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Abstract: We study the problem of estimating the smallest achievable
mean-squared error in regression function estimation. The problem is equiv-
alent to estimating the second moment of the regression function of Y on
X ∈ R

d. We introduce a nearest-neighbor-based estimate and obtain a
normal limit law for the estimate when X has an absolutely continuous
distribution, without any condition on the density. We also compute the
asymptotic variance explicitly and derive a non-asymptotic bound on the
variance that does not depend on the dimension d. The asymptotic vari-
ance does not depend on the smoothness of the density of X or of the
regression function. A non-asymptotic exponential concentration inequal-
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†László Györfi was supported by the National University of Public Service under the prior-
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ity is also proved. We illustrate the use of the new estimate through testing
whether a component of the vector X carries information for predicting Y .
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1. Introduction

In this paper we study the problem of estimating the smallest achievable mean-
squared error in regression function estimation in multivariate problems. We
introduce and analyze a nearest neighbor-based estimate of the second moment
of the regression function. The second moment of the regression function is
closely tied to the best possible achievable mean squared error. It is shown
that the estimate is asymptotically normally distributed. It is remarkable that
the asymptotic variance only depends on conditional moments of the regression
function but not on its smoothness. Moreover, the non-asymptotic variance is
bounded by a constant that is independent of the dimension. We also establish a
non-asymptotic exponential concentration inequality. We illustrate these results
studying variable selection. In particular, we construct and analyze a test for
deciding whether a component of the observational vector has predictive power.

The formal setup is as follows. Let (X,Y ) be a pair of random variables such
that X = (X(1), . . . , X(d)) takes values in R

d and Y is a real-valued random
variable with E[Y 2] < ∞. We denote by μ the distribution of the observation
vector X, that is, for all measurable sets A ⊂ R

d, μ(A) = P{X ∈ A}. Then the
regression function

m(x) = E[Y | X = x] (1.1)

is well defined for μ-almost all x. The center of our investigations is the functional

L∗ = E
[
(m(X)− Y )2

]
.

The importance of this functional stems from the fact that for each measurable
function g : Rd → R one has

E
[
(g(X)− Y )2

]
= L∗ + E

[
(m(X)− g(X))2

]
and, in particular,

L∗ = min
g

E
[
(g(X)− Y )2

]
,

where the minimum is taken over all measurable functions g : Rd → R. In other
words, L∗ is the minimal mean squared error of any “predictor” of Y based on
observing X. L∗ is often referred to as the residual variance.

In regression analysis the residual variance L∗ is of obvious interest as it
provides a lower bound for the performance of any regression function estimator.
In this paper we study the problem of estimating L∗ based on data consisting
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of independent, identically distributed (i.i.d.) copies of the pair (X,Y ). It is
convenient to assume that the number of samples is even and the 2n samples
are split into two halves as

Dn = {(X1, Y1), . . . , (Xn, Yn)} and D′
n = {(X ′

1, Y
′
1), . . . , (X

′
n, Y

′
n)}

such that the 2n+ 1 pairs (X,Y ), (X1, Y1), . . . , (Xn, Yn), (X
′
1, Y

′
1), . . . , (X

′
n, Y

′
n)

are independent and identically distributed.

An estimator L̂n of L∗ is simply a function of the data Dn, D
′
n. We are inter-

ested in “nonparametric” estimators of L∗ that work under minimal assumptions
on the underlying distribution. In particular, a desirable feature of any estimate
is that it is strongly universally consistent, that is, L̂n → L∗ with probability
one, for all possible distributions of (X,Y ) with EY 2 < ∞. Such estimators may
be constructed, for example, by constructing a strongly universally consistent
regression function estimator mn based on the data Dn (i.e., a function mn is
such that E[(mn(X)− Y )2|Dn] → L∗ with probability one for all distributions)
and estimating its mean squared error by (1/n)

∑n
i=1(mn(X

′
i)−Y ′

i )
2. (For a de-

tailed theory of universally consistent regression function estimation see [15].)
However, the rate of convergence of such estimators is determined by the rate of
convergence of the mean squared error of mn which can be quite slow even un-
der regularity assumptions on the underlying distribution. Estimating the entire
regression function m(x) is, intuitively, “harder” than estimating the value of
L∗. Indeed, nearest-neighbor-based estimators of L∗ have been constructed and
analyzed by Devroye, Ferrario, Györfi, and Walk [6], Devroye, Schäfer, Györfi,
and Walk [10], Evans and Jones [12], Liitiäinen, Corona, and Lendasse [17], [18],
Liitiäinen, Verleysen, Corona, and Lendasse [19], and Ferrario and Walk [13].
These estimates have been shown to have a faster rate of convergence—under
some natural assumptions–than estimates based on estimating the error of con-
sistent regression function estimators. Moreover, the estimate in [6] is strongly
universally consistent.

In this paper we introduce yet another universally consistent nearest-neighbor-
based estimator of L∗. The advantage of this estimator, apart from sharing
the fast rates of convergence of previously defined estimators, is that its ran-
dom fluctuations may be bounded by dimension-, and distribution-independent
quantities. In particular, we prove a central limit theorem and a distribution-
free upper bound for the variance for the new estimator that show that it is
concentrated around its expected value in an interval of width O(1/

√
n), inde-

pendently of the dimension. The established concentration property is crucial in
a variable-selection procedure that we discuss as an application. In particular,
we design a test for deciding whether exclusion of a certain component of X
increases L∗ or not.

The paper is organized as follows. In Section 2 we introduce a novel estimate
of L∗ and establish some of its properties such as asymptotic normality and a
non-asymptotic concentration inequality. The central limit theorem holds with-
out any smoothness condition on the regression function, and the asymptotic
variance depends only on the conditional moments of Y (Theorem 2.1). We
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prove a non-asymptotic bound on the variance that does not depend on the di-
mension of X (Theorem 2.2), and show an exponential concentration inequality
for the centered estimate (Theorem 2.3). All these results are universal in the
sense that we only assume that X has a density and Y is bounded.

In Section 3 we briefly describe how the results method based on the results of
Section 2 may be relevant for variable selection. Finally, the proofs are presented
in Section 4.

2. A nearest-neighbor based estimate and its asymptotic normality

Denoting the second moment of the regression function by

S∗ = E
[
m(X)2

]
,

we have
L∗ = E

[
Y 2
]
− S∗,

and therefore estimating L∗ is essentially equivalent to estimating S∗ (as the
“easy” part E

[
Y 2
]
may be estimated by, e.g., (1/n)

∑n
i=1 Y

2
i whose behavior is

well understood).
Next we introduce a nearest neighbor-based estimator of S∗. Based on the

data Dn, we start by constructing a nearest-neighbor (1-NN) regression func-
tion estimator as follows. Let X1,n(x) be the first nearest neighbor of x among
X1, . . . , Xn (with respect to the Euclidean distance in R

d) and let Y1,n(x) be
its label. (In order to rigorously define the nearest neighbor, we assume that
ties are broken in order to favor points with smaller index. Since we assume the
distribution of X to be absolutely continuous, this issue is immaterial since ties
occur with probability zero.) The 1-NN estimator of the regression function m
is defined as

mn(x) = Y1,n(x).

The proposed estimate of S∗ is

Sn =
1

n

n∑
i=1

Y ′
i mn(X

′
i).

By a straightforward adjustment of the arguments of Devroye, Ferrario, Györfi,
and Walk [6], one may show that Sn is a strongly universal consistent estimate
of S∗, that is,

lim
n

Sn = S∗

with probability one for any distribution of (X,Y ) with E[Y 2] < ∞. Note that
the consistent functional estimate Sn is based on a non-consistent regression
function estimate mn.

Next we establish asymptotic normality of Sn under the condition that the
response variable Y is bounded. In order to describe the asymptotic variance,
we introduce the dimension-dependent constant α(d) as follows.
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Let Bx,r denote the closed ball of radius r > 0 centered at x in R
d and let

λ denote the Lebesgue measure on R
d. Let V be a random vector uniformly

distributed in B0,1. Define 1 = (1, 0, 0, . . . , 0) ∈ R
d and let B = B1,1

⋃
BV,‖V ‖.

Introduce the random variable

W =
λ(B)

λ(B0,1)

and define

α(d) = E

[
2

W 2

]
. (2.1)

Theorem 2.1. Assume that μ has a density and that there exists a constant
L > 0 such that

P{|Y | < L} = 1. (2.2)

Denote
M2(X) = E[Y 2 | X]

and define

σ2
1 =

∫
M2(x)

2μ(dx)−
(∫

m(x)2μ(dx)

)2

and

σ2
2 = α(d)

(∫
M2(x)m(x)2μ(dx)−

∫
m(x)4μ(dx)

)
.

If σ1 > 0, then √
n (Sn − E{Sn}) /σ D→ N(0, 1),

where
σ2 = σ2

1 + σ2
2 .

The dependence of the asymptotic variance on the dimension d is weak,
merely via the constant α(d). Given X1, . . . , Xn, Devroye, Györfi, Lugosi, and
Walk [8] considered the probability measures of the Voronoi cells. They proved
that the asymptotic variance of n-times the probability measure of the Voronoi
cell is equal to α(d)− 1. Thus, this asymptotic variance is universal in the sense
that it does not depend on the underlying density. A few values are α(1) = 1.5,
α(2) ≈ 1.28, α(3) ≈ 1.18. In general, 1 ≤ α(d) ≤ 2 and α(d) → 1 exponentially
fast as d → ∞. Thus, by (2.2) we have σ2 ≤ 3L4, and therefore Theorem 2.1
implies that

lim sup
n→∞

nVar(Sn) ≤ 3L4.

The next theorem shows that, up to a constant factor, this bound holds non-
asymptotically.

Theorem 2.2. Assume that μ has a density and that |Y | < L. Then for all
n ≥ 1,

Var(Sn) ≤
9 · L4

n
.
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The next result is a non-asymptotic exponential inequality that extends The-
orem 2.2. It implies that for all t > 0,

P
{√

n|Sn − ESn| > t
}
≤ ce−(t/(cL

2))
2/3

for a universal constant c > 0. It is an interesting open question whether

the right-hand side can be improved to e−(t/(cL
2))

2

. This would give a non-
asymptotic analog of the central limit theorem of Theorem 2.1.

Theorem 2.3. Assume that μ has a density and that |Y | < L. Write

Sn − E [Sn] = Un + Vn

with
Un = Sn − E [Sn | Dn] and Vn := E [Sn | Dn]− E [Sn] .

Then for every n ≥ 1 and ε > 0, we have

P {|Un| > ε} ≤ 2e−nε2/(2L4)

and

P{|Vn| ≥ ε} ≤ 2e−n1/3ε2/3/(42eL4)1/3+1. (2.3)

The proofs of Theorems 2.1, 2.2 and 2.3 are presented in Section 4.

3. Illustration: testing for dimension reduction

In standard nonparametric regression design, one considers a finite number of
real-valued featuresX(i), i ∈ I ⊂ {1, . . . , d} for predicting the value of a response
variable Y . A first question one may try to answer is whether these features
suffice to explain Y . In case they do, an estimation method can be applied on
the basis of the features already under consideration. Otherwise more or different
features need to be considered. The quality of a subvector {X(i), i ∈ I} of X is
measured by the minimum mean squared error

L∗(I) := E

[
Y − E[Y | X(i) : i ∈ I]

]2
that can be achieved using the features as explanatory variables. L∗(I) depends
upon the unknown distribution of (Y,X(i) : i ∈ I).

Thus, even before a regression function estimate is chosen, one may be in-
terested in estimating L∗. For possible dimensionality reduction, one needs, in
general, to test the hypothesis

L∗ = L∗(I) (3.1)

for a particular (proper) subset I of {1, . . . , d}. A natural way of approaching this
testing problem is by estimating both L∗ and L∗(I), and accept the hypothesis
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if the two estimates are close to each other (De Brabanter, Ferrario and Györfi
[5]).

Introduce the notation

S∗(I) := E

[
E[Y | X(i), i ∈ I]2

]
.

Then the hypothesis (3.1) is equivalent to

S∗ = S∗(I).

Without loss of generality, consider the case I = {1, . . . , d − 1}, that is, the
case when one tests whether the last component X(d) of the observation vector
(X(1), . . . , X(d)) is ineffective. Let the transformation T be defined by

T ((x(1), . . . , x(d))) = (x(1), . . . , x(d−1)).

Thus, dropping the component X(d) from the observation vectorX = (X(1), . . . ,
X(d)) leads to the observation vector

X̂ = T (X) = (X(1), . . . , X(d−1))

of dimension d− 1.
Using the notation

m(X) = E[Y | X] and m̃(T (X)) = E[Y | T (X)]

and
S∗ = E[m(X)2] and Ŝ∗ = E[m̃(T (X))2],

the null-hypothesis Ŝ∗ = S∗ is equivalent to

m(X) = m̃(T (X)) with probability one. (3.2)

We propose to approach this testing problem by considering the nearest-
neighbor estimate defined in Section 2. Let Sn be the estimate of S∗ using the
sample

D2n = {(X1, Y1), . . . , (X2n, Y2n)}.
Assume that an independent sample of size 2n is available:

D2n = {(X1, Y 1), . . . , (X2n, Y 2n)}.

We use D2n to construct an estimate S̃n of Ŝ∗. S̃n is defined as the nearest-
neighbor estimate computed from the sample

{(T (X1), Y 1), . . . , (T (X2n), Y 2n)}.

The proposed test is based of the test statistic

Tn = Sn − S̃n
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and accepts the null hypothesis (3.2) if and only if

Tn ≤ an := ωn

(
n−1/2 + n−2/d

)
where ωn is an increasing unbounded sequence such that an → 0. Under the
alternative hypothesis, according to the consistency result of Devroye, Ferrario,
Györfi, and Walk [6], for bounded Y ,

Tn → S∗ − Ŝ∗ > 0 with probability one, (3.3)

and this convergence is universal, that is, it holds without any conditions. Thus,
since an → 0, if Ŝ∗ 
= S∗, then, with probability one, the test does not make
any mistake for a sufficiently large n.

Theorem 2.1 implies that

√
n (Sn − ESn) /σ

D→ N(0, 1)

and √
n
(
S̃n − ES̃n

)
/σ̃

D→ N(0, 1)

with σ2, σ̃2 < 3L4. Since Sn and S̃n are independent, we have

√
n(Tn − ETn)/(

√
σ2 + σ̃2)

D→ N(0, 1). (3.4)

In order to understand the behavior of the test, one needs to study the difference
of the biases of the estimates

ETn = ESn − ES̃n

under the null hypothesis (3.2). In this case we have

ESn − ES̃n = (ESn − E{m(X)2})− (ES̃n − E{m̃(T (X))2}).

If m̃ and f are Lipschitz continuous and f is bounded away from 0, then, by
Devroye, Ferrario, Györfi, and Walk [6],

n2/d(ESn − E{m(X)2}) = O(1)

when d ≥ 2 and

n2/(d−1)(ES̃n − E{m̃(T (X))2}) = O(1)

when d ≥ 3.
Thus, under the null hypothesis (3.2),

ETn = O(n−2/d), (3.5)

for d ≥ 2. Note that for d ≤ 4, the bias is at most of the order of the random
fluctuations of the test statistic. However, for d > 4 the bias may dominate.
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Such a dependence on the dimension is inevitable under fully nonparametric
conditions like the ones assumed here.

Under the null hypothesis, (3.4) and (3.5) imply that the probability of error
may be bounded as

P{Tn > an} ≤ P{Tn − ETn > ωn · n−1/2}+ 1{ETn>ωn·n−2/d} → 0.

Thus, the test is consistent.
The condition that the density f is bounded away from zero may be avoided

at the price of a worse rate of convergence. In particular, if m is C-Lipschitz
and X is bounded, then

n1/d|ESn − E[m(X)2]|
= n1/d|E[m(X)mn(X)]− E[m(X)2]|
= n1/d|E[m(X)m(X1,n(X))]− E[m(X)2]|
≤ n1/dLCE‖X1,n(X)−X‖
= O(1) (by a packing argument of Liitiäinen et al. [18, Theorem 3.2]

and by Biau and Devroye [1, Theorem 2.1]).

In this case the threshold should be larger:

an := ωn

(
n−1/2 + n−1/d

)
One may prove that the test is not only consistent in the sense that

P{Tn > an} → 0 under the null hypothesis but also in the sense that
lim supn→∞ 1{Tn>an} = 0 with probability one. For a discussion and references
on the notion of strong consistency we refer the reader to Devroye and Lugosi
[9], Biau and Györfi [2], Gretton and Györfi [14].

The proof of strong consistency under the alternative hypothesis follows sim-
ply from (3.3). Under the null hypothesis it follows from Theorem 2.3. Indeed,
Theorem 2.3 implies that

P {|Tn − ETn| > ε} ≤ 2e−nε2/(2L4) + 2e−n1/3ε2/3/(42eL4)1/3+1.

For δ > 3/2, choose

an := (lnn)δn−1/2 + ωn · n−2/d

with increasing unbounded ωn = o(n2/d). Then, under the null hypothesis

∞∑
n=1

P{Tn > an} ≤
∞∑

n=1

(
P{Tn − ETn > (lnn)δn−1/2}+ 1{ETn>ωn·n−2/d}

)
≤

∞∑
n=1

(
2e−(lnn)2δ/(2L4) + 2e−(lnn)2δ/3/(42eL4)1/3+1

+ 1{ETn>ωn·n−2/d}

)
< ∞,
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and so the Borel-Cantelli Lemma implies that the test makes error only finitely
many times almost surely.
Remark. In applications, one would like to test not only if a given component
of X carries predictive information but rather test the same for each of the d
variables. In such cases, one faces a multiple testing problem with d dependent
tests. In order to analyze such multiple testing procedures, say, by the Bon-
ferroni approach, one needs a uniform control over the fluctuations of the test
statistic. In such cases a non-asymptotic concentration inequality of Theorem
2.3 is particularly useful.

4. Proofs

In the proofs below we use two lemmas on the measure of Voronoi cells. Let

An(Xj) = {x ∈ R
d : Xj is the nearest neighbor of x among X1, . . . , Xn}

(j = 1, . . . , n), be the cells of the Voronoi partition of Rd.

Lemma 4.1. If μ has a density, then

nk
E
[
μ(An(X1))

k
]
≤ k!,

k = 1, 2, . . .

Proof. Devroye, Györfi, Lugosi, and Walk [8] proved that there exists a positive
constant ck such that

nk
E
[
μ(An(X1))

k
]
≤ ck,

and nμ(An(X1)) converges in distribution to a random variable Z such that

E
[
Zk
]
≤ k!,

k = 1, 2, . . . This lemma is on the same non-asymptotic bound. We show that

E
{
μ(An(X1))

k
}

(4.1)

≤ P {Xn+1, . . . , Xn+k are the nearest neighbors of X1 among X2, . . . , Xn+k} ,

which implies that

E
{
(nμ(An(X1)))

k
]
≤ nk(

n+k−1
k

) ≤ k!.

Recall that Bx,r denotes the closed ball of radius r > 0 centered at x and note
that

E
{
μ(An(X1))

k
}
= P {Xn+1, . . . , Xn+k ∈ An(X1)}
= E
[
(1− μ(BXn+1,‖Xn+1−X1‖ ∪ · · · ∪BXn+k,‖Xn+k−X1‖))

n−1
]

≤ E
[
(1−max{μ(BXn+1,‖Xn+1−X1‖), . . . ,

μ(BXn+k,‖Xn+k−X1‖)})n−1
]
,
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and

P {Xn+1 . . . , Xn+k are the nearest neighbors of X1 among X2, . . . , Xn+k}
= E
[
(1−max{μ(BX1,‖Xn+1−X1‖), . . . , μ(BX1,‖Xn+k−X1‖)})n−1

]
.

(4.1) follows from comparing the right-hand sides of the two equations above.
On the one hand,

P
{
max{μ(BX1,‖Xn+1−X1‖), . . . , μ(BX1,‖Xn+k−X1‖)} ≤ z

}
= P
{
μ(BX1,‖Xn+1−X1‖) ≤ z, . . . , μ(BX1,‖Xn+k−X1‖) ≤ z

}
= E
[
P
{
μ(BX1,‖Xn+1−X1‖) ≤ z, . . . , μ(BX1,‖Xn+k−X1‖) ≤ z | X1

}]
= E
[
P
{
μ(BX1,‖Xn+1−X1‖) ≤ z | X1

}
· . . . · P

{
μ(BX1,‖Xn+k−X1‖) ≤ z | X1

}]
= E

[
P
{
μ(BX1,‖Xn+1−X1‖) ≤ z | X1

}k]
= zk,

while on the other hand,

P
{
max{μ(BXn+1,‖Xn+1−X1‖), . . . , μ(BXn+k,‖Xn+k−X1‖)} ≤ z

}
= P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z, . . . , μ(BXn+k,‖Xn+k−X1‖) ≤ z

}
= E
[
P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z, . . . , μ(BXn+k,‖Xn+k−X1‖) ≤ z | X1

}]
= E
[
P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}
· . . .

·P
{
μ(BXn+k,‖Xn+k−X1‖) ≤ z | X1

} ]
= E

[
P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}k]
≥ E
[
P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z | X1

}]k
= P
{
μ(BXn+1,‖Xn+1−X1‖) ≤ z

}k
= zk.

Lemma 4.2. (Devroye, Györfi, Lugosi, and Walk [8]) Assume that μ has a
density. Then

n2
E
[
μ(An(X1))

2 | X1 = x
]
→ α(d)

for μ-almost all x, where αd is defined in (2.1).

Proof of Theorem 2.2

We prove the variance bound of Theorem 2.2 first. The proof relies of the fol-
lowing version of the Efron-Stein inequality, see, for example, [4, Theorem 3.1].

Lemma 4.3. (Efron-Stein inequality) Let Z = (Z1, . . . , Zn) be a collection
of independent random variables taking values in some measurable set A and
denote by Z(i) = (Z1, . . . , Zi−1, Zi+1, . . . , Zn) the collection with the i-th random
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variable dropped. Let f : An → R and g : An−1 → R be measurable real-valued
functions. Then

Var(f(Z)) ≤ E

[
n∑

i=1

(
f(Z)− g(Z(i))

)2]
.

By the decomposition

Sn = Sn − E [Sn | Dn] + E [Sn | Dn] ,

we have that

Var(Sn) = E
[
(Sn − E [Sn | Dn])

2
]
+ Var(E [Sn | Dn]).

Conditionally on Dn, Sn is an average of independent, identically distributed
(i.i.d.) random variables bounded by L2, and therefore

E
[
(Sn − E [Sn | Dn])

2
]
≤ L4

n
.

Notice that we may write

mn(x) =

n∑
j=1

Yj1{x∈An(Xj)}.

Then

E [Sn | Dn] =

∫
m(x)mn(x)μ(dx) =

n∑
j=1

Yj

∫
An(Xj)

m(x)μ(dx).

Putting Ln = E [Sn | Dn], this implies

Ln =

n∑
i=1

YiE{1X∈An(Xi)m(X) | Dn}.

Considering Ln as a function of the n i.i.d. pairs (Xi, Yi)
n
i=1, we may use the

Efron-Stein inequality to bound the variance of Ln. Define L
(j)
n as Ln when

(Xj , Yj) is omitted from the sample. By Lemma 4.3,

Var(Ln) ≤ E

⎡⎣ n∑
j=1

(
Ln − L(j)

n

)2⎤⎦ = nE

[(
Ln − L(1)

n

)2]
.

Let {A′
n(X2), . . . , A

′
n(Xn)} be the Voronoi partition, when X1 is omitted from

the sample. Then

|Ln − L(1)
n | =

∣∣∣∣∣Y1

∫
An(X1)

m(x)μ(dx)−
n∑

i=2

Yi

∫
A′

n(Xi)\An(Xi)

m(x)μ(dx)

∣∣∣∣∣
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≤ L2

(
μ(An(X1)) +

n∑
i=2

μ(A′
n(Xi) \An(Xi))

)
= 2L2μ(An(X1)).

Thus, Lemma 4.1 implies

Var(Ln) ≤ 4nL4
E
[
μ(An(X1))

2
]
≤ 8L4/n

leading to

Var (E [Sn | Dn]) ≤
8L4

n
,

and therefore to the desired bound

Var(Sn) ≤
9L4

n
.

Proof of Theorem 2.1

Introduce the notation

√
n (Sn − ESn) = Un + Vn +Wn,

where
Un =

√
n (Sn − E[Sn | Dn])

and
Vn =

√
n (E[Sn | Dn]− E[Sn | X1, . . . , Xn])

and
Wn =

√
n (E[Sn | X1, . . . , Xn]− ESn) .

We prove Theorem 2.1 by showing that, for any u, v ∈ R,

P{Un ≤ u, Vn ≤ v} → Φ

(
u

σ1

)
Φ

(
v

σ2

)
, (4.2)

where Φ denotes the standard normal distribution function, and that

Var(Wn) → 0. (4.3)

Györfi and Walk [16] proved that∣∣∣∣P{Un ≤ u, Vn ≤ v} − Φ

(
u

σ1

)
Φ

(
v

σ2

)∣∣∣∣
≤ E

∣∣∣∣P{Un ≤ u | Dn} − Φ

(
u

σ1

)∣∣∣∣+ ∣∣∣∣P{Vn ≤ v} − Φ

(
v

σ2

)∣∣∣∣ .
Thus, (4.2) holds if

P{Un ≤ u | Dn} → Φ

(
u

σ1

)
in probability (4.4)
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and

P{Vn ≤ v} → Φ

(
v

σ2

)
. (4.5)

Proof of (4.4).
Let’s start with the decomposition

Un =
√
n

(
1

n

n∑
i=1

(Y ′
i mn(X

′
i)− E[Y ′

i mn(X
′
i) | Dn])

)

=
1√
n

n∑
i=1

(Y ′
i mn(X

′
i)− E[Y ′

i mn(X
′
i) | Dn]).

Next we apply a Berry-Esseen type central limit theorem (see Theorem 14 in
Petrov [20]). For a universal constant c > 0, we have∣∣∣∣∣P{Un ≤ u | Dn} − Φ

(
u√

Var(Y ′
1mn(X ′

1) | Dn)

)∣∣∣∣∣
≤ c√

n

E[|Y ′
1mn(X

′
1)|3 | Dn]√

Var(Y ′
1mn(X ′

1) | Dn)
3 .

Since

E[Y ′
1mn(X

′
1) | Dn] =

∫
m(x)mn(x)μ(dx), (4.6)

we have

Var(Y ′
1mn(X

′
1) | Dn) = E[Y ′

1
2
mn(X

′
1)

2 | Dn]− E[Y ′
1mn(X

′
1) | Dn]

2

=

∫
M2(x)mn(x)

2μ(dx)−
(∫

m(x)mn(x)μ(dx)

)2

.

We need to show that∫
M2(x)mn(x)

2μ(dx) →
∫

M2(x)
2μ(dx) (4.7)

in probability and ∫
m(x)mn(x)μ(dx) →

∫
m(x)2μ(dx) (4.8)

in probability. Since mn(x) = Yj if x ∈ An(Xj), we get that∫
M2(x)mn(x)

2μ(dx) =

n∑
j=1

∫
An(Xj)

M2(x)mn(x)
2μ(dx)

=

n∑
j=1

Y 2
j

∫
An(Xj)

M2(x)μ(dx).



1766 L. Devroye et al.

We use this to prove (4.7). Indeed,∫
M2(x)mn(x)

2μ(dx)−
∫

M2(x)
2μ(dx)

=

n∑
j=1

Y 2
j

∫
An(Xj)

M2(x)μ(dx)−
n∑

j=1

∫
An(Xj)

M2(x)
2μ(dx)

=
n∑

j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)μ(dx)

+

n∑
j=1

∫
An(Xj)

M2(x)(M2(Xj)−M2(x))μ(dx).

Thus,

E

[∣∣∣∣∫ M2(x)mn(x)
2μ(dx)−

∫
M2(x)

2μ(dx)

∣∣∣∣]

≤ E

⎡⎣∣∣∣∣∣∣
n∑

j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)μ(dx)

∣∣∣∣∣∣
⎤⎦

+ E

⎡⎣∣∣∣∣∣∣
n∑

j=1

∫
An(Xj)

M2(x)(M2(Xj)−M2(x))μ(dx)

∣∣∣∣∣∣
⎤⎦ ,

and so

E

[∣∣∣∣∫ M2(x)mn(x)
2μ(dx)−

∫
M2(x)

2μ(dx)

∣∣∣∣]

≤

√√√√√Var

⎛⎝ n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj)

M2(x)μ(dx)

⎞⎠
+ E

⎡⎣ n∑
j=1

∫
An(Xj)

M2(x)|M2(Xj)−M2(x)|μ(dx)

⎤⎦

≤

√√√√√nE

⎡⎣(Y 2
1 −M2(X1))2

(∫
An(X1)

M2(x)μ(dx)

)2
⎤⎦

+ nE

[∫
An(X1)

M2(x)|M2(X1)−M2(x)|μ(dx)
]

≤ L4
√
nE [μ(An(X1))2] + L2nE

[∫
An(X1)

|M2(X1)−M2(x)|μ(dx)
]
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To complete the proof of (4.7), it suffices to show that the sum above converges
to zero as n → ∞. To this end, note that Lemma 4.1 implies that

nE
[
μ(An(X1))

2
]
≤ c2/n → 0,

and furthermore

nE

[∫
An(X1)

|M2(X1)−M2(x)|μ(dx)
]

= nE

[∫
An(X1)

|M2(X1,n(x))−M2(x)|μ(dx)
]

= E

[∫
|M2(X1,n(x))−M2(x)|μ(dx)

]
.

It remains to show that

E

[∫
|M2(X1,n(x))−M2(x)|μ(dx)

]
→ 0. (4.9)

Fix any ε > 0 and choose a bounded continuous function M̃2 such that∫
|M2(x)− M̃2(x)|μ(dx) < ε.

Then, with M∗
2 = M2 − M̃2, one has

E

[∫
|M2(X1,n(x))−M2(x)|μ(dx)

]
≤ E

[∫
|M̃2(X1,n(x))− M̃2(x)|μ(dx)

]
+ E

[∫
|M∗

2 (X1,n(x))|μ(dx)
]
+

∫
|M∗

2 (x)|μ(dx). (4.10)

The first term on the right-hand side converges to 0 by the dominated conver-
gence theorem, since, by Lemma 6.1 in [15],

X1,n(x) → x a.s. for μ-almost all x.

To bound the second term, we introduce some notation. A set C ⊂ R
d is a cone

of angle π/3 centered at 0 if there exists an x ∈ R
d with ‖x‖ = 1 such that

C =

{
y ∈ R

d :
(x, y)

‖y‖ ≥ cos(π/6)

}
.

Let γd be the minimal number of cones C1, . . . , Cγd
of angle π/3 centered at

0 such that their union covers R
d. The second term on the right-hand side of

(4.10) is bounded by

γd

∫
|M∗

2 (x)|μ(dx) ≤ γdε
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by Lemma 6.3 in [15]. Thus, (4.9) is proved and hence so is (4.7). For the proof
of (4.8), we have that∫

m(x)mn(x)μ(dx) =

n∑
j=1

∫
An(Xj))

m(x)mn(x)μ(dx)

=

n∑
j=1

Yj

∫
An(Xj))

m(x)μ(dx). (4.11)

Similarly, the derivation for (4.7) implies that

E

[∣∣∣∣∫ m(x)mn(x)μ(dx)−
∫

m(x)2μ(dx)

∣∣∣∣]
≤ L2

√
nE [μ(An(X1))2] + LnE

[∫
An(X1)

|m(X1)−m(x)|μ(dx)
]

→ 0,

and so (4.8) is proved, too. Thus,

Var(Y ′
1mn(X

′
1) | Dn) → σ2

1

in probability. Moreover,

E[|Y ′
1mn(X

′
1)|3 | Dn] ≤ L6.

These relations imply (4.4).

Proof of (4.3).
(4.6) and (4.11) imply that

E[Sn | Dn] = E[Y ′
1mn(X

′
1) | Dn] =

∫
m(x)mn(x)μ(dx)

=

n∑
j=1

Yj

∫
An(Xj)

m(x)μ(dx).

Hence

E[Sn | X1, . . . , Xn] =

n∑
j=1

m(Xj)

∫
An(Xj)

m(x)μ(dx)

=

∫
m(x)m(X1,n(x))μ(dx).

We prove (4.3) by a slight extension of the proof of Theorem 2.2. Set

Ln :=
√
n

∫
m(x)m(X1,n(x))μ(dx) =

√
n

n∑
j=1

m(Xj)

∫
An(Xj)

m(x)μ(dx).
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Define L
(j)
n as Ln when Xj is dropped. As in the proof of Theorem 2.2,

Var(Wn) = Var(Ln) ≤ E

⎡⎣ n∑
j=1

(
Ln − L(j)

n

)2⎤⎦ = nE

[(
Ln − L(1)

n

)2]
.

Then

L(1)
n =

√
n

n∑
j=2

m(Xj)

∫
A′

n(Xj)

m(x)μ(dx),

and so

Ln − L(1)
n

=
√
nm(X1)

∫
An(X1)

m(x)μ(dx)−
√
n

n∑
j=2

m(Xj)

∫
A′

n(Xj)\An(Xj)

m(x)μ(dx)

=
√
n

(∫
An(X1)

m(X1,n(x))m(x)μ(dx)−
∫
An(X1)

m(X2,n(x))m(x)μ(dx)

)
,

where X2,n(x) denotes the second nearest neighbor of x among X1, . . . , Xn.
Therefore

|Ln − L(1)
n | ≤

√
nL

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|μ(dx)

by (2.2). Hence,

Var(Wn) ≤ L2
E

⎡⎣(n∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|μ(dx)
)2
⎤⎦ . (4.12)

As it is well known, for a real-valued random variable Z, by Hölder’s inequality,

E
[
Z2
]
= E

[
|Z|2/3|Z|4/3

]
≤ E [|Z|]2/3 E

[
Z4
]1/3

. (4.13)

One has

E

[
n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|μ(dx)
]

≤ E

[
n

∫
An(X1)

|m(X1,n(x))−m(x)|μ(dx)
]

+ E

[
n

∫
An(X1)

|m(X2,n(x))−m(x)|μ(dx)
]

= E

[∫
|m(X1,n(x))−m(x)|μ(dx)

]
+ E

[∫
|m(X2,n(x))−m(x)|μ(dx)

]
→ 0 (4.14)
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as n → ∞, where the latter can be shown as the limit relation (4.9). Furthermore

E

⎡⎣(n∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|μ(dx)
)4
⎤⎦ ≤ 16L4

E
[
n4μ(An(X1))

4
]

≤ 16L4c4 (4.15)

by (2.2) and Lemma 4.1. With the notation

Z = n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|μ(dx)

(4.12), (4.13), (4.14) and (4.15) imply (4.3).

Proof of (4.5).
For

Vn =

∑n
j=1 Vn,j√

n

with

Vn,j = n(Yj −m(Xj))

∫
An(Xj)

m(x)μ(dx),

notice that the triangular array Vn,j , n = 1, 2, . . . , j = 1, . . . , n is (row-wise)
exchangeable, for which there is a classical central limit theorem:

Theorem 4.1. (Blum et al. [3], Weber [21]) Let {Vn,j} be a triangular array
of exchangeable random variables with zero mean and finite variance. Assume
that

(i)

E[Vn,1Vn,2] = o(1/n),

(ii)

lim
n→∞

max{|Vn,j |; j = 1, . . . , n}/
√
n = 0

in probability,
(iii)

lim
n→∞

1

n

n∑
j=1

V 2
n,j = σ2

in probability.

Then ∑n
j=1 Vn,j√

n

is asymptotically normal with mean zero and variance σ2.
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Condition (i) of Theorem 4.1 is satisfied since

E[Vn,1Vn,2] = 0.

Condition (ii) of Theorem 4.1 follows from (2.2), Lemma 4.1 and Jensen’s in-
equality:

nE

[
max

j
μ(An(Xj)

]
≤ nE

⎡⎢⎣
⎛⎝∑

j

μ(An(Xj)
3

⎞⎠1/3
⎤⎥⎦

≤ n

⎛⎝E
⎡⎣∑

j

μ(An(Xj)
3

⎤⎦⎞⎠1/3

≤ n
(
n
c3
n3

)1/3
= o(

√
n).

Condition (iii) in Theorem 4.1 is fulfilled if

lim
n→∞

E[V 2
n,1] = σ2

2 (4.16)

and

Var

⎛⎝ 1

n

n∑
j=1

V 2
n,j

⎞⎠→ 0. (4.17)

We have that

lim
n→∞

E[V 2
n,1] = lim

n→∞
n2

E

⎡⎣(Y1 −m(X1))
2

(∫
An(X1)

m(x)μ(dx)

)2
⎤⎦

= lim
n→∞

n2
E
[
(Y1 −m(X1))

2m(X1)
2μ(An(X1))

2
]

(4.18)

= lim
n→∞

n2
E
[
(M2(X1)m(X1)

2 −m(X1)
4)μ(An(X1))

2
]
.

(4.18) follows from

n2
∣∣∣E
⎡⎣(Y1 −m(X1))

2

(∫
An(X1)

m(x)μ(dx)

)2
⎤⎦

− E
[
(Y1 −m(X1))

2m(X1)
2μ(An(X1))

2
] ∣∣∣

≤ n24L2
E

⎡⎣∣∣∣∣∣∣
(∫

An(X1)

m(x)μ(dx)

)2

−m(X1)
2μ(An(X1))

2

∣∣∣∣∣∣
⎤⎦

≤ n28L3
E

[∣∣∣∣∣
∫
An(X1)

m(x)μ(dx)−m(X1)μ(An(X1))

∣∣∣∣∣μ(An(X1))

]
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= n28L3
E

[∣∣∣∣∣
∫
An(X1)

m(x)μ(dx)

μ(An(X1))
−m(X1)

∣∣∣∣∣μ(An(X1))
2

]

≤ n28L3

√√√√√E

⎡⎣∣∣∣∣∣
∫
An(X1)

m(x)μ(dx)

μ(An(X1))
−m(X1)

∣∣∣∣∣
2
⎤⎦√E [μ(An(X1))4]

≤ 8L3√c4

√√√√√E

⎡⎣∣∣∣∣∣
∫
An(X1)

m(x)μ(dx)

μ(An(X1))
−m(X1)

∣∣∣∣∣
2
⎤⎦.

The expression on the right-hand side converges to zero. To show this, fix an
arbitrary ε > 0 and choose a decomposition m = m∗ + m∗∗ such that m∗

is Lipschitz continuous with bounded support and E[m∗∗(X)2] < ε. Then it
suffices to show the limit relation for m∗. But this follows from the fact that
diam(An(X1)) → 0 in probability (Devroye, Györfi, Lugosi, and Walk [8, Section
5]). Lemma 4.2 implies that

E
[
n2μ(An(X1))

2 | X1

]
→ α(d) with probability one. (4.19)

Set
Zn = (M2(X1)m(X1)

2 −m(X1)
4)E
[
n2μ(An(X1))

2 | X1

]
.

By (2.2) and Lemma 4.1 for k = 4 together with Jensen’s inequality for condi-
tional expectations we obtain

E[Z2
n] ≤ L8c4

and thus uniform integrability of {Zn}, i.e.,

lim
K→∞

sup
n

E[Zn1{Zn>K}] = 0.

Then (4.19) yields

n2
E
[
(M2(X1)m(X1)

2 −m(X1)
4)μ(An(X1))

2
]

= E
[
(M2(X1)m(X1)

2 −m(X1)
4)E
[
n2μ(An(X1))

2 | X1

]]
→ α(d)E

[
M2(X1)m(X1)

2 −m(X1)
4
]

= σ2
2 ,

verifying (4.16).
One may check (4.17) similarly to (4.3). Indeed, put

Ln :=
1

n

n∑
j=1

V 2
n,j = n

n∑
j=1

(Yj −m(Xj))
2

(∫
An(Xj)

m(x)μ(dx)

)2

.

Thus,

|Ln − L(1)
n |
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≤ n(Y1 −m(X1))
2

(∫
An(X1)

m(x)μ(dx)

)2

+ n

n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣∣
(∫

An(Xj)

m(x)μ(dx)

)2

−
(∫

A′
n(Xj)

m(x)μ(dx)

)2
∣∣∣∣∣∣ .

Therefore

|Ln − L(1)
n |

≤ 4L4nμ(An(X1))
2

+ 4L2n

n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣
∫
An(Xj)

m(x)μ(dx) +

∫
A′

n(Xj)

m(x)μ(dx)

∣∣∣∣∣
·
∣∣∣∣∣
∫
A′

n(Xj)\An(Xj)

m(x)μ(dx)

∣∣∣∣∣
≤ 4L4nμ(An(X1))

2 + 8L4n

n∑
j=2

μ(A′
n(Xj))μ(A

′
n(Xj) \An(Xj))

≤ 4L4nμ(An(X1))
2 + 8L4n

(
max

j=2,...n
μ(A′

n(Xj))

)
μ(An(X1)),

which implies that

Var

⎛⎝ 1

n

n∑
j=1

V 2
n,j

⎞⎠
≤ nE

[(
Ln − L(1)

n

)2]
≤ 32L8n3

E
[
μ(An(X1))

4
]

+ 128L8n3

√
E

[
max

j=2,...n
μ(A′

n(Xj))4
]√

E [μ(An(X1))4]

≤ 32L8c4/n+ 128L8n

√√√√√E

⎡⎣ n∑
j=2

μ(A′
n(Xj))4

⎤⎦√c4

by Lemma 4.1. Noticing that

E

⎡⎣ n∑
j=2

μ(A′
n(Xj))

4

⎤⎦ = (n− 1)E
[
μ(A′

n(X2))
4
]
= O(n−3)

by Lemma 4.1, we obtain (4.17).
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Proof of Theorem 2.3

As we mentioned in the proof (4.4), for given Dn, Sn is an average of i.i.d.
random variables bounded by L2. Therefore, by the Hoeffding inequality, one
has

P {|Un| > ε | Dn} ≤ 2e−nε2/(2L4).

For the term Vn, apply the extension of the Efron-Stein inequality for the
centered higher moments, which is a slight modification of Theorem 15.5 in
Boucheron et al. [4]:

Lemma 4.4. Let Z = (Z1, . . . , Zn) be a collection of independent random vari-
ables taking values in some measurable set A and denote by Z(i) = (Z1, . . . , Zi−1,
Zi+1, . . . , Zn) the collection with the i-th random variable dropped. Let f : An →
R be a measurable real-valued function and the function gi : A

n−1 → R is ob-
tained from f by dropping the i-th argument, i = 1, . . . , n. Then for any integer
q ≥ 1,

E
[
(f(Z)− Ef(Z))2q

]
≤ (cq)q

(
E

[(
n∑

i=1

(
f(Z)− gi(Z

(i))
)2)q]

+ E

[(
n∑

i=1

E

[(
f(Z)− gi(Z

(i))
)2

| Z1, . . . , Zi−1, Zi−1, . . . , Zn

])q])
,

(4.20)

with a universal constant c < 5.1.

Proof. If Z1, . . . , Zn, Z
′
1, . . . , Z

′
n are i.i.d. and

Z ′(i) = (Z1, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zn)

then from Theorem 15.5 in [4] one gets

E

[
(f(Z)− Ef(Z))2q+

]
≤ (2κq)qE

[(
V +
)q]

,

and

E

[
(f(Z)− Ef(Z))2q−

]
≤ (2κq)qE

[(
V −)q] ,

with κ =
√
e/(2(

√
e− 1)) < 1.271 and with

V + ≤
n∑

i=1

E

{
(f(Z)− f(Z ′(i)))2 | Z1, . . . , Zn

}
≤ 2

n∑
i=1

(
(f(Z)− gi(Z

(i)))2 + E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn

])
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and

V − ≤ 2

n∑
i=1

(
(f(Z)− gi(Z

(i)))2 + E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn

])
.

Therefore, cr-inequality implies

E
[
(f(Z)− Ef(Z))2q

]
≤ 2(2κq)q2q−1

E

[(
n∑

i=1

(f(Z)− gi(Z
(i)))2

)q

+

(
n∑

i=1

E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn

])q ]
.

By the equality

E

[
(gi(Z

(i))− f(Z ′(i)))2 | Z1, . . . , Zn

]
= E

[
(gi(Z

(i))− f(Z))2 | Z1, . . . , Zi−1, Zi−1, . . . , Zn

]
,

the lemma is proved.
Notice that

mn(x) =
n∑

j=1

YjI{x∈An(Xj)}.

Then

Ln := E [Sn | Dn] =

∫
m(x)mn(x)μ(dx) =

n∑
j=1

Yj

∫
An(Xj)

m(x)μ(dx).

Consider now Ln as a function of n i.i.d. vectors (X1, Y1), . . . , (Xn, Yn). Define

L
(i)
n as Ln when the pair (Xi, Yi) is dropped. As in the proof of Theorem 2.1

Ln − L(i)
n =

∫
An(Xi)

(Y1,n(x)− Y2,n(x))m(x)μ(dx),

where Y2,n(x) denotes the label of the second nearest neighbor X2,n(x) of x
among X1, . . . , Xn. Thus,(

Ln − L(i)
n

)2
=

(∫
An(Xi)

(Y1,n(x)− Y2,n(x))m(x)μ(dx)

)2

≤ (2L2)2 (μ(An(Xi)))
2
.

(4.20) implies that

E[|Ln − E[Ln]|2q] ≤ (cq)q(2L2)2q
(
E

[(
n∑

i=1

μ(An(Xi))
2

)q]
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+ E

[(
n∑

i=1

E[μ(An(Xi))
2 | X1, . . . , Xi−1, Xi−1, . . . , Xn]

)q])
.

(4.21)

Because of
n∑

i=1

μ(An(Xi)) = 1,

the Jensen inequality implies that(
n∑

i=1

μ(An(Xi))
2

)q

≤
n∑

i=1

μ(An(Xi))
q+1,

and so from Lemma 4.1 we get

E

[(
n∑

i=1

μ(An(Xi))
2

)q]
≤ E

[
n∑

i=1

μ(An(Xi))
q+1

]
≤ n−q(q + 1)!. (4.22)

Apply the Jensen inequality twice and Lemma 4.1:

E

[(
n∑

i=1

E[μ(An(Xi))
2 | X1, . . . , Xi−1, Xi−1, . . . , Xn]

)q]

= E

[(
1

n

n∑
i=1

nE[μ(An(Xi))
2 | X1, . . . , Xi−1, Xi−1, . . . , Xn]

)q]

≤ E

[
1

n

n∑
i=1

(
nE[μ(An(Xi))

2 | X1, . . . , Xi−1, Xi−1, . . . , Xn]
)q]

= E

[(
nE[μ(An(X1))

2 | X2, . . . , Xn]
)q]

≤ n−q
E

[
(nμ(An(X1)))

2q
]

≤ n−q(2q)!. (4.23)

(4.21), (4.22) and (4.23) imply that

P{|Vn| ≥ ε} = P{|Ln − E[Ln]| ≥ ε}

≤ E[|Ln − E[Ln]|2q]
ε2q

≤ 2ε−2q(cq)q(2L2)2qn−q(2q)!

≤ 2ε−2q(cq)q(2L2)2q(2q)2qe−2q/3n−q

≤ 2

(
q3

nε2/(42L4)

)q

,



A nearest neighbor estimate of the residual variance 1777

because c · 4 · 4 · e−2/3 < 42. We assume that nε2/(42eL4) ≥ 1, otherwise the
bound (2.3) is trivial. Put

q = 
[nε2/(42eL4)]1/3� ≥ 1.

Thus,

P{|Vn| ≥ ε} ≤ 2

(

[nε2/(42eL4)]1/3�3

nε2/(42L4)

)�[nε2/(42eL4)]1/3	

≤ 2e−n1/3ε2/3/(42eL4)1/3+1.

Acknowledgments

We thank the referees for their thorough reading of the manuscript, for spotting
some errors in the proof and for their suggestions of improving the presentation.

References

[1] Biau, G. and Devroye, L.: Lectures on the Nearest Neighbor Method,
Springer–Verlag, New York, 2015. MR3445317

[2] Biau, G. and Györfi, L.: On the asymptotic properties of a nonparametric
l1-test statistic of homogeneity. IEEE Transactions on Information Theory,
51:3965–3973, 2005. MR2239012

[3] Blum, J. R., Chernoff, H., Rosenblatt, M. and Teicher, H.: Central limit
theorems for interexchangeable processes. Canadian Journal of Mathemat-
ics, 10:222–229, 1958. MR0096298

[4] Boucheron, S., Lugosi, G., and Massart, P.: Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.
MR3185193

[5] De Brabanter, K., Ferrario, P. G. and Györfi, L.: Detecting ineffective fea-
tures for nonparametric regression. In Regularization, Optimization, Ker-
nels, and Support Vector Machines, ed. by J. A. K. Suykens, M. Signoretto,
A. Argyriou, pp. 177–194, Chapman & Hall/CRC Machine Learning and
Pattern Recognition Series, 2014. MR3380638

[6] Devroye, L., Ferrario, P., Györfi, L. and Walk, H.: Strong universal consis-
tent estimate of the minimum mean squared error. In Empirical Inference -
Festschrift in Honor of Vladimir N. Vapnik, ed. by B. Schölkopf, Z. Luo,
and V. Vovk, pp. 143–160, Springer, Heidelberg, 2013. MR3236863

[7] Devroye, L., Györfi, L. and Lugosi, G.: A Probabilistic Theory of Pattern
Recognition, Springer–Verlag, New York, 1996. MR1383093

[8] Devroye, L., Györfi, L., Lugosi, G. and Walk, H.: On the measure of Voronoi
cells. Journal of Applied Probability, 54:394–408, 2017. MR3668473

[9] Devroye, L. and Lugosi, G.: Almost sure classification of densities. Journal
of Nonparametric Statistics, 14:675-698, 2002. MR1941709

http://www.ams.org/mathscinet-getitem?mr=3445317
http://www.ams.org/mathscinet-getitem?mr=2239012
http://www.ams.org/mathscinet-getitem?mr=0096298
http://www.ams.org/mathscinet-getitem?mr=3185193
http://www.ams.org/mathscinet-getitem?mr=3380638
http://www.ams.org/mathscinet-getitem?mr=3236863
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=3668473
http://www.ams.org/mathscinet-getitem?mr=1941709


1778 L. Devroye et al.
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