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Abstract: Most of the methods nowadays employed in forecast problems
are based on scoring rules. There is a divergence function associated to
each scoring rule, that can be used as a measure of discrepancy between
probability distributions. This approach is commonly used in the literature
for comparing two competing predictive distributions on the basis of their
relative expected divergence from the true distribution.

In this paper we focus on the use of scoring rules as a tool for finding
predictive distributions for an unknown of interest. The proposed predictive
distributions are asymptotic modifications of the estimative solutions, ob-
tained by minimizing the expected divergence related to a general scoring
rule.

The asymptotic properties of such predictive distributions are strictly
related to the geometry induced by the considered divergence on a regular
parametric model. In particular, the existence of a global optimal predictive
distribution is guaranteed for invariant divergences, whose local behaviour
is similar to well known α-divergences.

We show that a wide class of divergences obtained from weighted scoring
rules share invariance properties with α-divergences. For weighted scoring
rules it is thus possible to obtain a global solution to the prediction problem.
Unfortunately, the divergences associated to many widely used scoring rules
are not invariant. Still for these cases we provide a locally optimal predictive
distribution, within a specified parametric model.
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1. Introduction

Recent years have seen growing interest in the use of scoring rules for statistical
estimation and prediction. These emerge in forecast problems as means to assess
the relative quality of a probabilistic forecast; see [7], [24] and [40]. In particular,
scoring rules provide a measure of the loss suffered by a forecaster in view of a
certain outcome. The notion of proper scoring rule, which motivates a forecaster
to be honest in his predictions, is an attractive property for scoring rules in
both the contexts of prediction and estimation. Indeed, from the estimation
point of view, proper scoring rules lead to unbiased estimating equations; see
for instance [15]. Therefore, estimators for an unknown parameter based on
proper scoring rules can be obtained by resorting to results from M-estimation;
see [16], [34] and [35]. In the prediction framework, the use of scoring rules
is almost exclusively restricted to measure the relative quality of an available
probability distribution in comparison to other distributions. Indeed, proper
scoring rules furnish summary measures to simultaneously evaluate calibration
and sharpness of probability forecasts; see [22].

There exists a great variety of scoring rules, such as the logarithmic score, the
Tsallis score and the Bregman score. Moreover, [30] introduce the alternative
class of weighted scoring rules that generalise already known score functions.
Weighted scoring rules evaluate probability forecasts on the basis of a non-
uniform distribution that represents the available information at the time of
prediction. One general family of weighted scoring rules, which encompasses the
class of [30], is the family of quasi-Bregman weighted scoring rules; see [19]. It
should be noted that there are several different notions of weighted scoring rules
in the literature, which differ from the one considered in this paper and in [30]
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and [19]. For instance, the weighted scoring rules introduced in [27] evaluate
forecasts only on a restricted domain of the outcome.

A divergence function can be naturally associated to each proper or weighted
scoring rule, thus providing an instrument for comparing different predictive
distributions. Divergence functions derived from proper scoring rules are called
score divergences. Instead, we can name weighted score divergences those de-
rived from weighted scores. The most famous score divergence is probably the
Kullback-Leibler divergence that can be obtained from the logarithmic score.

The use of measures of discrepancy between probability distributions is widely
spread in statistics; see [39] and references therein. Many authors have consid-
ered the problem of finding optimal predictive distributions with respect to
some suitable divergence; see, among others, [1], [10], [29] and [37]. As shown
in [11], the existence of asymptotically optimal predictive distributions depends
on the geometric properties of the considered divergence. In particular, the class
of monotone and regular divergences, introduced in [8] and studied in [9] as a
wide class of invariant divergences, leads to asymptotically optimal predictive
distributions.

In this work we propose a wider and more complete use of scoring rules for
prediction, that goes beyond the simple comparison of two competing predictive
distributions. In particular, borrowing from [11], we consider the existence of
predictive distributions that asymptotically minimize score and weighted score
divergences. To this aim, we first study the local behaviour of score and weighted
score divergences up to third order. This clarifies the relationship among com-
monly used score divergences, weighted score divergences and well known classes
of invariant divergences, such as α-divergences and φ-divergences. We show that,
for the most part, proper scoring rules used in practice lead to score divergences
which are not monotone and regular. As a consequence, the geometry these
divergences induce on a statistical manifold is non-invariant. Instead, quasi-
Bregman weighted divergences share the same invariant properties of monotone
and regular divergences.

From the predictive viewpoint, we provide asymptotically optimal predic-
tive distributions for both score and weighted score divergences. The lack of
invariance of score divergences implies that the proposed predictive distribution
can only be found within a specified parametric model. On the other hand, for
quasi-Bregman weighted divergences, the optimal predictive distribution does
not depend on the considered parametric model, thus constituting a complete
and global solution to the prediction problem.

The paper is organised as follows. In Section 2 we aim to introduce the basic
notions of differential geometry in statistical theory, which will be used in the
paper. Then, in Section 3, we study the geometric properties of score divergences
and weighted score divergences and we characterise their Taylor expansion up to
third order. In Section 4 we apply these new results in the context of prediction.
We discuss the existence of an optimal predictive distribution that asymptoti-
cally minimizes the expected divergence from the true distribution. Section 5 is
dedicated to some touchstone examples covering the range of possible situations
that may be encountered in practice.
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2. Basic concepts in differential geometry of statistical models

This section is devoted to recall some basic notions on statistical manifolds. The
reader wishing to deepen his knowledge in the field, can refer to [3], [28], [38]
and references therein.

Let χ be a set and A be a σ-algebra of subsets of χ. Let P be a parametric
model, P = {p(x; θ) : θ ∈ Θ ⊆ R

d}, with p(x; θ) densities with respect to some
dominating measure μ on (χ,A). Under suitable regularity conditions (see [3],
p. 16), P can be regarded as a d-dimensional manifold embedded in the set of
all probability distributions on (χ,A). In this context, the parametrisation θ =
(θ1, . . . , θd) plays the role of a system of local coordinates, so that any density
p(x; θ) in P corresponds to a point in the manifold, univocally determined by
the value of θ.

The tangent space Tθ at a point p(x; θ) of P is a d–dimensional vector space
including the tangent vectors to all smooth curves passing through p(x; θ). It
can be represented as the linear space spanned by the basis vectors �i(x; θ) =
∂i�(x; θ)/∂θ

i, i = 1, . . . , d, where �(x; θ) = log p(x; θ). Thus, any tangent vector
A(x) ∈ Tθ can be represented as a linear combination of �i, i.e.

A(x) =

d∑
i=1

Ai�i(x; θ) = Ai�i(x; θ),

where Ai are the components of A(x) with respect to the basis �i, i = 1, . . . , d.
Here and in the sequel, we make use of Einstein summation convention, so that
when an index appears twice in an expression, summation on that index is
intended.

When the tangent space Tθ is provided with an inner product 〈·, ·〉, the man-
ifold is said to be a Riemannian space. An inner product between two vectors
A(x) and B(x) belonging to Tθ can always be expressed in terms of inner prod-
ucts between pairs of basis vectors:

〈A(·), B(·)〉 = AiBj〈�i(·; θ), �j(·; θ)〉,

where Bj are the components of B(x) with respect to the basis vectors. The d2

quantities 〈�i(·; θ), �j(·; θ)〉, i, j = 1, . . . , d, define a Riemannian metric in P .
An inner product can be naturally defined on the tangent spaces of a statis-

tical manifold by letting

〈�i(·; θ), �j(·; θ)〉 = Eθ[�i(X; θ)�j(X; θ)] = gij(θ),

where Eθ denotes the expected value with respect to the distribution p(x; θ).
Notice that gij(θ) are the components of the Fisher information matrix and
constitute the so-called Fisher metric.

In order to compare vectors belonging to different tangent spaces, we need to
establish a correspondence between two adjacent tangent spaces. This is done
by means of an affine connection. An affine connection is a sort of derivative,
called covariant derivative and denoted by ∇, expressing the intrinsic change in
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a tangent vector as the point θ changes to θ′ = θ+dθ in some direction along the
surface P . In particular, d3 quantities are needed to define the k-th component
of the change in the basis vector �j when we move along the direction of �i,
i, j, k = 1, . . . , d:

〈∇�i(·;θ)�j(·; θ), �k(·; θ)〉 = Γijk(θ).

The quantities Γijk are said to be the coefficients or the Christoffel symbols of
the affine connection. Affine connections allow to describe important properties
of a statistical manifold embedded in the set of all probability distributions on
(χ,A), such as curvature, torsion and flatness.

A whole class of affine connections is naturally introduced in a statistical
manifold by considering the so-called Amari’s α-connections, whose Christoffel
symbols are defined as

α

Γijk (θ) = Eθ

[(
�ij(X; θ) +

1− α

2
�i(X; θ)�j(X; θ)

)
�k(X; θ)

]
,

where α is a scalar parameter and �ij(x; θ) = ∂i∂j�(x; θ)/∂θ
i∂θj , i, j = 1, . . . , d.

Consider now a parametric model M = {p(x;ω) : ω ∈ Ω ⊆ R
r}, r > d,

including P . We say that P is a submanifold embedded in M if there exists a
smooth and full rank mapping ω = ω(θ) from P to M. As a consequence, the
tangent space TP

θ at point p(x; θ) in P is a subspace of the tangent space TM
ω(θ)

at point p(x;ω(θ)) in M.
Assume that both P and M are provided with a Riemannian metric and

a covariant derivative, that we denote by 〈·, ·〉 and ∇ with superscript P and
M, respectively. Notice that P naturally inherits the geometric structure de-
fined in M, by projection of 〈·, ·〉M and ∇M. Anyway, the metric and covariant
derivative induced by M in P do not necessarily coincide with those previ-
ously defined in P . When they coincide, we say that 〈·, ·〉 and ∇ are embedding
invariant metric and covariant derivative, respectively.

Fisher metric and Amari’s α-connections play a fundamental role in the the-
ory of statistical manifolds, due to their property of invariance with respect
to one-to-one transformations in the sample space (see [3]). Moreover, as [8]
proved, they are the unique invariant metric and connections with respect to
Markov embeddings on finite sample spaces.

3. The geometry of divergences

In this section we recall the concepts of divergence and geometry that a diver-
gence induces on a parametric model. We show that the Riemannian metric and
affine connections associated to a divergence, characterise its local behaviour up
to third order. Moreover, we discuss in detail the geometric properties of diver-
gences obtained from proper and weighted scoring rules. We refer the reader to
[3], [4], [8], [9], [11], [14], [17], and [18] for deeper discussions on the subject.

Let χ be a set and A be a σ-algebra of subsets of χ. A divergence D is a
non-negative function, whose arguments are two probability measures defined
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on the measurable space (χ,A), such that

D(P,Q) = 0 ⇐⇒ P = Q.

Let P be a parametric model, P = {p(x; θ) : θ ∈ Θ ⊆ R
d}, with p(x; θ) den-

sities with respect to some dominating measure μ on (χ,A). As we have seen in
the previous section, P can be regarded as a d-dimensional manifold embedded
in the set of all probability distributions on (χ,A), and the parametrisation
θ = (θ1, . . . , θd) plays the role of a system of local coordinates. Thus, the di-
vergence between p(x; θ) and p(x; θ′) can be written as a function of θ and θ′,
D(θ, θ′).

We can derive the geometry induced by a divergence D on P , by differenti-
ating D(θ, θ′) with respect to θ and θ′. Indices on D indicate derivatives of D
with respect to the components of the two arguments θ and θ′ separated by a
semicolon, so that D;i(θ, θ

′) = ∂D(θ, θ′)/∂θ′ i, D;ij(θ, θ
′) = ∂2D(θ, θ′)/∂θ′ i∂θ′ j ,

Dij;k(θ, θ
′) = ∂3D(θ, θ′)/∂θi∂θj∂θ′ k, and so on.

Now, we can define a Riemannian metric as

gDij (θ) = D;ij(θ, θ),

and a family of affine connections whose Christoffel symbols are given by

β

Γ
D
ijk(θ) = −1− β

2
Dij;k(θ, θ)−

1 + β

2
Dk;ij(θ, θ), β ∈ R.

Notice that

−1

Γ
D
ijk(θ) = −Dij;k(θ, θ) and

1

Γ
D
ijk(θ) = −Dk;ij(θ, θ).

The 1 and −1-connections play an important role in the geometrical approach
to inference, as pointed out in [14] and [17].

The local behaviour of D in a neighbourhood of θ can be expressed in terms
of the metric and affine connections induced by D on P . Indeed,

D(θ, θ′) = D(θ, θ) +D;i(θ, θ)(θ
′ − θ)i +

1

2
D;ij(θ, θ)(θ

′ − θ)ij

+
1

6
D;ijk(θ, θ)(θ

′ − θ)ijk + o(|θ′ − θ|3)

=
1

2
gDij (θ)(θ

′ − θ)ij

+
1

6

[
2

1

Γ
D
ijk(θ)+

−1

Γ
D
ijk(θ)

]
(θ′ − θ)ijk + o(|θ′ − θ|3)

=
1

2

[
gDij (θ)(θ

′ − θ)ij+
1/3

Γ
D
ijk(θ)(θ

′ − θ)ijk
]
+ o(|θ′ − θ|3), (3.1)

where (θ′ − θ)i is the i-th component of (θ′ − θ) and (θ′ − θ)ij and (θ′ − θ)ijk

are the product of two and three components of (θ′ − θ), respectively.
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3.1. Monotone and regular divergences

Monotone and regular divergences constitute a wide class of discrepancy func-
tions useful in statistical applications. Important invariance properties of the
geometry induced by monotone and regular divergences on a parametric model
P have been derived in [8] and [9]. In particular, the Riemannian metric and the
affine connections associated to such divergences are equivalent to the Fisher
metric and Amari’s α-connections. Indeed, monotonicity implies invariance with
respect to Markov embeddings and allows the characterisation of the geometry
induced by monotone divergences on statistical manifolds defined in finite di-
mensional sample spaces. Regularity extends this characterisation to any regular
parametric model of absolutely continuous probability distributions.

Using these geometric properties, the local behaviour of monotone and regular
divergences has been characterised in [9]. A Taylor expansion up to third order
for a monotone and regular divergence is

D(θ, θ′) = A

[
gij(θ)(θ

′ − θ)ij +
−B/3

Γ ijk(θ)(θ
′ − θ)ijk

]
+ o(|θ′ − θ|3), (3.2)

for some constants A and B, where gij and
α

Γijk are respectively the components
of the Fisher metric and the Christoffel symbols of Amari’s α-connections in P .
The preceding expansion is a particular case of the general equation (3.1), based
on the fact that monotone and regular divergences induce an invariant geometric
structure on the parametric family where they are defined.

3.1.1. Examples

Well known examples of monotone and regular divergences are Csiszar’s φ-di-
vergences, defined as

Dφ(θ, θ′) =

∫
φ

(
p(x; θ′)

p(x; θ)

)
p(x; θ)μ(dx),

where φ is a strictly convex function with φ(1) = 0; see [12]. Notice that for a
φ-divergence the constants characterising Taylor expansion (3.2) are A = Aφ =
φ′′(1)/2 and B = Bφ = 2φ′′′(1) + 4φ′′(1)− 1.

By letting

φ(z) = φα(z) =

⎧⎪⎨
⎪⎩

4
1−α2 [1− z

1+α
2 ] α 	= ±1

z log z α = 1

− log z α = −1,

we obtain the family of α-divergences that include the Kullback-Leibler diver-
gence (α = −1) and twice the Hellinger distance (α = 0) as special cases.
For an α-divergence the constants in (3.2) reduce to A = Aφα = 1/2 and
B = Bφα = α. So the −1-connection derived from an α-divergence is exactly
Amari’s α-connection.
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It may also be useful to consider a general family of divergences obtained
by transforming a φ-divergence with a differentiable and increasing function h.
This is the class of (h, φ)-divergences which has already been studied; see for
instance [36] and [39]. It is easy to see that (h, φ)-divergences are monotone and
regular.

Proposition 3.1. (h, φ)-divergences are monotone and regular divergences.

Proof. LetDφ(P,Q) be a φ-divergence andDhφ(P,Q) = h
(
Dφ(P,Q)

)
an (h, φ)-

divergence. Monotonicity of a φ-divergence means that, for every Markov em-
bedding K and every P and Q probability measures on (χ,A), we can write
Dφ(K(P ),K(Q)) ≤ Dφ(P,Q); see [9]. Then monotonicity of Dhφ follows from

Dhφ(K(P ),K(Q)) = h(Dφ(K(P ),K(Q))) ≤ h(Dφ(P,Q)) = Dhφ(P,Q),

since h is an increasing function. Moreover, Dhφ(P,Q) is regular too, being a
continuous transformation of a regular functional; see [8].

As a consequence, on a regular parametric model P , (h, φ)-divergences can be
expanded in a neighbourhood of θ as in formula (3.2). The constants A = Ahφ

and B = Bhφ can be easily calculated by observing that second and third order
derivatives of Dhφ calculated on the diagonal are respectively

Dhφ
;ij (θ, θ) = h′(0)Dφ

;ij(θ, θ), Dhφ
ij;k(θ, θ) = h′(0)Dφ

ij;k(θ, θ)

and
Dhφ

k;ij(θ, θ) = h′(0)Dφ
k;ij(θ, θ).

Thus, the metric associated to a (h, φ)-divergence has components

ghφij = Dhφ
;ij (θ, θ) = 2h′(0)Aφgij(θ),

where gij is the Fisher metric and Aφ = φ′′(1)/2 is the constant A in (3.2)
associated to the φ-divergence. Moreover, the 1/3 affine connection associated
to a (h, φ)-divergence has components

1/3

Γ hφ
ijk = h′(0)

1/3

Γ φ
ijk = 2h′(0)Aφ

−Bφ/3

Γ ijk,

where
α

Γijk denotes the Christoffel symbols of Amari’s α-connections and Bφ =
2φ′′′(1) + 4φ′′(1)− 1 is the constant B associated to the φ-divergence. By sub-
stituting in (3.1) we obtain expansion (3.2) with A = Ahφ = h′(0)Aφ and
B = Bhφ = Bφ.

3.2. Score divergences

Scoring rules are loss functions that measure the quality of a proposed proba-
bility distribution Q for a random variable X taking values on χ, in view of the
outcome x of X. Specifically, if a forecaster quotes a predictive distribution Q
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for X and the event X = x realises, then we can measure the loss using a score
function S(x,Q); see [22].

The expected value of S(X,Q) when X has distribution P is called the ex-
pected score: S(P,Q) = EP [S(X,Q)]. In a frequentist approach, S(P,Q) sug-
gests a way for evaluating the performance of Q when P is the true distribution
for X: the smaller S(P,Q), the better Q as an estimate of P . From this view-
point, a natural feature for a good scoring rule is that of propriety; see for
example [15] and references therein. A scoring rule S is proper relative to P if
S(P,Q) ≥ S(P, P ), for all P, Q ∈ P . It is strictly proper if equality holds only
when P = Q.

Each proper scoring rule is associated with two functions, the entropy function
H(P ) = inf

Q∈P
S(P,Q) and the divergence function

D(P,Q) = S(P,Q)− S(P, P ).

Indeed, it is easy to see that S is proper if and only if D(P,Q) ≥ 0 for all
P,Q ∈ P , and S is strictly proper if and only if in addition D(P,Q) = 0 implies
P = Q.

A divergence D induced by a proper scoring rule is called a score divergence.

3.2.1. Examples

Assume that P and Q have respectively densities p and q with respect to some
dominating measure μ on (χ,A). Notice that the majority of scoring rules pre-
sented in this section deals with continuous random variables, however for each
of these scoring rules we can also define a categorical counterpart by considering
μ as a discrete measure; see for example the Brier score, the discrete counterpart
of the quadratic score.

The logarithmic score is a well-known scoring rule (see [24]), defined as

S(x,Q) = − log q(x).

It is easily seen that the corresponding divergence is the Kullback-Leibler diver-
gence

D(P,Q) =

∫
log

(
p(x)

q(x)

)
p(x)μ(dx).

The Tsallis score (see [41]), also known as the generalised power score, is
given by

S(x,Q) = (γ − 1)

∫
q(y)γμ(dy)− γq(x)γ−1, γ > 1.

The associated divergence is

D(P,Q) =

∫
p(x)γμ(dx) + (γ − 1)

∫
q(x)γμ(dx)− γ

∫
p(x)q(x)γ−1μ(dx).
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For γ = 2, the Tsallis score reduces to the quadratic score

S(x,Q) =

∫
q(y)2μ(dy)− 2q(x).

In the special case of a finite sample space χ, an equivalent rule is the Brier
score (see [7])

S(x,Q) = (1− q(x))2 +
∑
y �=x

q(y)2.

The associated divergence is the square of the Euclidean distance between two
probability functions

D(P,Q) =
∑
x

(p(x)− q(x))
2
.

The Bregman score is among the most used families of scoring rules; see [14]
and [15]. It is defined as

S(x,Q) = −ψ′(q(x))−
∫

[ψ(q(y))− q(y)ψ′(q(y))]μ(dy),

where ψ is a convex and differentiable function. The associated divergence can
be written as

D(P,Q) =

∫
[ψ(p(x))− ψ(q(x))− ψ′(q(x))(p(x)− q(x))]μ(dx). (3.3)

Notice that the logarithmic, the Tsallis and the Brier scores are all special cases
of the Bregman score with ψ(p) = p log p, ψ(p) = pγ and ψ(p) = (2p2 − 1)/4,
respectively.

The pseudo-spherical score (see [24]) is an example of scoring rule which does

not belong to the class of Bregman scores. Let ||p||γ =
(∫

p(x)γμ(dx)
)1/γ

. The
pseudo-spherical score is defined as

S(x,Q) = −
(
q(x)

||q||γ

)γ−1

, γ > 1.

The divergence associated to the pseudo-spherical score is

D(P,Q) = ||q||1−γ
γ

(
||q||γ−1

γ ||p||γ −
∫

p(x)q(x)γ−1μ(dx)

)
= ||q||1−γ

γ

(
||q||γ−1

γ ||p||γ − Ep[q
γ−1(X)]

)
. (3.4)

For γ = 2 we obtain, as a special case, the spherical score

S(x,Q) = − q(x)

||q||2
,

with associated divergence

D(P,Q) = ||q||−1
2 (||q||2||p||2 − Ep[q(X)]) .
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3.2.2. The geometry of score divergences

Now we present some new results on the geometry of score divergences. These
results allow to characterise the local behaviour of such divergences, using ex-
pansion (3.1).

The geometry associated with score divergences has already been considered
in [14] in the context of a decision problem, with the name of decision geome-
try. Here we extend some of those results to the multi-parametric case and we
characterise the Taylor expansion of score divergences up to a higher order.

In particular, we derive the geometry induced by the Bregman and the
pseudo-spherical divergences. We will see that it does not coincide with the
geometry of the Fisher metric and Amari’s α-connections, except for the special
case of Kullback-Leibler divergence. This proves that, in fact, these divergences
are not monotone and regular.

In the rest of this paragraph, we consider a regular parametric model P =
{p(x; θ) : θ ∈ Θ ⊆ R

d}. Moreover we use the same notation previously intro-
duced, so that �(x; θ) = log p(x; θ) and indices mean derivatives with respect to
the different components of θ = (θ1, . . . , θd).

Bregman divergences By differentiating (3.3), we obtain the Riemannian
metric associated to the Bregman divergence:

gDij (θ) =

∫
ψ′′(p(x; θ))�i(x; θ)�j(x; θ)p

2(x; θ)μ(dx),

and the corresponding affine connections:

β

Γ
D
ijk(θ) =

1 + β

2

∫
ψ′′′(p(x; θ))�i(x; θ)�j(x; θ)�k(x; θ)p

3(x; θ)μ(dx) +

+

∫
ψ′′(p(x; θ))�k(x; θ) (�ij(x; θ) + �i(x; θ)�j(x; θ)) p

2(x; θ)μ(dx).

The metric coincides with the decision metric given in [14] for the case of a
scalar parameter.

Proposition 3.2. The Kullback-Leibler divergence is the only Bregman diver-
gence that is also monotone and regular.

Proof. The proof easily follows by noticing that the above metric and affine
connections recover the Fisher metric and Amari’s α-connections, respectively,
only when ψ(p) = p log p, i.e. when the Bregman score reduces to the logarithmic
score.

As a special case of the Bregman divergence, we consider the Tsallis diver-
gence which is obtained for ψ(p) = pγ . In the following, to simplify the notation,
we write

Pi(θ) =

∫
pγ−1(x; θ)pi(x; θ)μ(dx),

Pij(θ) =

∫
pγ−1(x; θ)pij(x; θ)μ(dx),
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Pi,j(θ) =

∫
pγ−2(x; θ)pi(x; θ)pj(x; θ)μ(dx),

Pij,k(θ) =

∫
pγ−2(x; θ)pij(x; θ)pk(x; θ)μ(dx),

Pi,j,k(θ) =

∫
pγ−3(x; θ)pi(x; θ)pj(x; θ)pk(x; θ)μ(dx).

The metric is

gDij (θ) = γ(γ − 1)Pi,j(θ)

and the affine connections have components

β

Γ
D
ijk(θ) = γ(γ − 1)

[(
(1 + β)γ

2
− β

)
Pi,j,k(θ) + Pij,k(θ)

]
.

Then, the Taylor expansion up to third order of Tsallis divergence is

D(θ, θ′) =
γ(γ − 1)

2
{Pi,j(θ)(θ

′ − θ)ij

+

(
2γ − 1

3
Pi,j,k(θ) + Pij,k(θ)

)
(θ′ − θ)ijk}+ o(|θ′ − θ|3).

In a similar way we can find the expansion for the Brier divergence.

Pseudo-spherical divergences We now present the geometry associated to
the pseudo-spherical divergence, using the same notation of the previous case.

Moreover, let ||p(θ)||γ =
(∫

p(x; θ)γμ(dx)
)1/γ

. By straightforward differentiation
of (3.4), we obtain the metric, which coincides with [14] for a scalar parameter,

gDij (θ) = (γ − 1)||p(θ)||1−2γ
γ

(
||p(θ)||γγPi,j(θ)− Pi(θ)Pj(θ)

)
,

and the affine connections

β

Γ
D
ijk(θ) = (γ − 1)||p(θ)||1−2γ

γ {− (1− β)

2
(Pij(θ)Pk(θ)− Pij,k(θ))

− (1 + β)

2

[
||p(θ)||−γ

γ (1− 2γ)Pi(θ)Pj(θ)Pk(θ)

−||p(θ)||γγ ((γ − 2)Pi,j,k(θ) + Pij,k(θ))
]

− (1 + β)

2
[(γ − 1) (Pi(θ)Pj,k(θ) + Pj(θ)Pk,i(θ) + Pk(θ)Pi,j(θ))

+Pij(θ)Pk(θ)]}.

We can thus state the following result.

Theorem 3.1. Pseudo-spherical divergences are not monotone and regular.
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Proof. The proof easily follows by noticing that the above metric and affine
connections always differ from the Fisher metric and Amari’s α-connections,
respectively.

Now, the Taylor expansion up to third order of the pseudo-spherical diver-
gence is

D(θ, θ′) = (γ − 1)||p(θ)||1−2γ
γ

{(
||p(θ)||γγPi,j(θ)− Pi(θ)Pj(θ)

)
(θ′ − θ)ij

+

[
−1

3
(Pij(θ)Pk(θ)− Pij,k(θ))

−2

3
((γ − 1) (Pi(θ)Pj,k(θ) + Pj(θ)Pk,i(θ) + Pk(θ)Pi,j(θ))

+Pij(θ)Pk(θ))

+
2

3
||p(θ)||γγ ((γ − 2)Pi,j,k(θ) + Pij,k(θ))

−2

3
||p(θ)||−γ

γ (1− 2γ)Pi(θ)Pj(θ)Pk(θ)] (θ
′ − θ)ijk

}
+ o(|θ′ − θ|3).

3.2.3. The relationship between monotone and regular divergences and score
divergences

In the previous section, we have proved that pseudo-spherical divergences and
Bregman divergences, except for the Kullback-Leibler divergence, are not mono-
tone and regular. This has been done by showing that the geometry induced by
these divergences on a regular parametric model is different from the geometry
defined by the Fisher metric and Amari’s α-connections.

Now we prove that (h, φ)-divergences are not score divergences, i.e. it does
not exist a proper scoring rule with associated divergence in the class of (h, φ)-
divergences. The only exception to this statement is the logarithmic score with
the Kullback-Leibler divergence. This result has already been conjectured by
Dawid in [14] for α-divergences, α 	= −1, but not proved.

Theorem 3.2. Increasing linear transformations of the Kullback-Leibler diver-
gence are the only (h, φ)-divergences that are also score divergences.

Proof. Consider P , Q and R probability distributions defined on (χ,A), with
densities p, q and r with respect to some dominating measure μ.

It is shown in [13], Section 11, that if D is a score divergence then D(P,Q)−
D(P,R) can be written as an affine function of P for any fixed Q and R. This
means that there exists a function f(x;Q,R) such that D(P,Q) − D(P,R) =
EP [f(X;Q,R)].

Now, let Dhφ be a (h, φ)-divergence. We can write

Dhφ(P,Q)−Dhφ(P,R) = h (Ep[φ(q(X)/p(X))])− h (Ep[φ(r(X)/p(X))]) .
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It is easy to see that this expression is an affine function of P if and only if h is
an increasing linear function and φ is a linear transformation of the logarithm.
Indeed, note that if

Ep[φ(q(X)/p(X))]− Ep[φ(r(X)/p(X))] = Ep[f(X; q(X), r(X))]

then the function φ(q/p)−φ(r/p) must be independent of p. Thus, ∂φ(q/p)/∂p =
∂φ(r/p)/∂p, so that ∂φ(q/p)/∂p does not depend on q. These considerations
lead to the following differential equation: φ′′(t)t+ φ′(t) = 0, which admits the
solution φ(t) = A log (t) +B, with A and B two suitable constants.

Finally, as a consequence of the previous results, we can state that the
Kullback-Leibler divergence is essentially the unique intersection between the
classes of (h, φ)-divergences and Bregman divergences. Actually, we believe that
this result is even more general, but this is only a conjecture.

Conjecture. The Kullback-Leibler divergence is the unique intersection between
the class of monotone and regular divergences and the class of score divergences.

3.3. Weighted score divergences

A different way for deriving divergences from scoring rules relies on the use of
weighted scoring rules that have been introduced in [30] and represent an inter-
esting generalisation of the above defined (unweighted) scoring rules. Weighted
scoring rules depend on a baseline probability distribution P , which represents
the available information at the time of prediction. Thus, the expected weighted
scoring rule allows to compare two forecasts R and Q, taking P as the reference
distribution. It is a function of three arguments: S(Q,R||P ). The entropy func-
tion associated to a weighted scoring rule, H(Q||P ) = S(Q,Q||P ) can be used
to define a weighted divergence between P and Q:

Dw(P,Q) = H(Q||P )−H(P ||P ). (3.5)

As stated in [19], the entropy H(Q||P ) is minimized only when the forecaster’s
true belief Q is exactly the baseline distribution P . More formally, a baseline
distribution P is defined as the unique distribution which minimizes the entropy,
i.e. H(P ||P ) ≤ H(Q||P ), for all Q ∈ P . Thus, it follows that Dw(P,Q) ≥ 0,
with equality holding if and only if P = Q.

It is important noticing that weighted divergences are defined from weighted
scoring rules by means of the corresponding entropy function. This construction
is different from the one used for score divergences.

The dependence of the scoring rule on the non-uniform baseline distribution
P can be introduced in different ways, depending on the problem under con-
sideration. Here we focus on scoring rules that depend on the ratio between
the considered probability distributions and the baseline P ; see [30]. Such a
dependence implies that the associated divergence (3.5) measures the distance
between two probability distributions P and Q in terms of the ratio Q/P . From
our point of view, this condition results in divergences that are invariant with
respect to one-to-one transformations of the sample space.
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3.3.1. Examples

This section deals with some examples of weighted scoring rules and associated
divergences. The weighted power score (see [31]), also known as the weighted
Tsallis score, is a generalisation of the power score, defined as

Sw(x,Q||P ) =
(q(x)/p(x))γ−1 − 1

γ − 1
− Ep[(q(X)/p(X))γ ]− 1

γ
.

The associated weighted power divergence is

Dw(P,Q) =
Ep[(q(X)/p(X))γ ]− 1

γ(γ − 1)
,

which is a case of φ-divergence with φ(x) = (xγ − 1)/(γ(γ − 1)).
When γ → 1 the weighted power score reduces to the weighted logarithmic

score. For γ = 2, we obtain the weighted Brier scoring rule. For more examples
and details we refer to [30] and [31].

As already pointed out, for α 	= −1 α-divergences are not score divergences,
that is they are not associated to an unweighted scoring rule. Anyway, for α 	=
±1 they can be easily obtained from the following class of weighted scoring rules:

Sw(x,Q||P ) =
4

1− α2

(
1− (q(x)/p(x))

α−1
2

)
,

which is equivalent, up to a linear transformation, to the weighted power score
with γ = (1 + α)/2.

The weighted pseudo-spherical score (see [31]) is defined as

Sw(x,Q||P ) =
1

γ − 1

[
(q(x)/p(x))γ−1

(Ep[(q(X)/p(X))γ ])
(γ−1)/γ

− 1

]
.

The associated divergence is

Dw(P,Q) =
(Ep[(q(X)/p(X))γ ])1/γ − 1

γ − 1
.

It can be easily shown that it is monotonically related to the weighted power
divergence through the function h(x) = [((γ − 1)x+ 1)γ − 1]/[γ(γ − 1)].

Note that for γ → 1, the weighted logarithmic score represents a limiting
case for the weighted pseudo-spherical score too.

The family of quasi-Bregman weighted scoring rules has recently been defined
by [19] for a random variable X taking values in a finite sample space χ =
{x1, . . . , xn}. It is associated to the following class of divergences:

Dw(P,Q) = l

(
n∑

i=1

f(pi)g

(
qi
pi

))
− g′(1)

n∑
i=1

qif(pi)

pi
l′

(
g(1)

n∑
i=1

f(pi)

)

− l

(
g(1)

n∑
i=1

f(pi)

)
+ g′(1)

n∑
i=1

f(pi)l
′

(
g(1)

n∑
i=1

f(pi)

)
,
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where p = (p1, . . . , pn), q = (q1, . . . , qn), pi = P ({xi}) and qi = Q({xi}), i =
1, . . . , n. Moreover, the function f is positive, g is twice differentiable and strictly
convex, l is twice differentiable and strictly increasing and g′ and l′ denote the
derivatives of g and l, respectively.

The family of quasi-Bregman weighted scoring rules has been defined only
for finite sample spaces, but in some cases it can be extended to continuous
random variables. In fact, notice that the weighted power and pseudo-spherical
scores are special instances of the quasi-Bregman weighted scoring rules with
f(x) = x.

3.3.2. The geometry of quasi-Bregman weighted score divergences

In this section we consider the divergences associated to the quasi-Bregman
weighted scoring family characterised by f(x) = x, namely

Dw(P,Q) = l

(
Ep

[
g

(
q(X)

p(X)

)])
− l (g(1)) . (3.6)

We show that, under suitable conditions on g and l, they are monotone and
regular. As a consequence, their local behaviour is characterised by (3.2) with
the Fisher metric, Amari’s α-connections and suitable constants A and B.

Theorem 3.3. Let g be a twice differentiable and strictly convex function and
let l(x) = (x− g(1)) /g′′(1). Then the divergence Dw(P,Q) defined in (3.6) is a
φ-divergence, with φ(x) = (g(x)− g(1))/g′′(1).

Proof. First, notice that l(x) = (x− g(1)) /g′′(1) is a strictly increasing linear
function, since g′′(x) > 0 for all x. Thus,

Dw(P,Q) = l

(
Ep

[
g

(
q(X)

p(X)

)])
− l(g(1))

=
1

g′′(1)

(
Ep

[
g

(
q(X)

p(X)

)]
− g(1)

)

= Ep

[(
g (q(X)/p(X))− g(1)

g′′(1)

)]
= Ep

[
φ

(
q(X)

p(X)

)]
.

Since φ(x) = (g(x) − g(1))/g′′(1) is a convex function such that φ(1) = 0, it
follows that Dw(P,Q) is a φ-divergence.

The previous result can be generalised as follows.

Theorem 3.4. Let l be strictly increasing, g strictly convex and both twice
differentiable, such that l(g(1)) = 0. Then the divergence Dw(P,Q) defined in
(3.6) is a (h, φ)-divergence, with h(x) = l(g′′(1)x + g(1)) and φ(x) = (g(x) −
g(1))/g′′(1).
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Proof. Note that the function h(x) = l(g′′(1)x + g(1)) is strictly increasing,
twice differentiable and such that h(0) = 0. Then, the divergence in (3.6) can
be rewritten as

Dw(P,Q) = l

(
Ep

[
g

(
q(X)

p(X)

)])
− l(g(1))

= l

(
Ep

[
g

(
q(X)

p(X)

)]
− g(1) + g(1)

)

= l

(
g′′(1)Ep

[
g(q(X)/p(X))− g(1)

g′′(1)

]
+ g(1)

)

= l

(
g′′(1)Ep

[
φ

(
q(X)

p(X)

)]
+ g(1)

)
= h

(
Ep

[
φ

(
q(X)

p(X)

)])
.

Since φ(x) = (g(x) − g(1))/g′′(1) is a convex function such that φ(1) = 0, it
follows that Dw(P,Q) is a (h, φ)-divergence.

Notice that the weighted power and pseudo-spherical scores satisfy the con-
ditions of Theorem 3.4 on l and g, thus being equivalent to (h, φ)-divergences.

It is easy to verify that the constants characterising expansion (3.2) are the
same for the weighted pseudo-spherical and the weighted power divergence,
namely A = 1/2 and B = 2γ − 1. This is due to the fact that, as already said,
the weighted pseudo-spherical divergence is an increasing transformation of the
weighted power divergence with h(x) = [((γ−1)x+1)γ −1]/[γ(γ−1)] such that
h′(0) = 1; see also [31].

4. The prediction problem

An important application of the new results presented in the previous sections
is in the context of prediction.

Let x be an observed random sample of size n from the random vector
X = (X1, . . . , Xn) with joint distribution pX(x; θ), where θ ∈ Θ ⊆ R

d is an
unknown parameter. Notice that the components of X may be dependent and
with different distributions, as in the examples of Section 5.2 and 5.3. The prob-
lem of prediction focuses on a future as yet unobserved random variable Y whose
distribution is related to the distribution of X. In general, X and Y are depen-
dent and we need to specify the joint distribution p(x, y; θ) or, equivalently, the
conditional distribution of Y |X, p(y; θ|x). To simplify the analysis we confine
ourselves to the case of independence where the distribution of Y belongs to
a regular parametric model P = {p(y; θ), θ ∈ Θ ⊆ R

d} indexed by the same
unknown parameter as pX(x; θ). Nevertheless, the following results still apply
to the case of dependence, after substituting the marginal density of Y with
the conditional density of Y |X, as shown in the example of Section 5.2. Here
we assume that the model P is correctly specified. An extension to the case of
misspecification is possible by considering M-estimators, as suggested in [21].
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A complete solution to the prediction problem can be expressed as a whole
distribution for Y , depending on the observed sample x. This is called a predic-
tive distribution and can be denoted by p̂(y;x). Notice that, in general, p̂(y;x)
may also lie outside the model P .

In a Bayesian framework, the conditional distribution of Y given X = x can
be obtained by integrating p(y; θ) with respect to the posterior distribution of θ.
Though natural and appealing, the Bayesian approach may be computationally
demanding for high dimensional parameters.

Following the classic approach, a predictive distribution can be obtained by
replacing the parameter θ with an efficient estimate θ̂ = θ̂n(x), in the density

of Y . The resulting density p(y; θ̂) is called estimative or plug-in, and belongs to
the parametric model P . For instance, in the review paper [23] and references
therein, regression models are used to obtain probabilistic forecasts in the form
of full probability distributions. These papers consider estimative solutions to
the prediction problem obtained by substituting the unknown regression pa-
rameters with minimum scoring rule estimates. Unfortunately, it is well known
that, because of the uncertainty introduced by assuming θ = θ̂, the estimative
solution may give rise to inaccurate predictions especially when the dimension
of the parameter θ is large compared to the sample size.

The goodness of a predictive distribution can be evaluated by studying its
long run properties, in a frequentist perspective. In this respect, basically two
different criteria have been considered in the literature. One considers the cov-
erage probability of prediction intervals obtained from a predictive distribution;
see among others [5], [20], [25], [32], [43]. The other measures the performance
of a predictive distribution by means of a divergence from the true distribu-
tion; see for instance [10], [26], [29], [42]. Other solutions based on the concept
of predictive likelihood have also been considered; see [6] for a comprehensive
review.

Here we focus on the approach to prediction based on divergence functions.
In particular, we consider divergences obtained from scoring rules.

To our knowledge, up to now scoring rules have been used only to measure the
relative quality of a proposed probability distribution. Such approach allows for
comparison of already known predictive distributions. In this paper we propose
to use proper scoring rules as a tool for constructing new predictive distributions
for the unknown of interest. The proposed predictive distributions turn out to be
asymptotic modifications of the estimative distribution, obtained by minimizing
divergences associated to proper and weighted scoring rules. Borrowing from
[11] and using the results presented in the previous sections, we analyse the
asymptotic properties of the resulting predictive distributions.

In the following sections we review some general concepts on predictive dis-
tributions that asymptotically minimize an expected divergence to the true den-
sity. First we consider the asymptotically optimal predictive distribution within
a parametric model M containing P . Then we discuss the existence of a global
solution, independent on the particular enlargement M that we may consider.
We will try to stress the attention on the main underlying ideas more than on
complex details. For an extensive treatment, see [11] and references therein.
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4.1. A locally optimal predictive distribution

A predictive distribution p̂(y;x) can be obtained by minimizing the expected
divergence from the true distribution,

Eθ[D(p(y; θ), p̂(y;X))] =

∫
D(p(y; θ), p̂(y;x))pX(x; θ)μ(dx), (4.1)

in the set of all probability distributions for Y . Since the true value of the
parameter θ is not known, minimization has to be carried over uniformly in θ.
Unfortunately, this is not an easy task to achieve, except in some very special
cases.

A restricted solution to the problem can be found by minimizing the leading
terms of the asymptotic expansion of (4.1), within a parametric model M in-
cluding P as a sub-model. The resulting predictive distribution belongs to the
enlarged model M.

For fixing the notation, let M = {p(y;ω), ω ∈ Ω ⊆ R
r} be any regular

parametric model containing P , with Ω ⊆ R
r, r > d. We can consider on M the

coordinate system ω = (θ, s), where θi, with i = 1, . . . , d are the old coordinates
on P , and sI , with I = d+ 1, . . . , r, are new coordinates in M. We use indices
A, B, C to indicate the coordinate system ω = (θ, s) in M; i, j, k . . . for the
components of θ in P and I, J, K . . . for the components of s. We suppose
that s = 0 for the points in P and that θ and s are orthogonal in P , i.e. the
mixed components iI of the metric tensor defined by the divergence D in M,
calculated at the points in P , are zero. Moreover, we use the same notation of
Section 2, so that �(y;ω) = log p(y;ω) and indices denote derivatives of � with
respect to the components of ω.

Assuming that the true value of the parameter ω in M is ω0 = (θ0, 0) with

θ̂ − θ0 = Op(n
−1/2), where n is the sample size, the optimal predictive density

in M which asymptotically minimizes the expected divergence is given by

p̂M(y;X) = p(y; θ̂)

[
1 +

1

2n
iij(θ̂)

−1

Γ ijK(θ̂, 0)gKI(θ̂, 0)hI(y; θ̂)

]
+op(n

−1), (4.2)

where iij(θ) = lim
n→∞

nEθ

[
(θ̂ − θ)i(θ̂ − θ)j

]
and hI(y; θ) = �I(y; θ, s)|s=0; see

[11], formula (12). Note that g and Γ refer to the geometry induced by the
divergence D in M and gKI are the components of the inverse of the matrix
with components gKI .

The predictive distribution (4.2) is obtained by shifting the estimative density

p(y; θ̂) in a direction orthogonal to P . It does not constitute a global solution to
the problem of prediction, since its expression depends on the parametric model
M. Thus, a better solution could be obtained by further enlarging M.

4.2. A global solution to the problem of prediction

The correction in (4.2) to the estimative density can be interpreted as an optimal
shift of the estimative density along a direction in M which is orthogonal to P .
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This orthogonal correction depends on the geometry induced by the divergence
D on M.

Now, as mentioned at the end of Section 2, it should be pointed out that the
Riemannian metric and the family of affine connections defined by a divergence
on M are not necessarily compatible with those induced on P . In fact, as shown
in [3], such an invariance property characterises the Fisher metric and Amari’s
α-connections.

It turns out that a sufficient condition for obtaining a global solution to the
prediction problem is the invariance of the metric and the connections induced
by the considered divergence D. Under this condition, expression (4.2) can be
written independently of M, as

p̂(y;X) = p(y; θ̂)

[
1 +

1

2n
iij(θ̂)

(
�ij(y; θ̂) +

1− α

2
�i(y; θ̂)�j(y; θ̂)+

+
1 + α

2
gij(θ̂)−

α

Γijr(θ̂)g
rk(θ̂)�k(y; θ̂)

)]
+ op(n

−1) (4.3)

(see [11], Proposition 6.1). Here gij and
α

Γijk are the components of the Fisher
metric and Amari’s α-connections and α is a constant depending on the diver-
gence D.

Thus, when the geometry induced by the divergence D is invariant, (4.3) con-
stitutes a global solution to the problem of prediction, in that it asymptotically
minimizes the expected divergence from the true distribution in all parametric
models including P .

In Section 3, the geometric properties of divergences derived from proper
scoring rules and weighted scoring rules have been investigated. We have seen
that the geometry induced by both the Bregman and the pseudo-spherical di-
vergences is not invariant, except for the only case of the Kullback-Leibler diver-
gence. As a consequence, there is no global solution to the prediction problem
based on these classes of loss functions. Anyway, using (4.2), an improvement
on the estimative distribution can still be proposed in cases when the origi-
nal parametric model can be embedded in a larger one. When the situation is
too complicated, the Bregman and the pseudo-spherical divergences can only
be used for comparison of competing predictive distributions, as shown in the
numerical examples of the following section. Instead, under suitable conditions
on the functions f , g and l, quasi-Bregman weighted divergences are in fact
monotone and regular divergences. Their use in the context of prediction is thus
equivalent to that of α-divergences, for some suitable value of α. The existence of
an asymptotically optimal predictive distribution is guaranteed, using formula
(4.3).

5. Examples

In this section we first consider three toy examples involving Gaussian distribu-
tions with unknown mean and known variance. Though non very useful in the
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practice, they allow to analytically calculate a global optimal predictive distri-
bution for invariant divergences. Moreover, using non-invariant divergences, a
locally optimal predictive distribution can still be analytically obtained, improv-
ing on the simple estimative within the enlarged class of Gaussian distributions
with unknown mean and variance.

5.1. The normal model with unknown mean

Let x be a random sample from X = (X1, · · · , Xn) and assume that we want
to predict the random variable Y = 1

m

∑m
i=1 Xn+i, where X1, . . . , Xn+m are

independent and identically distributed as N(μ, σ2
0), with σ2

0 known. The max-
imum likelihood estimator for μ is μ̂ = X = 1

n

∑n
i=1 Xi, which is normal with

mean μ and variance σ2
0/n. Indices 1 and 2 refer to μ and σ, respectively. Since

Y ∼ N(μ, σ2
0/m), it easily follows that:

�1(y;μ) =
m(y − μ)

σ2
0

, �11(y;μ) = −m

σ2
0

.

The asymptotically optimal predictive density with respect to an α-divergence
has already been derived in [11].

The weighted power and weighted pseudo-spherical divergences are asymp-
totically equivalent up to the second order, so that the optimal predictive density
associated to both divergences is

p̂(y;X) = φ

(
y − μ̂,

σ2
0

m

)[
1 +

(1− γ)m

2n

(
m(y − μ̂)2

σ2
0

− 1

)]
+ op(n

−1),

which corresponds to the optimal predictive distribution obtained for an α-di-
vergence with α = 2γ−1; see [11]. In the preceding formula and in the following
examples, φ(·, σ2) denotes the density of a centered normal distribution with
variance σ2.

Now we want to derive the optimal predictive density associated to the Tsallis
divergence. Since the geometry induced by the Tsallis divergence is not invari-
ant, we are only able to find the optimal predictive density within an enlarged
model M. Let M =

{
N(μ, σ2) : μ ∈ R, σ > 0

}
be the extended manifold which

contains P =
{
N(μ, σ2

0) : μ ∈ R
}
. The components of the metric and the con-

nections induced by the Tsallis divergence on M have already been obtained
in Section 3.2.2. Here we consider only the components useful to derive the
predictive distribution, specifically,

g22 =

(
2πσ2

m

) 1−γ
2 (γ2 − 2γ + 3)(γ − 1)

σ2γ
√
γ

,

−1

Γ 112 =

(
2πσ2

m

) 1−γ
2 m(γ2 − 2γ + 3)(γ − 1)

γσ3√γ
.



2422 F. Giummolè and V. Mameli

The optimal predictive density in M with respect to the Tsallis divergence is
given by

p̂(y;X) = φ

(
y − μ̂,

σ2
0

m

)[
1 +

m

2n

(
m(y − μ̂)2

σ2
0

− 1

)]
+ op(n

−1).

Note that it does not depend on the parameter γ. Moreover, it coincides with the
global optimal solution obtained by minimizing the Kullback-Liebler divergence.

Next we turn our attention to the pseudo-spherical divergence. Let M be
the extended manifold which contains P as in the case of the Tsallis diver-
gence. The components of the metric and of the connections can be found in
Section 3.2.2. As before we consider only the components useful to derive the
predictive distribution, i.e.

g22 =
2(γ − 1)

σ2
γ− 1

2γ −2

(
2πσ2

m

) 1−γ
2γ

,

−1

Γ 112 =
3m(γ − 1)2

σ3
γ− 1

2γ −2

(
2πσ2

m

) 1−γ
2γ

.

Hence the asymptotically optimal predictive density in M with respect to the
pseudo-spherical divergence is

p̂(y;X) = φ

(
y − μ̂,

σ2
0

m

)[
1 +

3m(γ − 1)

4n

(
m(y − μ̂)2

σ2
0

− 1

)]
+ op(n

−1).

It should be pointed out that it coincides with the global solution obtained by
the Kullback-Liebler divergence when γ = 5

3 .

5.2. The autoregressive model

Let {Xn}n≥0 be an autoregressive process of order 1, with X0 = 0 and Xn|Xn−1

∼ N(ρXn−1, σ
2
0), for n ≥ 1, where σ2

0 is known and |ρ| < 1. Suppose that
X = (X0, . . . , Xn) and we want to estimate the value of the future random
variable Y = Xn+1. Since X and Y are dependent, we work with the conditional
density of Y |X, p(y; ρ|x), and we denote the predictive density as p̂(y|x). As it is

well known ρ̂ =
∑n

i=1 Xi−1Xi∑n+1
i=1 X2

i−1

is asymptotically normal with asymptotic variance

1−ρ2. Let us denote by 1 and 2 the indices corresponding to ρ and σ, respectively.
The derivatives of the conditional log-likelihood l(y; ρ|x) with respect to ρ are

�1(y; ρ|x) =
xn(y − ρxn)

σ2
0

and �11(y; ρ|x) = −x2
n

σ2
0

.

The optimal predictive density associated to the α-divergence is given in [11].
Our aim here is to derive the optimal predictive density associated to the Tsallis
divergence within the enlarged model M with unknown ρ and σ2. For this
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purpose, we need the following components of the metric and the connections
induced by the Tsallis divergence:

g22 =
(γ − 1)

σ2√γ

(
1√
2πσ2

)γ−1
γ2 − 2γ + 3

γ
,

−1

Γ 112 =
x2
n(γ − 1)

σ3√γ

(
1√
2πσ2

)γ−1
γ2 − 2γ + 3

γ
.

We find that the optimal predictive distribution in M associated to the Tsallis
divergence is

p̂(y|X) = φ(y − ρ̂xn, σ
2
0)

[
1 +

x2
n(1− ρ̂2)

2nσ2
0

(
(y − ρ̂xn)

2

σ2
0

− 1

)]
+ op(n

−1).

It is worth pointing out that even for this case it does not depend on γ and it re-
duces to the global optimal predictive distribution with respect to the Kullback-
Liebler divergence.

5.3. The normal non-linear model

Let y be an observation from a random vector Y = (Y1, . . . , Yn) such that

Yi = μ(xi, β) + εi, i = 1, . . . , n,

where xi is a vector of m predictors and β = (β1, . . . , βm)′ is an unknown vector
of parameters. We assume that the random variables εi are independent and
normally distributed, with E(εi) = 0 and known V ar(εi) = σ2

0 . Suppose further

that
(

∂μ(x,β)
∂β

∂μ(x,β)
∂β

T)−1

= Σ
n +O(n−2), with Σ known. Our purpose here is to

predict the future observation yn+1 from the random variable Yn+1 independent
of Y and defined as

Yn+1 = μ(xn+1, β) + εn+1,

with εn+1 ∼ N(0, σ2
0).

As it is well known, the maximum likelihood estimator β̂ for the regres-
sion parameters β is asymptotically normal with mean β and covariance ma-

trix V ar(β̂) = σ2
0

(
∂μ(x,β)

∂β
∂μ(x,β)

∂β

T)−1

, such that lim
n−→∞

nV ar(β̂) = σ2
0Σ. Since

Yn+1 ∼ N(μ(xn+1, β), σ
2
0), it can be easily shown that

�i(yn+1;β) =
yn+1 − μ(xn+1, β)

σ2
0

μi(xn+1, β),

�ij(yn+1;β) = −μi(xn+1, β)μj(xn+1, β)

σ2
0

,

where μi(xn+1, β) = ∂μ(xn+1, β)/∂βi, i = 1, . . . ,m.
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The optimal predictive density for Yn+1 with respect to an α-divergence can
be explicitly determined using formula (4.3):

p̂(yn+1;Y ) = φ(yn+1 − μ(xn+1, β̂), σ
2
0)[

1 +
1− α

4n
wTΣw

(
(yn+1 − μ(xn+1, β̂))

2

σ2
0

− 1

)]
+ op(n

−1),

where w = ∂μ(xn+1, β)/∂β
∣∣∣
β=β̂

.

Notice that, if μ is a linear function, it reduces to the solution found in [11] for
the classical linear model. This result represents a global solution to the problem
of prediction with respect to α-divergences and other asymptotically equivalent
divergences as those derived from weighted scoring rules in Section 3.3.

Instead, for non-invariant divergences we can only find a partial solution
within some enlarged parametric model. For instance, consider the Tsallis di-
vergence in the enlarged parametric model with both β and σ2 unknown. The
essential terms for the derivation of the optimal predictive distribution are:

g(m+1)(m+1) =
(γ − 1)(γ2 − 2γ + 3)

γ3/2σγ+1
0 (2π)

(γ−1)/2
,

−1

Γ ij(m+1) =
(γ − 1)(γ2 − 2γ + 3)μj(xn+1, β̂)μi(xn+1, β̂)

γ3/2σγ+2
0 (2π)

(γ−1)/2
,

where the index m + 1 refers to σ2. The local optimal predictive density for
Yn+1 with respect to the Tsallis divergence, is

p̂(yn+1;Y ) = φ(yn+1 − μ(xn+1, β̂), σ
2
0)[

1 +
1

2n
wTΣw

(
(yn+1 − μ(xn+1, β̂))

2

σ2
0

− 1

)]
+ op(n

−1),

where w = ∂μ(xn+1, β)/∂β
∣∣∣
β=β̂

.

As in the previous examples, the local optimal predictive density with respect
to the Tsallis divergence does not depend on the parameter γ and reduces
to the global optimal predictive density with respect to the Kullback-Liebler
divergence.

As we have seen in the previous examples, a predictive density that improves
on the estimative density with respect to a non invariant divergence can be easily
found within a parametric model including the original one. Unfortunately, such
an enlargement is usually difficult to specify and the analytical computation of
the predictive density can involve cumbersome calculations. Anyway, we can
still compare two competing predictive densities by numerically estimating the
corresponding expected divergence.

In the next sections we consider two special examples for which it is possible
to derive an exact predictive solution by means of predictive pivotal quantities.
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The aim is to compare the performance of the estimative solution with that of
the pivotal solution by using both the Tsallis and the pseudo-spherical scoring
rules. We remind that the lower the score the better the prediction, since we have
considered negatively oriented scoring rules. In this comparison we have taken
into account also the Brier and the spherical scoring rules, both corresponding
to γ = 2.

5.4. The normal model with unknown mean and variance

The following example considers a normal distribution with unknown mean and
variance. Let x be a random sample from X = (X1, · · · , Xn), where the Xi’s
are independent and with the same distribution N(μ, σ2), i = 1, · · · , n, with μ
and σ2 unknown. We want to estimate the value of a future random variable
Y ∼ N(μ, σ2), independent of X. The maximum likelihood estimators for μ and
σ2 are μ̂ = X = 1

n

∑n
i=1 Xi and σ̂2 = 1

n

∑n
i=1(Xi −X)2, respectively.

A predictive solution giving exact predictive intervals, can be obtained by
means of the pivotal quantity (Y −μ̂)/σ̂, which has a Student T distribution with
n−1 degrees of freedom. It is asymptotically equivalent to the optimal predictive
solution obtained from the Kullback-Liebler divergence; see for instance [37].
More in general, we remind that the asymptotically optimal predictive solution
with respect to an α-divergence, is a Student T distribution with 2n−2

1−α degrees
of freedom; [11]. A similar result also holds for the weighted power score and
the weighted pseudo-spherical divergences.

We now compare the estimative and the pivotal solution by using the Tsallis
and the pseudo-spherical divergences for different values of the parameter γ;
the results are in given in Tables 1 and 2, respectively. As it can be seen, both
the Tsallis and the pseudo-spherical scoring rules prefer the pivotal solution for
every value of γ.

Table 1

Normal model with μ = 2, σ = 2, n = 30. Expected Tsallis score for the estimative and the
pivotal solution. Estimates are based on 10,000 Monte Carlo replications, with standard

errors in parentheses.

γ estimative pivotal
1.05 −0.9060 (0.0001) −0.9548 (0.0001)
1.1 −0.8226 (0.0002) −0.9137 (0.0002)
1.2 −0.6866 (0.0003) −0.8442 (0.0004)
1.4 −0.5081 (0.0005) −0.7408 (0.0006)
1.6 −0.4025 (0.0005) −0.6637 (0.0007)
1.8 −0.3277 (0.0004) −0.5969 (0.0007)
2 −0.2644 (0.0004) −0.5327 (0.0007)

5.5. The exponential model

The following example considers an exponential distribution with unknown
mean. Let x be a random sample from X = (X1, . . . , Xn), where the Xi’s
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Table 2

Normal model with μ = 2, σ = 2, n = 30. Expected pseudo-spherical score for the estimative
and the pivotal solution. Estimates are based on 10,000 Monte Carlo replications, with

standard errors in parentheses.

γ estimative pivotal
1.05 −0.9104 (0.0001) −0.9652 (0.0001)
1.1 −0.8361 (0.0002) −0.9353 (0.0002)
1.2 −0.7220 (0.0003) −0.8884 (0.0004)
1.4 −0.5757 (0.0004) −0.8259 (0.0006)
1.6 −0.6637 (0.0005) −0.7866 (0.0007)
1.8 −0.4281 (0.0005) −0.7607 (0.0008)
2 −0.3865 (0.0005) −0.7426 (0.0010)

are independent and with the same distribution Exp (1/θ), i = 1, . . . , n, with
θ unknown. We want to estimate the value of a further random variable Y ∼
Exp (1/θ), independent of X. The maximum likelihood estimator for θ is θ̂ = X.
A predictive density giving exact predictive intervals could be obtained using
the pivotal quantity Y/θ̂, which has a Fisher F distribution with (2, 2n) degrees
of freedom; see for instance [32].

We have performed a simulation study for comparing the estimative and
the pivotal solution using the Tsallis and the pseudo-spherical divergences, for
various values of the parameter γ; the results are given in Tables 3 and 4,
respectively. Again, both the Tsallis and the pseudo-spherical divergences prefer
the pivotal solution for every value of γ.

Table 3

Exponential model with θ = 2, n = 30. Expected Tsallis score for the estimative and the
pivotal solution. Estimates are based on 10,000 Monte Carlo replications, with standard

errors in parentheses.

γ estimative pivotal
1.05 −0.9144 (0.0002) −0.9509 (0.0002)
1.1 −0.8291 (0.0003) −0.9064 (0.0003)
1.2 −0.6595 (0.0005) −0.8292 (0.0005)
1.4 −0.3294 (0.0007) −0.709 (0.0010)
1.6 −0.0171 (0.0009 ) −0.6181 (0.0013)
1.8 0.2697 (0.0010) −0.5499 (0.0016)
2 0.5321 (0.0011) −0.4887 (0.0018)

Table 4

Exponential model with θ = 2, n = 30. Expected pseudo-spherical score for the estimative
and the pivotal solution. Estimates are based on 10,000 Monte Carlo replications, with

standard errors in parentheses.

γ estimative pivotal
1.05 −0.9186 (0.0001) −0.9532 (0.0001)
1.1 −0.8451 (0.0003) −0.9145 (0.0003)
1.2 −0.7187 (0.0004) −0.8555 (0.0005)
1.4 −0.5311 (0.0005) −0.7822 (0.0008)
1.6 −0.4029 (0.0005) −0.7403 (0.0010)
1.8 −0.3138 (0.0005) −0.7173 (0.0011)
2 −0.2482 (0.0005) −0.6991 (0.0013)
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