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Abstract: An informative sampling design leads to the selection of units
whose inclusion probabilities are correlated with the response variable of
interest. Inference under the population model performed on the resulting
observed sample, without adjustment, will be biased for the population
generative model. One approach that produces asymptotically unbiased in-
ference employs marginal inclusion probabilities to form sampling weights
used to exponentiate each likelihood contribution of a pseudo likelihood
used to form a pseudo posterior distribution. Conditions for posterior con-
sistency restrict applicable sampling designs to those under which pairwise
inclusion dependencies asymptotically limit to 0. There are many sampling
designs excluded by this restriction; for example, a multi-stage design that
samples individuals within households. Viewing each household as a popu-
lation, the dependence among individuals does not attenuate. We propose a
more targeted approach in this paper for inference focused on pairs of indi-
viduals or sampled units; for example, the substance use of one spouse in a
shared household, conditioned on the substance use of the other spouse. We
formulate the pseudo likelihood with weights based on pairwise or second
order probabilities and demonstrate consistency, removing the requirement
for asymptotic independence and replacing it with restrictions on higher
order selection probabilities. Our approach provides a nearly automated
estimation procedure applicable to any model specified by the data ana-
lyst. We demonstrate our method on the National Survey on Drug Use and
Health.
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regression, non-linear regression, Markov chain Monte Carlo.
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1. Introduction

The primary interest of the data analyst is to perform inference about a finite
population generated from an unknown model, P0. The observed data are col-
lected from a sample subsequently taken from that finite population under a
known sampling design distribution, Pν , that induces a correlation between the
response variable of interest and the inclusion probabilities. Sampling designs
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that induce this correlation are termed, “informative”, and the balance of infor-
mation in the sample is different from that in the population. Savitsky & Toth
(2016) proposed an automated approach that formulates a sampling-weighted
pseudo posterior density by exponentiating each likelihood contribution by a
sampling weight constructed to be inversely proportional to its marginal in-
clusion probability, πi = EPν (δi), for units, i = 1, . . . , n, where n denotes the
number of units in the observed sample. The inclusion of unit, i, from the pop-
ulation, U , in the sample is indexed by δi ∈ {0, 1} and is governed by Pν .
This construction intends to account for the sampling design distribution, Pν ,
to perform inference on the population generating distribution, P0, estimated
on the observed sample taken from a finite population. Although we typically
expect dependence to be induced among the sampled observations by the law
for sampling, Pν — for example, under sampling without replacement — the
use of weights composed from first order inclusion probabilities ignores this de-
pendence; hence, condition (A5) in Savitsky & Toth (2016) restricts the class of
sampling designs to those where the pairwise dependencies among units attenu-
ate to 0 in the limit of the population size,N , (at orderN) to guarantee posterior
consistency of the pseudo posterior distribution estimated on the sample data,
at P0 (in L1).

While many sampling designs will meet this criterion, many won’t; for exam-
ple, a two-stage clustered sampling design where the number of clusters increases
with N , but the number of units in each cluster remain relatively fixed such that
the dependence induced at the second stage of sampling never attenuates to 0.
A common example are designs which select households as clusters.

Researchers and policy makers may be interested in the relationship between
the behaviors of individuals living together (such as parents and children or
spouses). This creates a sub-population of individuals defined by the behaviors
of other members of the household, where these joint or conditional behav-
iors (such as substance use) are only observed through the survey. Substance
use, however, is not observed in the population, but only for respondents in
the sample. So the sub-population of interest is constructed by a condition-
ing event based on the reported substance use of other units in the sample.
Sampling weights defined based on marginal inclusion probabilities are formed
using quantities (e.g., size variable(s)) observed for all units in the population
(within each stage of sampling) and aren’t designed to perform inference on a
sub-population defined by information only available from other units in the
sample.

1.1. Examples

We next outline some examples of survey programs that employ informative
sampling designs under which estimation using sampling weights formed from
marginal inclusion probabilities would not be guaranteed to produce a consis-
tent result under Savitsky & Toth (2016). Example 1: The Current Expenditure
(CE) survey is administered to U.S. households by the U.S. Bureau of Labor



Pairwise estimation under informative sampling 1633

Statistics (BLS) for the purpose of determining the amount of spending for a
broad collection of goods and service categories and it serves as the main source
used to construct the basket of goods later used to formulate the Consumer
Price Index. The CE employs a multi-stage sampling design that draws clusters
of core-based statistical areas (CBSAs), such as metropolitan and micropoli-
tan areas, from which Census blocks and, ultimately, households are sampled.
Economists desire to model the propensity or probability of purchase for a va-
riety of goods and services. The CE sampling design is one where the number
of clusters drawn increases in the limit of the population size, N , but the num-
ber of Census blocks per cluster remains relatively fixed such that we do not
expect an attenuation of the pairwise dependencies (induced within cluster) of
the secondary sampling units (Census blocks) such that the pseudo posterior
formulated from marginal inclusion probabilities would not be guaranteed to
achieve a consistent result under this sampling design.

Example 2: The motivating survey for the pairwise weighting method that
we introduce in this paper is the National Survey on Drug Use and Health (NS-
DUH), sponsored by the Substance Abuse and Mental Health Services Admin-
istration (SAMHSA). NSDUH is the primary source for statistical information
on illicit drug use, alcohol use, substance use disorders (SUDs), mental health
issues, and their co-occurrence for the civilian, non institutionalized population
of the United States. The NSDUH employs a multi-stage state-based design,
with the earlier stages defined by geography within each state in order to se-
lect households (and group quarters) nested within these geographically-defined
primary (or first-stage) sampling units (PSUs). Individuals or pairs of individu-
als are subsequently sampled from selected households. Viewing each household
as a (mini) population, it is clear that the number of individuals residing in a
household (of size, Nh) remains fixed in the limit of N , such that there is always
unattenuated sampling dependence among those individuals.

Researchers and policy makers may be interested in the substance use of one
member of a household — for example, a household that includes two spouses
living together (which we term, a “spouse-spouse” household) — based on the
substance use of another member of the household (e.g., their spouse), which is
only observed in a subset of the sample and not in the entire sample or the pop-
ulation. Weights constructed on marginal inclusion probabilities may not map
back to the sub-population (formed by conditioning on the self-reported behav-
ior of the spouse) under informative sampling of the sub-population because
the event (substance use by a spouse in the household) is only observed in the
sample, whereas these weights are constructed only from quantities observed in
the population. We illustrate this potential problem of using marginal weights
for sub-population inference based on self-reported alcohol use of household
members from the NSDUH.

1.2. Population model estimation

The target audience for this article are data analysts who wish to perform
some distributional inference using data obtained from an informative sample
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design on a population using a model they specify, Pλ, equipped with density,
p (xi|λ) , λ ∈ Λ, to estimate unknown, true model Pλ0 with density, p (xi|λ0).
We discuss, in the next section, how the limited literature on this topic does
not adequately provide a general method for making distributional inference
on a population model formulated by the data analyst while adjusting for the
unequal probabilities of selection.

In this article, we propose an approach that replaces the pseudo likelihood
of Savitsky & Toth (2016), p (xi|δi = 1,λ)

wi , where the sampling weight, wi ∝
1/πi, with an approach that incorporates pairwise (second order) inclusion prob-
abilities that provide some information about the dependence among sampled
units induced by Pν . The revised pseudo likelihood we will use in this paper is
formed from pairwise terms, [p (xi|δi = 1,λ)× p (yj |δj = 1,λ)]

wij , for i, j ∈ U ,
with wij ∝ 1/πij , πij = EPν (δiδj). The use of weights constructed from pairwise
inclusion probabilities conveys more information about the dependence induced
by the joint sampling design distribution among the sampled units. Our ap-
proach retains the attractive feature of Savitsky & Toth (2016) of asymptotically
unbiased inference for P0 under any model specified by the data analyst with-
out altering the geometry of the Markov chain Monte Carlo (MCMC) sampler.
Our new approach also does not require the data analyst to have information
about the sampling design, other than the (symmetric) matrix of pairwise inclu-
sion probabilities for the lowest level units. Under many common designs, only
a smaller block diagonal subset of this matrix may be needed. For example,
these blocks may be households. The incorporation of second order inclusion
probabilities, however, will broaden the class of sampling designs under which
automated inference about P0 may be performed by not restricting the pairwise
dependence among the sampled units to attenuate to 0.

1.3. Review of methods to account for informative sampling

Research activity that incorporates sampling weights built from marginal (or
first order) unit inclusion probabilities to estimate population quantities under
an informative sample has surged. Recent works by Dong et al. (2014); Rao
& Wu (2010); Kunihama et al. (2014); Si et al. (2015) incorporate first order
sampling weights, but under a single or fixed formulation for the population gen-
eration model — typically an empirical likelihood or Dirichlet process mixture
for flexibility — with a focus on performing inference about simple population
statistics, such as the total and mean. These approaches focus on design in-
ference, rather than inference from a model of interest specified by the data
analyst, the latter of which is our focus in this paper. Savitsky & Toth (2016),
alternatively, formulate a pseudo posterior distribution as a plug-in estimator,
using first order sampling weights to allow the data analyst to perform inference
from any population generating model that they specify.

As earlier mentioned, Savitsky & Toth (2016) define conditions that restrict
allowable sampling designs such that frequentist consistency of their pseudo
posterior approximation is guaranteed. One of these conditions requires sam-
pling designs where the pairwise sample inclusion dependencies among units
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attenuates to 0 in the limit of the population size. While they discuss many
sampling designs that satisfy this restriction, many do not — such as the CE
and NSDUH examples we earlier discussed. In a similar fashion to this paper,
Yi et al. (2016) start with a pairwise likelihood construction that incorporates
sampling weights based on second order (pairwise) inclusion probabilities to
perform (pseudo) maximum likelihood estimation in order to capture second
order dependence among sampled units. However, they construct the popu-
lation generating model to explicitly match the sampling design, which they
restrict to a 2–stage sampling design. So like the recent works using sampling
weights composed from first order inclusion probabilities, they require a specific
formulation of the population model that does not allow the data analyst to
perform inference on a model of their choosing. By contrast, our approach for
incorporating sampling weights based on pairwise inclusion probabilities allows
model inference under a large class of population generating models specified
by the data analyst. We do not require the use of a 2–stage sampling design
or even that the population model and sampling designs match; rather, in the
sequel we will formulate conditions that, together, define a class of sampling
designs under which frequentist consistency of our (improper) pseudo posterior
approximation is guaranteed. Our use of second order (pairwise) weights allows
us to broaden the class of allowable samplings designs under which our pseudo
posterior estimator contracts on the true population generating distribution by
eliminating the requirement for pairwise dependencies to attenuate to 0.

We introduce the concept of pairwise weighting for a practical implementa-
tion in Section 2 for a generic parametric population model. A rigorous theo-
retical exposition enumerates conditions under which the L1 consistency of our
weighted estimator composed from joint inclusion probabilities is guaranteed is
presented in Section 3. This section may be skipped for non-interested readers
without loss of continuity. The construction for the population model designed
to analyze the conditional quantiles for alcohol consumption of individuals as
a function of age that we will use for both a simulation study and applications
follows in Section 4. A simulation study is conducted in Section 5, where we as-
sess the relative bias of marginal and pairwise weighting schema for estimation
of the conditional quantiles of alcohol consumption for an individual living in a
spouse-spouse pair, conditioned on the alcohol consumption of their partner. An
application is made to the National Survey on Drug Use and Health (NSDUH)
in Section 6. A concluding discussion follows in Section 7.

2. Pairwise weighting to account for informative sampling

We begin by constructing the pseudo likelihood and associated pseudo posterior
density under any analyst-specified prior formulation on the model, λ ∈ Λ.

Suppose there exists a Lebesgue measurable population-generating density,
p (x|λ), indexed by parameters, λ ∈ Λ. Let δi ∈ {0, 1} denote the sample
inclusion indicator for units i = 1, . . . , N from the population under sam-
pling without replacement. The density for the observed sample is denoted by,
p (xo|λ) = p (x|δi = 1,λ), where “o” indicates “observed”.
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The following plug-in estimator for the posterior density incorporates sam-
pling weights formulated from pairwise inclusion probabilities under the analyst-
specified model for λ ∈ Λ,

pπ (λ|xo,w) ∝

⎡
⎣ n∏
i,j=1

{p (xo,i|λ) p (xo,j |λ)}wij

⎤
⎦ p (λ) (1)

∝

⎡
⎣ n∏
i=1

∏
j �=i∈S

p (xo,i|λ)wij

⎤
⎦ p (λ) (2)

=

⎡
⎢⎢⎣

n∏
i=1

p (xo,i|λ)

∑
j �=i

wij

⎤
⎥⎥⎦ p (λ) (3)

=

[
n∏

i=1

p (xo,i|λ)w
∗
i

]
p (λ) (4)

where we have used the independence of the (xi), conditioned on λ, under
Pλ0 , to rearrange terms in the product to achieve Equation 4, which exponen-
tiates the likelihood contribution of unit i by the sum of the sampling weights,
{wij ∝ 1/πij}, formulated to be inversely proportional to pairwise or second
order inclusion probabilities. The collection of pairwise inclusion probabilities
that, together, are used to formulate, w∗

i , the sampling weighted exponent for
unit i, represent all pairs by which unit i enters the observed sample. The sum
of the pairwise sampling weights for each unit, i, assigns the relative importance
of the likelihood contribution for that observation to approximate the likelihood
for the population. We use pπ to denote the noisy approximation to distribu-
tion, p, and we make note that the approximation is based on the data, xo, and
sampling weights, {w∗}, confined to those units included in the realized sample,
{i ∈ U : δi = 1}, where U denotes a population of units indexed by i = 1, . . . , N .
We drop the subscript, “o”, in the sequel when referring to the observations and
replace it with a conditioning statement.

The total estimated posterior variance is regulated by the sum of the sampling
weights to approximate the amount of information in our observed sample. We
define unnormalized second order weights, {wij = 1/πij}. The agency which
conducts the survey would construct, w̃i =

∑
j �=i wijδiδj/(N − 1) for each unit

i ∈ (1, . . . , N) in the population. The sum of the pairwise weights is divided by
N − 1 to account for the N − 1 times that unit i appears in the combination
of pairs in the population (each of which produces a likelihood contribution),
which adjusts for duplicative likelihood contributions in the population. Due to
the presence of the joint indicator δiδj , the summation can be taken over the
second order weights in the observed sample rather than the entire population.
The data analyst will see the weights for observed units published in the sample.
They will need to normalize the (w̃i) by computing w∗

i = n∑n
i=1 w̃i

w̃i, i = 1, . . . , n

to sum to the sample size, n. This normalization step approximates the amount
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of information in our sample of size, n. It regulates the amount of posterior
uncertainty estimated by application of the population model under use of the
(w∗

i ) to the observed sample.
The weight for an individual is formulated by a sum of the components con-

structed from the multiplication of (inverse) joint probabilities across the sam-
pling stages. We demonstrate in Appendix B.3 that under a multi-stage sampling
design, such as the sampling of individuals within households within geographic
segments for our NSDUH example, this sum is dominated by terms that essen-
tially factor due to nearly independent sampling in the earlier stages. The result
is that the pairwise-formulated weight, w∗

i , quickly converges (under increasing
sample size) to the sampling weight formed from marginal inclusion probabil-
ities, wi. Therefore, individual weights formed from the sum of inverse joint
inclusion probabilities won’t provide any improvement over marginal weights
for inference on the population of individuals, which corresponds to all possible
pairs of individuals in the population. However, without loss of generality, we
can focus inference on a sub-population of pairs, such as the population of co-
habitating spouses. Then we formulate w∗

i to include only a single pairwise term,
wij|�, in the case a single pair is sampled within a household, �, and individuals
j and and i are co-sampled. Our reformulated pairwise weighting scheme treats
spouse pairs (which are nested within households) as a population of interest.
It will be shown to reduce bias relative to the use of weights formulated from
marginal (or individual) inclusion probabilities for inference about the behavior
of one member of a pair conditioned on the behavior of the other under an
informative selection of the conditioning event.

3. Pairwise pseudo posterior consistency

3.1. Pseudo posterior distribution

We next introduce a formal exposition of the pairwise-weighted pseudo posterior
distribution and construct conditions under which it is guaranteed to contract
on the true generating distribution. Our asymptotics are driven by ν ∈ Z

+,
which indexes a sequence of infinite populations, {Uν}, each of size Nν , where
Nν′ > Nν for ν

′
> ν, such that the finite population size grows with ν. In

each increment of ν, we identify units in a finite population, generate random
variables, Xν from population generating distribution, P0, from which we, sub-
sequently, take a sample of size, nν , governed by sampling design distribution,
Pν . A sampling design is defined by placing a known distribution on a vec-
tor of inclusion indicators, δν = (δν1, . . . , δνNν ), linked to the units comprising
the population, Uν . Choice of design (i.e. specification of the distribution for
δν) may depend on values from the population which is generated from a hy-
pothetical distribution, P0, independently, but not identically (inid), of which
independent and identical (iid) is a special case. The sampling distribution is
subsequently used to take an observed random sample of size nν ≤ Nν . We
make no parametric or distributional assumption for the true generating model,
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P0, or it’s estimate, P , in the sequel. So we do not assume that P0 is indexed by
parameters, λ, in the form of Pλ0 . Our conditions needed for the main result,
to follow, employ known second-order or pairwise unit inclusion probabilities,
πνij = EPν{δνiδνj} for all i �= j ∈ Uν , rather than the marginal inclusion prob-
abilities, πνi = EPν{δνi} for i ∈ Uν used in Savitsky & Toth (2016), which are
both obtained from the joint distribution over (δν1, . . . , δνNν ). The dependence
among unit inclusions in the sample contrasts with the usual iid draws from P0.
We denote the sampling distribution by Pν .

Under informative sampling, the inclusion probabilities (typically marginal)
are formulated to depend on the finite population data values, XNν = (X1, . . . ,

XNν )
ind∼ P0. Since the resulting balance of information (where information

describes the joint likelihood) would be different in the sample, a posterior
distribution from (X1δν1, . . . ,XNν δνNν ) that ignores the distribution for δν will
not lead to consistent estimation. In addition, under a complex sampling design
with multiple stages, correlations are typically induced among the inclusions for
some or all units.

Our task is to perform inference about the population generating distribution,
P0, using the observed data taken under an informative sampling design. We
account for informative sampling by “undoing” the sampling design with the
weighted estimator,

pπ (Xiδνi) := p (Xi)
1

(Nν−1)

∑
k �=i∈Uν

δνiδνk
πνik , (5)

that weights each density contribution, p(Xi), by the sum of all of its inverse
pairwise inclusion probabilities, which together represent all pairwise paths by
which unit i may enter a selected sample. The employment of pairwise inclusion
probabilities partially accounts for the dependence of among unit inclusions in-
duced by Pν . The sum of terms for each i is divided by Nν − 1 because each
individual is present in Nν − 1 population pair terms in the summation, each of
which has expectation with respect to Pν equal to 1. So the normalization of the
summation term ensures that the expectation of the logarithm of the density
with respect to Pν is unbiased. Our construction re-weights the likelihood con-
tributions defined on those units randomly-selected for inclusion in the observed
sample ({i ∈ Uν : δνi = 1}) to approximate the balance of information in Uν ,
from which we construct the associated pseudo posterior,

Ππ (B|X1δν1, . . . ,XNν δνNν ) =

∫
P∈B

∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )∫

P∈P
∏Nν

i=1
pπ

pπ
0
(Xiδνi)dΠ(P )

, (6)

that we use to achieve our required conditions for the rate of contraction of the
pseudo posterior distribution on P0. Π

π (B|X1δν1, . . . ,XNν δνNν ) denotes the
pseudo posterior mass placed placed on parameter set B contained in space, P
of probability measures, P . We note that both P and δν are random variables
defined on the space of measures (P and B ⊆ P) and possible samples, re-
spectively. We divide the top and bottom of Equation 6 by pπ0 (Xiδνi), which is
defined analogously as Equation 5, replacing p with p0. An important condition
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on Pν formulated in Savitsky & Toth (2016) that guarantees contraction of the
pseudo posterior on P0 restricts pairwise inclusion dependencies to asymptoti-
cally attenuate to 0. This restriction narrows the class of sampling designs for
which consistency of a pseudo posterior based on marginal inclusion probabili-
ties may be achieved. We show in the sequel that our use of pairwise inclusion
probabilities to formulate sampling weights in the pseudo posterior distribution
replaces their condition that requires marginal factorization of the pairwise in-
clusion probabilities with two conditions that require pairwise factorization of
third and fourth order inclusion probabilities. This expands the allowable class
of sampling designs under which frequentist consistency may be guaranteed.
We assume measurability for the sets on which we compute prior, posterior and
pseudo posterior probabilities on the joint product space, X × P . For brevity,
we use the superscript, π, to denote the dependence on the known sampling
probabilities, {πνij}i,j∈Uν ; for example,

Ππ (B|X1δν1, . . . ,XNν δνNν ) := Π

⎛
⎝B

∣∣∣∣∣∣(X1δν1, . . . ,XNν δνNν ) ,

⎛
⎝ ∑

k �=1∈Uν

πν1k, . . . ,
∑

k �=Nν∈Uν

πνNνk

⎞
⎠
⎞
⎠ .

Our main result is achieved in the limit as ν ↑ ∞, under the countable set of
successively larger-sized populations, {Uν}ν∈Z+ . We define the associated rate
of convergence notation, aν = O(bν), to denote |aν | ≤ M |bν | for a constant
M > 0.

3.2. Empirical process functionals

We employ the empirical distribution approximation for the joint distribution
over population generation and the draw of an informative sample that pro-
duces our observed data to formulate our results. Our empirical distribution
construction follows Breslow & Wellner (2007) and incorporates inverse inclu-
sion pairwise probability weights, {1/πνij}i,j∈Uν , to account for the informative
sampling design,

P
π
Nν

=
1

Nv

Nν∑
i=1

1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

δ (Xi) , (7)

where δ (Xi) denotes the Dirac delta function, with probability mass 1 onXi and
we recall that Nν = |Uν | denotes the size of of the finite population. This con-

struction contrasts with the usual empirical distribution, PNν = 1
Nv

∑Nν

i=1 δ (Xi),
used to approximate P ∈ P , the distribution hypothesized to generate the finite
population, Uν .

We follow the notational convention of Ghosal et al. (2000) and define the as-
sociated expectation functionals with respect to these empirical distributions by
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P
π
Nν

f = 1
Nν

∑Nν

i=1
1

(Nν−1)

∑
k �=i∈Uν

δνiδνk

πνik
f (Xi). Similarly, PNνf =

1
Nν

∑Nν

i=1 f (Xi). Lastly, we use the associated centered empirical processes,

G
π
Nν

=
√
Nν

(
P
π
Nν

− P0

)
and GNν =

√
Nν (PNν − P0).

The sampling-weighted, (average) pseudo Hellinger distance between distri-
butions, P1, P2 ∈ P ,

dπ,2Nν
(p1, p2) =

1

Nν

Nν∑
i=1

1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

d2 (p1(Xi), p2(Xi)) , (8)

where d (p1, p2) =
[∫ (√

p1 −
√
p2
)2

dμ
] 1

2

(for dominating measure, μ). We need

this empirical average distance metric because the observed (sample) data drawn
from the finite population under Pν are no longer independent. The implication
is that our consistency result applies to finite populations generated as inid from
which informative samples are taken. The associated non-sampling Hellinger
distance is specified with, d2Nν

(p1, p2) =
1
Nν

∑Nν

i=1 d
2 (p1(Xi), p2(Xi)).

3.3. Main result

We proceed to construct associated conditions and a theorem that contain our
main result on the consistency of the pairwise pseudo posterior distribution
under a class of informative sampling designs at the true generating distribution,
P0. Our approach extends the main in-probability convergence result of Ghosal
& van der Vaart (2007) by adding new conditions that restrict the distribution
of the informative sampling design. Suppose we have a sequence, ξNν ↓ 0 and
Nνξ

2
Nν

↑ ∞ and nνξ
2
Nν

↑ ∞ as ν ∈ Z
+ ↑ ∞ and any constant, C > 0,

(A1) (Local entropy condition - Size of model)

sup
ξ>ξNν

logN (ξ/36, {P ∈ PNν : dNν (P, P0) < ξ}, dNν ) ≤ Nνξ
2
Nν

,

(A2) (Size of space)

Π (P\PNν ) ≤ exp
(
−Nνξ

2
Nν

(2(1 + 2C))
)

(A3) (Prior mass covering the truth)

Π

(
P : −P0 log

p

p0
≤ ξ2Nν

∩ P0

[
log

p

p0

]2
≤ ξ2Nν

)
≥ exp

(
−Nνξ

2
Nν

C
)

(A4) (Non-zero Pairwise Inclusion Probabilities)

sup
ν

⎡
⎣ 1

min
i,k:k �=i∈Uν

|πνik|

⎤
⎦ ≤ γ ≥ 1, with P0−probability 1.
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(A5) (Bounded Ratio of Third to Second Order Inclusion Probabilities)

sup
ν

max
i,k,�:k �=��=i∈Uν

∣∣∣∣ πνik�

πνikπνi�

∣∣∣∣
= sup

ν
max

i,k,�:k �=��=i∈Uν

∣∣∣∣ πνk�|i
πνk|iπν�|iπi

∣∣∣∣≤ C5, with P0−probability 1,

where

πνk|i = EPν (δνk|δνi = 1) , πνk�|i = EPν (δνkδν�|δνi = 1) .

(A6) (Asymptotic Factorization of Fourth Order Inclusion Probabilities)

lim sup
ν↑∞

max
i,j,k,�:i �=j,k �=i,��=j∈Uν

∣∣∣∣ πνikj�

πνikπνj�
− 1

∣∣∣∣
= O(N−1

ν ), with P0−probability 1

such that for some constant, C4 > 0,

Nν sup
ν

max
i,j,k,�:i �=j,k �=i,��=j∈Uν

∣∣∣∣ πνikj�

πνikπνj�
− 1

∣∣∣∣ ≤ C4, for Nν sufficiently large.

(A7) (Constant Sampling fraction) For some constant, f ∈ (0, 1), that we term
the “sampling fraction”,

lim sup
ν

∣∣∣∣ nν

Nν
− f

∣∣∣∣= O(1), with P0−probability 1.

The first three conditions are the same as for Savitsky & Toth (2016) and re-
strict the growth rate of the model space (e.g., of parameters) and requires
prior mass to be placed on an region containing the true value. The growth
rate of the model space is captured by the logarithm of the covering number
N(·) in Condition (A1), defined as the minimum number of balls of radius
ξ/36 need to cover {P ∈ PNν : dNν (P, P0) < ξ} under distance metric, dNν .
Condition (A2) restricts the prior mass placed on the uncountable portion of
the model space, P, that does not include the countable space, PNν , denoted
by P\PNν . The next four new conditions impose restrictions on the sampling
design and associated known distribution, Pν , which are similar than those spec-
ified in Savitsky & Toth (2016), but allow for a wider class of sampling designs
under which consistency of the pseudo posterior formulation of Equation 5 is
guaranteed by replacing the asymptotic attenuation of pairwise inclusion de-
pendencies with restrictions on third and fourth order inclusion dependencies.
Condition (A4) requires the sampling design to assign a positive probability for
pairwise inclusion for every pair of units, i, j ∈ Uν . Since the maximum pairwise
inclusion probability is 1, the bound, γ ≥ 1. This condition is no more restric-
tive than the analogous condition A4 in Savitsky & Toth (2016), which bounds
marginal inclusion probabilities away from 0, in the case that Cov (δνi, δνj) > 0,
which implies that min{πνi, πνj} ≥ πνij > πνiπνj ; otherwise, for designs where
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Cov (δνi, δνj) < 0, condition (A4) is more restrictive because {πνi, πνj} > 0
does not imply |πνij | > 0. All pairs of units must be assigned non-zero pairwise
inclusion probabilities. We make note that other than this restriction bounding
pairwise inclusion probabilities away from 0, there is no required attenuation of
pairwise dependencies as there is in Savitsky & Toth (2016). Instead, we add
the new condition (A5) that restricts sampling designs under which the ratio
of third order inclusion probabilities to the product of second order inclusion
probabilities is absolutely bounded from above. This ratio approaches the condi-
tion of bounding first order inclusion probabilities away from 0 in the case that
the conditional pairwise inclusion probabilities asymptotically factor (though
such is not required). Condition (A6) requires fourth order inclusion probabil-
ities to factor to pairwise probabilities as Nν ↑ ∞. We note the presence of
pairwise inclusion probabilities in the denominator for each our conditions (A5)
and (A6), as contrasted with marginal inclusion probabilities in the analogous
condition A5 in Savitsky & Toth (2016) (which requires asymptotic factorization
of pairwise inclusion probabilities). The conditions of Savitsky & Toth (2016)
may be viewed as requiring sampling designs that limit to the equivalent to the
independent sampling of individual units, while our conditions asymptotically
require designs to limit to the independent sampling of distinct pairs of indi-
viduals; that is, the joint inclusion probabilities of pairs, (i, j) and (k, �) limit
to independence in Condition (A6). Condition (A5) requires asymptotic factor-
ization of pairwise inclusion probabilities, but only when the pairwise inclusion
probability is formed by conditioning on the inclusion of a third unit, i ∈ Uν ,
which is less restrictive than the required unconditional factorization under use
of marginal weights; for example, conditioned on the inclusion of individual,
i, in a household, the inclusions of units j and k in that household would be
asymptotically independent. Condition (A7) ensures that the observed sample
size, nν , limits to ∞ along with the size of the partially-observed finite popula-
tion, Nν , such that the variation of information about the population expressed
in realized samples is controlled.

Theorem 3.1. Suppose conditions (A1)-(A7) hold. Then for sets PNν ⊂ P,
constants, K > 0, and M sufficiently large,

EP0,PνΠ
π
(
P : dπNν

(P, P0) ≥ MξNν |X1δν1, . . . ,XNν δνNν

)
≤

16γ2 [γ + C3]

(Kf + 1− 2γ)
2
Nνξ2Nν

+ 5γ exp

(
−
Knνξ

2
Nν

2γ

)
, (9)

which tends to 0 as (nν , Nν) ↑ ∞.

Proof. The proof follows exactly that in Savitsky & Toth (2016) where we bound
the numerator (from above) and the denominator (from below) of the expec-
tation with respect to the joint distribution of population generation and the
taking of a sample of the pseudo posterior mass placed on the set of models,
P , at some minimum pseudo Hellinger distance from P0. We replace their con-
dition (A4), which bounds the inverse of marginal inclusion probabilities, with
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our condition (A4), that now bounds the inverse of pairwise inclusion probabil-
ities. We reformulate two enabling lemmas of Savitsky & Toth (2016), which we
present in Appendix A, where the reliance on (their) condition (A5) requiring
asymptotic factoring of pairwise unit inclusion probabilities is here replaced by
conditions (A5) and (A6) that require asymptotic pairwise factoring of fourth
order inclusion probabilities and boundedness in the ratio of third-to-second
order inclusion probabilities.

We note that the rate of convergence is decreased for a sampling distribution,
Pν , that expresses a large variance in unit pairwise inclusion probabilities such
that γ will be relatively larger. Samples drawn under a design that expresses a
large variability in the second order sampling weights will express more disper-
sion in their information relative to a simple random sample of the underlying
finite population. We construct C3 = C4+C5+1, such that to the extent that the
third and fourth order dependencies attenuate faster than the pairwise inclusion
probabilities under the pseudo posterior constructed from first order sampling
weights, then the rate of contraction will be faster under our formation than
in Savitsky & Toth (2016). In general, however, one would not necessarily ex-
pect a more rapid contraction under our employment of second order inclusion
probabilities to form our sampling weights because the rate in both Savitsky
& Toth (2016) and here is nearly optimal, as we may observe by plugging in
for the rate, ξNν = log nν/

√
nν — the optimal convergence rate reduced by a

log factor — and noting that the bound in Equation 9 limits to 0. The main
benefit of our approach is that it is expected to broaden the class of sampling
designs (relative to Savitsky & Toth (2016)) under which the associated pseudo
posterior distribution achieves a frequentist consistency result.

4. Example population model

We construct an example of a possible population model which an analyst might
use to address the inferential interest of assessing the functional form of the
relationship between frequency of alcohol consumption and age at conditional
quantiles of interest for the population distribution of the U.S., as estimated
from the 2014 National Survey on Drug Use and Health (NSDUH). This model
is but one specific choice which satisfies the conditions (A1)-(A3).

We follow Reed & Yu (2009) and formulate a likelihood for each observation
using the asymmetric Laplace (AL) distribution,

xi | μi, τ, q
ind∼ AL (μi, τ, q) , i = 1, . . . , N (10)

where τ is a precision parameter and q ∈ (0, 1) is the quantile of interest. We
recall the AL density for observed response, x,

p (x | μ, τ, q) = τq(1− q) exp (−τρq(x− μ)) , (11)

where

ρq (u) :=

{
q|u|, if u ≥ 0

(1− q) |u|, if u < 0
(12)
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To accommodate expected non-linearity in the relationship of age with the
distribution for alcohol consumption, we encode age, z1, in a B-spline basis term,

μ = B(z1)θ (13)

for N × (d + k) B-spline basis matrix, B(z1), that we extend as in Clifford &
Choy (2012), to convert the B-spline to a penalized (P-) spline of order k with
employment of a penalty matrix, Q = D

′
D, where D has d + k columns for a

B-spline basis with d knots and is the discretized kth difference operator. Higher
values for k enforce greater smoothness restrictions in each B-spline piecewise
basis (column of B) under the following multivariate Gaussian prior for θ,

p (θ | κ) ∝ exp
(
−κ

2
θ

′
Qθ

)
, (14)

where (d+ k)× (d+ k) penalty (precision) matrix, Q is of rank, d, in a similar
fashion as the intrinsic conditional autoregressive prior (Rue & Held, 2005).
Parameter, κ, is the smoothing, penalty parameter on which we impose a further
G (1, 1) prior, specified with small hyperparameter settings easily overwhelmed
by the data. We choose d = 10 and k = 3 such that each spline basis lies in the
space of piecewise C3 functions. Precision parameter, τ , from Equation 10 also
receives a G (1, 1) prior.

We formulate the logarithm of the sampling-weighted pseudo likelihood for
estimating λ = (μ, τ, κ) from our observed data for the n ≤ N sampled units,

log

[
n∏

i=1

p (xi | μi, τ, q)
w∗

i

]
=

n∑
i=1

w∗
i log p (xi | μi, τ, q) (15)

= w∗
TOT [log τ + log q + log(1− q)]

− τ

n∑
i=1

w∗
i ρq (xi − μi) , (16)

where w∗
TOT =

n∑
i=1

w∗
i , with sampling weights, w∗

i , as defined using joint inclusion

probabilities for unit i in Section 3.1 or, alternatively, using marginal inclusion
probabilities as in Savitsky & Toth (2016), to support our comparison of al-
ternative weighting schema. We recall that we have normalized the sum of the
weights such that w∗

TOT = n. Finally, we estimate the joint posterior distribution
using Equation 15, coupled with our prior distributions assignments, using the
NUTS Hamiltonian Monte Carlo algorithm implemented in Stan (Carpenter,
2015).

5. Simulation study

5.1. Scenarios

We begin by abstracting the five-stage, geographically-indexed NSDUH sam-
pling design (Morton et al., 2016) to a simpler, three stage design (of {area
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segment, household, individual}) that we use to draw samples from a synthetic
population in a manner that still generalizes to the NSDUH (and similar multi-
stage sampling designs where the number of last stage units does not grow with
overall population size). We focus our inference on the case of analyzing (some
conditional quantile for) alcohol usage for a sub-population that is formed by
conditioning the inclusion of a sampled individual in a spouse-spouse house-
hold based on the self-reported frequency of alcohol usage by their spouse. We
construct two scenarios, where each targets a sub-population, under which we
will compare the estimation performances (through bias and mean square error)
of marginal versus pairwise weighting schema. These scenarios will be used for
both our simulation study and following application to NSDUH:

(S1) A sub-population target for inference is defined by those individuals who
reside in a particular household configuration. So we only include the
sub-sample of individuals who reside in a spouse-spouse pair for model
estimation (regardless of whether their spouse is also included in the sam-
ple). This sub-population is formed using information observed in the
(household) population; e.g., the household roster provides information
on whether someone resides with a spouse. Inference is limited to only the
responding spouse without regard to the presence of the other spouse in
the sample or his or her corresponding behaviors. This scenario, in which
we expect marginal inference about spouse pair members to be correct
when using marginal weights, serves as a contrast to the next scenario.

(S2) The sub-population of interest is further restricted to those spouse-spouse
households where one spouse consumes alcohol above (and/or below) some
threshold level frequency. This sub-population is defined based on a con-
ditioning event (the level of alcohol consumption by one member of a
spouse-spouse pair) and the condition is not observed in the (household)
population. By construction, the conditioning event is restricted to be ob-
served only in the pair sample. In contrast to the previous scenario, we
expect this conditional inference between pairs to be biased when using
marginal weights, but correct when using pairwise weights. The latter com-
pensate for the differential sub-selection of the joint spouse-spouse sample
from among the much larger sample of individuals who reported living
with a spouse but whose spouse may not be in the sample.

5.2. Conditional populations

We consider a population of households (HHs) which each contain 3 individuals
(P1, P2, P3). We assume the first two members (P1, P2) have a special rela-
tionship (such as spouse-spouse) with each other but not with P3. The response
x is drawn from an AL distribution with q = 0.5, corresponding to the median.
We let μ depend on two predictors z1 and z2. The variable z1 represents the
observed information available for analysis, whereas z2 represents information
available for sampling, which is either ignored or not available for analysis. For
both P1 and P3, the distributions for z1 and z2 are normal and exponential
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distributions, respectively.

The conditional quantile distributions for P1 and P3 are identical, μ =
f(z1, z2). The distribution for the size variable z2 for P2 is conditional on the size
variable for P1. In other words, the predictor information and the probability
of selection for P2 is related to corresponding information for their spouse P1.
Furthermore, the shape of the curve f(z1, z2) is differentially defined when the
size variable for P1 is above the population median. The relationship between
P2’s alcohol consumption and covariates has a different shape depending on
whether their spouse (P1) has covariate values above a threshold (More detail
is provided in Appendix B.1).

The sub-populations of P2-P1 and P2-P3 pairs within a HH each have distinct
distributions for P2 for both the outcome and the joint selection probability.
This is true even though the marginal distributions for outcomes and predictors
are the same for their pair partners P1 and P3. In other words, we are now
more likely to sample P2 within ‘spouse’ pairs (P1-P2) than within ‘non-spouse’
pairs (P2-P3), and the response distribution for P2 is skewed larger (e.g., for
alcohol consumption) for ‘spouse’ pairs in the sample compared to the marginal
population for P2.

Even though the population response x was generated from μ = f(z1, z2),
we, subsequently, estimate the marginal model, μ = f(z1), on the generated
population and use the estimated μ from this marginal model to compare the
estimated results on our observed sample (taken from the population) under the
three weighting scenarios. The generation of x from size variable, z2, ensures that
our sampling design instantiates informativeness, since inclusion probability, π,
is set to be proportional to z2. Excluding z2 in the target population model
for x represents the lack of availability of z2 to the data analyst and that it
is a nuisance variable to the data analyst because their inferential focus is on
the relationship between x and z1. In summary, we estimate the models under
both scenarios under our informative sampling design and compare them to the
population fitted model, μ = f(z1).

Rather than sampling households and individuals directly, we wish to more
closely mimic multi-stage cluster designs such as the NSDUH. Sampling first
occurs for groups of households within primary sampling units (PSUs). Then
households (HHs) and pairs within households can be selected. Unequal prob-
abilities of selection are possible at each stage by aggregating the size measure
up to the sampling unit (PSU or HH). See Appendix B.2 for more details.

5.3. Calculation of weights

From the three stages of sampling (PSUs, HHs, pairs) there are four weight
components available to use:

1. PSU: wk
1 = 1/πk, the inverse of the probability of selecting PSU k.

2. HH: w
j|k
2 = 1/πj|k, the inverse of the conditional probability of selecting

HH j given PSU k has been selected.
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3. Individual: w
i|jk
3 = 1/πi|jk, the inverse of the conditional probability of

selecting individual i given HH j and PSU k are selected.

4. Pairwise: w
i,i′|jk
3 = 1/πi,i′|jk, the inverse of the joint probability of select-

ing individuals i and i′ as a pair in HH j given the household and PSU k
are selected.

In general, each stage could have two sets of weights from both first and second
order components. For this example, the joint probabilities of selection within
each of the first two stages are considered negligible.

Based on these four weight components, the first order or marginal weight is

simply the inverse of the probability of selecting an individual: w
(1)
i =

wk
1w

j|k
2 w

i|jk
3 . For second order weights, we set the HH as the unit of analy-

sis and construct each pairwise weight within HH for individual, i: w
(2p)
i =

wk
1w

j|k
2 w

i,i′|jk
3 /(Npj − 1), where i

′
is the co-sampled individual in HH, j, that

includes units, (i, i
′
). We normalize by the number of pairs in which i is a

member in the domain of interest within each household, (Npj − 1), because
each roster of the HH is treated as a population (and the entire population
is constructed as the collection of household populations). The distribution of
household pairwise weights is similar to the marginal weights, but the former
have a slightly heavier tail. While the overall distributions are similar, the ra-
tio of the marginal weights and the pairwise weights reveals that the pairwise
weights do in fact redistribute the marginal weight, increasing the weight of
some individuals and decreasing the weight for others. More discussion on the
formulation of the household pairwise weights and some example properties of
these different weights are demonstrated in Appendix sections B.3 and B.4.

5.4. Results

For simplicity and scalability to small sample sizes, we model both the popula-
tion and sample using d = 5 knots and polynomials of degree k = 2. Each column
of Figure 1 displays the fitted curves, bias and mean square error (MSE) for sce-
nario (S1) that includes the full sample of P2’s (anyone living with a spouse)
for a particular average sample size. Both weighting methods remove the bias
compared to the equal weighting. The first order or marginal weights show a
slight, but persistent edge in MSE likely due to less variability in the marginal
weights.

Figures 2 presents results under scenario (S2), where the P2 sub-population
of interest is conditioned on whether the observed response, x, for P1 (the other
spouse) is above 10, a value which is close to the median of x (Results for when
P1 is below 10 are similar and therefore not included). The household pairwise
weights remove more bias and lead to smaller MSE than do the marginal weights
because the conditioning event on the x value for P1 is only observed in the P1-
P2 (joint spouse) sub-sample, but not in the full P2 sample or the (household)
population.

Therefore, the computed value of each household pairwise weight is able to
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Fig 1. The marginal estimate of μ = f(z1) for ‘spouse’ P2 using the full sample under
scenario (S1). Compares the (true) population curve (broken gray) to the whole sample with
equal weights (black), final analysis or ‘marginal’ weights (blue/dark gray), and household
pairwise or ‘second order’ weights (red/light gray). Top to bottom: estimated curve, log of
absolute bias, log of mean square error. Left to right: doubling of sample size for whole sample
(100 to 1600).

adjust for informative sub-sampling of joint spouse-spouse pairs to more fully
remove bias than marginal weighting. By contrast, the marginal weight for each
individual is constructed based on quantities observed in the entire population,
so it does not change or adapt to the particular sub-sample needed to study a
conditioning event not observed in the population (other spouse’s self-reported
behavior); that is, the marginal weight for each individual is fixed to the same
value for every sample or pair sub-sample that includes this individual (inde-
pendent of the inclusion of the other spouse in the sample). While the marginal
weighting scheme does demonstrate a notable improvement in estimation bias
and MSE compared to the unweighted case, much of this improvement may be
due to the informativeness of the first two stages of sampling. Using the marginal
weights may lead to different, and potentially incorrect, inferential conclusions
about the sub-population, as we will demonstrate in the Application section 6
that follows.

6. Application to NSDUH

Figure 3 shows the estimated relationship between the median (q = 0.5) number
of days of alcohol use in the past month vs. age for the U.S. in 2014 from sce-
nario (S2), which are the conditional curves based on the self-reported behavior
of the spouse (in their sampled response). The top set of curves corresponds
to the median estimates for individuals (n ≈ 4,000) given that their spouse
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Fig 2. The conditional estimate of μ = f(z1) for ‘spouse’ P2 given observed x ≥ 10 for
‘other spouse’ P1 under scenario (S2). Compares the (true) population curve (broken gray)
to the P1-P2 pair sample with equal weights (black), final analysis or ‘marginal’ weights
(blue/dark gray), and household pairwise or ‘second order’ weights (red/light gray). Top to
bottom: estimated curve, log of absolute bias, log of mean square error. Left to right: doubling
of sample size for whole sample (100 to 1600).

reported any past month alcohol use (x ≥ 1). The bottom set of curves repre-
sent the complement corresponding to median estimates for individuals (n ≈
3,000) whose spouse reported no past month alcohol use (x = 0). While the
bottom curves show little difference between the weighting methods and lit-
tle change across age, the top set of curves for the household pairwise weights
suggest a different pattern than the marginal and equal weights. While the lat-
ter (marginal and equal weights) show a general lack of change after an initial
increase in younger ages, the former (household pairwise weights) suggest a
continued increase across age, perhaps with a jump around middle age; that is,
alcohol consumption continues to increase with age for individuals who spouses
consume alcohol at least once per month (It is important to remember that
this study is cross-sectional and differences between ages may be due to cohort
effects rather than a progression over time).

The agreement of the marginal weighted curves with those under equal weight-
ing may suggest that the sampling of individuals is only weakly informative for
marginal models of behavior, if we flexibly account for age in our models (Re-
call that sample is allocated disproportionately across age groups and states).
However, the joint sampling of spouse-spouse pairs based on their pairs of ages
is still informative with respective to joint or conditional models for behavior.
Thus the use of the household pair weights removes bias associated with the
informative joint sampling of different pairs of ages within each household. The
marginal and equal weights over-emphasize respondents with younger spouses.
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Fig 3. Estimated median and 95% intervals for number of days using alcohol in the past
month among individuals conditional on their spouse’s past month use of alcohol (based on
the observed pair sample) under scenario (S2) using equal weights (black), final analysis
or ‘marginal’ weights (blue/dark gray), and household pairwise or ‘second order’ weights
(red/light gray). Solid lines indicate past month use by spouse; broken lines indicate no past
month use by spouse.

These pairs are selected more often into the sample and they are more likely to
have spouses who drink more frequently.

6.1. Application to other surveys

The use of household pairwise weights is most applicable to multi-stage cluster
sample designs, particularly when the final cluster is small (e.g. household) and
when individuals may have related behaviors, such as substance use (NSDUH)
or consumer purchase patterns (CE). Then the potential for joint behaviors
combined with joint differential selection could result in bias for conditional sub-
population estimates which is not fully corrected by marginal weights. Pairwise
weights are generally not useful for single stage designs, such as the Job Open-
ings and Labor Turnover survey (JOLTS) example in Savitsky & Toth (2016). In
this case, the joint probabilities of selection attenuate between units. Although
these probabilities could be calculated in principle, for even moderate sample
sizes this would be intractable due to the combinatorics required. Furthermore,
many joint inclusions may be so small that the inverse weights will be large and
unstable. Likewise, a multi-stage cluster design with large final cluster popu-
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lations (e.g. cities) would have pairwise inclusions probabilities which rapidly
attenuate similar to one-stage designs. More importantly, the joint measures
available in these designs are typically not analytically important, essentially
only the relationships of complete strangers are captured.

Final pairs weights used for analysis are best produced by the agency conduct-
ing the survey. These weights undergo non-response and post-stratification ad-
justments and have pair relationship p specific ‘multiplicity’ adjustments Npj −1
within each household j. For example, the pair weights for a spouse-spouse pair
in household j is normalized using Npj = 2, but the pair weights for a sibling-
sibling pair may use Npj = 3 if there are three siblings. The analyst then selects
the relationship specific weight (e.g. spouse-spouse) to perform inference. The
NSDUH currently produces these adjustments for about a dozen household re-
lationships (Westlake et al., 2016). We hope to influence other agencies to use
similar methods to produce relationship specific pair weights which are a prod-
uct of the base pair weight and the multiplicity adjustment. Access to these
weights is typically restricted due to confidentiality concerns but may be facili-
tated through a research data center or similar mechanism.

7. Conclusions

This paper extends the previous work of Savitsky & Toth (2016) to include
sampling designs in which the second order dependency between units does
not fully attenuate. For multi-stage surveys, such as the CE and the NSDUH,
the dependence structure between most units is dominated by the nearly inde-
pendent first stages of selection. The dependency within final stage clusters is
often negligible when estimating marginal models. Thus the marginal weights
are typically robust for inference on the general population.

It is when we (i) sub-select within the last stage of selection (e.g., household)
to target inference to an associated sub-population, (ii) include only joint or
conditional sample responses between members within the last stage cluster for
modeling, and (iii) the sub-selection probabilities are informative (related to the
outcome (e.g. size or age)) that we achieve a gain from using the second order
weights. Targeting inference to sub-populations of individuals in a household
based on the behaviors of other members within the household, for example,
may be of inferential interest to policy makers and researchers, but unbiased
estimations for such sub-populations are not possible with first order weights.

When the inference targets the general population of individuals, however,
while both first and second order weighting methods produce asymptotically
unbiased inference about the population from estimation on realized samples,
there may be a minor loss of efficiency for second order relative to first order
weighting if the variance of the second order weights is larger than that for the
first order weights. The more practical concern is the often lack of availability of
second order weights. The burden to compute and store last stage (household)
pairwise weights is much reduced because it is confined to the last stage of
selection, so that the weight for each individual may be constructed from a single
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(or, more generally, a few) pairwise term. To the extent that stakeholders express
interest to conduct inference on sub-populations of individuals conditioned on
the behavior of other individuals within the last stage, this paper may help
encourage statistical agencies to pursue methods to provide access to second
order weights while addressing potential concerns of confidentiality.

Appendix A: Enabling lemmas

Lemma A.1. Suppose conditions (A1) and (A4) hold. Then for every ξ > ξNν ,
a constant, K > 0, and any constant, δ > 0,

EP0,Pν

⎡
⎢⎣ ∫
P∈P\PNν

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎥⎦ ≤ Π(P\PNν ) (17)

EP0,Pν

⎡
⎢⎣ ∫
P∈PNν :d

π
Nν

(P,P0)>δξ

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) (1− φnν )

⎤
⎥⎦ ≤

2γ exp

(
−Knνδ

2ξ2

γ

)
. (18)

The constant multiplier, γ ≥ 1, defined in condition (A4), restricts the distri-
bution of the sampling design by bounding all marginal inclusion probabilities
for population units away from 0. As with the main result, the upper bound is
increased by γ.

Proof. We begin by achieving the intermediate bound of Equation 32 in Savitsky
& Toth (2016), on any set B ∈ P , by replacing 1/πν� in Equations 29 − 31 of
Savitsky & Toth (2016) with (1/(nν−1))

∑
k �=�∈δν

1/πν�k, where δν represents a
particular sample of units, of fixed size nν , drawn from the space of samples, Δν .
The upper bound result in Equation 32 is achieved because each term, 1/πν�k,
in the sum of nν − 1 terms is greater than or equal to 1, such that the term,
as a whole, is greater than or equal to 1 for each unit, � ∈ δ∗ν , where δ∗ν is that
sample realization that maximizes p/p0 (X�) (which is less than or equal to 1, by
construction, however this can also be relaxed (Savitsky & Srivastava, 2016)).
The bound specified in Equation 17 then directly follows from application of
the intermediate bound on the set P\PNν .

We next achieve an upper bound result for the expectation in Equation 18
stated in Equations 36 of Savitsky & Toth (2016) on models, P , in the slice,
Aπ

r = {P ∈ PNν : rεNν ≤ dπNν
(P, P0) ≤ 2rεNν} for integers, r, by again using

the intermediate bound of Equation 32 in Savitsky & Toth (2016). This result
on a slice derives from establishing an upper bound the (pairwise) sampling
weighted, pseudo Hellinger distance, as follows:

dπ,2Nν
(p1, p2) =

1

Nν

Nν∑
i=1

1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

d2 (p1(Xi), p2(Xi))
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≤ 1

Nν

Nν∑
i=1

⎡
⎣ 1

(Nν − 1)

∑
k �=i∈Uν

1

πνik

⎤
⎦ d2 (p1(Xi), p2(Xi))

≤ 1

Nν

Nν∑
i=1

[
1

(Nν − 1)
(Nν − 1)γd2 (p1(Xi), p2(Xi))

]

≤ γd2Nν
(P1, P2) ,

which, in turn, produces the upper bound stated in Equation 35 of Savitsky &
Toth (2016) that directly leads to the result in Equation 36. Finally, the result
of Equation 18 is directly achieved by adding up this upper bound on a slice
over the countable collection of (dyadic) slices that form the set over which the
integral is taken in Equation 18, as is outlined in the remainder of the proof in
Savitsky & Toth (2016). This concludes the proof.

Lemma A.2. For every ξ > 0 and measure Π on the set,

B =

{
P : −P0 log

(
p

p0

)
≤ ξ2, P0

(
log

p

p0

)2

≤ ξ2

}

under the conditions (A2), (A3), (A4), (A5), (A6), we have for every C > 0,
C3 = C4 + C5 + 1 and Nν sufficiently large,

Pr

⎧⎨
⎩

∫
P∈P

Nν∏
i=1

pπ

pπ0
(Xiδνi) dΠ(P ) ≤ exp

[
−(1 + C)Nνξ

2
]⎫⎬⎭ ≤ γ + C3

C2Nνξ2
, (19)

where the above probability is taken with the respect to P0 and the sampling
generating distribution, Pν , jointly.

The bound of “1” in the numerator of the result for Lemma 8.1 of Ghosal
et al. (2000), is replaced with γ + C3 for our generalization of this result in
Equation 19. The sum of positive constants, γ + C3, is greater than 1 and will
be larger for sampling designs where the pairwise inclusion probabilities, {πνij},
express a relatively larger variation, which will tend to produce samples that
are less representative of the underlying population.

Proof. The proof exactly follows that of Savitsky & Toth (2016) by bounding
the probability expression on left-hand size of Equation 19 with,

Pr

⎧⎨
⎩G

π
Nν

∫
P∈P

log
p

p0
dΠ(P ) ≤ −

√
Nνξ

2C

⎫⎬
⎭

≤

∫
P∈P

[
EP0,Pν

(
G

π
Nν

log
p

p0

)2
]
dΠ(P )

Nνξ4C2
, (20)
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where we have used Chebyshev to achieve the right-hand bound of Equation 20.
We now proceed to further bound the numerator in the right-hand side of Equa-
tion 20, which will result in the expression on the right-hand side of Equation 19.
The expectation inside the square brackets on the right-hand side of Equation 20
is taken with respect to the joint distribution of population generation and the
taking of a sample. In the sequel, define Aν = σ (X1, . . . ,XNν ) as the sigma
field of information potentially available for the Nν units in population, Uν .

EP0,Pν

[
G

π
Nν

log
p

p0

]2
(21a)

= EP0,Pν

[√
Nν

(
P
π
Nν

− PNν

)
log

p

p0
−
√
Nν (P0 − PNν ) log

p

p0

]2
(21b)

= EP0,Pν

[√
Nν

(
P
π
Nν

− PNν

)
log

p

p0
−
√
NνGNν log

p

p0

]2
(21c)

≤ NνEP0,Pν

[(
P
π
Nν

− PNν

)
log

p

p0

]2
+ EP0

[
GNν log

p

p0

]2
(21d)

≤ NνEP0,Pν

[(
P
π
Nν

− PNν

)
log

p

p0

]2
+ ξ2, (21e)

where the bound of the expectation of the centered empirical process approx-
imation over the units in the population taken with respect to the population
generating distribution, included in the second term in Equation 21d, is shown
to be bounded from above (for any constant, C > 0) under Lemma B.2 of Sav-
itsky & Toth (2016) by replacing (γ + C3) with “1” in the bound ξ2(γ + C3)
because we draw a finite population from P0 and do not take a further informa-
tive sample under Pν .

We now proceed to further simplify the bound in the first term of Equa-
tion 21d.

NνEP0,Pν

[(
P
π
Nν

− PNν

)
log

p

p0

]2
(22a)

= NνEP0,Pν

⎡
⎣ 1

Nν

Nν∑
i=1

⎛
⎝{ 1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

} − 1

⎞
⎠ log

p

p0
(Xi)

⎤
⎦
2

(22b)

=
1

Nν

∑
i,j∈Uν

EP0,Pν

⎡
⎣
⎛
⎝{ 1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

} − 1

⎞
⎠×

⎛
⎝{ 1

(Nν − 1)

∑
��=j∈Uν

δνjδν�
πνj�

} − 1

⎞
⎠ log

p

p0
(Xi)

p

p0
(Xj)

⎤
⎦
2

(22c)

=
1

Nν

∑
i �=j∈Uν

EP0

⎡
⎣EPν

⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=i,��=j∈Uν

δνiδνkδνjδν�
πνikπνj�
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+
1

(Nν − 1)2

∑
k �=i,k �=j∈Uν

δνiδνjδνk
πνikπνjk

− 1

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

− 1

(Nν − 1)

∑
��=j∈Uν

δνjδν�
πνj�

+ 1

∣∣∣∣∣∣Aν

⎫⎬
⎭
(
log

p

p0
(Xi)

p

p0
(Xj)

)⎤
⎦

+
1

Nν

∑
i=j∈Uν

EP0

⎡
⎣EPν

⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=��=i∈Uν

δνiδνkδν�
πνikπνi�

− 2

(Nν − 1)

∑
k �=i∈Uν

δνiδνk
πνik

+ 1

∣∣∣∣∣∣Aν

⎫⎬
⎭
(
log

p

p0
(Xi)

)2
⎤
⎦

+
1

Nν

∑
i=j∈Uν

EP0

⎡
⎣EPν

⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=i∈Uν

δνiδνk
π2
νik

∣∣∣∣∣∣Aν

⎫⎬
⎭
(
log

p

p0
(Xi)

)2
⎤
⎦
(22d)

=
1

Nν

∑
i �=j∈Uν

EP0

⎡
⎣
⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=i,��=j∈Uν

πνikj�

πνikπνj�

− 1 +
1

(Nν − 1)2

∑
k �=i,k �=j∈Uν

πνijk

πνikπνjk

⎫⎬
⎭
(
log

p

p0
(Xi)

p

p0
(Xj)

)⎤⎦

+
1

Nν

∑
i=j∈Uν

EP0

⎡
⎣
⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=��=i∈Uν

πνik�

πνikπνi�
− 1

⎫⎬
⎭
(
log

p

p0
(Xi)

)2
⎤
⎦

+
1

Nν

∑
i=j∈Uν

EP0

⎡
⎣
⎧⎨
⎩ 1

(Nν − 1)2

∑
k �=i∈Uν

1

πνik

⎫⎬
⎭
(
log

p

p0
(Xi)

)2
⎤
⎦ (22e)

≤ (Nν − 1) sup
ν

max
i,j,k,�:i �=j,k �=i,��=j∈Uν

∣∣∣∣ πνikj�

πνikπνj�
− 1

∣∣∣∣
{
EP0 log

p

p0
(Xi)

p

p0
(Xj)

}

+ sup
ν

max
i,k,�:k �=��=i∈Uν

∣∣∣∣ πνk�i

πνkiπν�i

∣∣∣∣
{
EP0 log

p

p0
(Xi)

2

}

+ sup
ν

⎡
⎣ 1

(Nν − 1)

1

min
i,k:k �=i∈Uν

|πνik|

⎤
⎦{EP0 log

p

p0
(Xi)

2

}
≤ (C4 + C5 + γ)ξ2,

(22f)

for sufficiently large Nν , where we have applied the condition for P ∈ B in each
of the three terms in the last inequality and conditions (A6), (A5) and (A4)
for each term in the last inequality, from left-to-right. We additionally note that
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πνik� = πνik when � = k, �, k ∈ Uν and denote πνk|i := EPν (δνk|δνi = 1).
We may finally bound the expectation on the right-hand size of Equation 20,

EP0,Pν

[
G

π
Nν

log
p

p0

]2
≤ (C4 + C5 + γ)ξ2

+ ξ2 ≤ (C4 + C5 + γ + 1)ξ2 ≤ (C3 + γ)ξ2, (23)

for Nν sufficiently large, where we set C3 := C4 + C5 + 1. This concludes the
proof.

Appendix B: Simulation details

This appendix contains detailed information on the population model (Section
B.1) and sampling design (Section B.2) used to generate the simulation results
for the main text. It also describes alternative methods of calculating second
order or ‘pairwise’ sampling weights (Section B.3) and compares the distribution
and properties of these weights (Section B.4) for the simulated population.

B.1. Example population model

The response x is drawn from an AL distribution with q = 0.5. We choose τ = 8
to yield a relatively precise response. We let μ depend on two predictors z1 and
z2. The variable z1 represents the observed information available for analysis,
whereas z2 represents information available for sampling, which is either ignored
or not available for analysis. The z1 and z2 distributions for P1 and P3 are
N (0, 1) and E(r = 1/5) with rate r, where N (·) and E(·) represent normal
and exponential distributions, respectively. The size measure used for sample
selection is z̃2,ijk = z2,ijk − min(z2,ijk) + 1 for i = 1, . . . , 3 individuals, j =
1, . . . 10 HHs, and k = 1, . . . , 200 PSUs. The conditional quantile for P1 and P3
(i = 1, 3) within each HH j and PSU k is

μi = 10 + 1z1,i + 0.5z2,i + 0.5z1,iz2,i − z21,i

P2 is given a distribution for z2,2jk that depends on P1’s value for z2,1jk
within HH j. Within each PSU, k, and HH, j, the distributions for z2 (i = 2)
are z2,2|z2,1 ∼ E(1/z2,1), so E(z2,2|z2,1) = z2,1. The distribution for μ2 is further
set to depend on whether the z2 value for P1 in the same HH is higher or lower
than the median Q0.5 of z2 among the population of P1s.

μ2 =

{
10 + 1z1,2 + 0.25z2,2 + 0.25z1,2z2,2 − 2z21,2; z2,1 ≤ Q0.5(z2,1jk)
10 + 1z1,2 + 0.75z2,2 + 0.75z1,2z2,2; z2,1 > Q0.5(z2,1jk)

In terms of P2-P1 and P2-P3 pairs within each HH, there are now different
distributions for both the outcome x2,jk (via conditional μ2) and the joint se-
lection probability (via conditional size z2,2jk|z2,1jk) even though the marginal
distributions for outcomes x1jk, x3jk and size measures z2,1jk, z2,3jk are the
same.
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B.2. Sampling from the population

For the simulation, we choose a population size N = 6000, with 200 primary
sampling units (PSUs) each containing 10 households (HHs). The number of
selected PSUs was varied K ∈ {10, 20, 40, 80, 160}, the number of HHs within
each PSU was fixed at 5, and the number of selected individuals within each
HH was 2 (a pair). Each setting was repeated M = 200 times. Details for the
selection at each stage follows:

1. For each PSU indexed by k, an aggregate size measure Z2,k =
∑

ij z2,ij|k
was created summing over all individuals i and HHs j in PSU k. PSUs are
then selected proportional to this size measure based on Brewer’s proba-
bility proportional to size (PPS) algorithm (Brewer, 1975).

2. Once PSUs are selected, for each HH within the selected PSUs indexed
by j an aggregate size measure Z2,j|k =

∑
i z2,i|jk was created summing

over all individuals i within each HH in the selected PSUs. HHs are se-
lected independently across PSUs. Within each PSU, HHs are selected
proportional to size based on Brewer’s PPS algorithm.

3. Within each selected HH, a pair of persons (2 out of P1, P2, P3) is selected
jointly. Firstly, all

(
3
2

)
= 6 pairs are given a size equal to the sum of the

individual size measures. So Z2,ii′|jk = z2,i|jk + z2,i′|jk. Secondly, a single
pair is then directly selected with probability proportional to this size
measure. Individual (marginal) probabilities of selection for each of P1, P2,
and P3 can be computed directly from the 6 pair inclusion probabilities.

B.3. Calculation of second order weights

The calculation of second order weights can be motivated in different ways:

1. “Full” second order weights can be constructed by populating the full
(
n
2

)
matrix of second order inclusion probabilities across the entire sample πi,i′ ,

taking their inverse w
(2)
i,i′ = 1/πi,i′ , and then summing for each individual

record and normalizing by the number of pairs in the target population

w
(2f)
i =

∑
i′ w

(2)
i,i′/(N − 1) where N is the population size. Because there

are three stages, the joint weight component w
(2)
i,i′ is calculated differently

depending on whether individuals i and i′ are in the same HH, different
HHs but same PSU, or different PSUs:

• Case 1: i and i′ are in different PSUs. Since we treat selection of
PSUs as independent and we select HHs and persons separately across
PSUs, the second order weight component is simply the product of

the first order weights: w
(2)
i,i′ = w

(1)
i w

(1)
i′ .

• Case 2: i and i′ are in the same PSU but different HHs: Since we
treat HHs as being conditionally independent given the selection of
the PSUs, the second order weight term has a common PSU term and

distinct HH and individual terms: w
(2)
i,i′ = wk

1w
j|k
2 w

i|jk
3 w

j′|k
2 w

i′|j′k
3
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• Case 3: i and i′ are in the same HH and thus selected as a pair: The
second order weight term has a common PSU term and common HH

term and common person-pair term: w
(2)
i,i′ = wk

1w
j|k
2 w

i,i′|jk
3

2. ‘Last stage’ or ‘pair’ weights can be constructed by assuming the HH is the
unit of analysis. This means that first order weight components provide a
consistent estimate at the HH level and any sampling dependence across
households is negligible. Because responses are not available for all persons
within a household, we then incorporate the joint sampling dependence of
each pair selected. Instead of summing over all i, i′ pairs in the sample,
we only sum over the i, i′ pairs in each HH, which in this example is a
single pair. We use the household size (Npj ) to normalize by the number of
pairs within each household because each roster of the HH is treated as a

population: w
(2p)
i = w

(2)
i,i′/(Npj −1) = wk

1w
j|k
2 w

i,i′|jk
3 /(Npj −1). This set of

weights is appealing for several reasons. It is most likely that dependence
in the response x is strongest within a HH rather than between HHs and
PSUs. It is also possible to measure each Np during data collection. It
usually needs to be known before sampling can occur. Whereas the general
N for a particular domain may not be available and must be estimated
by summing the first order weights.

3. ‘Stagewise’ second order weights can be constructed by assuming that
each of the three stages is a conditionally independent sampling with
conditional population frames of PSUs, HHs, and individuals. So any
second order dependence would only need to be captured within each
stage. Then the first order weights for each stage would be replaced by
the scaled sum of the second order weights for that stage. For example

the stage 1 weights for PSUs would be wk
1′

=
∑

k′ wk,k′

1 /(NS − 1) with

wk,k′

1 = 1/πk,k′ and NS is the number of PSUs in the population. Simi-

larly w
j|k
2′

=
∑

j′ w
j,j

′ |k
2 /(Nhk

− 1) with w
j,j

′ |k
2 = 1/πj,j′|k and Nhk

is the
number of HHs in PSU k. The within household stage weights would be

w
i|jk
3′

= w
i,i

′ |jk
3 /(Npj − 1). Then the final stagewise second order weight

would be

w
(2s)
i = wk

1′
w

j|k
2′

w
i|jk
3′

=⎛
⎝∑

k′

wk,k
′

1 /(NS − 1)

⎞
⎠×

⎛
⎝∑

j′

w
j,j

′ |k
2 /(Nhk

− 1)

⎞
⎠×

(
w

i,i
′ |jk

3 /(Npj − 1)

)

For moderate to large samples, particularly for multi-stage designs with low

dependence at the first levels of sampling, the four weights presented here (w
(1)
i ,

w
(2f)
i , w

(2p)
i , w

(2s)
i ) effectively become only two distinct sets of weights (w

(1)
i and

w
(2p)
i ). For full second order weights w

(2f)
i , the sum is dominated by Case 1.

Then the sum w
(2f)
i =

∑
i′ w

(2)
i,i′/(N − 1) → w

(1)
i (

∑
i′ w

(1)
i′ )/(N − 1). The sum

of the first order weights (
∑

i wi =
∑

i′ wi′ + wi) converges to N so w
(2f)
i ≈
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Fig 4. Distributions of marginal (W1), full second order (W2), and within HH second order
(W2P) weights for P2 across realizations of different sample sizes (column heading) and by
sub-domain (top to bottom) all P2, P2 where ‘spouse’ P1’s response < 10, P2 where ‘spouse’
P1’s response ≥ 10

(
N−w

(1)
i

N−1

)
w

(1)
i ≈ w

(1)
i . For stagewise weights w

(2s)
i , the first and second stage

components from the PPS design are typically assumed to be the products of
independent samples. By a similar argument, for moderate sample sizes wk

1′ and

w
j|k
2′ is effectively the same as wk

1 and w
j|k
2 . The third or last stage weights are

still distinct, so the stagewise weights w
(2s)
i are very similar to the last stage

pair weights w
(2p)
i .

B.4. Example properties of pairwise weights

Figure 4 compares the distribution of sampling weights under marginal, full
pairwise and within-household pairwise weighting, from left-to-right, within each
plot panel. The panels in each column present distributions for realized samples
of increasing size, from left-to-right. The rows compare the weight distributions
for all P2 units, P2 units where spouse P1’s response < 10, and P2 units where
spouse P1’s response ≥ 10, from top-to-bottom.

We observe that while the weight distributions are highly similar for marginal
and full pairwise weighting, on the one hand, there are notable differences be-
tween the first two and household pairwise weighting, on the other hand. Fig-
ure 5 plots the distributions for the ratio of full and within household pairwise
weight, to better understand the differences in their underlying distributions.
Taken together, both figures reveal that only the household pairwise weights
actually redistribute the marginal weight, whereas the full sample (second or-
der) pairwise weights quickly collapse to the marginal weights. The full pairwise



1660 M.R. Williams and T.D. Savitsky

Fig 5. Distributions of the ratio of full second order (W2) and within HH second order
(W2P) weights to marginal weights for P2 across realizations of different sample sizes (column
heading) and by sub-domain (top to bottom) all P2, P2 where ‘spouse’ P1’s response < 10,
P2 where ‘spouse’ P1’s response ≥ 10

weights converge to the marginal weights because the majority of terms in each
summation to construct a weight value for each individual are from pairings
across different PSUs and HHs. These terms are dominated by the early, nearly
independent sampling stages and thus the small number (only one for pair sam-
ples) of within HH components provide negligible contributions to the sum.
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