on μ in the distribution of τ and the Yi by
adding the subscript μ when writing the expectation E = Eμ or probability P = Pμ.
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2.1 Proposition. Let μ, μ̄ ∈ RD with μi = μ̄i for all i ≤ i0 and i0 ∈ {1, . . . , D−
1}. Then any F-stopping rule τ satisfies

R(μ̄, τ)2 ≥ B2
i0(μ̄)

(
1− R(μ, τ)2

Vi0+1

)
.

Suppose R(μ, τ)2 ≤ CR(μ,ms)
2 for the balanced oracle ms in (1.7) and some

C ≥ 1. Then for any μ̄ ∈ R
D with μ̄i = μi for i ≤ 3Cms we obtain

R(μ̄, τ)2 ≥ 1
3B

2
�3Cms�(μ̄).

Proof. We use the fact that (Yi)1≤i≤i0 has the same law under Pμ and Pμ̄ and
so has 1(τ ≤ i0) by the stopping time property of τ . Moreover, thanks to the
monotonicity of m 
→ Vm and m 
→ B2

m(μ̄), Markov’s inequality and identity
(2.1):

R(μ̄, τ)2 ≥ Eμ̄[B
2
τ (μ̄)1(τ ≤ i0)]

= Eμ[B
2
τ (μ̄)1(τ ≤ i0)]

≥ B2
i0(μ̄)Pμ(τ ≤ i0)

≥ B2
i0(μ̄)(1− Pμ(Vτ ≥ Vi0+1))

≥ B2
i0(μ̄)

(
1− Eμ[Vτ ]

Vi0+1

)
≥ B2

i0(μ̄)
(
1− R(μ, τ)2

Vi0+1

)
.

The second assertion follows by inserting i0 = �3Cms� and R(μ, τ)2 ≤ 2CVms

together with Vms
/Vi0+1 ≤ ms/(i0 + 1) since the singular values λi are non-

increasing.

In Appendix 5.1 we use this proposition to provide a result suitable for asymp-
totic interpretation (we use the notation from Section 1.3):

2.2 Corollary. Assume (PSD(p, CA)) and let τ be any F-stopping rule. If
there exists μ ∈ Hβ(R,D) with R(μ, τ) ≤ CμR∗

β,p,R(δ), then for any α ∈ [0, β],

R̄ ≥ 2R, there exists μ̄ ∈ Hα(R̄,D) such that

R(μ̄, τ) ≥ c1R̄(R−1δ)2α/(2β+2p+1) ,

provided D ≥ c2tβ,p,R(δ). The constants c1, c2 > 0 only depend on Cμ and CA.

The conclusion for impossible rate-optimal adaptation is a direct consequence
of Corollary 2.2: since for any α < β the rate δ2α/(2β+2p+1) is suboptimal, no F-
stopping rule can adapt over Sobolev classes with different regularities. Finally,
the rate R̄(R−1δ)2α/(2β+2p+1) is attained by a deterministic stopping rule that
stops at the oracle frequency for Hβ(R,D), so that the lower bound is in fact a
sharp no adaptation result.
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2.2. Residual filtration

We start with a key lemma, similar in spirit to the first step in the proof of
Proposition 2.1, but valid for an arbitrary random τ . Here and in the sequel
the numerical values are not optimised, but give rise to more transparent proofs
and convey some intuition for the worst case order of magnitude. The proof is
delayed until Appendix 5.2.

2.3 Lemma. Let τ = τ
(
(Yi)1≤i≤D

)
∈ {0, . . . , D} be an arbitrary (measurable)

data-dependent index. Then for any m ∈ {1, . . . , D} the following implication
holds true:

Vm ≥ 200R(μ, τ)2 ⇒ Pμ(τ ≥ m) ≤ 0.9.

For G-stopping rules, where G is the residual filtration defined in (1.11), we
deduce the following lower bound, again based on a two-point argument:

2.4 Proposition. Let τ be an arbitrary G-stopping rule. Consider μ ∈ RD and
i0 ∈ {1, . . . , D} such that Vi0+1 ≥ 200R(μ, τ)2. Then

R(μ̄, τ)2 ≥ 0.05B2
i0(μ̄)

holds for any μ̄ ∈ R
D that satisfies

(a) μi = μ̄i for all i ≤ i0,

(b) the weak bias bound |B2
i0,λ

(μ̄)−B2
i0,λ

(μ)| ≤ 0.05
√
D−i0
2 δ2 and

(c) Bi0,λ(μ) +Bi0,λ(μ̄) ≥ 5.25δ.

Suppose that R(μ, τ)2 ≤ CμR(μ,ms)
2 holds with some Cμ ≥ 1. Then any i0 ≥

400Cμms will satisfy the initial requirement.

Proof. First, we lower bound the risk of μ̄ by its bias on {τ ≤ i0} and then
transfer to the law of τ under Pμ, using the total variation distance on Gi0 :

R(μ̄, τ)2 ≥ Eμ̄[B
2
τ (μ̄)1(τ ≤ i0)]

≥ B2
i0(μ̄)Pμ̄(τ ≤ i0)

≥ B2
i0(μ̄)

(
Pμ(τ ≤ i0)− ‖Pμ − Pμ̄‖TV (Gi0 )

)
.

By Lemma 2.3 we infer Pμ(τ ≤ i0) ≥ 0.1. Denote Wi0 = (Y1, . . . , Yi0). Since the
law of Wi0 is identical under Pμ and Pμ̄, and Wi0 is independent of R2

i0
for both

measures, the total variation distance between Pμ and Pμ̄ on Gi0 equals the total
variation distance between the respective laws of the scaled residual δ−2R2

i0
. For

ϑ ∈ R
D, let P

ϑ
K be the non-central χ2-law of Xϑ =

∑K
k=1(ϑk + Zk)

2 with Zk

independent and standard Gaussian. With K = D − i0, ϑk = δ−1λi0+kμi0+k,
ϑ̄k = δ−1λi0+kμ̄i0+k, the total variation distance between the respective laws of

the scaled residual δ−2R2
i0

exactly equals ‖Pϑ
K −P

ϑ̄
K ‖TV . By Lemma 5.1 in the

Appendix, taking account of ‖ϑ‖ = δ−1Bi0,λ(μ) and similarly for ‖ϑ̄‖, we infer
from (c) the simplified bound

‖Pμ − Pμ̄‖TV (Gi0 )
≤

2|B2
i0,λ

(μ̄)−B2
i0,λ

(μ)|
δ2
√
D − i0

.
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Under our assumption on μ̄, this is at most 0.05, and the inequality follows.
From R(μ, τ)2 ≤ 2CμVms

and Vi0+1/Vms
≥ (i0 + 1)/ms, the last statement

follows.

In comparison with the frequency filtration, the main new hypothesis is that
at i0 the weak bias of μ̄ is sufficiently close to that of μ, while the lower bound
is still expressed in terms of the strong bias. This is natural since the bias
only appears in weak form in the residuals, while the risk involves the strong
bias. Condition (c) is just assumed to simplify the bound. To obtain valuable
counterexamples, μ̄ is usually chosen at maximal weak bias distance of μ allowed
by (b), so that (c) is always satisfied in the interesting cases where

√
D − i0 is

not small.
Considering the behaviour over Sobolev-type ellipsoids, we obtain in Ap-

pendix 5.4 a lower bound result comparable to Corollary 2.2 for the frequency
filtration.

2.5 Corollary. Assume (PSD(p, CA)) and let τ be any G-stopping time. If
there exists μ ∈ Hβ(R,D) with R(μ, τ) ≤ CμR∗

β,p,R(δ), then for any α ∈ [0, β]

and R̄ ≥ 2R, there exists μ̄ ∈ Hα(R̄,D) such that

R(μ̄, τ) ≥ c1R̄min
((

R̄−1δD1/4
)2α/(2α+2p)

, (R−1δ)2α/(2β+2p+1)
)
,

provided R−1δ ≤ c2 and D ≥ c3tα− 1
4 ,p,R̄

(δ) . The constants c1, c3 > 0, and

c2 ∈ (0, 1] depend only on Cμ, CA, α, p.

The form of the lower bound is transparent: as in the case of the frequency
filtration, the sub-obtimal rate R̄(R−1δ)2α/(2β+2p+1) is the one attained by a
deterministic rule that stops at the oracle frequency for Hβ(R,D), whereas

R̄
(
R̄−1δD1/4

)2α/(2α+2p)
is the size of a signal that may be hidden in the noise of

the residual, i.e., is not detected with positive probability by any test, thus also
leading to erroneous early stopping. Note that for the direct problem (p = 0),
the latter quantity is just δD1/4, which is exactly the critical signal strength in
nonparametric testing, see Ingster and Suslina [11], while for p > 0, it reflects
the interplay between the weak bias part in the residual and the strong bias
part in the risk within the Sobolev ellipsoid.

Corollary 2.5 implies in turn explicit constraints for the maximal Sobolev
regularity to which a G-stopping rule can possibly adapt. Here, we argue asymp-
totically and let explicitly D = Dδ tend to infinity as the noise level δ tends
to zero. In this setting, a stopping rule τ is to be understood as a family of
stopping rules that depend on the knowledge of D and δ.

2.6 Corollary. Assume (PSD(p, CA)). Let β+ > β− ≥ 0, R+, R− > 0. Sup-
pose that there exists a G-stopping rule τ such that R(μ, τ) ≤ CR∗

β,p,R(δ) holds

for some C > 0, all δ > 0 small enough, and for every μ ∈ Hβ(R,Dδ), simul-
taneously for (β,R) ∈ {(β−, R−), (β+, R+)}. Then the rate-optimal truncation
time for Hβ−(R−, Dδ) must satisfy

√
Dδ = O(tβ−,p,R−(δ)) as δ → 0 (all other

parameters being fixed).
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In particular, if a G-stopping rule τ is rate-optimal over Hβ(R,Dδ) for β ∈
[βmin, βmax], βmax > βmin ≥ 0, and some R > 0, then we necessarily must have

βmax ≤ lim infδ→0
log δ−2

logDδ
− p− 1/2.

Proof. In this proof we denote by ’�’, ’�’ inequalities holding up to factors
depending on CA, p, β+, β−, R−, R+. We apply Corollary 2.5 with β = β+,
α = β− and R̄ = R−, R = min(R+, R̄/2). Because of δ−2/(2β−+2p+1/2) ≤
δ−4/(2β−+2p+1) = o(Dδ), the conditions are fulfilled for sufficiently small δ > 0
and we conclude (R+, R− are fixed)

∃μ̄ ∈ Hβ−(R−, D) : R(μ̄, τ) � min
((

δD
1/4
δ

)2β−/(2β−+2p)
, δ2β−/(2β++2p+1)

)
.

By assumption, that rate must be O(δ2β−/(2β−+2p+1)). Since the second
term in the above minimum is of larger order than this, this must imply

(δD
1/4
δ )2β−/(2β−+2p) � δ2β−/(2β−+2p+1), and further

√
Dδ � δ−2/(2β−+2p+1) �

tβ−,p,R−(δ). The first statement is proved.

For the second assertion, we proceed by contradiction and assume βmax >

βlim := lim infδ→0
log δ−2

logDδ
− p− 1/2. Choose β+ = βmax and β− ∈ (βlim, βmax).

Then β− > βlim implies tβ−,p,R−(δk) = o(
√

Dδk) for some sequence δk → 0,
contradicting the first part of the corollary.

For statistical inverse problems with singular values satisfying the polynomial
decay (PSD(p, CA)) we may choose the maximal dimension Dδ ∼ δ−2/(2p+1)

without losing in the convergence rate for a Sobolev ellipsoid of any regularity
β ≥ 0, see e.g. Cohen el al. [9]. In fact, we then have the variance

VDδ
= δ2

Dδ∑
i=1

λ−2
i ∼ δ2D2p+1

δ ∼ 1, (2.2)

and the estimator with truncation at the order of Dδ will not be consistent
anyway; the oracle index is always of order o(Dδ) whatever the signal regularity.
For this choice of Dδ, optimal adaptation is only possible if the squared minimax
rate is within the interval [δ, 1], faster adaptive rates up to δ2 cannot be attained.

Usually, Dδ will be chosen much smaller, assuming some minimal a priori
regularity βmin. The choice Dδ ∼ δ−2/(2βmin+2p+1) ensures that rate optimality
is possible for all (sequence space) Sobolev regularities β ≥ βmin, when us-
ing either oracle (non-adaptive) rules, or adaptive rules that are not stopping
times. In contrast, any G-stopping rule can at best adapt over the regularity
interval [βmin, βmax] with βmax = 2βmin + p + 1/2 (keeping the radius R of
the Sobolev ball fixed). These adaptation intervals, however, are fundamentally
understood only when inspecting the corresponding rate-optimal truncation in-
dices tβ,p,R(δ), which must at least be of order

√
Dδ ∼ δ−1/(2βmin+2p+1) in order

to distinguish a signal in the residual from the pure noise case.
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3. Upper bounds

Consider the residual-based stopping rule τ = min
{
m ≥ m0 |R2

m ≤ κ
}
from

(1.12). Since R2
m is decreasing with R2

D = 0, the minimum is attained and we
have R2

τ ≤ κ.
In order to have clearer oracle inequalities, we work with continuous oracle-

type truncation indices in [0, D]. Interpolating such that Vt,λ = tδ2 continues to
hold for real t ∈ [0, D], we set

μ̂
(t)
i :=

(
1(i ≤ �t�) +

√
t− �t�1(i = �t�+ 1)

)
λ−1
i Yi, i = 1, . . . , D,

and define further

R2
t =

(
1−

√
t− �t�

)2
Y 2
�t�+1 +

∑D
i=�t�+2 Y

2
i ,

B2
t (μ) =

(
1−

√
t− �t�

)2
μ2
�t�+1 +

∑D
i=�t�+2 μ

2
i ,

Vt = (t− �t�)δ2λ−2
�t�+1 + δ2

∑�t�
i=1 λ

−2
i ,

St = (t− �t�)δ2λ−2
�t�+1ε

2
�t�+1 + δ2

∑�t�
i=1 λ

−2
i ε2i .

We thus obtain the following decompositions in a bias and a stochastic error
term:

‖μ̂(t) − μ‖2 = B2
t (μ) + St + 2δ

(
t− �t� −

√
t− �t�

)
λ−1
�t�+1μ�t�+1ε�t�+1, (3.1)

E
[
‖μ̂(t) − μ‖2

]
= B2

t (μ) + Vt, E
[
‖μ̂(τ) − μ‖2

]
= E

[
B2

τ (μ) + Sτ

]
, (3.2)

noting that the last term in (3.1) has expectation zero for deterministic t and
vanishes for the integer-valued random time τ . Analogously, the linear interpo-
lations for bias and variance in weak norm are defined. Thus, the continuously
interpolated residual has expectation

E[R2
t ] = B2

t,λ(μ) +
((

1−
√

t− �t�
)2

+ (D − �t� − 1)
)
δ2

= B2
t,λ(μ)− Vt,λ +Dδ2 − 2

(√
t− �t� − (t− �t�)

)
δ2. (3.3)

Integrating the last interpolation error term into the definition, we define the
oracle-proxy index t∗ ∈ [m0, D] as

t∗ = inf
{
t ≥ m0

∣∣∣ Eμ[R
2
t ] ≤ κ− 2

(√
t− �t� − (t− �t�)

)
δ2

}
.

Then by continuity E[R2
t∗ ] = κ − 2(

√
t∗ − �t∗� − (t∗ − �t∗�))δ2 ∈ [κ − 1

2δ
2, κ]

holds in the case t∗ > m0, implying

κ = Dδ2 +B2
t∗,λ(μ)− Vt∗,λ. (3.4)

For t∗ = m0 we still have Dδ2 +B2
t∗,λ(μ)− Vt∗,λ ≤ κ.
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Let us finally define the weakly and strongly balanced oracles tw and ts in a
continuous manner:

tw = tw(μ) = inf{t ≥ m0 |B2
t,λ(μ) ≤ Vt,λ} ∈ [m0, D],

ts = ts(μ) = inf{t ≥ m0 |B2
t (μ) ≤ Vt} ∈ [m0, D].

While the balanced oracles are the natural oracle quantities we try to mimic by
early stopping, they should be compared to the classical oracles. Since t 
→ B2

t (μ)
is decreasing and t 
→ Vt is increasing, we derive

inf
t∈[m0,D]

E
[
‖μ̂(t) − μ‖2

]
≥ inf

t∈[m0,D]
max(B2

t (μ), Vt) ≥ Vts ≥ 1
2 E

[
‖μ̂(ts) − μ‖2

]
,

(3.5)
noting B2

ts(μ) ≤ Vts .

3.1. Upper bounds in weak norm

The following is an analogue of Proposition 2.1 in [2], but includes a discretisa-
tion error for the discrete time stopping rule τ .

3.1 Proposition. The balanced oracle inequality in weak norm

E
[
‖μ̂(τ) − μ̂(t∗)‖2λ

]
≤

√
2Dδ2 + 2δBt∗,λ(μ) + Δτ (μ)

2 (3.6)

holds with the discretisation error

Δτ (μ) = max
i≥�t∗�+1

|λiμi|+ 4δ
((

log(
√
2D)

)1/2
+ 1

)
.

Proof. The main argument is completely deterministic. For τ > t∗ ≥ m0 we
obtain by R2

τ + Y 2
τ = R2

τ−1 > κ ≥ E[R2
t∗ ]:

‖μ̂(t∗) − μ̂(τ)‖2λ = (1−
√
t∗ − �t∗�)2Y 2

�t∗�+1 +
∑τ

i=�t∗�+2 Y
2
i

= R2
t∗ −R2

τ < R2
t∗ − E[R2

t∗ ] + Y 2
τ .

For t∗ > τ ≥ m0 we use t∗ − �t∗� ≤ 1 − (1 −
√

t∗ − �t∗�)2 and R2
τ ≤ κ ≤

E[R2
t∗ ] +

1
2δ

2:

‖μ̂(t∗) − μ̂(τ)‖2λ = (t∗ − �t∗�)Y 2
�t∗�+1 +

∑�t∗�
i=τ+1 Y

2
i

≤ R2
τ −R2

t∗ ≤ E[R2
t∗ ]−R2

t∗ + 1
2δ

2.

Consequently, we find

E
[
‖μ̂(t∗) − μ̂(τ)‖2λ

]
≤ E

[∣∣∣ D∑
i=�t∗�+1

γi
(
δ2(ε2i − 1) + 2λiμiδεi

)∣∣∣] + E

[
max

i≥�t∗�+1
Y 2
i

]
+ 1

2δ
2,
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with γi = 1 for i > �t∗� + 1 and γi = (1 −
√
t∗ − �t∗�

)2
for i = �t∗� + 1. The

maximal inequality in Corollary 1.3 of [18] implies

E

[
max

i≥�t∗�+1
Y 2
i

]
≤

(
max

i≥�t∗�+1
|λiμi|+ 4δ

(
log

(√
2(D − �t∗�)

))1/2)2

,

which is smaller than Δτ (μ)
2 − 1

2δ
2. By bounding the main term via Jensen’s

inequality, using Var(ε2i ) = 2, Cov(ε2i , εi) = 0, this gives

Eμ

[
‖μ̂(t∗) − μ̂(τ)‖2λ

]
≤

(
2(D − t∗)δ4 + 4δ2B2

t∗,λ(μ)
)1/2

+Δτ (μ)
2,

and thus by
√
A+B ≤

√
A+

√
B, A,B ≥ 0, the asserted inequality.

Remark that the proof only relies on the moments of (εi) up to fourth order
and a maximal deviation inequality, so that an extension to sub-Gaussian dis-
tributions is straightforward. More heavy-tailed distributions can be treated at
the cost of a looser bound on Δτ (μ).

So far, the choice of κ has not been addressed. The identity (3.4) shows that
the choice κ = Dδ2 balances weak squared bias and variance exactly such that
t∗ = tw. In practice, however, we might have to estimate the noise level δ2, or we
prefer a larger threshold κ to reduce numerical complexity. Therefore, precise
bounds for general κ between the oracle-proxy and the weakly balanced errors
in weak norm are useful.

3.2 Lemma. We have

(B2
t∗,λ(μ)−B2

tw,λ(μ))+ ≤ (κ−Dδ2)+, (Vt∗,λ − Vtw,λ)+ ≤ (Dδ2 − κ)+,

so that
E[‖μ̂(t∗) − μ‖2λ] ≤ E[‖μ̂(tw) − μ‖2λ] + |κ−Dδ2|.

Proof. Suppose tw > t∗ ≥ m0. Then Vt∗,λ < Vtw,λ and from κ ≥ B2
t∗,λ(μ) +

Dδ2 − Vt∗,λ (see (3.4) and afterwards), Vtw,λ = B2
tw,λ(μ) we deduce

B2
t∗,λ(μ) ≤ Vt∗,λ + κ−Dδ2 < Vtw,λ + κ−Dδ2 = B2

tw,λ(μ) + κ−Dδ2.

Conversely, for t∗ > tw ≥ m0 we have B2
t∗,λ(μ) ≤ B2

tw,λ(μ) as well as (3.4) and

Vtw,λ ≥ B2
tw,λ(μ), so that

Vt∗,λ = B2
t∗,λ(μ)− κ+Dδ2 ≤ B2

tw,λ(μ)− κ+Dδ2 ≤ Vtw,λ − κ+Dδ2.

This gives the result.

Remark that the weak variance control of Lemma 3.2 implies directly (t∗ −
tw)+ ≤ (D − κδ−2)+. From the inequalities B2

t (μ) ≥ λ−2
�t�B

2
t,λ(μ) and Vt ≤

λ−2
�t�Vt,λ we infer further tw ≤ ts, and thus it always holds

t∗ − (D − κδ−2)+ ≤ tw ≤ ts. (3.7)

As a consequence of the preceding two results, we obtain directly a weakly
balanced oracle inequality with error terms of order

√
Dδ2, provided |κ−Dδ|2

is at most of that order:
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3.3 Theorem. We have

E
[
‖μ̂(τ) − μ‖2λ

]
≤ C

(
E

[
‖μ̂(tw) − μ‖2λ

]
+
√
Dδ2 + |κ−Dδ2|

)
≤ C

(
2 min
t∈[m0,D]

E
[
‖μ̂(t) − μ‖2λ

]
+
√
Dδ2 + |κ−Dδ2|

)
with a numerical constant C > 0.

Proof. For the first bound use

E
[
‖μ̂(τ) − μ‖2λ

]
≤ 2E

[
‖μ̂(tw) − μ‖2λ

]
+ 2E

[
‖μ̂(τ) − μ̂(tw)‖2λ

]
and apply Proposition 3.1 and Lemma 3.2 with the estimates 2δBt∗,λ(μ) ≤
δ2 + B2

t∗,λ(μ), Δτ (μ)
2 � B2

t∗,λ(μ) +
√
Dδ2, B2

t∗,λ(μ) ≤ B2
tw,λ(μ) + |κ − Dδ2|

(’�’ denotes an inequality up to a numerical factor). The second bound follows
exactly as (3.5).

In weak norm, we have thus obtained a completely general oracle inequality
for our early stopping rule. In view of the lower bounds, the “residual term”
of order

√
Dδ2, which is much larger than the usual parametric order δ2, is

unavoidable. This will be developed further in the strong norm error analysis.

3.2. Upper bounds in strong norm

In Appendix 5.5 we derive exponential bounds for P (R2
m ≤ κ), m < t∗, in

terms of the weak bias and deduce by partial summation the following weak
bias deviation inequality:

3.4 Proposition. We have

E
[
(B2

τ,λ(μ)−B2
t∗,λ(μ))+

]
≤

(
17

√
D + 64

)
δ2 +B2

t∗,λ(μ)D
−1/2.

This is the probabilistic basis for the main bias oracle inequality.

3.5 Proposition. We have the balanced oracle inequality for the strong bias

E[(B2
τ (μ)−B2

ts(μ))+] ≤ 81λ−2
�ts�+1δ

2
(
ts +

√
D + (κδ−2 −D)+

)
.

Proof. On the event {τ ≥ ts} we have B2
τ (μ) ≤ B2

ts(μ). On {τ < ts} we have

B2
τ (μ)−B2

ts(μ) ≤ λ−2
�ts�+1(B

2
τ,λ(μ)−B2

ts,λ(μ)),

using the fact that only coefficients up to index �ts� + 1 enter into the bias
differences. From the weak bias control given by Proposition 3.4 it follows that

E[(B2
τ (μ)−B2

ts(μ))+]

≤ λ−2
�ts�+1

(
E[(B2

τ,λ(μ)−B2
t∗,λ(μ))+] + (B2

t∗,λ(μ)−B2
ts,λ(μ))+

)
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≤ λ−2
�ts�+1

(
(17

√
D + 64)δ2 + (1 +D−1/2)B2

t∗,λ(μ)
)

≤ λ−2
�ts�+1δ

2
(
81

√
D + 2(t∗ + κδ−2 −D)

)
,

where in the last line we used κ ≥ B2
t∗,λ(μ) +Dδ2 − Vt∗,λ (see (3.4) and after-

wards) and Vt∗,λ = t∗δ2. By (3.7) we see t∗ ≤ ts + (D − κδ−2)+ and the result
follows.

To assess the size of the bias bound, let us assume the polynomial decay
(PSD(p, CA)). Then a Riemann sum approximation yields for any t ∈ [1, D]

δ−2Vt =

�t�∑
i=1

λ−2
i + (t− �t�)λ−2

�t�+1 ≥ C−2
A

∫ t

0

x2pdx = C−2
A (2p+ 1)−1t2p+1.

Noting tλ−2
�t�+1 ≤ C2

A(�t�+ 1)2p+1 ≤ C2
A(2t)

2p+1, we thus obtain

λ−2
�t�+1tδ

2 ≤ (1 + 2p)22p+1C4
AVt. (3.8)

Consequently, we can estimate E[(B2
τ (μ) − B2

ts(μ))+] � Vts in the case ts �
max(

√
D,κδ−2 −D). This means that the bias bound is upper bounded by the

balanced strong oracle risk.
Let us see by a counterexample that (B2

t∗(μ)−B2
ts(μ))+ can be of the same

order as the strongly balanced risk itself, meaning that the bound of Proposition
3.5 is not too pessimistic in general. Suppose κ = Dδ2 ( so that t∗ = tw),
μD �= 0 and δ,D such that ts = D − 3/4. This gives μ2

D/4 = B2
ts(μ) = Vts . In

weak norm we have B2
D−1,λ(μ) = λ2

Dμ2
D, VD−1,λ = δ2(D− 1) and consequently

tw ≤ D − 1 if λ2
Dμ2

D ≤ δ2(D − 1). In that case, B2
t∗(μ) ≥ μ2

D = 4B2
ts(μ)

holds and we must indeed pay a positive factor for using the weak oracle in
strong norm. We can meet the bound λ2

Dμ2
D ≤ δ2(D − 1) under the constraint

μ2
D/4 = VD−3/4 = δ2(λ−2

D /4+
∑D−1

i=1 λ−2
i ) for instance for λi = i−p with p > 3/2

and D sufficiently large.
For the stochastic error we use in Appendix 5.6 exponential inequalities for

P (R2
m−1 > κ), m > t∗, to obtain the following bound:

3.6 Proposition. We have the oracle-proxy inequality for the strong norm
stochastic error

E[(Sτ − St∗)+] ≤ rV,τδ
2 with rV,τ := min

(
2
√
3

D∑
m=�t∗�+1

λ−2
m e

−
(m−1−t∗)2+

16D+32κδ−2 , D
)
.

If the polynomial decay condition (PSD(p, CA)) is satisfied, then

rV,τδ
2 ≤ CpC

4
A

((
(D + κδ−2)/(t∗)2

)1/2
+

(
(D + κδ−2)/(t∗)2

)p+1/2
)
Vt∗ (3.9)

holds with a constant Cp, only depending on p.



Early stopping for statistical inverse problems via truncated SVD estimation 3219

3.7 Corollary. We have the balanced oracle inequality for the stochastic error

E[(Sτ − Sts)+] ≤
(
rV,τ + λ−2

�t∗�+1(D − κδ−2)+

)
δ2.

Proof. By the monotonicity of St and Vt in t we bound

E[(Sτ−Sts)+] ≤ E[(Sτ−St∗)+]+E[(St∗−Sts)+] = E[(Sτ−St∗)+]+(Vt∗−Vts)+ .

In view of Proposition 3.6 it suffices to prove (Vt∗ −Vts)+ ≤ λ−2
�t∗�+1(Dδ2−κ)+.

By definition of the variances, (Vt∗ −Vtw)+ ≤ λ−2
�t∗�+1(Vt∗,λ−Vtw,λ)+ holds. We

apply Lemma 3.2 and note Vtw ≤ Vts by (3.7) to conclude.

Everything is prepared to prove our main strong norm result.

3.8 Theorem. Assume |κ − Dδ2| ≤ Cκ

√
Dδ2. Then the following balanced

oracle inequality holds in strong norm

E
[
‖μ̂(τ) − μ‖2

]
≤ E

[
‖μ̂(ts) − μ‖2

]
+

(
81λ−2

�ts+Cκ

√
D�+1

(
ts + (1 + Cκ)

√
D

)
+ rV,τ

)
δ2.

If in addition the polynomial decay condition (PSD(p, CA)) is satisfied, then
there is a constant C > 0, only depending on p, CA, Cκ, so that

E
[
‖μ̂(τ) − μ‖2

]
≤ C E

[
‖μ̂(ts∨

√
D) − μ‖2

]
. (3.10)

3.9 Remarks.

(a) The impact of the polynomial decay condition (PSD(p, CA)) is quite trans-
parent here. If the eigenvalues decay exponentially, λi = e−αi say, then a

factor e2αCκ

√
D appears in the balanced oracle inequality, which we then

also lose compared to the optimal minimax rate in strong norm. Polyno-
mial decay ensures λ−2

�ts+Cκ

√
D�+1

� λ−2
ts for ts ≥

√
D. Intuitively, stop-

ping about
√
D steps later does not affect the rate under (PSD(p, CA)),

but does affect it under exponential singular value decay.
(b) Compared with the main Theorem 3.5 in [2] this is a proper oracle inequal-

ity since for the truncated SVD method tw ≤ ts always holds. Note also
that the more direct proof here gives much simpler and tighter bounds.

Proof. By (3.2) we have

E

[
‖μ̂(τ) − μ‖2 − ‖μ̂(ts) − μ‖2

]
≤ E

[(
B2

τ (μ)−B2
ts(μ)

)
+
+

(
Sτ − Sts

)
+

]
.

Combining Proposition 3.5 and Corollary 3.7 we thus obtain

E
[
‖μ̂(τ) − μ‖2

]
≤ E

[
‖μ̂(ts) − μ‖2

]
+ 81λ−2

�ts∨t��+1δ
2
(
ts +

√
D + |κδ−2 −D|

)
+ rV,τδ

2.



3220 G. Blanchard et al.

By (3.7) we have t∗ ≤ ts + (D − κδ−2)+ and the first inequality follows.
Under (PSD(p, CA)) we use (3.9), Vt∗ � (t∗)

2p+1δ2, κδ−2 � D and t∗ ≤
ts + Cκ

√
D to further bound

rV,τ � t2ps
√
D +Dp+1/2,

with a factor depending on p, CA, Cκ. Finally, note

E[‖μ̂(ts) − μ‖2] ≤ 2Vts ≤ 2Vts∨
√
D ≤ 2E[‖μ̂(ts∨

√
D) − μ‖2],

Vts∨
√
D ∼ (ts ∨

√
D)2p+1δ2,

and apply λ−2

�ts+Cκ

√
D�+1

� (ts ∨
√
D)2p to deduce the second bound.

Again, the proof only relies on concentration bounds for the residuals R2
m and

easily extends to sub-Gaussian errors. Let us now derive from Theorem 3.8 an
asymptotic minimax upper bound over the Sobolev-type ellipsoids Hβ(R,D).
For m0 = �

√
D�+ 1 the bound (3.10) gives

E
[
‖μ̂(τ) − μ‖2

]
≤ C E

[
‖μ̂(ts) − μ‖2

]
because of ts ≥ m0 ≥

√
D. Now, ts(μ) � tβ,p,R(δ) holds with the optimal trun-

cation index tβ,p,R(δ) from (1.9) for μ ∈ Hβ(R,D) and if tβ,p,R(δ) ∈ [m0, D];
under these conditions E[‖μ̂(ts) − μ‖2] � R∗

β,p,R(δ) is thus true and we obtain
the following adaptive upper bound:

3.10 Corollary. Assume (PSD(p, CA)), |κ − Dδ2| ≤ Cκ

√
Dδ2 and choose

m0 = �
√
D�+ 1. Then there is a constant C > 0, depending only on p, CA and

Cκ, such that for all (β,R) with tβ,p,R(δ) ∈ [
√
D,D]

sup
μ∈Hβ(R,D)

Eμ

[
‖μ̂(τ) − μ‖2

]
≤ CR∗

β,p,R(δ).

In summary, together with the matching lower bound of Corollary 2.6 this
shows that the stopping rule τ is sequentially minimax adaptive.

4. An adaptive two-step procedure

4.1. Construction and results

The lower bounds show that, in general, there is no hope for an early stopping
rule attaining the order of the (unconstrained) oracle risk if the strongly bal-
anced oracle ts is of smaller order than

√
D. We can therefore always start the

stopping rule τ at some m0 �
√
D. If, however, immediate stopping τ = m0

occurs, we might have stopped too late in the sense that ts � m0. To avoid this
overfitting, we propose to run a second model selection step on {μ̂(0), . . . , μ̂(m0)}
in the event τ = m0.
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Below, we shall formalise this procedure and prove that this combined model
selection indeed achieves adaptivity, that is, its risk is controlled by an oracle
inequality. While violating the initial stopping rule prescription, we still gain
substantially in terms of numerical complexity. At the heart of this twofold
model selection procedure is a simple observation of independence.

4.1 Lemma. The stopping rule τ is independent of the estimators μ̂(0), . . . μ̂(m0).

Proof. By construction, τ is measurable with respect to the σ-algebra σ(R2
m0

,

. . . , R2
D) = σ(Y 2

m0+1, . . . , Y
2
D) and μ̂(m) is σ(Y1, . . . , Ym)-measurable. By the

independence of (Y1, . . . , Ym0) and (Ym0+1, . . . , YD) the claim follows.

For the second step, we suppose that m̂ ∈ {0, . . . ,m0} is obtained from any
model selection procedure among {μ̂(0), . . . , μ̂(m0)} that satisfies with a constant
C2 ≥ 1, for any signal μ, the oracle inequality

E[‖μ̂(m̂) − μ‖2] ≤ C2

(
min

m∈{0,...,m0}
E[‖μ̂(m) − μ‖2] + δ2

)
. (4.1)

Such an oracle inequality holds for standard procedures, for instance the AIC-
criterion

m̂ ∈ argminm∈{0,...,m0}

(
−

m∑
i=1

λ−2
i Y 2

i + 2δ2
m∑
i=1

λ−2
i

)
.

We refer to Section 2.3 in Cavalier and Golubev [7] for the corresponding result
and further discussion. If we are interested in a weak norm oracle inequality,
the AIC-criterion takes the weak empirical risk and reduces to the minimisation
of −

∑m
i=1 Y

2
i + 2mδ2, which is classical. Based on the lemma and the tools

developed in the previous section, we prove in Appendix 5.7 the following oracle
inequality in an asymptotic setting.

4.2 Proposition. Assume D ≥ 3, (PSD(p, CA)), |κ − Dδ2| ≤ Cκ

√
Dδ2 and

set m0 = �128 log(D)
√
D�+1. Suppose the model selector m̂ satisfies (4.1) with

C2 ≥ 1. Then there is a constant C > 0, depending only on p, CA, Cκ and C2,
such that uniformly over all signals μ the estimator

μ̂(ρ) =

{
μ̂(m̂), if τ = m0,

μ̂(τ), if τ > m0

satisfies

E
[
‖μ̂(ρ) − μ‖2

]
≤ C

(
min

m∈{0,...,D}
E

[
‖μ̂(m) − μ‖2

]
+ δ2

)
.

In particular, μ̂(ρ) is minimax adaptive over all Sobolev-type balls Hβ(R,D)
at a usually much reduced computational complexity compared to standard
model selection procedures requiring all μ̂(m), m = 0, . . . , D.
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Fig 1. Left: SVD representation of a super-smooth (blue), a smooth (red) and a rough (olive)
signal. Right: Relative efficiency for early stopping with m0 = 0.

4.2. Numerical illustration

Let us exemplify the procedure by some Monte Carlo results. As a test bed we
take the moderately ill-posed case λi = i−1/2 with noise level δ = 0.01 and
dimension D = 10 000. We consider early stopping at τ with κ = Dδ2 = 1.

In Figure 1 (left), we see the SVD representation of three signals: a very
smooth signal μ(1), a relatively smooth signal μ(2) and a rough signal μ(3),
the attributes coming from the interpretation via the decay of Fourier coeffi-
cients. The corresponding weakly balanced oracle indices tw are (34, 316, 1356).
The classical oracle indices in strong norm are (43, 504, 1331). Figure 1 (right)
shows box-plots of the relative efficiency of early stopping in 1000 Monte Carlo
replications defined as minm E[‖μ̂(m) − μ‖2]1/2/‖μ̂(τ) − μ‖, both for strong and
weak norm. Ideally, the relative efficiency should concentrate around one. This
is well achieved for the smooth and rough signals and even better than for the
corresponding Landweber results in [2]. The super-smooth case with its very
small oracle risk suffers from the variability within the residual and attains on
average an efficiency of about 0.5, meaning that its root mean squared error
is about twice as large as the oracle error. Let us mention that in unreported
situations with higher ill-posedness the relative efficiency is similarly good or
even better.

We are lead to consider the two-step procedure. According to Proposition 4.2
we have to choose an initial index somewhat larger than

√
D. The factor in the

choice there is very conservative due to non-tight concentration bounds. For the
implementation we choose m0 such that for a zero signal μ = 0 the probability of
{τ > m0} = {R2

m0
> κ} is about 0.01, when applying a normal approximation,

that is m0 = �q0.99
√
2D�+ 1 = 329 with the 99%-percentile q0.99 of N(0, 1). In

Figure 2(left) we see that with this choice for the super-smooth signal, 6 out of
1 000 MC realisations lead to τ > m0, for the others we apply the second model
selection step. The truncation for the smooth signal varies around m0, and the
second step is applied to about 50% of the realisations. In the rough case, τ > m0

was always satisfied and no second model selection step was applied.
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Fig 2. Left: truncation levels for early stopping with m0 = 0 and the two-step procedures with
m0 = �q0.99

√
2D� + 1 = 329, AIC in weak and strong norm. Right: Relative efficiencies for

the two-step procedure.

As model selection procedure we apply the AIC-criterion, based on the weak
and strong empirical norm for the weak and strong norm criterion, respectively.
The results are shown in Figure 2(right). We see that the efficiency for the super-
smooth signal improves significantly (with the 6 outliers not being affected).
The variability is still considerably higher than for the other two signals. This
phenomenon is well known for unbiased risk estimation. Especially for more
strongly ill-posed problems, one should penalise stronger, see the comparison
with the risk hull approach in Cavalier and Golubev [7] and the numerical
findings in Lucka et al. [14]. Here let us rather emphasize that a pure AIC-
minimisation for the super-smooth signal gives exactly the same result, apart
from the 6 outliers, but requires to calculate the AIC-criterion for D = 10 000
indices in 1 000 MC iterations. The two-step procedure, even for known SVD,
is about 30 times faster.

5. Appendix

5.1. Proof of Corollary 2.2

Proof. For i0 = �(2C2
μCA)

1/(2p+1)(R−1δ)−2/(2β+2p+1)�, we can choose c2 (in
dependence of Cμ, CA) big enough so that our assumptions imply i0 ≤ D and

1− R(μ, τ)2

Vi0+1
≥ 1− C2

μCA

(
(R−1δ)−2/(2β+2p+1)

i0 + 1

)1+2p

≥ 1

2
.

Put μ̄i = μi for i �= i0 + 1 and μ̄i0+1 = 1
2 R̄(i0 + 1)−α. Then μ̄ ∈ Hα(R̄,D)

follows from μ ∈ Hβ(R,D) ⊆ Hα(R,D) and R̄ ≥ 2R. The bias bound B2
i0
(μ̄) ≥

1
4 R̄

2(i0 + 1)−2α inserted in Proposition 2.1 yields the result.
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5.2. Proof of Lemma 2.3

Proof. With Sm = δ2
∑m

i=1 λ
−2
i ε2i we obtain

R(μ, τ)2 ≥ E

[
δ2

τ∑
i=1

λ−2
i ε2i

]
≥ E

[
1(τ ≥ m)Sm

]
.

By Lemma 1 in Laurent and Massart [12], for nonnegative weights ai, we have

P
( D∑

i=1

ai(ε
2
i − 1) < −2‖a‖

√
x
)
< e−x. (5.1)

Picking a = δ2(λ−2
1 , . . . , λ−2

m ) and x = log(5/4) so that 2
√
x ≤ 0.95, with

probability larger than 1− e−x = 0.2, it follows that

Sm ≥ E [Sm]− 2‖a‖
√
x ≥ δ2

20

m∑
i=1

λ−2
i =

Vm

20
,

where we used ‖a‖ ≤
∑m

i=1 ai = E [Sm] = Vm (observe that we could tighten the
latter inequality significantly under some additional assumptions on the singular
value decay). We now have

R(μ, τ)2 ≥ E [1(τ ≥ m)Sm]

≥ VmP ({τ ≥ m} ∩ {Sm ≥ Vm/20})/20
≥ Vm

(
1− P (τ < m)− P (Sm < Vm/20)

)
/20

≥ Vm

(
0.2− P (τ < m)

)
/20.

We deduce from this that Vm ≥ 200R(μ, τ)2 implies P (τ ≥ m) ≤ 0.9.

5.3. A total variation bound for non-central χ2-laws

5.1 Lemma. Let ϑ = (ϑ1, . . . , ϑK) ∈ R
K and P

ϑ
K be the non-central χ2-law of

Xϑ =
∑K

k=1(ϑk + Zk)
2 with Zk independent and standard Gaussian. Then, for

ϑ, ϑ̄ ∈ RK we have

‖Pϑ
K −Pϑ̄

K‖TV ≤ e
|‖ϑ‖2 − ‖ϑ̄‖2|+

√
8/π|‖ϑ‖ − ‖ϑ̄‖|√

πK
,

For ‖ϑ‖+ ‖ϑ̄‖ ≥
√
8e

2π−√
πe

≈ 5.248 this bound simplifies to

‖Pϑ
K −Pϑ̄

K‖TV ≤ 2
|‖ϑ‖2 − ‖ϑ̄‖2|√

K
.
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Proof. Writing ϑ = (ϑk), Z = (Zk) ∈ Rk we see by orthogonal transformation
that Xϑ = ‖ϑ‖2+2〈ϑ, Z〉+‖Z‖2 equals in law X ′

ϑ = ‖ϑ‖2+2‖ϑ‖Z ′
1+‖Z ′‖2 with

Z ′
1, . . . , Z

′
K ∼ N(0, 1) i.i.d. We can therefore first consider the conditional law

Q
ϑ
K(z) of Pϑ

K given {Z ′
1 = z}, which is nothing but the χ2(K − 1)-distribution

translated by ‖ϑ‖2 + 2‖ϑ‖z + z2.
If fp denotes the χ2(p)-density, then we have for any t > 0 that fp(x− t) >

fp(x) holds iff x ≥ xt =
t

1−e−t/(p−2) . Thus, we obtain

∫ ∞

0

|fp(x− t)− fp(x)| dx

=2

∫ ∞

0

(
fp(x− t)− fp(x)

)
+
dx

=
21−p/2

Γ(p/2)

∫ ∞

xt

(
(1− t/x)p/2−1et/2 − 1

)
xp/2−1e−x/2dx

=
21−p/2

Γ(p/2)

∫ xt

xt−t

x(p−2)/2e−x/2dx

≤ 2(2−p)/2

Γ(p/2)
t(p− 2)(p−2)/2e−(p−2)/2,

knowing that x = p− 2 is the mode of fp. Stirling’s formula guarantees Γ(x) ≥√
2π/x(x/e)x for all x > 0 such that the last expression is always bounded by

t(πp)−1/2e. This yields

‖Qϑ
K(z)−Q

ϑ̄
K(z)‖TV ≤ e(πK)−1/2

∣∣‖ϑ‖2 − ‖ϑ̄‖2 + 2(‖ϑ‖ − ‖ϑ̄‖)z
∣∣.

Taking expectation with respect to Z ′
1 ∼ N(0, 1) we conclude

‖Pϑ
K −P

ϑ̄
K‖TV ≤ e(πK)−1/2

∣∣‖ϑ‖ − ‖ϑ̄‖
∣∣E [∣∣‖ϑ‖+ ‖ϑ̄‖+ 2Z ′

1

∣∣].
Using the triangle inequality and E[|Z ′

1|] =
√
2/π, the upper bound follows.

5.4. Proof of Corollary 2.5

Proof. Set μ̄i = μi for i �= i0 + 1 and μ̄2
i0+1 = μ2

i0+1 +
1
4 R̄

2(i0 + 1)−2α for some
i0 ∈ {1, . . . , D}, so that μ̄ ∈ Hα(R̄,D) and condition (a) of Proposition 2.4 is
satisfied. If

(b’):
C2

A

4 R̄2(i0 + 1)−2(α+p) ≤ 0.025δ2
√

D − i0

holds, then condition (b) of Proposition 2.4 is ensured, whereas

(c’): R̄2(i0 + 1)−2(α+p) ≥ 2C2
A5.25

2δ2

implies condition (c) of Proposition 2.4. Finally, for

(d’): i0 ≥ �(200(1 + 2p)C2
AC

2
μ)

1/(2p+1)(R2δ−2)1/(2β+2p+1)�,
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we have Vi0+1 ≥ 200R(μ, τ)2. Hence, by Proposition 2.4, (b’)-(c’)-(d’) imply

R(μ̄, τ)2 ≥ 0.05B2
i0(μ̄) ≥

0.05
4 R̄2(i0 + 1)−2α.

For i0 =
⌊
C0 max

(
(R̄2δ−2/

√
D)1/(2α+2p), (R2δ−2)1/(2β+2p+1)

)⌋
with some suit-

ably large constant C0 > 0, depending only on Cμ, CA, p, and for D ≥ 2i0,
conditions (b’) and (d’) are satisfied. To check condition (c’), a sufficient con-
dition is i0 + 1 ≤ (R̄2δ−2/(56C2

A))
1/(2α+2p). The first term in the maximum

defining i0 satisfies this condition (here again using D ≥ 2i0) provided R−1δ is
smaller than a suitable constant c′2 depending on CA, Cμ, α, p. The second term
in the maximum defining i0 satisfies the sufficient condition

C0(R
2δ−2)1/(2β+2p+1) ≤ C0(R̄

2δ−2)1/(2α+2p+1) ≤ (R̄2δ−2/(56C2
A))

1/(2α+2p),

again as soon as R−1δ is smaller than a suitable constant c′′2 depending on
the same parameters as c′2. Finally, putting c2 = min(c′2, c

′′
2 , 1) and unwrap-

ping the condition D ≥ 2i0, yields (using Rδ−1 ≥ 1) the sufficient condi-
tion D ≥ c′3(R̄

2δ−2)1/(2α+2p+1/2), which is equivalent to the assumption D ≥
c3tα− 1

4 ,p,R̄
(δ) postulated in the statement, for suitable c′3, c3 depending on Cμ,

CA, α, p. This yields the result.

5.5. Proof of Proposition 3.4

Proof. By partial summation, we deduce fromB2
τ,λ(μ) > B2

t∗,λ(μ), which implies
τ ≤ �t∗�:

E[(B2
τ,λ(μ)−B2

t∗,λ(μ))+] =

�t∗�∑
m=m0

(B2
m,λ(μ)−B2

t∗,λ(μ))P (τ = m)

=

�t∗�∑
m=m0

�t∗�∑
k=m

(B2
k,λ(μ)−B2

(k+1)∧t∗,λ(μ))P (τ = m)

=

�t∗�∑
m=m0

(B2
m,λ(μ)−B2

(m+1)∧t∗,λ(μ))P (τ ≤ m).

In the case t∗ = m0 all expressions evaluate to zero because of τ ≥ t∗ and we
suppose t∗ > m0 from now on, so that (3.4) holds. For m0 ≤ m < t∗ we have
{τ ≤ m} = {R2

m ≤ κ}, E[R2
m] ≥ κ and by Lemma 1 in [12] (recall (5.1) in the

proof of Lemma 2.3) together with P (Z < −x) ≤ e−x2/(2σ2) for Z ∼ N(0, σ2),
x ≥ 0 we obtain the bound

P (R2
m ≤ κ) = P

( D∑
i=m+1

(
δ2(ε2i − 1) + 2λiμiδεi

)
≤ −(E[R2

m]− κ)
)

≤ P
( D∑

i=m+1

δ2(ε2i − 1) ≤ −E[R2
m]− κ

2

)
+ P

( D∑
i=m+1

λiμiδεi ≤ −E[R2
m]− κ

4

)
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≤ exp
(
− (E[R2

m]− κ)2

16δ4(D −m)

)
+ exp

(
− (E[R2

m]− κ)2

32δ2B2
m,λ(μ)

)
≤ F (B2

m,λ(μ)−B2
t∗,λ(μ)),

where we use E[R2
m]−κ ≥ B2

m,λ(μ)−B2
t∗,λ(μ) for m < t∗ (see (3.3), (3.4)), and

put

F (z) := exp
(
− z2

16δ4D

)
+ exp

(
− z2

32δ2(B2
t∗,λ(μ) + z)

)
, z ≥ 0.

We conclude by monotonicity of B2
•,λ(μ) and F via a Riemann-Stieltjes sum

approximation:

E
[(
B2

τ,λ(μ)−B2
t∗,λ(μ)

)
+

]
≤

�t∗�∑
m=m0

(B2
m,λ(μ)−B2

(m+1)∧t∗,λ(μ))F (B2
m,λ(μ)−B2

t∗,λ(μ))

≤
∫ B2

m0,λ(μ)

B2
t∗,λ

(μ)

F (y −B2
t∗,λ(μ)) dy

≤
∫ ∞

0

F (z) dz

≤
√
4πδ4D +

∫ B2
t∗,λ(μ)

0

e−z2/(64δ2B2
t∗,λ(μ))dz +

∫ ∞

B2
t∗,λ

(μ)

e−z/(64δ2)dz

≤
√
4πδ4D +

√
16πδ2B2

t∗,λ(μ) + 64δ2

≤
(
17

√
D + 64

)
δ2 +B2

t∗,λ(μ)D
−1/2,

using 4
√
πδBt∗,λ(μ) ≤ 4π

√
Dδ2 +D−1/2B2

t∗,λ(μ) by the binomial identity and√
4π + 4π ≤ 17 in the last line.

5.6. Proof of Proposition 3.6

Proof. By the Cauchy-Schwarz inequality and E[ε4m]1/2 =
√
3, we have

E

[
(Sτ − S�t∗�+1)+

]
= δ2

D∑
m=�t∗�+2

λ−2
m E[ε2m1(τ ≥ m)]

≤
√
3δ2

D∑
m=�t∗�+2

λ−2
m P (τ ≥ m)1/2.

For m ≥ t∗+1 ≥ m0+1 we have {τ ≥ m} = {R2
m−1 > κ}, E[R2

m−1] ≤ κ and by

P (
∑D

i=1 ai(ε
2
i −1) > x) ≤ exp

(
−x2/(4‖a‖2+4xmaxi ai)

)
for ai ≥ 0 (Lemma 1
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in [12]) together with P (Z > x) ≤ e−x2/(2σ2) for Z ∼ N(0, σ2), x ≥ 0, we obtain
the bound

P (R2
m−1 > κ) = P

( D∑
i=m

(
δ2(ε2i − 1) + 2λiμiδεi

)
> κ− E[R2

m−1]
)

≤ P
( D∑

i=m

δ2(ε2i − 1) ≥ κ− E[R2
m−1]

2

)
+ P

( D∑
i=m

λiμiδεi ≥
κ− E[R2

m−1]

4

)
≤ exp

(
− (κ− E[R2

m−1])
2

16δ4(D −m+ 1) + 8δ2(κ− E[R2
m−1])

)
+ exp

(
− (κ− E[R2

m−1])
2

32δ2B2
m−1,λ(μ)

)
.

For the numerator, we use the lower bound

κ− E[R2
m−1] ≥ κ− E[R2

t∗ ] + δ2(m− 1− t∗) ≥ δ2(m− 1− t∗).

For the denominators, we use 16δ4(D−m+1)+8δ2(κ−E[R2
m−1]) ≤ 16δ4D+8δ2κ

for the first term and 32δ2B2
m−1,λ(μ) ≤ 32δ2B2

t∗,λ(μ) ≤ 32δ2κ for the second
term. We arrive at

E

[
(Sτ − S�t∗�+1)+

]
≤ 2

√
3δ2

D∑
m=�t∗�+2

λ−2
m exp

(
− (m− 1− t∗)2

16D + 32κδ−2

)
.

We add E[(S�t∗�+1 − St∗)+] ≤ 2
√
3δ2λ−2

�t∗�+1 and note (Sτ − St∗)+ ≤ SD, which

gives the trivial bound E[SD] = Dδ2. Under the polynomial eigenvalue decay
this yields the bound

rV,τ ≤ 2
√
3C2

A

(
1 +

∑
k≥0

(t∗ + 1 + k)2pe−k2/(16D+32κδ−2)
)
∧D.

In the sequel ’�’, ’�’ denote inequalities up to a factor only depending on p.
A Riemann sum approximation shows for any R > 0∑

k≥0

e−k2/R ≤ 1 +

∫ ∞

0

e−x2/Rdx �
√
R.

Similarly, we obtain∑
k≥0

k2pe−k2/R ≤
∫ ∞

0

(1 + x)2pe−x2/Rdx � Rp+1/2.

This yields

rVτ � C2
A

(
(t∗)2p

√
D + κδ−2 + (D + κδ−2)p+1/2

)
.

On the other hand, we have

Vt∗ = δ2
( �t∗�∑

m=1

λ−2
m + (t∗ − �t∗�)λ−2

�t∗�+1

)
� δ2C−2

A (t∗)2p+1,

implying the result with a suitable constant Cp.
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5.7. Proof of Proposition 4.2

Proof. In this proof ’�’ denotes an inequality holding up to factors depending
only on p, CA, Cκ and C2; similarly, ’∼’ denotes a two-sided inequality holding
up to factors depending on these parameters. In the case ts > m0 we use the
independence of τ from μ̂(0), . . . μ̂(m0) by Lemma 4.1 to obtain

E[‖μ̂(ρ) − μ‖21(τ = m0)] = E[‖μ̂(m̂) − μ‖2]P (τ = m0)

≤ C2

(
E[‖μ̂(m0) − μ‖2] + δ2

)
P (τ = m0)

= C2

(
E[‖μ̂(τ) − μ‖21(τ = m0)] + δ2P (τ = m0)

)
.

On {τ > m0} we have ρ = τ and we apply Theorem 3.8 with ts ≥ m0 >
√
D to

get
E[‖μ̂(ρ) − μ‖21(τ > m0)] ≤ E[‖μ̂(τ) − μ‖2] � E[‖μ̂(ts) − μ‖2].

Because of ts > m0 we have E[‖μ̂(ts) − μ‖2] ≤ 2mint∈[0,D] E[‖μ̂(t) − μ‖2]. This
gives the result in this case.

Next, consider the case ts = m0 where B2
m0

(μ) ≤ Vm0 . Then the estimator

μ̂(ms) with ms ∈ {0, 1, . . . ,m0} from (1.7) satisfies

E
[
‖μ̂(ms) − μ‖2

]
≤ 2max

i

λ2
i

λ2
i+1

min
m∈{0,...,D}

E
[
‖μ̂(m) − μ‖2

]
,

noting that the factor maxi λ
2
i /λ

2
i+1 comes from the discretisation ms of the

balanced oracle and is bounded by C4
A2

2p � 1. Given the independence of τ
from {μ̂(0), . . . , μ̂(m0)} by Lemma 4.1 and the properties of the model selector
m̂, we have

E[‖μ̂(ρ) − μ‖21(τ = m0)] ≤ C2

(
E[‖μ̂(ms) − μ‖2] + δ2

)
� min

m∈{0,...,D}
E[‖μ̂(m) − μ‖2] + δ2.

For ms ∈ [m0/2,m0]

E[‖μ̂(m0) − μ‖2] ≤ B2
ms

(μ) + Vm0 � E[‖μ̂(ms) − μ‖2]

follows from Vm0 ∼ δ2m2p+1
0 ∼ Vms

. By Theorem 3.8 with ts = m0 this gives

E[‖μ̂(ρ) − μ‖21(τ > m0)] � E[‖μ̂(m0) − μ‖2] � E[‖μ̂(ms) − μ‖2]
� min

m∈{0,...,D}
E[‖μ̂(m) − μ‖2].

For ms < m0/2 we obtain by {τ > m0} = {R2
m0

> κ}, Sτ ≤ SD, B2
τ (μ) ≤

B2
m0

(μ) and the Cauchy-Schwarz inequality:

E[‖μ̂(ρ) − μ‖21(τ > m0)] ≤ E[(B2
m0

(μ) + SD)1(R2
m0

> κ)]
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≤ B2
m0

(μ)P (R2
m0

> κ) + E[S2
D]1/2P (R2

m0
> κ)1/2.

We have B2
m0

(μ) ≤ B2
ms

(μ) ≤ VD and E[S2
D]1/2 � E[SD] = VD (by comparison

of Gaussian moments), so that

E[‖μ̂(ρ) − μ‖21(τ > m0)] � VDP (R2
m0

> κ)1/2 ∼ δ2DP (R2
m0

> κ)1/2.

Observing mw := min{m ≥ 0 |B2
m,λ(μ) ≤ Vm,λ} ≤ ms < m0/2 we obtain

E[R2
m0

]− κ = B2
m0,λ(μ)− Vm0,λ ≤ B2

mw,λ(μ)−m0δ
2 ≤ −(m0/2)δ

2.

As in the proof of Proposition 3.6 we therefore find

P (R2
m0

> κ) ≤ exp
(
− m2

0

64(D −m0) + 16m0

)
+ exp

(
− m2

0δ
2

128B2
m0,λ

(μ)

)
.

By the choice of m0 and B2
m0,λ

(μ) ≤ B2
m0/2,λ

(μ) ≤ (m0/2)δ
2, using D ≥ 3 ⇒

logD ≥ 1, we deduce

P (R2
m0

> κ) ≤ 2 exp
(
− 2 logD

)
= 2D−2.

Insertion of this bound yields E[‖μ̂(ρ)−μ‖21(τ > m0)] � δ2, which accomplishes
the proof for the case ts = m0 and ms ≤ m0/2.
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