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Abstract: The intensity of a Gibbs point process is usually an intractable
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saddlepoint approximation which consists, for basic models, in calculat-
ing this Laplace transform with respect to a homogeneous Poisson point
process. In this paper, we develop an approximation which consists in cal-
culating the same Laplace transform with respect to a specific determinan-
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as demonstrated by some numerical examples.
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1. Introduction

Due to their simple interpretation, Gibbs point processes and in particular pair-
wise interaction point processes play a central role in the analysis of spatial point
patterns (see van Lieshout (2000); Møller and Waagepetersen (2004); Baddeley
et al. (2015)). In a nutshell, such models (in the homogeneous case) are defined
in a bounded domain by a density with respect to the unit rate Poisson point
process which takes the form

f(x) ∝ β|x|
∏
u∈x

g(v − u),

where x is a finite configuration of points, β > 0 represents the activity param-
eter, |x| is the number of elements of x and where g : Rd → R

+ is the pairwise
interaction function. Here ∝ means “proportional to”.

However, many important theoretical properties of these models are in gen-
eral intractable, like for instance the simplest one, the intensity λ ∈ R

+, rep-
resenting the mean number of points per unit volume. It is known (see e.g.
Section 2.2) that

λ = β E

(∏
u∈x

g(u)

)
.

Such an expectation is in general intractable. As clearly outlined by Baddeley
and Nair (2012), this intractability constitutes a severe drawback. For exam-
ple, simulating a Gibbs point process with a prescribed value of λ cannot be
done beforehand even for simple models such as Strauss models. Baddeley and
Nair (2012) suggest to evaluate the expectation with respect to a homogeneous
Poisson point process with intensity λ. This results in the Poisson-saddlepoint
approximation, denoted by λps, obtained as the solution of

log λps = log β − λps G

where G =
∫
Rd(1− g(u)) du (provided this integral is finite).

The general idea of the present paper is to evaluate the same expectation
with respect to a determinantal point process with intensity λ. Determinantal
point processes (DPP), see e.g. Lavancier et al. (2015), are a class of repulsive
models which is more tractable than Gibbs models. For example all moments
are explicit. If g has a finite range R > 0 and a possible hard-core distance
0 ≤ δ ≤ R, in the sense that g(u) = 0 for ‖u‖ ≤ δ, our approximation denoted
by λdpp is the solution of

log λdpp = log β + (1 + λdpp|Bδ|) log
(
1− λdpp|Bδ|

1 + λdpp|Bδ|

)
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+ (1 + λdpp(G− |Bδ|)/κ) log
(
1− λdpp(G− |Bδ|)

1 + λdpp(G− |Bδ|)/κ

)
, (1.1)

where

κ =

∫
(1− g)2 − |Bδ|
|BR| − |Bδ|

, (1.2)

Bρ denotes the Euclidean ball centered at 0 with radius ρ and |Bρ| is its volume.
Here we agree that if δ = R then κ = 1, which implies κ > 0.

Both approximations λdpp and λps can be obtained very quickly with a unit-
root search algorithm. Figure 1 reports λdpp and λps as well as the true intensity
λ (obtained by Monte-Carlo simulations) for Strauss models in terms of the in-
teraction parameter γ1 ∈ [0, 1]. This setting is considered by Baddeley and Nair
(2012). The DPP approximation outperforms the Poisson-saddlepoint approxi-
mation especially when γ1 is close to zero, i.e. for very repulsive point processes.
More numerical illustrations are displayed in Section 4.

Fig 1. Comparison of the exact intensity (small boxplots), the Poisson-saddlepoint approxi-
mation (dashed line) and the DPP approximation (solid line) for homogeneous Strauss models
with activity parameter β and range of interaction R. Curves and boxplots are reported in
terms of the interaction parameter γ1 ∈ [0, 1].

The rest of the paper is organized as follows. Section 2 provides necessary
notation and background material on point processes, Gibbs point processes
and determinantal point processes. Intensity approximations are discussed in
detail in Section 3. Finally, Section 4 presents numerical experiments for several
classes of pairwise interaction point processes.

2. Gibbs point processes and determinantal point processes

2.1. Background and Poisson point processes

For d ≥ 1, let X be a spatial point process defined on R
d, which we see as a

random locally finite subset of Rd. Local finiteness of X means that XB = X∩B
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is finite almost surely (a.s.), that is the number of points N(B) of XB is finite
a.s., whenever B ⊂ R

d is bounded. We let N stand for the state space consisting
of the locally finite subsets (or point configurations) of Rd. Let B(Rd) denote
the class of bounded Borel sets in R

d. For any B ∈ B(Rd), we denote by |B| its
Lebesgue measure. A realization of XB is of the form x = {x1, . . . , xm} ⊂ B
for some nonnegative finite integer m and we sometimes denote its cardinal by
|x|. For further details about point processes, we refer to Daley and Vere-Jones
(2003) and Møller and Waagepetersen (2004).

A spatial point process is said to have an nth order intensity function ρ(n) if
for any nonnegative measurable function h : (Rd)n → R

+, the following formula
referred to as Campbell-Mecke formula holds

E

�=∑
u1,...,un∈X

h(u1, . . . , un) =

∫
Rd

. . .

∫
Rd

h(u1, . . . , un)ρ
(n)(u1, . . . , un) du1 . . . dun,

(2.1)

where the sign 
= over the sum means that u1, . . . , un are pairwise distinct. Then,
ρ(n)(u1, . . . , un) du1 · · · dun can be interpreted as the approximate probability
for X having a point in each of infinitesimally small regions around u1, . . . , un of
volumes du1, . . . , dun, respectively. We also write ρ(u) for the intensity function
ρ(1)(u). A spatial point process X in Rd is said to be stationary (respectively
isotropic) if its distribution is invariant under translations (respectively under
rotations). When X is stationary, the intensity function reduces to a constant
denoted by λ in the rest of this paper. As a matter of fact, λ measures the mean
number of points per unit volume.

The Poisson point process, often defined as follows (see e.g. Møller and
Waagepetersen (2004)), serves as the reference model.

Definition 2.1. Let ρ be a locally integrable function on S, for S ⊆ R
d. A point

process X satisfying the following statements is called the Poisson point process
on S with intensity function ρ:

• for any m ≥ 1, and for any disjoint and bounded A1, . . . , Am ⊂ S, the
random variables XA1 , . . . ,XAm are independent;

• N(A) follows a Poisson distribution with parameter
∫
A
ρ(u) du for any

bounded A ⊂ S.

Among the many properties of Poisson point processes, it is to be noticed
that the nth order intensity function writes ρ(n)(u1, . . . , un) =

∏n
i=1 ρ(ui), for

any pairwise distinct u1, . . . , un ∈ S.
Let Z be a unit rate Poisson point process on S, which means that its intensity

is constant and equal to one. Assume, first, that S is bounded (|S| < ∞). We
say that a spatial point process X has a density f if the distribution of X is
absolutely continuous with respect to the one of Z and with density f . Thus, for
any nonnegative measurable function h defined on N , Eh(X) = E(f(Z)h(Z)).
Now, suppose that f is hereditary, i.e., for any pairwise distinct u0, u1, . . . , un ∈
S, f({u1, . . . , un}) > 0 whenever f({u0, u1, . . . , un}) > 0. We can then define
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the so-called Papangelou conditional intensity by

λ(u,x) = f(x ∪ u)/f(x) (2.2)

for any u ∈ S and x ∈ N , setting 0/0 = 0. By the interpretation of f , λ(u,x) du
can be considered as the conditional probability of observing one event in a
small ball, say B, centered at u with volume du, given that X outside B agrees
with x. When f is hereditary, there is a one-to-one correspondence between f
and λ.

Because the notion of density for Z when S = R
d makes no sense, the Pa-

pangelou conditional intensity cannot be defined through a ratio of densities in
Rd. But it still makes sense as the Papangelou conditional intensity can actually
be defined at the Radon-Nykodym derivative of P!

u the reduced Palm distribu-
tion of X with respect to P, the distribution of X (see Daley and Vere-Jones
(2003)). We do not want to enter in too much detail here and prefer to refer the
interested reader to Coeurjolly et al. (2017).

Finally, we mention the celebrated Georgii-Nguyen-Zessin formula
(see Georgii, 1976; Nguyen and Zessin, 1979), which states that for any h :
R

d ×N → R (such that the following expectations are finite)

E
∑
u∈X

h(u,X \ u) =
∫
Rd

E (h(u,X)λ(u,X)) du. (2.3)

By identification of (2.1) and (2.3), we see a link between the intensity function
of a point process and the Papangelou conditional intensity: for any u ∈ R

d

ρ(u) = E (λ(u,X)) ,

which in the stationary case reduces to

λ = E(λ(0,X)) . (2.4)

2.2. Gibbs point processes

For a recent and detailed presentation, we refer to Dereudre (2017). Gibbs pro-
cesses are characterized by an energy function H (or Hamiltonian) that maps
any finite point configuration to R∪{∞}. Specifically, if |S| < ∞, a Gibbs point
process on S associated to H and with activity β > 0 admits the following
density with respect to the unit rate Poisson process:

f(x) ∝ β|x|e−H(x). (2.5)

This definition makes sense under some regularity conditions onH, typically non
degeneracy (H(∅) < ∞) and stability (there exists a ∈ R such that H(x) ≥ a|x|
for any x ∈ N ). Consequently, configurations x having a small energy H(x) are
more likely to be generated by a Gibbs point process than by a Poisson point
process, and conversely for configurations having a high energy. In the extreme
case where H(x) = ∞, then x cannot, almost surely, be the realization of a
Gibbs point process associated to H.
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In this paper, we focus on pairwise interaction point processes. To be close to
the original paper by Baddeley and Nair (2012) the present contribution is based
on, we use their notation: a Gibbs point process in S is said to be a pairwise
interaction point process with pairwise interaction function g : Rd → R

+, if its
density writes

f(x) ∝ β|x|
∏

u,v∈x

g(u− v).

If |S| = ∞, this definition and more generally Definition (2.5) do not make
sense since H(x) can be infinite or even undefined if |x| = ∞. In this case,
Gibbs point processes have to be defined via their conditional specifications
and for pairwise interactions Gibbs point processes, restrictions on g have to
be imposed for existence (see again Dereudre (2017) and the references therein
for details). Nonetheless, as mentioned in the previous section, the concept of
Papangelou conditional intensity applies whenever |S| < ∞ or |S| = ∞, and in
either case it has the explicit form

λ(u,x) = β
∏
v∈x

g(u− v), (2.6)

for any u ∈ S. Note that when S = R
d, a pairwise interaction Gibbs point

process is stationary if g is symmetric (i.e. g(w) = g(−w) for any w ∈ R
d) and

it is further isotropic if g(u − v) depends simply on ‖u − v‖. Moreover, we say
that the interaction involves a hard-core radius δ ≥ 0 if g(u) = 0 for ‖u‖ ≤ δ.

From (2.4), we deduce that the intensity parameter of a stationary pairwise
interaction process writes

λ = E(λ(0,X)) = β E

(∏
v∈X

g(v)

)
. (2.7)

Let us give a few examples (which are in particular well-defined in R
d). Many

other examples can be found e.g. in the recent monograph by Baddeley et al.
(2015).

• Strauss model : let γ ∈ [0, 1] and 0 < R < ∞

g(u) =

{
γ if ‖u‖ ≤ R
1 otherwise.

(2.8)

• Strauss Hard-core model : let γ ∈ R+ and 0 < δ < R < ∞

g(u) =

⎧⎨
⎩

0 if ‖u‖ < δ
γ if δ ≤ ‖u‖ ≤ R
1 otherwise.

• Piecewise Strauss Hard-core model :

g(u) =

⎧⎨
⎩

0 if ‖u‖ < δ
γi if Ri ≤ ‖u‖ ≤ Ri+1, i = 1, . . . , I
1 otherwise,
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where I ≥ 1, 0 ≤ R1 = δ < R2 < · · · < RI+1 = R < ∞ and γ1, . . . , γI ∈
R

+ if δ > 0, otherwise γ1, . . . , γI ∈ [0, 1].
• Diggle-Graton model : let γ ∈ [0, 1]

g(u) =

{ (
‖u‖
R

)1/γ

if ‖u‖ ≤ R

1 otherwise,

where for t ∈ (0, 1), t∞ = 0 and 1∞ = 1 by convention.

Let us note that a Strauss model with γ = 0 and radius R is actually a
hard-core model with radius R. The Diggle-Graton potential can be found in
Baddeley et al. (2015) in a slightly different parameterization. The one chosen
here makes comparisons with the Strauss model easier. For instance, when γ = 0
the model reduces to a Strauss model with γ = 0 and radius R. When γ = 1,
the function g grows linearly from 0 to 1. Figure 2 depicts the form of some of
the pairwise interaction functions presented above.

Fig 2. Examples of pairwise interaction functions for the Strauss model (γ = 0.5, R = 0.15),
the piecewise Strauss hard-core model (δ = R1 = 0.05, R2 = 0.1, R3 = R = 0.15, γ1 = 0.8,
γ2 = 0.2), and the Diggle-Graton model (γ = 0.05, 0.3 and 1, R = 0.15).

A Gibbs point process has a finite range R if for any u ∈ R
d and x ∈ N ,

λ(u,x) = λ(u,x ∩B(u,R)). For pairwise interaction point processes, this prop-
erty translates to g(u) = 1 for any u ∈ Rd such that ‖u‖ > R. All previous mod-
els have a finite range R < ∞. An example of infinite range pairwise interaction
point process which will not be considered in this paper is the Lennard-Jones
model (see e.g. Ruelle (1969); Baddeley et al. (2015)).

2.3. Determinantal point processes

Determinantal point processes (DPPs) are models for inhibitive point patterns.
We refer to Lavancier et al. (2015) for their main statistical properties. The
interested reader is also referred to Macchi (1975); Shirai and Takahashi (2003);
Hough et al. (2009) for historical and theoretical aspects.
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DPPs are defined through a kernel function K which is a function from S×S
to C. A point process is a DPP on S with kernel K, denoted by DPP(K), if for
any n, its nth order intensity function takes the form

ρ(n)(u1, . . . , un) = det[K](u1, . . . , un), (2.9)

for every (u1, . . . , un) ∈ Sn, where [K](u1, . . . , un) denotes the matrix with
entries K(ui, uj), 1 ≤ i, j ≤ n. In particular, the intensity function of DPP(K)
is K(u, u).

Conditions on the kernel K are required to ensure the existence of DPP(K).
For our purpose, we will only consider DPPs on a compact set. So let us assume
that S is compact and suppose that K is a continuous real-valued covariance
function on S × S. In this setting, by the Mercer theorem (see Riesz and Nagy
(1990)), K admits the spectral expansion

K(u, v) =

∞∑
i=1

λiφi(u)φi(v), ∀u, v ∈ S, (2.10)

where {φi}i≥1 is an orthonormal basis of L2(S) and where λi, i ≥ 1, are referred
to as the eigenvalues of K. Under the above assumptions, DPP(K) exists if and
only if λi ≤ 1 for all i.

Due to their tractability, DPPs have many interesting properties. Many of
them have been obtained by Shirai and Takahashi (2003), from which we derive
the following key-equation used by our intensity approximation. Its proof is
postponed to Appendix A.

Proposition 2.2. Let X be a DPP on a compact set S with kernel K. As-
sume that K is a continuous real-valued covariance function on S×S whose all
eigenvalues are not greater than 1. Then, for any bounded function g : S → R

+,

E

(∏
v∈X

g(v)

)
=

∏
i≥1

(1− λ̃i) (2.11)

where λ̃i, for i ≥ 1, are the eigenvalues of the integral operator with kernel
K̃ : S × S → R given by

K̃(u, v) = (1− g(u))K(u, v). (2.12)

If g ≤ 1 we can equivalently choose for K̃ the symmetric kernel

√
1− g(u)K(u, v)

√
1− g(v),

in which case the λ̃i’s are simply the eigenvalues of K̃ in its spectral represen-
tation given by the Mercer theorem.
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3. Intensity approximation

3.1. Poisson-saddlepoint approximation

We remind that the intensity parameter of a Gibbs point process, and in particu-
lar a pairwise interaction point process satisfies (2.7). The expectaction in (2.7)
is to be regarded with respect to P the distribution of the Gibbs point pro-
cess X. Baddeley and Nair (2012) suggest to replace P by a simpler distribution,
say Q, for which the right-hand-side of (2.7) becomes tractable. The Poisson-
saddlepoint approximation consists in choosing Π(λ), the Poisson distribution
with parameter λ, as distribution Q. As a result, the Poisson-saddlepoint ap-
proximation consists in resolving the equation

λ = β EΠ(λ)

(∏
v∈Y

g(v)

)
= β EΠ(λ)

(
exp

(∑
v∈Y

log g(v)

))
, (3.1)

with the convention that log 0 = −∞ and where, to avoid any ambiguity, we
denote by Y a Poisson point process with intensity λ defined on R

d and stress
also this by indexing the E with the distribution Π(λ). It turns out that if g(u) ∈
[0, 1] for any u ∈ R

d, the right-hand side of (3.1) is the Laplace transform of
some Poisson functional and equals β exp(−λG) where G =

∫
Rd(1−g(u)) du, see

e.g. Møller and Waagepetersen (2004, Proposition 3.3). As noticed in Baddeley
and Nair (2012), this formula extends to more general functions g, provided
G > −∞. Hence, the Poisson-saddlepoint approximation, denoted by λPS in
this paper, is defined as the solution, when it exists, of

λps = β exp(−λps G). (3.2)

For stationary pairwise Gibbs models with finite range R, and such that
λ(u,x) ≤ β (or equivalently such that g ≤ 1), then 0 ≤ G ≤ |BR|. In this case,
Baddeley and Nair (2012, Theorem 2) states, among other properties, that λps

exists uniquely and is an increasing function of β. Actually, when G < 0, which
corresponds to an attractive pattern, we can say more: if −e−1/β < G < 0,
λps exists but is not unique (there are two solutions) and if G < −e−1/β, λps

does not exist (if G = −e−1/β, a case which is not really interesting, there is a
unique solution), see Section 4 for an illustration of this result in the case of a
Strauss hard-core interaction.

From a numerical point of view, λPS can be very efficiently and quickly esti-
mated using root-finding algorithms.

3.2. DPP approximation

Following the same idea as the Poisson-saddlepoint approximation, for a sta-
tionary pairwise interaction point process with finite range R, we suggest to
substitute the measure P involved in the expectation (2.7) by the measure Q
corresponding to a DPP defined on BR with some kernel K (to be chosen)
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and intensity λ, i.e. K(u, u) = λ. Similarly to the previous section, by letting
DPP(K;λ) denote the distribution of such a DPP and Y ∼ DPP(K;λ), the
DPP approximation of the intensity λ is the solution of

λ = β EDPP(K;λ)

(∏
v∈Y

g(v)

)
. (3.3)

From Proposition 2.2 and in particular from (2.11), this yields the estimating
equation

log λ = log β +
∑
i≥1

log(1− λ̃i), (3.4)

where the eigenvalues λ̃i of the integral operator with kernel K̃ are related to λ
by the relation

K̃(u, v) = (1− g(u))K(u, v) with K(u, u) = λ.

To complete this approximation, the eigenvalues λ̃i need to be specified. We first
consider in the next section the situation where there is no hard-core, i.e. δ = 0,
before turning to the general case in Section 3.2.2. Some theoretical properties
of our DPP approximation are presented in Section 3.2.4.

3.2.1. DPP approximation without hard-core

We assume in this section that the pairwise interaction function g does not
involve a hard-core part, i.e. δ = 0. We also assume that G =

∫
(1 − g) > 0,

which is the typical situation of a repulsive interaction. In this case we choose
the eigenvalues λ̃i in (3.4) to be zero except a finite number N of them that are
all equal. Given that

∑
i≥1

λ̃i =

∫
Rd

K̃(u, u)du =

∫
Rd

(1− g(u))K(u, u)du = λG, (3.5)

this means that for some N ≥ λG,

λ̃i =
λG

N
, for i = 1, . . . , N (3.6)

and λ̃i = 0 for i ≥ N + 1. With this choice, the integer N remains the single
parameter to choose in our approximation. Note that N ≥ λG is a necessary
condition to ensure λ̃i ≤ 1 as imposed by relation (2.11), but it is in general not
sufficient to ensure the existence of DPP(K) where K is related to K̃ through
(2.12). This will be clearly illustrated below when g is the Strauss interaction
function. For the choice (3.6), the DPP approximation of the intensity, denoted
by λdpp, becomes the solution of

log λdpp = log β +N log

(
1− λdppG

N

)
. (3.7)
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To motivate (3.6) and how we should setN , assume for a moment that g is the
interaction function of a Strauss model with range R and interaction parameter
γ ∈ [0, 1], see (2.8). In this case K̃(u, v) = (1 − γ)K(u, v) for any u, v ∈ BR

and the eigenvalues of K and K̃ satisfy λ̃i = (1 − γ)λi. In the approximation
(3.3), we start by choosing a kernel K with a finite number of non-vanishing
eigenvalues λi that are all equal. In view of

∑
λi =

∫
K(u, u)du = λ|BR|,

this leads to λi = λ|BR|/N for i = 1, . . . , N and N ≥ λ|BR|. Note that the
latter inequality is necessary to ensure the existence of DPP(K). Going back
to λ̃i, this means that (3.6) follows with the necessary and sufficient condition
N ≥ λ|BR| = λG/(1− γ) which is greater than λG.

In order to set N precisely for the Strauss model, remember that a homoge-
neous DPP is more repulsive when its eigenvalues are close to 1, see Lavancier
et al. (2015); Biscio and Lavancier (2016), and at the opposite a DPP is close to
a Poisson point process when its eigenvalues are all close to 0. This suggests that
in order to make the approximation (3.3) efficient, we should choose λi close to 1
when the Gibbs process we want to approximate is very repulsive, that is when
γ is close to 0. Moreover the eigenvalues should decrease to 0 when γ increases
to 1. If λi = λ|BR|/N , this is equivalent to choosing N an integer that increases
from λ|BR| to infinity when γ increases from 0 to 1. A natural option is thus
to choose N as the smallest integer larger than λ|BR|/(1− γ). Our final choice
for the Strauss model is therefore N = �λ|BR|/(1 − γ)�, where �.� denotes the
ceiling function, which we may write, for later purposes, N = �λG/(1− γ)2�.

However, with the latter choice, the function in the right-hand side of equation
(3.7) is not continuous in λ, which may lead to none or several solutions to this
equation. As a last step in our approximation, we therefore consider the upper
convex envelope of this function, ensuring a unique solution to (3.7). This finally
leads for the Strauss interaction process to the approximation λdpp defined as
the solution, when it exists, of

log λdpp = log β + (1 + λdppG/(1− γ)2) log

(
1− λdppG

1 + λdppG/(1− γ)2

)
.

Let us now discuss the case of a general pairwise interaction function g with-
out hard-core. In this setting, it is generally not possible to relate the eigenvalues
λi with the eigenvalues λ̃i. Motivated by the Strauss case, we choose λ̃i as in
(3.6) where N = �λG/κ� and κ ∈ [0, 1] is a parameter that takes into account
the repulsiveness encoded in g. In general κ must be close to 0 when g is close
to 1 (the Poisson case), and close to 1 when g is close to a pure hard-core
interaction. We decide to quantify the repulsiveness of the model by

κ =

∫
(1− g)2

|BR|
,

in agreement with our choice for the Strauss model for which κ = (1− γ)2.

Plugging N = �λG/κ� into (3.7) and considering the upper convex envelope
to ensure the existence of a unique solution, we finally end up with our DPP
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approximation, when there is no hard-core, being the solution, when it exists,
of

log λdpp = log β + (1 + λdppG/κ) log

(
1− λdppG

1 + λG/κ

)
. (3.8)

3.2.2. DPP approximation in presence of a hard-core part

A pure hard-core interaction with radius δ > 0 is a particular instance of a
Strauss interaction where γ = 0 and R = δ. Following the approximation of the
intensity of a Strauss point process discussed in the previous section, we obtain
in this case the DPP approximation:

log λdpp = log β + (1 + λdpp|Bδ|) log
(
1− λdpp|Bδ|

1 + λdpp|Bδ|

)
, (3.9)

which is just (3.8) with G = |Bδ| and κ = 1. This approximation is associated
with the initial choice of N = �λ|Bδ|� non vanishing eigenvalues λ̃i in (3.6),
taking the common value λ|Bδ|/N .

Assume now that the finite range pairwise interaction with range R is not a
pure hard-core interaction, but still involves some hard-core part. This means
that there exists δ > 0 with δ < R such that g(u) = 0 for ‖u‖ ≤ δ and
g(u) > 0 for ‖u‖ > δ. In this situation, we do not choose the same common
value for all eigenvalues λ̃i, but we consider two groups of eigenvalues. The first
group accounts for the hard-core part. It contains �λ|Bδ|� eigenvalues that take
the common value λ|Bδ|/�λ|Bδ|�, just as for a pure hard-core interaction. The
second group accounts for the rest of interaction, quantified by gδ(u) = g(u)
for ‖u‖ ≥ δ while gδ(u) = 0 if ‖u‖ < δ. Following the previous section, we fix
their common value to λGδ/Nδ where Gδ =

∫
(1− gδ) and Nδ = �λGδ/κδ� with

κδ =
∫
(1− gδ)

2/(|BR| − |Bδ|). The choice of κδ follows the same motivation as
before: It is 1 when gδ(u) = 1 for ‖u‖ > δ (the case of no interaction beyond δ)
and 0 when gδ(u) = 0 for δ < ‖u‖ < R (the case of a pure hard-core interaction).
Note that this choice guarantees that (3.5) is satisfied.

Plugging the above choice into (3.4) and considering the upper convex en-
veloppe as in the previous section, we obtain our general approximation (1.1),
which can be viewed as a compromise between (3.8) and (3.9).

3.2.3. A remark in the case G < 0

In the case G < 0, corresponding to an attractive pairwise interaction, it might
seem unnatural to use a DPP approximation for the intensity, since DPPs are
models for inhibitive point patterns. Nonetheless, DPPs generalise to α-DPPs,
see Shirai and Takahashi (2003), that induce repulsiveness when α < 0 and
attraction when α > 0. The particular case α = −1 corresponds to standard
DPPs. For an α-DPP Y with kernel K and under some assumptions ensuring
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existence, (2.11) becomes

E

(∏
v∈Y

g(v)

)
=

∏
i≥1

(1 + αλ̃i)
−1/α (3.10)

where the λ̃i’s are the same as in Proposition 2.2. In this case (3.5) remains
valid and if, just as in Section 3.2.1, we choose N non-vanishing eigenvalues λ̃i

that take the same value, we get the approximation

log λdpp = log β − N

α
log

(
1 + α

λdppG

N

)
. (3.11)

We then obtain the approximation (3.8) for the choice N/α = −(1 + λdppG/κ).
This remark shows that our approximation can be viewed as an approximation
by an α-DPP, for a specific value of α, which is adapted to both inhibitive and
attractive interactions. Since DPPs are more familiar models than α-DPPs and
the theory is more comprehensive for DPPs than for α-DPPs, we still prefer to
take a DPP point of view.

3.2.4. Theoretical properties

The existence and uniqueness of a solution λdpp to the DPP approximation (3.4)
are established in Theorem 3.1. This is to be compared with Baddeley and Nair
(2012, Theorem 2), see also the end of Section 3.1.

Theorem 3.1. Consider a stationary pairwise interaction process in R
d with

Papangelou conditional intensity given by (2.6), with finite range R and a pos-
sible hard-core distance 0 ≤ δ ≤ R.

• If
∫
(1 − g) ≥ |Bδ| then λdpp exists uniquely, is an increasing function of

β and is such that λdpp ≤ λps.
• If

∫
(1− g) < |Bδ| and

∫
(1− g)2 < |BR|, λdpp exists but is not necessarily

unique.
• If

∫
(1− g) < |Bδ| and

∫
(1− g)2 ≥ |BR|, λdpp does not necessarily exist.

Proof. Let fps(λ) = log β − λG and

fdpp(λ) = log β + (1 + λdpp|Bδ|) log
(
1− λdpp|Bδ|

1 + λdpp|Bδ|

)

+ (1 + λdpp(G− |Bδ|)/κ) log
(
1− λdpp(G− |Bδ|)

1 + λdpp(G− |Bδ|)/κ

)
,

where κ is given by (1.2). The approximations λps and λdpp are defined by the
fixed point equations log λps = fps(λps) and log λdpp = fdpp(λdpp).

If G ≥ |Bδ|, it can be verified that fdpp is a concave decreasing function
from [0,∞[ into [log(β),−∞[. So there exists a unique solution to log λdpp =
fdpp(λdpp). Moreover, concavity of fdpp implies that f ′

dpp
is decreasing and we

have f ′
dpp

(0) = −G. This shows that fdpp − fps is also decreasing on [0,∞[,
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whereby fdpp−fps ≤ fdpp(0)−fps(0) = 0 on [0,∞[. This implies that λdpp ≤ λps

when G ≥ |Bδ|. The fact that fdpp is increasing in β shows moreover that λdpp

is an increasing function of β.
If G < |Bδ| and

∫
(1 − g)2 < |BR|, implying κ < 1, fdpp is only defined on

[0, c]∪ ]c/(1−κ),∞[ where c = κ/(|Bδ|−G). On the interval ]c/(1−κ),∞[, fdpp
is continuous with limλ→c/(1−κ) fdpp(λ) = ∞ and limλ→∞ fdpp(λ) = −∞. This
shows that there is at least one solution to log λdpp = fdpp(λdpp) on ]c/(1−κ),∞[.
However, this solution is not unique in general: If c > 1 and 0 < log(β) <
(1 + |Bδ|c) log(1 + |Bδ|c), then fdpp is continuous on [0, c] with fdpp(0) > 0 and
fdpp(c) < 0, so there is another solution to log λdpp = fdpp(λdpp) on [0, c] in this
case.

If G < |Bδ| and
∫
(1−g)2 ≥ |BR|, implying κ ≥ 1, fdpp is only defined on [0, c].

Since fdpp is bounded on this interval and the bounds are increasing functions
of β, no solution to log λdpp = fdpp(λdpp) can be guaranteed in general.

4. Numerical study

In this section, we focus on the planar case to investigate the performances of
the DPP approximation and compare it with the initial one proposed by Bad-
deley and Nair (2012). All computations were performed in the R language (R
development core team, 2011). The Poisson-saddlepoint approximation as well
as the DPP approximation are implemented using root-finding algorithms and
in particular we use the R function uniroot for this task. From a computational
point of view, both approximations are quickly and easily obtained.

We have considered 14 different numerical experiments involving Strauss
models (S), Strauss hard-core models (SHC), Diggle-Graton models (DG), piece-
wise Strauss models (PS) and piecewise Strauss hard-core (PSHC) models. The
pairwise interaction functions of these models are detailed in Section 2.2. To
sum up here are the parameters, that include a continuously varying parameter
γ1 ∈ [0, 1]:

• Strauss (S): β = 100 with R = 0.05 or 0.1; β = 50 with R = 0.1 or 0.15;
β = 200 with R = 0.05, 0.1. For all these models γ = γ1.

• Strauss hard-core (SHC): β = 200, (δ,R) ∈ Δ where Δ is the set
{(.025, .05), (.025, .1), (.05, .1), (.05, .15)}. For this model γ = γ1.

• Diggle-Graton (DG): β = 200, R = 0.025, 0.05 or 0.075 and β = 50 and
R = 0.15. For all these models γ = γ1.

• Piecewise Strauss and Strauss hard-core (PS and PSHC): β = 200, δ = 0
or 0.025, γ = (γ1, γ2) with γ2 = 0 or 0.5. The vector of breaks is R =
(0.05, 0.1).

For all these models, G > |Bδ| for any γ1 ∈ [0, 1]. Hence according to Baddeley
and Nair (2012, Theorem 2) and Theorem 3.1, λps and λdpp exist and are unique.

We also investigate the case G < 0 with a Strauss hard-core process with
γ1 ∈ [1, 1.3]. In particular, we consider the parameters:

• Attractive Strauss hard-core (ASHC): β = 200, (δ,R) ∈ Δ.
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In this setting, we look for a solution for the intensity λ in the interval [80,
100000], 80 being approximately the solution found by both approximations
when γ1 = 1. According to our remark in Section 3.1, we observe that λps exists
and is unique for any γ1 ∈ [1, 1.3] when (δ,R) = (.025, .05) or (.05, .1). When
(δ,R) = (.025, .1) (resp. when (δ,R) = (.05, .15)), the solution exists and is
unique only when γ1 ≤ 1.067 approximatively (resp. γ1 ≤ 1.124). Moreover,
there is no solution when γ1 > 1+(|Bδ|+ e−1/β)/(|BR|− |Bδ|), i.e. 1.129 (resp.
1.154) and when 1.067 < γ1 < 1.129 (resp. 1.124 < γ1 < 1.154), two solutions
occur. On the other hand, for this model, the DPP approximation λdpp exists
and is unique for any γ1 ∈ [1, 1.3] and any (δ,R) ∈ Δ.

For each numerical experiment, we therefore obtain curves of intensity ap-
proximation in terms of γ1. For γ1 varying from 0 to 1 (or from 1 to 1.3 for
the ASHC model) by step of 0.05 (the value 0 is exluded for DG models to
save time), the true intensity λ is estimated by Monte-Carlo methods. For
each set of parameters m realizations of the model are generated on the square
[−2R, 1 + 2R]2 and then clipped to the unit square. That strategy is detailed
and justified by Baddeley and Nair (2012). Specifically, the number of points
in each realization is averaged to obtain the estimated intensity and its stan-
dard error. The simulation results for the Strauss models with β = 50 or 100
were obtained by Baddeley and Nair (2012), where m = 10000 realizations were
generated and the exact simulation algorithm was used, implemented in the R

function rStrauss of the spatstat package (see Baddeley et al. (2015)). For the
Strauss models with β = 200, SHC models, PS and PSHC models and ASHC
models, we generate m = 1000 replications and use the rmh function in the
spatstat package which implements a Metropolis-Hastings algorithm. Even if
we use 106 iterations of the algorithm, the results may be slightly biased. For
the DG models, the R package spatstat provides an exact simulation algorithm
(function rDiggleGraton) and for such models we generate 10000 replications
when β = 200 and R = 0.025, 0.05 and when β = 50 and R = 0.15. We used
1000 replications when β = 200 and R = 0.075 to save time.

All results can be found in Figures 3–7. Plots provide the same informa-
tion: we depict intensity approximation λ (when they exist) based on different
methods in terms of γ1. The dashed curve represents the Poisson-saddlepoint ap-
proximation proposed by Baddeley and Nair (2012) and detailed in Section 3.1.
The solid curve is the DPP approximation we propose in this paper and is given
by (1.1).

Let us first comment Figures 3-4 dealing with Strauss models. As expected
the Poisson-saddlepoint approximation is not efficient when γ1 is small, i.e. for
very repulsive models. This is very significant in particular for the Strauss hard-
core model, see Figure 4. The DPP aproximation we propose is more likely able
to capture the repulsiveness of the Strauss models. Figure 5 also clearly shows
that our approximation is particulalry efficient and outperforms unambiguously
the Poisson-saddlepoint approximation. Note that replications for the Diggle-
Graton models are generated using an exact algorithm; so the numerical results
seem to be exact, except the slight bias induced by clipping the pattern from
[−2R, 1 + 2R]2 to the unit square.
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Fig 3. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for homogeneous Strauss models with activity parameter β, range of interaction R. Curves
and boxplots are reported in terms of the interaction parameter γ1 ∈ [0, 1].

Let us now comment Figure 6. When γ2 = 0.5, i.e. Figures 6 (a)–(b), the
results are very satisfactory. Our approximation is able to approximate λ very
efficiently for any value of γ1. For Figures 6 (c)–(d), γ2 = 0 which means that
points within a distance comprised between 0.05 and 0.1 are forbidden. Such a
parameterization tends to create repulsive clusters. When γ1 = 1 and δ = 0, such
a piecewise Strauss model was called annulus model by Stucki and Schuhmacher
(2014). This model demonstrates the limitations of our approximation even if
when γ1 is close to zero which means that the model is close to a hard-core
process with radius 0.1 our approximation remains satisfactory.

Figure 7 investigates the situation G < 0. Figures 7 (a) and (c) are re-
lated to a relative attractive situation. In these situations, both approximations
exist; clearly λdpp outperforms the Poisson-saddlepoint approximation and is
quite efficient. In the two other situations (Figures 7 (b) and (d)) for which
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Fig 4. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for homogeneous Strauss hard-core models with activity parameter β, range of interaction
R and hard-core distance δ. Curves and boxplots are reported in terms of the interaction
parameter γ1 ∈ [0, 1].

the model is very attractive, the approximations show some limitations. The
Poisson-saddlepoint approximation does not always exist whereas λdpp always
exists but reaches very high values when γ1 is close to 1.3. Nevertheless when
γ1 ≤ 1.15, the DPP approximation remains efficient.

5. Conclusion

Gibbs point processes constitute a very flexible class of spatial point processes
models for applications. However, one of their main drawback is that moments
are not expressible in a closed form, even the simplest one which is the intensity
parameter. So for instance, when generating a Strauss model with parameters
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Fig 5. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for Diggle-Graton models. Curves and boxplots are reported in terms of the interaction pa-
rameter γ1 ∈ [0, 1].

β, γ and R, it is impossible to guess how many points the realization will have
in average before running it. In particular, for the generation of a Strauss model
with parameters γ and R fixed, how should we adjust the parameter β to get
in average n number of points, without running many simulations? This paper
offers an accurate solution. We have followed the initial idea by Baddeley and
Nair (2012) who proposed a Poisson-saddlepoint approximation and suggest
to substitute the Poisson point process with a well-chosen determinantal point
process. The approximation we propose is simple, fast and more accurate than
the Poisson-saddlepoint approximation, especially when the underlying pairwise
interaction exhibits a strong repulsion.

It would be tempting to extend the methodology proposed in this paper to
approximate higher order moments, in order to get approximations for the pair
correlation function for instance, or to approximate the intensity function of an
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Fig 6. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for piecewise Strauss and piecewise Strauss hard-core models. Curves and boxplots are reported
in terms of the (remaining) interaction parameter γ1 ∈ [0, 1].

inhomogeneous pairwise interaction point process. Our first attempts convinced
us that both from a theoretical and practical points of view, the extension is
not straightforward.

This paper reveals also an open question. Is it possible to give some theoreti-
cal guarantees for the approximation λdpp we propose, like bounds for |λdpp−λ|?
The paper by Stucki and Schuhmacher (2014) is an excellent starting point. The
authors develop a Stein-type equation and propose bounds for the generating
functional for Gibbs point processes. These bounds are applied to derive bounds
for the Poisson-saddlepoint approximation λps. However, their work cannot be
directly applied to the DPP approximation. This definitely constitutes an inter-
esting research perspective.
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Fig 7. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for homogeneous Strauss hard-core models with activity parameter β, range of interaction
R and hard-core distance δ. Curves and boxplots are reported in terms of the interaction
parameter γ1 ∈ [1, 1.3]. For Figures (b) and (d), the Poisson-saddlepoint exists and is unique
when γ1 ≤ 1.067 and γ1 ≤ 1.124 respectively (corresponding to the most left vertical dashed
lines). It does not exist when γ1 > 1.129 and 1.154 respectively (corresponding to the most
right vertical dashed lines) and in between two solutions occur which are not reported. In
all these cases, the DPP approximation exists and is unique. However, for Figure (b), the
approximation reaches a value close to 50000 when γ1 = 1.3 and the graph is therefore
restricted to values λ ≤ 1000.
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Appendix A: Proof of Proposition 2.2

Proof. Assume first that g ≤ 1 and note that

E

(∏
v∈X

g(v)

)
= LX(− log g)

where LX denotes the Laplace transform of X. From Theorem 1.2 in Shirai and
Takahashi (2003), for any nonnegative measurable function f on S

LX(f) = Det(I − K̃)

where Det denotes the Fredholm determinant of an operator and K̃ is the integral
operator associated to the kernel

K̃(u, v) =
√

1− exp(−f(u))K(u, v)
√

1− exp(−f(v)). (A.1)

From (a variant of) Lidskii’s theorem, see Theorem 3.12.2 in Simon (2015), we
know that

Det(I − K̃) =
∏
i≥1

(1− λ̃i) (A.2)

where λ̃i are the eigenvalues of K̃, that correspond to the eigenvalues of K̃
given by (A.1), since it is a semi-positive definite continuous kernel and Mercer
theorem applies. This completes the proof in the case g ≤ 1.

The extension to any bounded function g is in essence the statement of The-
orem 1.5 in Shirai and Takahashi (2003), except that in our setting we do need
that ‖g‖∞ is sufficiently small. The main point is to verify that E

(∏
v∈X g(v)

)
is well-defined in this case. For this, we start from the identity

∏
v∈X

g(v) =

∞∑
n=0

(−1)n

n!

�=∑
u1,...,un∈X

n∏
i=1

(1− g(ui)), (A.3)

where the second sum is understood as 0 when n = 0, see (4.2) in Shirai and
Takahashi (2003). We observe that

E
∣∣∣ �=∑
u1,...,un∈X

n∏
i=1

(1− g(ui))
∣∣∣ ≤ ‖1− g‖n∞ E(N(N − 1) . . . (N − n+ 1)1(N ≥ n)),

where N = N(S) denotes the number of points of X. By Lemma 4.2 in Shirai
and Takahashi (2003), there exists β > 0 such that P (N = k) < βk/k!, whence
E(N(N − 1) . . . (N − n+ 1)1(N ≥ n)) < βneβ and

1

n!
E
∣∣∣ �=∑
u1,...,un∈X

n∏
i=1

(1− g(ui))
∣∣∣ ≤ 1

n!
‖1− g‖n∞βneβ .
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This proves that the series whose generic term is the expression on the left
hand side above is absolutely convergent and from (A.3), this proves that
E
(∏

v∈X g(v)
)
is well-defined. We can now compute this expectation and by

definition of ρ(n),

E
∏
v∈X

g(v) =

∞∑
n=0

(−1)n

n!
E

⎛
⎝ �=∑

u1,...,un∈X

n∏
i=1

(1− g(ui))

⎞
⎠

=

∞∑
n=0

(−1)n

n!

∫ n∏
i=1

(1− g(ui))ρ
(n)(u1, . . . , un)du1 . . . dun.

Given (2.9), this last expression is exactly the Fredholm determinant of (I−K̃),
where K̃ is the integral operator with kernel (2.12), see (2.12) in Shirai and
Takahashi (2003). The result follows by Lidskii’s theorem, see (A.2).
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