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Darmstadt University of Applied Sciences,
D-64295 Darmstadt, Germany

e-mail: sebastian.doehler@h-da.de

Guillermo Durand

Sorbonne Université,
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Abstract: To find interesting items in genome-wide association studies
or next generation sequencing data, a crucial point is to design power-
ful false discovery rate (FDR) controlling procedures that suitably com-
bine discrete tests (typically binomial or Fisher tests). In particular, recent
research has been striving for appropriate modifications of the classical
Benjamini-Hochberg (BH) step-up procedure that accommodate discrete-
ness and heterogeneity of the data. However, despite an important number
of attempts, these procedures did not come with theoretical guarantees. In
this paper, we provide new FDR bounds that allow us to fill this gap. More
specifically, these bounds make it possible to construct BH-type procedures
that incorporate the discrete and heterogeneous structure of the data and
provably control the FDR for any fixed number of null hypotheses (under
independence). Markedly, our FDR controlling methodology also allows to
incorporate the quantity of signal in the data (corresponding therefore to a
so-called π0-adaptive procedure) and to recover some prominent results of
the literature. The power advantage of the new methods is demonstrated
in a numerical experiment and for some appropriate real data sets.
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1. Introduction

Multiple testing procedures are now routinely used to find significant items
in massive and complex data. An important focus has been given to methods
controlling the false discovery rate (FDR) because this scalable type I error rate
“survives” to high dimension. Since the original procedure of Benjamini and
Hochberg (1995), much effort has been undertaken to design FDR controlling
procedures that adapt to various underlying structures of the data, such as the
quantity of signal, the signal strength and the dependencies, among others.

In this work, our motivation is to deal with adaptation to discrete and het-
erogeneous data. This type of data arises in many relevant applications, in par-
ticular when data are represented by counts. Examples can be found in clinical
studies (see, e.g., Westfall and Wolfinger, 1997), genome-wide association stud-
ies (GWAS) (see, e.g., Dickhaus et al., 2012) and next generation sequencing
data (NGS) (see, e.g., Chen and Doerge, 2015b). It is well known (see, e.g.,
Westfall and Wolfinger, 1997) that using discrete test statistics can generate a
severe power loss, already at the stage of the single tests. A consequence is that
using “blindly” the BH procedure with discrete p-values will control the FDR
in a too conservative manner. Therefore, more powerful procedures that avoid
this conservatism are much sought after in applications, see for instance Karp
et al. (2016), van den Broek et al. (2015) and Dickhaus et al. (2012).

In the literature, building multiple testing procedures that take into account
the discreteness of the test statistics has a long history that can be traced back to
Tukey and Mantel (1980). Some null hypotheses can be a priori excluded from
the study because the corresponding tests are unable to produce sufficiently
small p-values. This results in a multiplicity reduction that should increase the
power. While this idea has been exploited in Tarone (1990) and in a more
general manner in Westfall andWolfinger (1997) for family-wise error rate, a first
attempt was made for FDR in Gilbert (2005). More recently, Heyse (2011) has
proposed a more powerful solution, relying on the following averaged cumulative
distribution function (c.d.f.):

F (t) =
1

m

m∑
i=1

Fi(t), t ∈ [0, 1], (1)

where each Fi corresponds to the c.d.f. of the i-th test p-value under the null
hypothesis. To illustrate the potential benefit of using F , Figure 1 displays
this function for the pharmacovigilance data from Heller and Gur (2011) (see
Section 5 for more details). It is important to note that heterogeneity and dis-
creteness structures are both essential in (1): on the one hand, without any
heterogeneity (all the Fi’s are equal), we have F (t) = F1(t) and there is no
benefit in averaging the null; on the other hand, without discreteness, the Fi’s
are essentially invertible and the p-values can be transformed to be (continuous)
uniform under the null, so that the standard BH procedure can be applied. Both
structures commonly arise when multiple conditional tests are performed, for
which the heterogeneity and discreteness come from marginal counts of contin-
gency tables, e.g., for multiple Fisher exact tests (see simulations in Section 6).
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The critical values of the Heyse procedure can be obtained by inverting F at
the values αk/m, 1 ≤ k ≤ m. Thus, the smaller the F -values, the larger the
critical values. For the example depicted in Figure 1, Heyse critical values im-
prove the BH critical values roughly by a factor 3, thereby yielding a potentially
strong rejection enhancement. Furthermore, since the functions Fi’s are known
in practice, so is F . Hence, the user has a good prior idea of the improvements
reachable by this discrete approach. Unfortunately, the Heyse procedure does
not rigorously control the FDR in general; counterexamples are provided in
Heller and Gur (2011) and Döhler (2016) (and also in Appendix B.1).

Meanwhile, different solutions have been explored by modifying directly the
p-values, either by randomisation (see Habiger, 2015 and references therein), or
by shrinking them to build so-called mid p-values (see Heller and Gur, 2011 and
references therein). While randomised approaches possess attractive theoretical
properties, they are often criticised for their lack of reproducibility (see, e.g.,
Berger, 1996 and Ripamonti et al., 2017). Other approaches incorporate dis-
creteness and heterogeneity by constructing less conservative FDR estimates,
see, e.g., Pounds and Cheng (2006), or by combining grouping and weighting
approaches, see Chen and Doerge (2015b).

Overall, although many new procedures have been proposed in the litera-
ture, only few of them have been proved to achieve a rigorous FDR control
under standard conditions, especially in the finite sample case. To the best of
our knowledge, we can only refer to the discretised version of the procedure
of Benjamini and Liu (1999) introduced by Heller and Gur (2011) and to the
asymptotic work of Ferreira (2007). Our paper offers a solution to this problem
by presenting new procedures that achieve both theoretical validity and good
practical performance. These procedures are readily implemented in computer
software and are therefore easy to apply. Moreover, since neither randomisation
nor any additional choice of tuning parameters is necessary, their results are
easy to interpret.

The paper is organised as follows: after having precisely defined the setting
in Section 2, we introduce in Section 3 new procedures relying on the following
modifications of the F function:

F SU(t) =
1

m

m∑
i=1

Fi (t)

1− Fi (τm)
; F SD(t) =

1

m

m∑
i=1

Fi (t)

1− Fi (t)
, t ∈ [0, 1],

(with the convention 1/0 = +∞), where an appropriate choice of τm is made.
To feel how light these modifications are, Figure 1 displays these functions and
shows they are very close to the original F for small values of t. In addition,
we also introduce more powerful “adaptive” versions, meaning that the derived
critical values are designed in a way that “implicitly estimates” the overall pro-
portion of true null hypotheses and thus may outperform the original Heyse
procedure. Next, in Section 4, we establish rigorous FDR control of the cor-
responding non-adaptive and adaptive procedures under standard conditions.
Our proofs, presented in Section 8, rely on new bounds on FDR that generalise
some prominent results of the multiple testing literature. These bounds are the
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main mathematical contributions of the paper and are interesting in their own
right, beyond the discrete setting. Also, to explore in detail the improvement of
our procedures, we analyse both real and simulated data in Sections 5 and 6.
Finally, while some additional procedures are presented in Appendix A, other
complementary results are provided in Appendices B, C and D.

Fig 1. Plots of variants of F for the pharmacovigilance data. The solid black line corresponds
to the uniform case, the discrete variants are represented by blue (for F ), green (for FSD)
and red (for FSU) solid lines. Some Fi’s are displayed in light grey by using different line
types.

2. Preliminaries

2.1. General model

Let us observe a random variable X, defined on a probabilistic space and valued
in an observation space (X ,X). We consider a set P of possible distributions for
the distribution of X and we denote the true one by P . We assume that m null
hypotheses H0,i, 1 ≤ i ≤ m, are available for P and we denote the corresponding
set of true null hypotheses by H0(P ) = {1 ≤ i ≤ m : H0,i is satisfied by P}. We
also denote by H1(P ) the complement of H0(P ) in {1, . . . ,m} and by m0(P ) =
|H0(P )| the number of true nulls.

We assume that the user has at hand a set of p-values to test each null, that
is, a set of random variables {pi(X), 1 ≤ i ≤ m}, valued in [0, 1]. Throughout
the paper, we also make the important (but classical) following assumption:

{pi(X), i ∈ H0} consists of independent variables
and is independent of {pi(X), i ∈ H1}.

(Indep)

Note that (Indep) is satisfied when all the p-values pi(X), 1 ≤ i ≤ m, are
mutually independent. Nevertheless, this setting also encompasses situations
where there are some dependencies between the p-values under the alternative.
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Now, we denote F = {Fi, 1 ≤ i ≤ m}, where for each i ∈ {1, . . . ,m}, we let

Fi(t) = sup
P∈P : i∈H0(P )

PX∼P (pi(X) ≤ t), t ∈ [0, 1], 1 ≤ i ≤ m,

which is assumed to be known. Note that we necessarily have Fi(·) non decreas-
ing, Fi(t) ∈ [0, 1], Fi(1) = 1 and we add the technical condition Fi(0) = 0.
Loosely, each Fi corresponds to the (least favorable) cumulative distribution
function of pi under the null. Above, we have taken the supremum to cover
the case where the null hypothesis is composite: in that situation, each Fi is
adjusted according to the least favorable configuration within the null H0,i.

Here are some conditions on F that will be useful to compare some of the
studied procedures (these conditions are not assumed in our results unless ex-
plicitly mentioned):

Fi(t) ≤ t, t ∈ [0, 1], 1 ≤ i ≤ m, (2)

Fi(t) = t, t ∈ [0, 1], 1 ≤ i ≤ m. (3)

Condition (2) ensures that the p-values have marginals stochastically lower-
bounded by a uniform variable under the null, called a super-uniform distri-
bution in the sequel. This is the classical setting which is used in most of the
work dealing with FDR controlling theory, see, e.g., Benjamini and Hochberg
(1995). Condition (3) is more restrictive: if each null hypothesis is a singleton,
it is equivalent to the p-values having uniform marginals under the null.

2.2. Discrete and continuous modelling

In order to describe the overall support of p-value distributions, we assume one
of the two following situations to be at hand throughout the paper (except in
Section 4 which is written in a more general manner):

• Continuous case: for all i ∈ {1, . . . ,m}, Fi is continuous. In that case, we
let Ai = [0, 1], 1 ≤ i ≤ m and A = ∪m

i=1Ai = [0, 1], which corresponds to
the overall p-value support.

• Discrete case: each p-value pi (both under the null and alternative) takes
values in some finite set Ai. We denote A = ∪m

i=1Ai the overall p-value
support.

The continuous setting is typically valid in situations where the p-values are
calibrated from test statistics having a continuous distribution under the null.
In this situation, (3) is often satisfied. The discrete setting typically arises in
situations where the p-values are calibrated from test statistics having a finitely
supported distribution under the null. In this situation, we generally have that
(3) holds true only on the support of Fi, that is,

Fi(t) = t, t ∈ Ai, 1 ≤ i ≤ m. (4)

In the discrete framework, let us underline that while (4) will typically hold,
the equality Fi(t) = t, t ∈ A will fail in general because A contains points of Aj
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for j �= i. As a result, F (t) defined by (1) will be smaller than t in general (see
Figure 1), which is exactly the property that we want to exploit in this paper.

To illustrate the above framework, we provide below two simple examples
(for more advanced examples, see for instance Chen and Doerge (2015b)).

Example 1 (Gaussian testing). Observe X = (Xi)1≤i≤m with independent
coordinates and marginals Xi ∼ N (μi, 1), where μi ∈ R is the parameter of
interest, 1 ≤ i ≤ m. In that situation, a possible hypothesis testing problem is
to consider the nulls H0,i : “μi ≤ 0” against H1,i : “μi > 0”. Then pi(X) =
1 − Φ(Xi), 1 ≤ i ≤ m, is a family of p-values satisfying (3) (where Φ denotes
the c.d.f. of a standard Gaussian variable).

Example 2 (Binomial testing). Observe X = (Xi)1≤i≤m with independent
coordinates and marginals Xi ∼ B(ni, θi), where ni ≥ 1 is known and θi ∈ (0, 1)
is the parameter of interest, 1 ≤ i ≤ m. In that situation, a possible hypothesis
testing problem is to consider the nulls H0,i : “θi ≤ 1/2” against H1,i : “θi >
1/2”. Then pi(X) = Ti(Xi), 1 ≤ i ≤ m, define a family of p-values where
Ti(x) = 2−ni

∑ni

j=x

(
ni

j

)
is the upper-tail distribution function of a binomial

distribution of parameters (ni, 1/2). The support of the p-values under the null
and alternative is given by the values 2−ni

∑ni

j=Ki−k

(
ni

j

)
, 1 ≤ k ≤ Ki, where

Ki = ni + 1 and 1 ≤ i ≤ m. We easily check in that case that (3) is violated
while (2) and (4) hold.

2.3. Step-wise procedures

First define a critical value sequence as any nondecreasing sequence τ =
(τk)1≤k≤m ∈ [0, 1]m (with τ0 = 0 by convention).

The step-up procedure of critical value sequence τ , denoted by SU(τ), rejects

the i-th hypothesis if pi ≤ τk̂, with k̂ = max{k ∈ {0, 1, ...,m} : p(k) ≤ τk},
where p(1) ≤ p(2) ≤ ... ≤ p(m) denote the ordered p-values (with the convention
p(0) = 0).

The step-down procedure of critical value sequence τ , denoted by SD(τ),

rejects the i-th hypothesis if pi ≤ τk̃, with k̃ = max{k ∈ {0, 1, ...,m} : ∀k′ ≤
k, p(k′) ≤ τk′}. It is straightforward to check that, for the same set of critical
values, the step-up version always rejects more hypotheses than the step-down
version. More comments and illustrations on step-wise procedures can be found
in Blanchard et al. (2014) and Dickhaus (2014), among others.

2.4. False discovery rate

We measure the quantity of false positives of a step-up (resp. step-down) pro-
cedure by using the false discovery rate (FDR), introduced and popularised by
Benjamini and Hochberg (1995), which is defined as the averaged proportion
of errors among the rejected hypotheses. More formally, for some procedure R
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rejecting the i-th hypothesis if pi ≤ t̂(X) (for some threshold t̂(X)), we let

FDR(R,P ) = EX∼P

[∑
i∈H0(P ) 1{pi ≤ t̂(X)}

1 ∨
∑m

i=1 1{pi ≤ t̂(X)}

]
, P ∈ P . (5)

The main contribution of this work is to propose procedures that control the
FDR at a prescribed level α and that incorporate the knowledge of the Fi’s in
a way that increases the number of discoveries.

3. Procedures

In this section we briefly review some existing methods for FDR control and
introduce our new procedures.

3.1. Existing methods

We use the following methods as starting points for constructing new procedures.

- [BH]: the seminal procedure proposed in Benjamini and Hochberg (1995),
corresponding to the step-up procedure SU(τ), with critical values τk =
αk/m, 1 ≤ k ≤ m;

- [BR-λ], λ ∈ (0, 1): an adaptive version of the BH procedure that was
proposed in Blanchard and Roquain (2009), corresponding to the step-up
procedure SU(τ), with critical values

τk =

(
(1− λ)

αk

m− k + 1

)
∧ λ, 1 ≤ k ≤ m; (6)

- [GBS]: an adaptive version of the BH procedure that has been proposed in
Gavrilov et al. (2009), corresponding to the step-down procedure SD(τ),
with critical values

τk =
αk

m− (1− α)k + 1
, 1 ≤ k ≤ m; (7)

- [Heyse]: the step-up procedure SU(τ) using critical values given by

τk = max{t ∈ A : F (t) ≤ αk/m}, 1 ≤ k ≤ m; (8)

where F is defined by (1). This procedure was proposed in Heyse (2011).

The rationale behind the critical values of [BR-λ] and [GBS] is that they
are intended to mimic the oracle critical values τk = αk/m0(P ), 1 ≤ k ≤ m,
which are less conservative than those of [BH] when m0(P )/m is not close to
1, see, e.g., Benjamini et al. (2006); Blanchard and Roquain (2009) for more
details on this issue. Also, among adaptive procedures, [GBS] satisfies a kind
of optimality as a finite sample version of the asymptotically optimal rejection
curve, see Finner et al. (2009).
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Let us now comment on [Heyse]. First, in the continuous setting where (2)
holds, F (t) ≤ t, t ∈ [0, 1], and thus the critical values given by (8) satisfy
τk ≥ αk/m, 1 ≤ k ≤ m, which means that [Heyse] rejects at least as many
hypotheses as [BH]. When (3) additionally holds, we have F (t) = t, t ∈ [0, 1],
and the two critical value sequences are the same. Second, in the discrete setting
where (2) holds, A is finite and τk is not necessarily greater than αk/m anymore.
However, [Heyse] is also less conservative (or equal) than [BH] in the latter case,
as stated in the following result (proved in Appendix B for completeness).

Lemma 1. Consider the model of Section 2.1 assuming (2), both in the contin-
uous and discrete setting described in Section 2.2. Then the set of nulls rejected
by [Heyse] is larger than the one of [BH] (almost surely). Furthermore, under
(4), these two rejection sets are equal (almost surely) if Fi = Fj for all i �= j.

The equality case of Lemma 1 was provided in Proposition 2.3 of Heller and
Gur (2011). It can be seen as a limitation of Heyse procedure in the homogeneous
case. In the heterogeneous case, however, F (t) is smaller than t (see Figure 1)
and [Heyse] can substantially improve [BH] (see Figure 2).

While [Heyse] incorporates the knowledge of the Fi’s in a natural way (see
also Remark 1 below), it is not correctly calibrated for a rigorous FDR control
(see Appendix B.1). We propose suitable modifications of [Heyse] in the next
sections.

Remark 1 (Empirical Bayes point of view on the Heyse procedure).
We claim that [Heyse] corresponds to a suitable empirical Bayes procedure. To
see this, consider the “binomial example” of Section 2.2, but assume now that the
counts n1, . . . , nm are observed from a sample N1, . . . , Nm i.i.d. of an a priori
distribution ν. Unconditionally, the p-values pi, i ∈ H0, are thus i.i.d. with
c.d.f. F̄0 =

∑
n≥0 ν({n})F0,n, where F0,n is the c.d.f. jumping at each xk,n =

2−n
∑k−1

j=0

(
n
j

)
with F0,n(xk,n) = xk,n, 1 ≤ k ≤ n+1. This suggests to normalise

the p-values pi as F̄0(pi) which leads to the step-up procedure with critical values
τk = max{t : F̄0(t) ≤ αk/m}. Following an empirical Bayes approach, the
prior ν can be estimated by ν̂({n}) = m−1

∑m
i=1 1{Ni=n}, which gives rise to

the estimator of F̄0 defined by ˆ̄F0 =
∑

n≥0 ν̂({n})F0,n = m−1
∑m

i=1 F0,Ni , which

is equal to F given by (1). Hence, the corresponding (empirical Bayes) step-up
procedure reduces to [Heyse].

3.2. Two new methods

We now present two procedures that aim at correcting [Heyse] :

- [HSU] (heterogeneous step-up) : the step-up procedure SU(τ) using the
critical values defined in the following way:



New FDR bounds for discrete and heterogeneous tests 1875

τm = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ α

}
(9)

τk = max

{
t ∈ A : t ≤ τm,

1

m

m∑
i=1

Fi (t)

1− Fi (τm)
≤ αk/m

}
, 1 ≤ k ≤ m− 1.

(10)

- [HSD] (heterogeneous step-down) : the step-down procedure SD(τ) using
the critical values defined in the following way :

τk = max

{
t ∈ A :

1

m

m∑
i=1

Fi (t)

1− Fi (t)
≤ αk/m

}
, 1 ≤ k ≤ m. (11)

[HSU] can be seen as a correction of [Heyse]: the correction term in the critical
values (10) lies in the additional denominator 1−Fi (τm). A consequence is that
[HSU] can be more conservative than [BH]. However, the magnitude of this
phenomenon is always small, as the next lemma shows (proved in Appendix B
for completeness).

Lemma 2. Under the conditions of Lemma 1, the set of nulls rejected by [HSU]
contains the one of [BH] taken at level α/(1 + α) (almost surely).

For [HSD], the following result can be established.

Lemma 3. Under the conditions of Lemma 1, the set of nulls rejected by [HSD]
contains the one of the step-down procedure with critical values (αk/m)/(1 +
αk/m), 1 ≤ k ≤ m (almost surely).

From (10) and (11) it is clear that the critical values of [HSD] are always
at least as large as those for [HSU]. However, since the step-up direction is
more powerful than the step-down direction (see Section 2.3) neither of the two
generally dominates the other one.

Remark 2. We may ask whether we can construct a uniform improvement of
[BH] that incorporates the Fi’s. There is indeed such a procedure, see procedure
[RBH] in Appendix A.1 for more details. However, the improvement brought by
the Fi’s information is less substantial than for [HSU], so we have chosen to
omit [RBH] from the main stream of the paper.

3.3. Adaptive versions

In this section, we define adaptive versions of [HSU] and [HSD] in the following
way:

- [AHSU] (one-stage adaptive heterogeneous step-up): the step-up proce-
dure SU(τ) using the critical values defined in the following way: τm as
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in (9) and for 1 ≤ k ≤ m− 1,

τk = max

{
t ∈ A : t ≤ τm,

(
F (t)

1−F (τm)

)
(1)

+ · · ·

+
(

F (t)
1−F (τm)

)
(m−k+1)

≤ αk

}
,

(12)

where each
(

F (t)
1−F (τm)

)
(j)

denotes the j-th largest element of the range of

values
{

Fi(t)
1−Fi(τm) , 1 ≤ i ≤ m

}
.

- [AHSD] (one-stage adaptive heterogeneous step-down): the step-down pro-
cedure SD(τ) using the critical values defined in the following way: for
1 ≤ k ≤ m,

τk = max

{
t ∈ A :

(
F (t)

1− F (t)

)
(1)

+ · · ·+
(

F (t)

1− F (t)

)
(m−k+1)

≤ αk

}
,

(13)

where each
(

F (t)
1−F (t)

)
(j)

denotes the j-th largest elements of the range of

values
{

Fi(t)
1−Fi(t)

, 1 ≤ i ≤ m
}
.

Note that the critical values of [AHSU] and [AHSD] are clearly larger than or
equal to those of their non-adaptive counterparts [HSU] and [HSD], respectively.
This means that the adaptive versions are always less conservative. The following
result establishes a connection of the adaptive procedures to the [BR-λ] and
[GBS] procedures (proved in Appendix B for completeness).

Lemma 4. Under the conditions of Lemma 1, the following holds:

(i) the set of nulls rejected by [AHSU] contains the one of [BR-λ] (a.s.) for
λ equals to (9);

(ii) the set of nulls rejected by [AHSD] contains the one of [GBS] (a.s.);

The above lemma ensures that the user can incorporate the knowledge of the
Fi’s in adaptive procedures with a “no loss” guarantee with respect to [BR] and
[GBS].

Remark 3. We may ask whether we can build a procedure that is a uniform
improvement of [BR-λ], for any fixed value of λ ∈ (0, 1). We propose a solution
in Appendix A.2, called [HBR-λ]. It does not improve uniformly [HSU], but is
an interesting variant of [AHSU].

4. New FDR bounds for heterogeneous nulls

In this section, we present new FDR bounds which are the main mathematical
contributions of this paper and that are of independent interest. They generalise
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some classical bounds from super-uniform null distributions to arbitrary hetero-
geneous (not necessarily discrete) null distributions, and immediately yield FDR
control of our new procedures.

4.1. Results

The following result holds. It only assumes independence between the p-values
and not super-uniformity of the null distributions.

Theorem 1. Consider any family F = {Fi, 1 ≤ i ≤ m} as defined in Section 2.1
and assume (Indep). Consider any critical values τk, 1 ≤ k ≤ m such that
∀i ∈ {1, . . . ,m}, Fi(τm) < 1. Then, for all P ∈ P, we have

FDR(SU(τ), P )

≤ min

⎛⎜⎝ m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max
1≤k≤m

max
A⊂{1,...,m}
|A|=m−k+1

(
1

k

∑
i∈A

Fi (τk)

1− Fi (τm)

)⎞⎟⎠ ; (14)

FDR(SD(τ), P )

≤ min

⎛⎜⎝ m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max
1≤k≤m

max
A⊂{1,...,m}
|A|=m−k+1

(
1

k

∑
i∈A

Fi (τk)

1− Fi (τk)

)⎞⎟⎠ . (15)

The proof of Theorem 1 is deferred to Section 8. It combines several tech-
niques: the first tool is an expression of the FDR introduced by Ferreira (2007)
(step-up case) and Roquain and Villers (2011) (step-down case). A second idea
comes from the work Blanchard and Roquain (2009) (step-up case) and Gavrilov
et al. (2009) (step-down case), which introduced a new term (here, the denom-
inator (1 − Fi(·))) to make the proof work. Finally, another inspiration is the
study of Roquain and van de Wiel (2009) and Döhler (2016) that allowed to deal
with heterogeneous FDR thresholding. Let us underline that the obtained proof
is especially concise, which means that these different techniques fit together
perfectly well, which is perhaps surprising at first glance, see Section 8.

Next, let us note that taking the maximum over the subset A in (14) and
(15) allows us to adapt to the unknown number of true null hypotheses: loosely,
if k− 1 is the number of rejections, A corresponds to the acceptation set (hence
of cardinality m− k + 1), which “estimates” H0 and thus the sums in (14) and
(15) are indexed by a set “close” to the unknown set H0. Taking the maximum
then corresponds to the least favorable possible H0.

Finally, let us underline again that the above bounds do not use the super-
uniformity of the Fi’s which makes them quite general and flexible tools. Several
examples are given below.
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4.2. Application to adaptiveness and weighting

Let us now give some intuition behind these bounds and illustrate their gen-
erality by showing how they encompasse previous work in the literature. First,
assuming the super-uniformity Fi(t) ≤ t for all t and i, these bounds entail

FDR(SU(τ), P ) ≤ m max
1≤k≤m

{τk/k}; (16)

FDR(SU(τ), P ) ≤ max
1≤k≤m

m− k + 1

1− τm

τk
k
; (17)

FDR(SD(τ), P ) ≤ max
1≤k≤m

m− k + 1

1− τk

τk
k
, (18)

which immediately implies that [BH], [BR-λ] (with τm = λ) and [GBS] all con-
trol the FDR at level α. To this respect, bounds (16), (17) and (18) encompass
Theorem 1 of Benjamini and Hochberg (1995), Theorem 9 of Blanchard and
Roquain (2009) and Theorem 1.1 of Gavrilov et al. (2009), respectively.

Second, by removing the adaptative part of the bounds, that is, by replacing
A by {1, . . . ,m}, we obtain the simpler but more conservative bounds

FDR(SU(τ), P ) ≤ max
1≤k≤m

(
1

k

m∑
i=1

Fi (τk)

1− Fi (τm)

)
; (19)

FDR(SD(τ), P ) ≤ max
1≤k≤m

(
1

k

m∑
i=1

Fi (τk)

1− Fi (τk)

)
. (20)

Here, we show how these bounds can be used to recover some of the finite sample
FDR controlling results of Roquain and van de Wiel (2009) for p-value weighting
procedures. Assume that the p-values pi, 1 ≤ i ≤ m, have uniform marginals
under the null, that is, satisfy (3) and consider any family of c.d.f. (Δi)1≤i≤m,
with the additional property m−1

∑m
i=1 Δi(x) = x, for x ∈ [0, α]. This family

can be considered as “weighting” the p-values. It is a free parameter that adds
an extra flexibility which can be useful in different contexts, see, e.g., Ignatiadis
et al. (2016), Durand (2017). An important point is then to make sure that this
weighting maintains the FDR control. For this, let us first modify the family
(Δi)1≤i≤m as follows:

Δ̃i(x) =
Δi (x)

1 + Δi (α)
, so that

Δ̃i (x)

1− Δ̃i (α)
= Δi(x), x ∈ [0, 1), 1 ≤ i ≤ m,

with the convention Δ̃i(1) = 1 (to make Δ̃i meet the properties of a c.d.f.). Then
we can consider the BH procedure using the transformed p-values p̃i = Δ̃−1

i (pi),
1 ≤ i ≤ m, which can be interpreted as a “weighted BH procedure”, in the sense
that each p-value pi has an importance which is increased or diminished in the
procedure according to the value of Δ̃−1

i at pi. Since each p̃i has for null c.d.f.
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Δ̃i, our bound (19) yields

FDR ≤ max
1≤k≤m

(
1

k

m∑
i=1

Δ̃i (αk/m)

1− Δ̃i (α)

)
= max

1≤k≤m

(
1

k

m∑
i=1

Δi (αk/m)

)
= α,

which recovers the results of Theorem 4.1 in Roquain and van de Wiel (2009)
(step-up part). The step-down part can be recovered from (20) in a similar way.

4.3. Application to the new procedures

To make a connection between Theorem 1 and our new procedures, especially
[AHSU] and [AHSD] (see Section 3.3), observe that the following relations hold
true:

max
A⊂{1,...,m}
|A|=m−k+1

(∑
i∈A

Fi (τk)

1− Fi (τm)

)
=

(
F (τk)

1− F (τm)

)
(1)

+ · · ·+
(

F (τk)

1− F (τm)

)
(m−k+1)

;

max
A⊂{1,...,m}
|A|=m−k+1

(∑
i∈A

Fi (τk)

1− Fi (τk)

)
=

(
F (τk)

1− F (τk)

)
(1)

+ · · ·+
(

F (τk)

1− F (τk)

)
(m−k+1)

.

Therefore, Theorem 1 implies that our new procedures enjoy the desired FDR
controlling property.

Corollary 1. In the setting of Theorem 1, the procedures [HSU], [HSD],
[AHSU], [AHSD] all control the FDR at level α.

Now let us focus on the discrete case. In that situation, recall that the indi-
vidual p-values cannot be transformed (without randomisation) to be uniform
under the null. Rather, our Heyse-type procedures “average” the heterogeneous
nulls. As a consequence, if some of the Fi’s are really small, they will not con-
tribute much to the average, offering some additional room for the other Fj ’s.

Finally, let us underline that our bounds can be useful for other discrete-type
procedures. As a case in point, consider mid p-values which were introduced
by Lancaster (1961) and are sometimes used for analysing discrete data (see,
e.g., Karp et al., 2016). These p-values are no longer super-uniform under the
null hypotheses, however our theorem can accommodate such distributions in a
natural way to still yield valid FDR controlling procedures.

5. Empirical data

To illustrate the performance of FDR-controlling procedures for discrete data,
we analyse two classical data sets. In what follows, our main goal is to compare
the performance of the new procedures [HSU] and [AHSU] to the classical [BH]
and [Storey] and also to [Heyse]. The procedure [Storey] was proposed in Storey
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et al. (2004), and corresponds to the step-up procedure SU(τ), with critical
values τk = αk/m̂0, 1 ≤ k ≤ m, where

m̂0 = m̂0(λ) =
1 +
∑m

i=1 1{pi > λ}
1− λ

is an estimate of the number m0 of true null hypotheses among the m hypothe-
ses. We use the standard value λ = 1

2 . All analyses were performed using the R
language for statistical computing (R Core Team, 2016).

5.1. Pharmacovigilance data

This data set is derived from a database for reporting, investigating and mon-
itoring adverse drug reactions due to the Medicines and Healthcare products
Regulatory Agency in the United Kingdom. It contains the number of reported
cases of amnesia as well as the total number of adverse events reported for each
of the m = 2446 drugs in the database. For more details we refer to Heller and
Gur (2011) and to the accompanying R-package ’discreteMTP’ (Heller et al.,
2012), which also contains the data. Heller and Gur (2011) investigate the asso-
ciation between reports of amnesia and suspected drugs by performing for each
drug a Fisher’s exact test (one-sided) for testing association between the drug
and amnesia while adjusting for multiplicity by using several (discrete) FDR
procedures.

5.2. Next generation sequencing data

We also revisit the next generation sequencing (NGS) count data analysed by
Chen and Doerge (2015b), to which we also refer for more details. More specif-
ically, we reanalyse the methylation data set for cytosines of Arabidopsis in
Lister et al. (2008) which is part of the R-package ’fdrDiscreteNull’ (Chen and
Doerge, 2015a). This data set contains the counts for a biological entity under
two different biological conditions or treatments. Following Chen and Doerge
(2015b), m = 7421 genes whose treatment-wise total counts are positive but
row-total counts are no greater than 100 are analysed using the exact binomial
test, see Chen and Doerge (2015b).

5.3. Results

Table 1 summarises the number of discoveries for the pharmacovigilance and
NGS data when using the respective FDR procedures at level α = 0.05. Com-
pared to the classical [BH] procedure, the discrete procedures are able to detect
three additional candidates linking amnesia and drugs in the pharmacovigilance
data. This data set seems to contain very few signals so there is no benefit in us-
ing adaptive procedures, in fact the (finite sample) [Storey] procedure performs
worse than the [BH] procedure. Note also that our new procedures – while being
correctly calibrated – still reject the same number of hypotheses as [Heyse].
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Table 1

Number of rejections (discoveries) for the pharmacovigilance and Arabidopsis methylation
data.

Data set [BH] [HSU] [Heyse] [Storey] [AHSU]

Pharmacovigilance 24 27 27 22 27
Arabidopsis methylation 2097 2358 2379 2395 2446

In contrast, the Arabidopsis data seems to contain a large portion of signals
so that in particular the [Storey] procedure performs much better than [BH].
The [HSU] and [Heyse] procedures also outperform [BH], while the [Storey]
procedure is dominated by the [AHSU] procedure.

Figure 2 illustrates graphically the data and the critical constants of the
involved multiple testing procedures. In particular, the benefit of taking dis-

Fig 2. Critical constants and sorted p-values (represented by black dots) for the pharmacovig-
ilance (left panel) and Arabidopsis methylation data (right panel). The [BH], [HSU], [Heyse],
[Storey] and [AHSU] critical constants are represented respectively by blue, red, grey, green,
and orange solid lines.

creteness into account becomes more apparent: for the pharmacovigilance data,
the discrete critical values are considerably (by a factor of 2.5−3.5) larger than
their respective classical counterparts. This leads to more powerful procedures.
For the NGS data, we can observe quite clearly that the [HSU] critical constants
are dominated by the [AHSU] constants, as explained in Section 3. This leads
to roughly 100 additional rejections. Again, the discrete critical values are con-
siderably larger than their respective classical counterparts. In Section 3.2, we
mentioned that the correction factor 1 − Fi(τm), introduced for guaranteeing
FDR control of [HSU], may lead to a procedure which is more conservative than
[BH]. However, Figure 2 shows that – at least for the data sets considered here –
this risk is by far compensated by the benefit of taking discreteness adequately
into account.
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6. Simulation study

We now investigate the power of the procedures from the previous section in a
simulation study similar to those described in Gilbert (2005), Heller and Gur
(2011) and Döhler (2016). Again, we focus on comparing the performance of the
new discrete procedures to [BH], [Storey] and [Heyse].

6.1. Simulated scenarios

We simulate a two-sample problem in which a vector of m independent binary
responses (“adverse events”) is observed for each subject in two groups, where
each group consists of N = 25 subjects. Then, the goal is to simultaneously test
the m null hypotheses H0i : “p1i = p2i”, i = 1, . . . ,m, where p1i and p2i are the
success probabilities for the ith binary response in group 1 and 2, respectively.
Before we describe the simulation framework in more detail, we explain how
this set-up leads to discrete and heterogeneous p-value distributions. Suppose
we have simulated two vectors of dimension m where each component represents
a count in {0, . . . , 25}. This data can be represented by m contingency tables.
Now each hypothesis is tested using Fisher’s exact test (two-sided) for each
contingency table, which is performed by conditioning on the (simulated) pair
of marginal counts. Thus, we can determine for every contingency table i the
discrete distribution function Fi of the p-values for Fisher’s exact test under
the null hypothesis. For differing (simulated) contingency tables, these induced
distributions will generally be heterogeneous and our inference is conditionally
on the marginal counts.

We take m = 800, 2000 where m = m1 + m2 + m3 and data are gener-
ated so that the response is Bernoulli(0.01) at m1 positions for both groups,
Bernoulli(0.10) at m2 positions for both groups and Bernoulli(0.10) at m3

positions for group 1 and Bernoulli(q) at m3 positions for group 2 where
q = 0.15, 0.25, 0.4 represents weak, moderate and strong effects respectively.
The null hypothesis is true for the m1 and m2 positions while the alternative
hypothesis is true for the m3 positions. We also take different configurations for
the proportion of false null hypotheses, m3 is set to be 10%, 30% and 80% of the
value of m, which represents small, intermediate and large proportion of effects
(the proportion of true nulls π0 is 0.9, 0.7, 0.2, respectively). Then, m1 is set to
be 20%, 50% and 80% of the number of true nulls (that is, m−m3) and m2 is
taken accordingly as m−m1 −m3.

For each of the 54 possible parameter configurations specified by m,m3,m1

and q, 10000 Monte Carlo trials are performed, that is, 10000 data sets are
generated and for each data set, an unadjusted two-sided p-value from Fisher’s
exact test is computed for each of the m positions, and the multiple testing
procedures mentioned above are applied at level α = 0.05. The power of each
procedure was estimated as the fraction of the m3 false null hypotheses that
were rejected, averaged over the 10000 simulations. Note that while our proce-
dures are designed to control the FDR conditionally on the marginal counts,
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our power results are presented in an unconditional way for the sake of sim-
plicity. For random number generation the R-function rbinom was used. The
two-sided p-values from Fisher’s exact test were computed using the R-function
fisher.test.

6.2. Results

We have computed the (average) power and FDR of the five procedures under
investigation in all scenarios (see Tables 3 and 4 in Appendix E for the full
display). For weak and moderate effects, i.e. q = 0.15 and q = 0.25, none
of the procedure possesses relevant power. For strong effects, the results are
summarised in Figure 3. (Since the power of the discrete procedures is slightly
increasing inm1 for fixed m3 and q, we present – in order to avoid over-optimism
– the configuration with smallest m1).

Fig 3. Average power for the [BH], [Storey], [HSU], [Heyse] and [AHSU] procedures in the
simulation study. The coloring is the same as in Figure 2.

The results are consistent with the findings of the previous section: the new
discrete procedures are considerably more powerful than the [BH] procedure.
When the proportion of alternatives is large, the [Storey] procedure provides
large gains over [BH] but is still dominated by the discrete adaptive procedure
[AHSU].

7. Conclusion and discussion

In this paper, we provided new bounds for the FDR of step-up and step-down
procedures that use heterogeneous test statistics. This made it possible to de-
fine a new class of multiple testing procedures that provably control the FDR
while incorporating the discreteness and heterogeneity of the tests statistics
in a convenient way. We have shown that our approach can be seen as cor-
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recting and improving the approach of Heyse (2011): while it ensures a the-
oretical control, it can also make more rejections when the signal is strong
enough.

Our new procedures are easily interpreted since they involve neither ran-
domisation nor any additional choice of tuning parameters (in Appendix C we
present a comparison with a randomised p-value approach). Furthermore, an
R-package implementing them is currently being developed, which will make
these methods available for the practitioner.

Additionally, our methodology can deal with other null distributions Fi that
arise in the context of discrete testing: as a case in point, consider mid p-values
which were introduced by Lancaster (1961) and are sometimes used for analysing
discrete data (see, e.g., Karp et al. (2016)). These p-values are no longer super-
uniform under the null hypotheses, however our methods can accommodate such
distributions in a natural way to still yield valid FDR controlling procedures.

Finally, this paper opens several directions for future research, especially by
trying to extend our arguments to other frameworks. For instance, an important
point is to relax the independence requirement. To this respect, we believe that
our procedures will inherit the behavior of BH procedure: while the FDR control
is likely to be maintained under “realistic” dependence, formally proving such
a result is probably a challenging problem. Another challenge is to develop
mathematically valid plug-in procedures for discrete data. A first step in this
direction is sketched in Appendix D.

8. Proof of Theorem 1

8.1. Lemmas for step-down and step-up procedures

Let us introduce the following modifications of SU(τ) :

• SU�(τ) = SU(τ �) the step-up with m critical values defined by (τ �1 , . . . ,
τ �m) = (τ2, . . . , τm, τm);

• for some given index i ∈ {1, . . . ,m}, SU�,−i(τ) = SU(τ �,−i) the step-up

with m− 1 critical values defined by (τ �,−i
1 , . . . , τ �,−i

m−1) = (τ2, . . . , τm) and
restricted to the p-values of the set {pj , j �= i}.

The following lemma holds (variation of a well known lemma, see, e.g., Fer-
reira and Zwinderman, 2006) and is proved in Appendix B for completeness.

Lemma 5. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i)

pi ≤ τk̂; (ii) pi ≤ τk̂�,−i+1; (iii) k̂
�,−i+1 = k̂, where k̂�,−i denotes the number of

rejected hypotheses of the procedure SU�,−i(τ). Moreover, we have {pi > τm} ⊂
{k̂� = k̂�,−i}, where k̂� denotes the number of rejected hypotheses of the procedure
SU�(τ).
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Let us introduce the following modifications of SD(τ):

• for some given index i ∈ {1, . . . ,m}, SD−i(τ) = SD(τ−i) the step-
down procedure with m − 1 critical values defined by (τ−i

1 , . . . , τ−i
m−1) =

(τ1, . . . , τm−1) and restricted to the p-values of the set {pj , j �= i}.
• for some given index i ∈ {1, . . . ,m}, SD�,−i(τ) = SD(τ �,−i) the step-down

procedure with the m − 1 critical values (τ �,−i
1 , . . . , τ �,−i

m−1) = (τ2, . . . , τm)
and restricted to the p-values of the set {pj , j �= i}.

The following lemma holds (variation of Gavrilov et al., 2009; Roquain and
Villers, 2011) and is proved in Appendix B for completeness:

Lemma 6. For all i ∈ {1, . . . ,m}, the following assertions are equivalent: (i)
pi ≤ τk̃; (ii) pi ≤ τk̃+1; (iii) pi ≤ τk̃−i+1; (iv) k̃�,−i + 1 = k̃, where k̃−i is

the number of rejections of SD−i(τ) and k̃�,−i is the number of rejections of

SD�,−i(τ). Moreover, we have {pi > τk̃−i+1} ⊂ {k̃ = k̃−i}.

8.2. Proof of Theorem 1, step-up part

By using Lemma 5 (ii) and (iii), we obtain

FDR(SU(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̂}

k̂

)
=
∑
i∈H0

E

(
1{pi ≤ τk̂�,−i+1}

k̂�,−i + 1

)
. (21)

because pi ≤ τk̂ is equivalent to pi ≤ τk̂�,−i+1, and both imply k̂�,−i + 1 = k̂.

Now using independence between k̂�,−i and pi, we obtain

∑
i∈H0

E

(
1{pi ≤ τk̂�,−i+1}

k̂�,−i + 1

)
=
∑
i∈H0

E

(
E

(
1{pi ≤ τk̂�,−i+1}

k̂�,−i + 1

∣∣∣∣ k̂�,−i

))

=
∑
i∈H0

E

⎛⎝P
(
pi ≤ τk̂�,−i+1

∣∣ k̂�,−i
)

k̂�,−i + 1

⎞⎠
≤
∑
i∈H0

E

(
Fi

(
τk̂�,−i+1

)
k̂�,−i + 1

)
,

because for any i ∈ H0, and t, we have P (pi ≤ t) ≤ Fi(t). Now, on the one
hand,

∑
i∈H0

E

(
Fi

(
τk̂�,−i+1

)
k̂�,−i + 1

)
≤

m∑
i=1

E

(
Fi

(
τk̂�,−i+1

)
k̂�,−i + 1

)
≤

m∑
i=1

max
1≤k≤m

Fi(τk)

k
.
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Next, on the other hand, by using again (Indep) and that for any i ∈ H0, and
t, 1−P (pi ≤ t) ≥ 1− Fi(t),

∑
i∈H0

E

(
Fi

(
τk̂�,−i+1

)
k̂�,−i + 1

)
≤
∑
i∈H0

E

(
Fi

(
τk̂�,−i+1

)
k̂�,−i + 1

E

(
1{pi > τm}
1− Fi (τm)

∣∣∣∣ k̂�,−i

))

=
∑
i∈H0

E

(
Fi

(
τk̂�,−i+1

)
1− Fi (τm)

1{pi > τm}
k̂�,−i + 1

)

≤
∑
i∈H0

E

(
Fi

(
τk̂�+1

)
1− Fi (τm)

1{pi > τm}
k̂� + 1

1{k̂� + 1 ≤ m}
)
,

where the latter inequality comes from the last assertion of Lemma 5. Now,
since τk̂�+1 ≤ τm, we have that the last display is smaller than or equal to

E

(∑
i∈H0

Fi

(
τk̂�+1

)
1− Fi (τm)

1{pi > τk̂�+1}
k̂� + 1

1{k̂� + 1 ≤ m}
)

≤ max
0≤k≤m−1

max
A⊂{1,...,m}
|A|=m−k

∑
i∈A∩H0

Fi (τk+1)

1− Fi (τm)

1

k + 1
, (22)

by taking the maximum over all the possible realisations of the set A = {1 ≤ i ≤
m : pi > τk̂�+1} = {1 ≤ i ≤ m : pi > τ �

k̂�
} which is the index set corresponding

to the non-rejected null hypotheses of SU(τ �) (the latter being by definition of

cardinality m− k̂�). This concludes the proof.

8.3. Proof of Theorem 1, step-down part

It is similar to the step-up case, with some subtle changes:

FDR(SD(τ)) =
∑
i∈H0

E

(
1{pi ≤ τk̃}

k̃

)
=
∑
i∈H0

E

(
1{pi ≤ τk̃−i+1}

k̃�,−i + 1

)
,

because pi ≤ τk̃ is equivalent to pi ≤ τk̃−i+1, and both imply k̃�,−i+1 = k̃ (keep

in mind that k̃�,−i might be different from k̃−i), by applying Lemma 6. Now
using independence between (k̃−i, k̃�,−i) and pi, we obtain

∑
i∈H0

E

(
1{pi ≤ τk̃−i+1}

k̃�,−i + 1

)
=
∑
i∈H0

E

(
E

(
1{pi ≤ τk̃−i+1}

k̃�,−i + 1

∣∣∣∣ (k̃−i, k̃�,−i)

))

=
∑
i∈H0

E

⎛⎝P
(
pi ≤ τk̃−i+1

∣∣ (k̃−i, k̃�,−i)
)

k̃�,−i + 1

⎞⎠
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≤
∑
i∈H0

E

(
Fi

(
τk̃−i+1

)
k̃�,−i + 1

)

≤
∑
i∈H0

E

(
Fi

(
τk̃−i+1

)
k̃−i + 1

)
,

because k̃�,−i + 1 ≥ k̃−i + 1 and because for i ∈ H0, and any t, we have
P (pi ≤ t) ≤ Fi(t). This gives the first part of the bound. Next, by using again
(Indep), we obtain

∑
i∈H0

E

(
Fi

(
τk̃−i+1

)
k̃−i + 1

)
≤
∑
i∈H0

E

(
Fi

(
τk̃−i+1

)
k̃−i + 1

E

(
1{pi > τk̃−i+1}
1− Fi

(
τk̃−i+1

) ∣∣∣∣ (k̃−i, k̃�,−i)

))

=
∑
i∈H0

E

(
Fi

(
τk̃−i+1

)
1− Fi

(
τk̃−i+1

) 1{pi > τk̃−i+1}
k̃−i + 1

)
.

Now using the last assertion of Lemma 6, the last display is smaller than or
equal to

E

(∑
i∈H0

Fi

(
τk̃+1

)
1− Fi

(
τk̃+1

) 1{pi > τk̃+1}
k̃ + 1

1{k̃ + 1 ≤ m}
)

≤ E

⎛⎜⎝ max
0≤k≤m−1

max
A⊂{1,...,m}
|A|=m−k

∑
i∈A∩H0

Fi (τk+1)

1− Fi (τk+1)

1

k + 1

⎞⎟⎠ ,

because {1 ≤ i ≤ m : pi > τk̃+1} is equal to {1 ≤ i ≤ m : pi > τk̃}, since both
sets correspond to the set of non-rejected hypotheses of SD(τ). Since SD(τ)
rejects exactly k̃ hypotheses, the proof is completed.

Appendix A: Additional procedures

A.1. A rescaled BH procedure

The procedure [RBH] (rescaled-BH) is defined as the step-up procedure using
the critical values τk = λαk/m, 1 ≤ k ≤ m, where λα = max{λ ∈ [0, 1] :
Ψ(λα) ≤ α} for

Ψ(λ) = min

(
λ, max

1≤k≤m

(
1

k

m∑
i=1

Fi (λk/m)

1− Fi (λ)

))
.

The following result is straightforward from Theorem 1 (SU part).

Corollary 2. In the setting of Theorem 1 with the additional assumption (2),
we have ∀P ∈ P, FDR(RBH, P ) ≤ α.
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Moreover, if α is such that the equality Ψ(λα) = α holds true, then λα ≥
Ψ(λα) = α and [RBH] always dominates [BH] in terms of critical values and
therefore rejects at least as many hypotheses.

A.2. A heterogeneous BR procedure

The procedure [HBR-λ] (discrete BR) is defined as the step-up procedure SU(τ)
using the critical values defined in the following way: for k ∈ {1, . . . ,m},

τk = max
{
t ∈ A : (F (t))(1) ≤ λ,

(F (t))(1) + · · ·+ (F (t))(m−k+1) ≤ αk(1− λ)
}
,

where each (F (t))(j) denotes the j-th largest elements of the set {Fi (t) ,

1 ≤ i ≤ m}. The following result is straightforward from Theorem 1 (SU part).

Corollary 3. In the setting of Theorem 1, with the additional assumption (2),
we have ∀P ∈ P, FDR(HBR, P ) ≤ α. Moreover, the set of nulls rejected by
[HBR-λ] is larger than the one of [BR-λ] (almost surely), with equality (almost
surely) under (4) and Fi = Fj for all i �= j.

Appendix B: Supplement

B.1. Counterexample

We present here a modification of the counterexample due to Krieger given in
Heller and Gur (2011). Consider m = 3 p-value null distributions given by

P1 = 0.05 · δ{0.05} + 0.16 · δ{0.21} + 0.79 · δ{1};
P2 = 0.2 · δ{0.2} + 0.09 · δ{0.29} + 0.71 · δ{1};
P3 = δ{1},

where δ{x} denotes the Dirac distribution in x. It is easy to verify that (1) yields

F (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < 0.05;

0.05/3 t ∈ [0.05, 0.2);

0.25/3 t ∈ [0.2, 0.21);

0.41/3 t ∈ [0.21, 0.29);

0.50/3 t ∈ [0.29, 1);

1 t ≥ 1.

Then the critical values of [Heyse] at level α = 0.25 are given by τ1 = 0.2,
τ2 = τ3 = 0.29, see (8). Now consider an alternative distribution for P3 given by

Q3 = εδ{0} + (1− ε)δ{0.3},
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where ε will be suitably chosen further on. Assume that the p-values p1, p2, p3
are independent, with pi ∼ Pi for i ∈ {1, 2} (hypotheses H1 and H2 true) and
p3 ∼ Q3 (hypothesis H3 false).

On the one hand, let us focus on the event E = {p3 = 0.3}. In this case,
H3 is never rejected and the FDP of [Heyse] is 0 if and only if H1 and H2 are
both not rejected and is equal to 1 otherwise. We partition E into the following
different events:

• E ∩ {p1 = 0.05}: in this case, p(1) = 0.05 ≤ τ1 and at least H1 will be
(falsely) rejected and FDP = 1;

• E ∩ {p1 = 0.21, p2 �= 1}: in this case, p(1) = 0.2 ≤ τ1 and at least H2 will
be (falsely) rejected and FDP = 1;

• E ∩ {p1 = 0.21, p2 = 1}: in this case, p(1) = 0.21 > τ1 and p(2) = 0.3 > τ2
so H1 and H2 are not rejected and FDP = 0;

• E∩{p1 = 1, p2 = 0.2}: in this case, p(1) = 0.2 ≤ τ1 and H2 will be (falsely)
rejected and FDP = 1;

• E ∩ {p1 = 1, p2 �= 0.2}: in this case, p(1) = 0.29 > τ1 and p(2) = 0.3 > τ2
so H1 and H2 are not rejected and FDP = 0.

Altogether, we obtain

E(FDP× 1{E}) = (1− ε)(0.05 + 0.16× 0.29 + 0.79× 0.2) = (1− ε)0.2544.

On the other hand, let us focus on the event Ec = {p3 = 0}. In this case,
H3 is always rejected and the FDP of [Heyse] can be 1/2 if one null is rejected
among H1 and H2, and 2/3 if both H1 and H2 are rejected (it is 0 if both H1

and H2 are non rejected). We partition E into the following different events:

• Ec ∩ {p1 �= 1, p2 �= 1}: in this case, p(3) ≤ 0.29 = τ3 and both H1 and H2

are rejected and FDP = 2/3;
• Ec ∩ {p1 �= 1, p2 = 1}: in this case, p(2) ≤ 0.29 = τ2 and p(3) = 1 > τ3 so

H1 is rejected and not H2. So FDP = 1/2;
• Ec ∩ {p1 = 1, p2 �= 1}: in this case, p(2) ≤ 0.29 = τ2 and p(3) = 1 > τ3 so

H2 is rejected and not H1. So FDP = 1/2;
• Ec ∩ {p1 = 1, p2 = 1}: in this case only H3 is rejected and FDP = 0.

Altogether, we obtain

E(FDP× 1{Ec}) = ε((2/3)× 0.21× 0.29 + (1/2)× (0.21× 0.71 + 0.79× 0.29))

= ε 0.2297.

Finally, we get

FDR = ε 0.2297 + (1− ε)0.2544 = 0.25193 > α,

by choosing ε = 0.1.
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B.2. Proofs for lemmas comparing procedures

The lemmas presented here rely on the fact that, there is almost surely no p-
value in [0, 1]\A (both in the continuous and discrete cases). All symbols “=”
or “⊂” are intended to be valid almost surely in this section.

A result which will be extensively used in the proofs of this section is the
following one : for p-values valued in the set A, then the step-up procedure
with critical values τk, 1 ≤ k ≤ m, has the same rejection set as the step-up
procedure with critical values ξk = max {t ∈ A : t ≤ τk}, 1 ≤ k ≤ m. This fact
comes from the simple following observation: for all k,

{1 ≤ i ≤ m : pi ≤ τk} = {1 ≤ i ≤ m : pi ∈ A, pi ≤ τk}

= {1 ≤ i ≤ m : pi ∈ A, pi ≤ ξk}

= {1 ≤ i ≤ m : pi ≤ ξk}.

The ξk’s are called the “effective” critical values of SD(τ) or SU(τ) in the
sequel.

B.2.1. Proof of Lemma 1

The effective critical values of the BH procedure are given by the quantities
ξk = max {t ∈ A : t ≤ αk/m}, 1 ≤ k ≤ m. If (2) holds, then F (t) ≤ t and each
ξk is clearly smaller than the k-th critical values of [Heyse]. This implies that
the rejection set of [Heyse] is larger than the one of [BH]. Conversely, under (4)
and if Fi = Fj = F for all i �= j, we always have F (t) = Fi(t) = t for t ∈ A. This
implies that the ξk’s are the critical values of [Heyse] and shows the reversed
inclusion.

B.2.2. Proof of Lemmas 2 and 3

Let τk, 1 ≤ k ≤ m, be the critical values of [HSU]. Let us consider ξk =

max
{
t ∈ A : t ≤ α

1+α
k
m

}
the effective critical values of the [BH] procedure at

level α/(1 + α). Now, for all t ∈ [0, 1], we have by (2),

F SU(t) =
1

m

m∑
i=1

Fi(t)

1− Fi(τm)
≤ t

m

m∑
i=1

1

1− Fi(τm)
= t · (1 + F SU(τm))

≤ t · (1 + α), (23)

where the last inequality follows from the definition of τm. Thus we have F SU(ξm)
≤ α, which in turn implies ξm ≤ τm. Additionally, the bound (23) yields
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for 1 ≤ k < m

τk = max
{
t ∈ A : t ≤ τm, F SU(t) ≤ αk/m

}
≥ max {t ∈ A : t ≤ τm, t(1 + α) ≤ αk/m}

= max {t ∈ A : t(1 + α) ≤ αk/m}

= ξk,

where we used that ξm ≤ τm. This proves Lemma 2. The proof of Lemma 3 is
analogue and is left to the reader.

B.2.3. Proof of Lemma 4

Let us first focus on the case (i) and denote by τk, 1 ≤ k ≤ m, the critical values
of [AHSU]. From (2), we have for 1 ≤ k ≤ m− 1,

τk ≥ max {t ∈ A : t ≤ τm, t ≤ αk(1− τm)/(m− k + 1)}

= max

{
t ∈ A : t ≤

(
(1− τm)

αk

m− k + 1

)
∧ τm

}
,

which correspond to the effective critical values of [BR-λ] with λ = τm. Now
consider the case (ii) and denote again by τk, 1 ≤ k ≤ m, the critical values of
[AHSD]. From (2), we have for 1 ≤ k ≤ m,

τk ≥ max {t ∈ A : (m− k + 1)t/(1− t) ≤ αk}
= max {t ∈ A : t ≤ αk/(m− k(1− α) + 1)}

which correspond to the effective critical values of [GBS]. This implies the result.

B.3. Proofs of technical lemmas for step-down and step-up
procedures

B.3.1. Proof of Lemma 5

First note that for any step-up procedure

k̂ = max

{
k ∈ {0, 1, ...,m} :

m∑
i=1

1{pi ≤ τk} ≥ k

}
,

which is sometimes more handy, because this definition avoids to rely explicitly
on the order statistics of the p-values.

Now, it is not difficult to check that k̂�,−i ≥ k̂ − 1 always holds: this comes
from the inequality

k̂ − 1 =
m∑
j=1

1{pj ≤ τk̂} − 1 ≤
∑
j 	=i

1{pj ≤ τk̂} =
∑
j 	=i

1{pj ≤ τ �,−i

k̂−1
},
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because τ �,−i
�−1 = τ� for � ∈ {2, . . . ,m} (note that we can assume without loss of

generality k̂ ≥ 1 here). This means that (i) implies (ii). Now, when pi ≤ τk̂�,−i+1,
we have

k̂�,−i =
∑
j 	=i

1{pj ≤ τ �,−i

k̂�,−i
} =

∑
j 	=i

1{pj ≤ τk̂�,−i+1} =
m∑
j=1

1{pj ≤ τk̂�,−i+1} − 1

which implies k̂�,−i + 1 =
∑m

j=1 1{pj ≤ τk̂�,−i+1} and thus k̂�,−i + 1 ≤ k̂ (by

using the definition of k̂). Since, again, k̂�,−i ≥ k̂ − 1 always holds, we have

k̂�,−i + 1 = k̂. Hence, (ii) implies (iii). Now, if k̂�,−i + 1 = k̂, we have

1{pi ≤ τk̂} =

m∑
j=1

1{pj ≤ τk̂} −
∑
j 	=i

1{pj ≤ τk̂} = k̂ −
∑
j 	=i

1{pj ≤ τk̂�,−i+1}

= k̂ −
∑
j 	=i

1{pj ≤ τ �,−i

k̂�,−i
} = k̂ − k̂�,−i = 1,

by definition of τ �,−i, which gives that (iii) implies (i). Now, to prove the last

statement, we first note that k̂� ≥ k̂�,−i always holds. Furthermore, if pi > τm
let us prove k̂� ≤ k̂�,−i. First, k̂� = m is impossible because pi is above τm and
thus pi cannot be rejected by SU�(τ). Hence, k̂� ≤ m− 1 and thus τ �,−i

k̂�
is well

defined. Now, since pi > τm, we obtain∑
j 	=i

1{pj ≤ τ �,−i

k̂�
} =

∑
j 	=i

1{pj ≤ τ �
k̂�
} =

m∑
j=1

1{pj ≤ τ �
k̂�
} = k̂�,

which implies k̂� ≤ k̂�,−i by definition of SU�,−i(τ).

B.3.2. Proof of Lemma 6

First note that for any step-down procedure

k̃ = max

{
k ∈ {0, 1, ...,m} : ∀k′ ≤ k,

m∑
i=1

1{pi ≤ τk′} ≥ k′

}
.

Now, we check that k̃�,−i + 1 ≥ k̃ always holds. Since
∑

j 	=i 1{pj ≤ τ �,−i

k̃�,−i+1
} <

k̃�,−i + 1, we have

m∑
j=1

1{pj ≤ τk̃�,−i+2} ≤ 1 +
∑
j 	=i

1{pj ≤ τ �,−i

k̃�,−i+1
} < k̃�,−i + 2,

which gives k̃ < k̃�,−i + 2 by definition of k̃ and thus k̃ ≤ k̃�,−i + 1. Next, if
pi ≤ τk̃, we have∑

j 	=i

1{pj ≤ τ �,−i

k̃
} =

∑
j 	=i

1{pj ≤ τk̃+1} =
m∑
j=1

1{pj ≤ τk̃+1} − 1 < k̃ + 1− 1,
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so that k̃ > k̃�,−i and thus k̃ ≥ k̃�,−i+1. This proves that (i) implies (iv). Next,
if pi > τk̃−i+1, then

m∑
j=1

1{pj ≤ τk̃−i+1} =
∑
j 	=i

1{pj ≤ τk̃−i+1} =
∑
j 	=i

1{pj ≤ τ−i

k̃−i+1
} < k̃−i + 1,

which entails k̃ < k̃−i + 1 and thus k̃ ≤ k̃−i. This proves k̃ �= k̃�,−i + 1. Hence,
(iv) implies (iii). The fact that (iii) implies (ii) is obvious because k̃ ≥ k̃−i

always holds. Finally, we merely check that k̃ is such that

k̃ =

m∑
j=1

1{pj ≤ τk̃} =

m∑
j=1

1{pj ≤ τk̃+1},

which means that the set of p-values rejected at threshold τk̃ is the same as the
set of p-values rejected at threshold τk̃+1. This gives that (ii) implies (i). For
the last assertion, it has been proved in the above reasoning while showing that
(iv) implies (iii).

Appendix C: Empirical analyses for randomised p-values

In this section we follow the suggestion of one of the reviewers to investigate how
using randomised p-values (see, e.g., Habiger, 2015) compares to our procedures.
We do this by reanalysing the Pharmacovigilance and Arabidopsis methylation
data from Section 5. To be more specific, we apply the BH and the Storey
procedure (with λ = 1/2) to randomised p-values and denote these procedures
by [r-BH] and [r-Storey]. For each random set of randomised p-values this re-
sults in a random set of rejected hypotheses. We repeat this simulation 1000
times and for each simulation run determine the number of rejected hypotheses.
The resulting distribution of the number of rejected hypotheses is summarised
numerically in Table 2 and displayed visually in Figure 4.

Table 2

Numerical summaries of rejections by randomised procedures.

Data set Procedure Min 1st Qu. Median Mean 3rd Qu. Max
Pharmacovigilance [r-BH] 24 26 27 27.02 28 35

[r-Storey] 23 25 26 26.58 28 33
Arabidopsis methylation [r-BH] 2302 2324 2331 2332 2339 2379

[r-Storey] 2820 2863 2873 2873 2884 2916

The discrete BH procedure [HSU] compares favorably with [r-BH]: for the
pharmacovigilance data the number of rejections by [HSU] (=27, see Table 1) is
just the median of the distribution of [r-BH] and for the arabidopsis methylation
data the number of rejections by [HSU] (=2358, see Table 1) is in the very right
tail of the distribution of [r-BH].

The pharmacovigilance data seems to contain very few signals, so there is
no benefit in using (either randomised or non-randomised) adaptive procedures
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as compared to discrete procedures (in fact, [r-BH] is more powerful than [r-
Storey]). This is also consistent with the findings in Sections 5 and 6. In contrast,
the arabidopsis methylation data seems to contain a large portion of signals, so
that adaptive procedures become effective. We see that [r-Storey] considerably
outperforms the adaptive discrete procedures from Table 1 which are not based
on a plug-in method. We think the reason for this phenomenon is that this seems
to be a situation which is tailored to the strengths of the plug-in method (again
this is consistent with the findings in Sections 5 and 6).

Fig 4. Distribution of the number of rejected hypotheses when using randomised p-values.

Summarizing the findings from this section, it appears that the amount of
power that is lost by avoiding randomisation depends primarily on the propor-
tion of alternatives. The Pharmacovigilance data set may serve as an example
for a small proportion of alternatives. In this setting, no power is lost – on
average – by using discreteness and avoiding randomisation. When the propor-
tion of alternatives is large however (the Arabidopsis methylation data may
be considered a prototype example here) we think that the behaviour of the
randomised/discrete procedure is determined primarily by how the quantity of
signal is estimated. To support this fact, we propose in Appendix D a new pro-
cedure that combines our approach with the Storey estimator which rejects the
same order of hypotheses as [r-Storey].

Appendix D: A plug-in version of [HSU]

In this section, we sketch a discrete plug-in procedure in the spirit of Storey
et al. (2004) for adapting to the unknown quantity of a discrete signal. To keep
the exposition short, we describe this approach only for step-up procedures,
however our ideas carry over directly to step-down procedures. As the proof of
Theorem 1 shows, we have from (22) the following bound for FDR

FDR(SU(τ), P ) ≤ max
1≤k≤m

max
A⊂{1,...,m}

|A|=m0

(
1

k

∑
i∈A

Fi (τk)

1− Fi (τm)

)
(24)
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where m0 = |H0| is the (unknown) number of true null hypotheses. Choosing
critical value sequence τ1(m0), . . . , τm(m0) that satisfy

max
A⊂{1,...,m}

|A|=m0

∑
i∈A

Fi (τk(m0))

1− Fi(τm(m0))
≤ k · α (25)

yields a new HSU-type procedure which is adapted to the number of null hy-
potheses. In applications, m0 is an unknown quantity which has to be estimated
appropriately, for more details on this issue, see, e.g., Blanchard and Roquain
(2009), Storey et al. (2004), Liang and Nettleton (2012), Heesen and Janssen
(2016) and references therein. Our plug-in method works as follows:

1. Given the data, determine an appropriate estimate m̂0 for m0.
2. Apply the step-up procedure with critical values τ1(m̂0), . . . , τm(m̂0).

We emphasize that this approach is only a heuristic one and currently we do
not have a proof for FDR control.

Depending on the amount of signals and discreteness of p-values this approach
can lead to strongly enhanced rejection numbers. As an example, we revisit the
analysis of the Arabidopsis methylation data (see Section 5). Figure 5 depicts
the number of rejections R as a function of π̂0 = m̂0/m for this data set.
The estimator used by the [Storey] procedure in Table 1 yields π̂0 = 0.6 and
thus the corresponding discrete plug-in procedure rejects R = 2659 hypotheses.
The randomised p-values that were used for evaluating [r-Storey] in Appendix
C result in an average π̂0 = 0.468. Using this estimate, the discrete plug-in
procedure rejects R = 2836 hypotheses, which lies within the range of the
rejection numbers for the completely randomised procedure [r-Storey].

Fig 5. Number of rejections of the discrete plug-in procedure for the arabidopsis methylation
data.
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Appendix E: Tables for the simulations

Table 3

Average power in the simulation study (see Section 6).

m m3 m1 q [BH] [Storey] [Heyse] [HSU] [AHSU]

800 80 144 0.15 0.0000 0.0000 0.0004 0.0003 0.0003

144 0.25 0.0004 0.0004 0.0197 0.0183 0.0183

144 0.4 0.0803 0.0559 0.4425 0.4268 0.4268

360 0.15 0.0000 0.0000 0.0007 0.0006 0.0006

360 0.25 0.0004 0.0003 0.0244 0.0221 0.0221

360 0.4 0.0803 0.0514 0.4529 0.4518 0.4518

576 0.15 0.0000 0.0000 0.0009 0.0008 0.0008

576 0.25 0.0004 0.0003 0.0343 0.0278 0.0278

576 0.4 0.0803 0.0484 0.5367 0.4832 0.4832

240 112 0.15 0.0000 0.0000 0.0003 0.0003 0.0003

112 0.25 0.0005 0.0004 0.0276 0.0257 0.0257

112 0.4 0.2148 0.1963 0.5365 0.5152 0.5152

280 0.15 0.0000 0.0000 0.0003 0.0003 0.0003

280 0.25 0.0005 0.0004 0.0315 0.0282 0.0282

280 0.4 0.2147 0.1883 0.5758 0.5596 0.5596

448 0.15 0.0000 0.0000 0.0005 0.0004 0.0004

448 0.25 0.0005 0.0003 0.0372 0.0323 0.0323

448 0.4 0.2145 0.1793 0.5920 0.5844 0.5844

640 32 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

32 0.25 0.0010 0.0016 0.0378 0.0352 0.0352

32 0.4 0.4243 0.6519 0.6174 0.5983 0.6838

80 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

80 0.25 0.0010 0.0014 0.0388 0.0359 0.0359

80 0.4 0.4242 0.6370 0.6282 0.6146 0.6848

128 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

128 0.25 0.0010 0.0013 0.0400 0.0368 0.0368

128 0.4 0.4240 0.6276 0.6353 0.6271 0.6859

2000 200 360 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

360 0.25 0.0001 0.0001 0.0156 0.0145 0.0145

360 0.4 0.0730 0.0499 0.4486 0.4334 0.4334

900 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

900 0.25 0.0001 0.0001 0.0192 0.0170 0.0170

900 0.4 0.0730 0.0439 0.4517 0.4517 0.4517

1440 0.15 0.0000 0.0000 0.0003 0.0003 0.0003

1440 0.25 0.0001 0.0001 0.0286 0.0218 0.0218

1440 0.4 0.0730 0.0402 0.5402 0.4748 0.4748

600 280 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

280 0.25 0.0001 0.0001 0.0239 0.0217 0.0217

280 0.4 0.2058 0.1953 0.5350 0.5166 0.5166

700 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

700 0.25 0.0001 0.0001 0.0290 0.0246 0.0246

700 0.4 0.2058 0.1917 0.5750 0.5630 0.5630

1120 0.15 0.0000 0.0000 0.0002 0.0002 0.0002

1120 0.25 0.0001 0.0001 0.0350 0.0296 0.0296

1120 0.4 0.2057 0.1832 0.5908 0.5853 0.5853

1600 80 0.15 0.0000 0.0000 0.0001 0.0001 0.0001

80 0.25 0.0003 0.0007 0.0379 0.0352 0.0352

80 0.4 0.4223 0.6498 0.6196 0.5942 0.6863

200 0.15 0.0000 0.0000 0.0001 0.0001 0.0001

200 0.25 0.0003 0.0006 0.0387 0.0361 0.0361

200 0.4 0.4222 0.6352 0.6281 0.6157 0.6871

320 0.15 0.0000 0.0000 0.0001 0.0001 0.0001

320 0.25 0.0003 0.0005 0.0396 0.0369 0.0369

320 0.4 0.4220 0.6282 0.6327 0.6279 0.6880
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Table 4

Average FDR in the simulation study (see Section 6).

m m3 m1 q [BH] [Storey] [Heyse] [HSU] [AHSU]

800 80 144 0.15 0.000000 0.000000 0.000030 0.000021 0.000021

144 0.25 0.000000 0.000000 0.000076 0.000066 0.000066

144 0.4 0.000005 0.000002 0.001228 0.001154 0.001154

360 0.15 0.000000 0.000000 0.000035 0.000030 0.000030

360 0.25 0.000000 0.000000 0.000081 0.000067 0.000067

360 0.4 0.000004 0.000001 0.000823 0.000797 0.000797

576 0.15 0.000000 0.000000 0.000020 0.000017 0.000017

576 0.25 0.000000 0.000000 0.000061 0.000042 0.000042

576 0.4 0.000002 0.000001 0.001148 0.000915 0.000915

240 112 0.15 0.000000 0.000000 0.000021 0.000021 0.000021

112 0.25 0.000000 0.000000 0.000159 0.000139 0.000139

112 0.4 0.000101 0.000062 0.004636 0.004540 0.004540

280 0.15 0.000000 0.000000 0.000014 0.000013 0.000013

280 0.25 0.000000 0.000000 0.000130 0.000106 0.000106

280 0.4 0.000063 0.000032 0.003226 0.002962 0.002962

448 0.15 0.000000 0.000000 0.000010 0.000007 0.000007

448 0.25 0.000000 0.000000 0.000080 0.000060 0.000060

448 0.4 0.000025 0.000012 0.002606 0.001583 0.001583

640 32 0.15 0.000000 0.000000 0.000012 0.000012 0.000012

32 0.25 0.000000 0.000001 0.000308 0.000252 0.000252

32 0.4 0.001253 0.014708 0.014557 0.014527 0.015222

80 0.15 0.000000 0.000000 0.000011 0.000011 0.000011

80 0.25 0.000000 0.000000 0.000218 0.000176 0.000176

80 0.4 0.000793 0.009106 0.009118 0.009111 0.009542

128 0.15 0.000000 0.000000 0.000005 0.000005 0.000005

128 0.25 0.000000 0.000000 0.000092 0.000071 0.000071

128 0.4 0.000323 0.003566 0.003654 0.003653 0.003846

2000 200 360 0.15 0.000000 0.000000 0.000011 0.000011 0.000011

360 0.25 0.000000 0.000000 0.000043 0.000038 0.000038

360 0.4 0.000003 0.000001 0.001251 0.001197 0.001197

900 0.15 0.000000 0.000000 0.000010 0.000008 0.000008

900 0.25 0.000000 0.000000 0.000045 0.000035 0.000035

900 0.4 0.000002 0.000001 0.000790 0.000790 0.000790

1440 0.15 0.000000 0.000000 0.000005 0.000004 0.000004

1440 0.25 0.000000 0.000000 0.000041 0.000025 0.000025

1440 0.4 0.000001 0.000000 0.001160 0.000962 0.000962

600 280 0.15 0.000000 0.000000 0.000011 0.000010 0.000010

280 0.25 0.000000 0.000000 0.000115 0.000093 0.000093

280 0.4 0.000068 0.000056 0.004615 0.004571 0.004571

700 0.15 0.000000 0.000000 0.000007 0.000007 0.000007

700 0.25 0.000000 0.000000 0.000105 0.000081 0.000081

700 0.4 0.000041 0.000033 0.003076 0.002969 0.002969

1120 0.15 0.000000 0.000000 0.000003 0.000003 0.000003

1120 0.25 0.000000 0.000000 0.000057 0.000045 0.000045

1120 0.4 0.000016 0.000012 0.002569 0.001592 0.001592

1600 80 0.15 0.000000 0.000000 0.000004 0.000004 0.000004

80 0.25 0.000000 0.000001 0.000256 0.000229 0.000229

80 0.4 0.001226 0.014589 0.014515 0.014499 0.015228

200 0.15 0.000000 0.000000 0.000002 0.000002 0.000002

200 0.25 0.000000 0.000000 0.000173 0.000152 0.000152

200 0.4 0.000768 0.009109 0.009108 0.009105 0.009563

320 0.15 0.000000 0.000000 0.000001 0.000001 0.000001

320 0.25 0.000000 0.000000 0.000073 0.000061 0.000061

320 0.4 0.000305 0.003641 0.003646 0.003646 0.003830
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