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Abstract: We propose a class of estimators for deconvolution in mixture
models based on a simple two-step “bin-and-smooth” procedure applied to
histogram counts. The method is both statistically and computationally
efficient: by exploiting recent advances in convex optimization, we are able
to provide a full deconvolution path that shows the estimate for the mi-
xing distribution across a range of plausible degrees of smoothness, at far
less cost than a full Bayesian analysis. This enables practitioners to con-
duct a sensitivity analysis with minimal effort. This is especially important
for applied data analysis, given the ill-posed nature of the deconvolution
problem. Our results establish the favorable theoretical properties of our
estimator and show that it offers state-of-the-art performance when com-
pared to benchmark methods across a range of scenarios.
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1. Deconvolution in mixture models

Suppose that we observe y = (y1, . . . , yn) from the model

yi | μi ∼ φ(yi | μi) , μi
i.i.d.∼ f0 , (1)

where φ(· | μ) is a known distribution with location parameter μ, and f0 is an
unknown mixing distribution. Marginally, we have specified a mixture model for
yi:
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m(yi) =

∫
R

φ(yi − μi) f0(μi) dμi = (φ ∗ f0)(yi) . (2)

The problem of estimating the mixing distribution f0 is commonly referred to
as deconvolution: we observe draws from the convolution m = φ ∗ f0, rather
than from f0 directly, and we wish to invert this blur operation to recover the
distribution of the latent location parameters. Models of this form have been
used in a wide variety of applications and have attracted significant attention in
the literature (e.g. Kiefer and Wolfowitz, 1956; Ferguson, 1973; Fan, 1991; New-
ton, 2002; Ghosal and Van Der Vaart, 2001). Yet the estimation of f0 continues
to pose both theoretical and practical challenges, making it an active area of
statistical research (e.g. Delaigle and Hall, 2014; Efron, 2016).

In this paper, we propose a nonparametric method for deconvolution that is
both statistically and computationally efficient. Our method can be motivated
in terms of an underlying Bayesian model incorporating a prior into model
(1), but it does not involve full Bayes analysis. Rather, we use a two-step “bin
and smooth” procedure. In the “bin” step, we form a histogram of the sample,
yielding the number of observations xj that fall into the jth histogram bin. In
the “smooth” step, we use the counts xj to compute a maximum a posteriori
(MAP) estimate of f0 under a prior that encourages smoothness.

We show that this nonparametric empirical-Bayes procedure yields excellent
performance for deconvolution, at reduced computational cost compared to full
nonparametric Bayesian methods. Our main theorem establishes conditions un-
der which the method yields a consistent estimate of the mixing distribution f0.
We also provide simulation evidence that the method offers practical improve-
ments over existing state-of-the-art methods.

The structure of the paper is as follows. Section 2 discusses connections of
our work with previous efforts in the literature studying the problem of decon-
volution. In Section 3.1 we introduce our proposed approach to deconvolution
based on imposing smooth constraints on the log-space of the mixing density.
We see how this novel perspective can be thought as a MAP estimator for which
a Poisson surrogate model is presented in Section 3.2. We then make important
distinctions between our proposal and other penalized methods in Section 3.3.
The paper next describes solution algorithms for our proposed methods, model
selection aspects, and a toy example in Sections 3.4, 3.5 and 3.6 respectively.
Section 4.1 then demonstrates a sensitivity analysis example on a real data set
illustrating the advantage of having a full path of solutions. We also include, in
Section 4.2, a sensitivity analysis to the choice of the number of bins. Section
5 shows almost sure recovery of the mixing density when maximization is car-
ried on a certain class of functions. The practical validity of our methodology is
then assessed in Section 6 on both mixing density recovery and normal–means
problem. For the first of these tasks, comparisons with other methods on sim-
ulated data are evaluated via Earth Mover’s Distance and mean squared error.
For the normal–means problem, a similar setting is considered, but measuring
performance in terms of mean squared error. Finally, Section 7 summarizes our
contributions.
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2. Connections with previous work

The goal of this section is to give the reader a sense of some of the historically in-
fluential work on deconvolution in the statistics literature, postponing a detailed
review until Sec tion 3.3, when we describe in more detail several approaches
that have closer connections with our method. We organize our discussion into
three categories: likelihood-based, Bayesian, and kernel-based methods.

Likelihood-based deconvolution methods date back at least to the seminal
work by Kiefer and Wolfowitz (1956). The Kiefer–Wolfowitz estimator (KW)
has some appealing features: it is completely nonparametric and invariant to
translations of the data, it requires no tuning parameters, and it is consistent
under fairly general conditions. Balanced against these desirable features there
is, perhaps, a disadvantage when estimating a smooth true mixing density: the
KW estimator is a discrete distribution involving as many as n+1 point masses.
This motivates the use of some prior or penalty as a regularizer to the the log-
likelihood.

Our approach to deconvolution falls within a penalized likelihood framework.
It has important connections with classical ideas of penalized likelihood density
estimation (e.g. Good and Gaskins, 1971; Silverman, 1982), and at least in
spirit, our work resembles recent deconvolution proposed methods by Lee et al.
(2013), Wager (2013), and Efron (2016). A more thorough discussion between
these methods and ours will be made in Section 3.3. For now we highlight the
feature which distinguishes our approach from these previous methods: it uses a
Poisson surrogate likelihood with total variation regularization on the logarithm
of the mixing density.

Deconvolution has also been studied using Bayesian methods. In the context
of repeated measurements, or multivariate deconvolution, recent work includes
Sarkar et al. (2014a) and Sarkar et al. (2014b); Staudenmayer et al. (2008).
Moreover, for the one dimensional density estimation problem, a flexible choice
is the Dirichlet Process (DP) studied in Ferguson (1973) and Escobar and West
(1995). For a Dirichlet prior in deconvolution problems, concentration rates were
recently studied in Donnet et al. (2014). Related models were considered by Do
et al. (2005) and Muralidharan (2010) for finite mixture of normals.

The DP provides a very general framework for estimating the mixing density
f0. However, as Martin and Tokdar (2012) argue, fitting a Dirichlet process
mixture does not scale well with the number of observations n. For microarray
studies, n ranges from thousands to tens of thousands, whereas for more recent
studies of fMRI data or single-nucleotide polymorphisms, n can reach several
hundreds of thousands (e.g. Tansey et al., 2014). For such large data sets, fitting
a DP mixture model can be very time-consuming.

To overcome this difficulty, Newton (2002), Tokdar et al. (2009), Martin and
Tokdar (2011), and Martin and Tokdar (2012) studied a predictive recursive
(PR) algorithm. The resulting estimator scales well with large data sets while
remaining reasonably accurate, thereby solving one the main challenges faced by
the fully Bayesian approach. In Section 6, we will provide detailed benchmarks
between PR, DP and our approach.
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Finally, we note some of the work on kernel based methods for deconvolu-
tion. This includes, among others, work by Carroll and Hall (1988); Stefanski
and Carroll (1990); Zhang (1990); Fan (1991); Fan and Koo (2002); Hall et al.
(2007); Carroll et al. (2012); Delaigle and Hall (2014). Roughly speaking, their
idea is motivated by (1) after taking the Fourier transform of the correspond-
ing convolution of densities, then solving for the unknown mixing density using
kernel approximations for the Fourier transform of the true marginal density.
The resulting kernel estimator enjoys attractive theoretical properties: for each
μ0 ∈ R, the estimator has optimal rates of convergence towards f0(μ0) for
squared-error loss when the function f0 belongs to a smooth class of functions
(Fan, 1991). We do not intent to provide theoretical comparisons with these ker-
nel methods, but instead we will provide comprehensive numerical comparisons
in Section 6.

3. A deconvolution path

3.1. Overview of approach

We now described our proposed approach in detail. We study deconvolution
estimators related to the variational problem

minimize
f

−
n∑

i=1

log(φ ∗ f)(yi) subject to

∫
R

f(μ) dμ = 1, J(f) ≤ t, (3)

where J(f) is a known penalty functional. The choices of J we consider include
�1 or �2 penalties on the derivatives in the log-space to encourage smoothness:

‖ log f (k)‖qs =

∫
R

| log f (k)(μ)|s dμ, (4)

with s = q = 1 or s = q = 2 and where log f (k) is the derivative of order k of the
log prior. The penalty involving the first derivative is an especially interpretable
one, as d log f(μ)/dμ = f ′(μ)/f(μ) is the score function of the mixing density.

Note that an alternative interpretation of our approach is as a MAP estima-
tor. To see this we consider the (possibly improper) prior on the mixing density

p(f) ∝ exp (−J(f)) I (f ∈ A) ,

where A is an appropriate class of density functions. The posterior distribution
is p(f | y) ∝ p(y | f)p(f), and our MAP estimator therefore solves, for an
appropriate τ > 0,

argminf∈A − log p(y | f) +
τ

2
J(f) . (5)
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3.2. Binned-counts problem

Throughout this section we assume that φ corresponds to the pdf of the standard
normal distribution, although the arguments can easily be generalized to other
distributions.

To make estimation efficient in scenarios with thousands or even millions of
observations, we actually fit a MAP estimator based on binning the data. First,
we use the samples to form a histogram {Ij , xj}Dj=1 with D bins, where Ij is the
j-th interval in the histogram and xj = #{yi ∈ Ij} is the associated count. For
ease of exposition, we assume that the intervals take the form Ij = ξj ± Δ/2,
i.e. have midpoints ξj and width Δ, although this is not essential to our analysis.
To arrive at a discrete version of our estimator, instead of Problem (3), we
consider an approximation and a reparametrization g = log f . We also put the
penalty in the objective function with a regularization parameter τ > 0. This
leads to the following optimization problem:

minimize
g

− 1
n

∑D
j=1 xj log (φ ∗ eg(ξj)) + τ

2 J(e
g) subject to

∫
eg(μ)dμ = 1.

(6)
We then approximate (6) by solving

minimize
θ∈RD

− 1
n

∑D
j=1 xj log

(∑D
i=1 Δφ(ξj − ξi)e

θi
)
+ τ

2 ‖Δ(k+1)θ‖sq
subject to

∑D
i=1 Δ eθi = 1,

(7)

where s = q = 1 or s = q = 2, and Δ(k+1) is the k-th order discrete difference
operator. Concretely, when k = 0, Δ(1) is the (D− 1)×D matrix encoding the
first differences of adjacent values:

Δ(1) =

⎛
⎜⎜⎜⎝

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
...

0 · · · 0 1 −1

⎞
⎟⎟⎟⎠ . (8)

For k ≥ 1, Δ(k+1) is defined recursively as Δ(k+1) = Δ(1)Δ(k), where Δ(1) from
(8) is of the appropriate dimension. Thus when k = 0, we penalize the total
variation of the vector θ (c.f. Rudin et al., 1992; Tibshirani et al., 2005) and
should expect estimates that are shrunk towards piecewise-constant functions.
When k ≥ 1, the estimator penalizes higher-order versions of total variation,
similar to the polynomial trend-filtering estimators studied by Tibshirani (2014).

Interestingly, following the proof of Theorem 1 in Padilla and Scott (2015)
we find that (7) is equivalent to

minimize
θ∈RD

l(θ) +
τ

2
‖Δ(k+1)θ‖sq , (9)

where

l(θ) =

D∑
j=1

{λj(θ)− xj log λj(θ)} ,
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with λj(θ) =
∑D

j=1 Gije
θi , Gij = Δφ(ξj − ξi), and θ̂ solves (9) if only if θ̂ −

log(nΔ)1 solves (7). Hence, in practice we solve the unconstrained optimization
Problem (9). This is due to the fact that a constrained problem, as in (7), is
typically more difficult than an unconstrained problem. In particular, in the next
subsections we will see how (9) is amenable to efficient optimization algorithms.
Moreover, as stated above, the equivalence between (7) and (9) can be seen as in
Padilla and Scott (2015). However, it is worth mentioning that this is similar in
spirit to Theorem 3.1 in Silverman (1982) which is in the context of a variational
density estimation problem.

3.3. Other related approaches

The estimator defined in (5) belongs to a general class of MAP estimators that
have been studied in Good and Gaskins (1971) and Silverman (1982) for the
classical problem of density estimation. For deconvolution problems we note the
recent work by Wager (2013), which penalizes the marginal density rather than
the derivatives of the mixing density as we propose. Moreover, the penalty in
Wager (2013) is not designed to encourage smoothness. Rather, it is an �2 pro-
jection on to the space of acceptable marginal densities (i.e. those that are valid
Gaussian convolutions)—a criterion that our estimates satisfy by construction.
An alternative penalized likelihood method was studied in Lee et al. (2013) in
the different context where the marginal density has atoms. There the authors
use the roughness penalty J(f) =

∫
|f ′(μ)|2dμ. This differs from our approach

to penalizing the log-mixing density, thereby ensuring that the solution will
be positive. Also, we allow different degrees of smoothness depending on the
choice of k. Moreover, while Lee et al. (2013) only considered sample sizes in
the order of hundreds, we show in the next sections that our estimator can
scale to much larger data sets while still enjoying attractive computational and
statistical properties.

More recently, Efron (2016) proposed a penalized approach to deconvolution
that is also based on regularization but differs from ours. This approach proceeds
by assuming that the mixing density is discrete with support {θ1, . . . , θN}. Then
Efron (2016) specified a parametric model on the mixing density of the form

f(θj) = exp
(
QT

j,·α− c(α)
)
, j = 1, . . . , N,

where Qj,· is the j − th row of the matrix Q ∈ R
N×p, for some p > 0, which is

used to encourage structure on the mixing density. Moreover, c(α) is a norma-
lizing constant satisfying

c(α) = log

⎛
⎝ N∑

j=1

exp
(
QT

j,· α
)⎞⎠ .

Then summing over all the {θj}Nj=1 and considering the contribution of the
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different samples, Efron (2016) arrives to the minus log-likelihood

l(α) = −
n∑

i=1

log

⎛
⎝ N∑

j=1

N(yi | θj , 1) exp
(
QT

j,·α− c(α)
)⎞⎠ .

The estimator from Efron (2016) results from solving

minimize
α

l(α) + c0

(
p∑

h=1

α2
h

)1/2

, (10)

where c0 is either 1 or 2.
We note that the estimator (10) is possibly limited by the following features.

First, the choice of the matrix Q, which Efron (2016) recommends to be a spline
basis representation, might produce estimates that suffer from local-adaptivity
problems. Moreover, there is no theoretical support of choosing c0 ∈ {1, 2}—
although to be fair, this can be addressed by performing a somewhat more
exhaustive model-selection process. In our experiments section we will present
experimental comparisons between the estimator in (10) and our approach.

Finally, we emphasize that our approach is not, in any sense, related to the
ridge parameter deconvolution estimator from Hall et al. (2007). This estima-
tor does not penalize the log-likelihood. Rather is designed to avoid the need
to choose a kernel function in the original kernel estimator from Fan (1991),
which it accomplishes by “ridging” the integral in its definition with a positive
function.

3.4. Solution algorithms

We now discuss implementation details for solving (9) in the case s = q = 1. To
solve this problem, motivated by the work on trend filtering for regression by
Ramdas and Tibshirani (2014), we rewrite the problem as

minimize
θ∈RD

l(θ) + τ
2‖Δ(1)α‖1 subject to α = Δ(k)θ. (11)

Next we proceed to solve (11) via the alternating-direction method of multi-
pliers (ADMM), as in Ramdas and Tibshirani (2014). (See Boyd et al., 2011, for
an overview of ADMM.) By exploiting standard results we arrive at the scaled
augmented Lagrangian corresponding to the constrained problem (11):

Lρ(θ, α, u) = l(θ) +
τ

2
‖Δ(1)α‖1 + ρuT

(
α−Δ(k)θ

)
+

ρ

2
‖α+ u−Δ(k)θ‖22 .

This leads to the following ADMM updates at each iteration j:

θj+1 ← argmin
θ

(
l(θ) + ρ

2

∥∥αj + uj −Δ(k)θ
∥∥2
2

)
,

αj+1 ← argmin
α

(
1
2‖α−Δ(k)θj+1 + uj‖22 + τ

2ρ‖Δ(1)α‖1
)
,

uj+1 ← uj + αj+1 −Δ(k)θj+1.

(12)
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Note that in (12) the update for θ involves solving a sub-problem whose
solution is not analytically available. To deal with this, we use the well known
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which is very efficient
because the gradient of the θ sub-problem objective is available in closed form.
The update for α can be computed in linear time by appealing to the dynamic
programming algorithm from Johnson (2013).

In the case p = q = 2, both components of the objective function in (9) have
closed-form gradients; see the appendix. Thus we can solve the problem using
any algorithm that can use function and gradient calls. In our experiments, we
use BFGS.

3.5. Solution path and model selection

One of the major advantages of our approach is that it easily yields an entire
deconvolution path, comprising a family of estimates f̂(τ) over a grid of smooth-
ness parameters. Although in principle any deconvolution algorithm can yield
such a path by solving the problem for many smoothing parameters, our path
is generated in a highly efficient manner, using warm starts. We initially solve
(11) for a large value of τ , for which the resulting estimate is nearly constant.
We then use this solution to initialize the ADMM at a slightly smaller value of
τ , which dramatically reduces the computation time compared to an arbitrarily
chosen starting point. We proceed iteratively until solutions have been found
across a decreasing grid of τ values (which are typically spaced uniformly in
log τ).

The resulting deconvolution path can be used to inspect a range of plausible
estimates for f0, with varying degrees of smoothness. This allows the data ana-
lyst to bring to bear any further prior information (such as the expected number
of modes in f0) that was not formally incorporated into the loss function. It also
enables sensitivity analysis with respect to different plausible assumptions about
the smoothness of the mixing distribution. We illustrate this approach with a
real-data example in Section 4.1.

However, in certain cases—for example, in our simulation studies—it is ne-
cessary to select a particular value of τ using a default rule. We now briefly
describe heuristics for doing so based on �1 and �2 penalties with k = 1. These
heuristics are used in our simulation studies. For the case of �1 regularization,
motivated by Tibshirani and Taylor (2012), we consider a surrogate AIC ap-
proach by computing

AICτ = l(θ̂τ ) + k + 1 +
∣∣∣{i : (Δ(k+1)θ̂τ )i 
= 0

}∣∣∣ ,
and choosing the value of τ that minimizes this expression. Here, θ̂τ denotes the
solution with �1 penalty and regularization parameter τ .

In the case of �2 regularization the situation is more difficult, since there is
not an intuitive notion of the number of parameters of the model. Instead, we
consider an ad-hoc procedure based on cross validation. This solves the problem
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Fig 1: Example of deconvolution with an �2 penalty on the discrete first deriva-
tive (k = 1). The left panel shows the data histogram together with the fitted
marginal density as a solid curve. The right panel shows the histogram of the
μi’s together with the estimated mixing measure as a solid curve.

for a grid of regularization parameters and chooses the parameter that minimizes
l(θ̂held out

τ ) + ‖Δ(k+1)θ̂held out
τ ‖1, where θ̂held out

τ is defined as

θ̂held out
τ = θ̂τ − log(nΔ) + log(nheld outΔ)

with θ̂τ the solution obtained by fitting the model on the training set which
consists of 75% of the data. Here, l(θ̂held out

τ ) is evaluated using the counts
from the held out set which has 25% of the data, and nheld out is the num-
ber of observations in such set. Our motivation for using the additional term
‖Δ(k+1)θ̂held out

τ ‖1 is that �0 works well when the problem is formulated with �1
regularization. However, when (9) is formulated using �2, the penalty �0 is not
suitable so instead we use �1. Our simulations in the experiments section will
show that this rule works well in practice.

3.6. A toy example

We conclude this section by illustrating the accuracy of our regularized de-
convolution approach on a toy example. In this example we draw 105 samples
{yi} with the corresponding {μi} drawn from a mixture of three normal dis-
tributions. Figure 1 shows the samples of both the observations yi (left panel)
and the means μi (right panel), together with the reconstructions provided by
our method. Here, we solve the �2 version of problem (9) by using the BFGS
algorithm and choosing τ with the heuristic just described.

It is clear that regularizing with an �2 penalty provides an excellent fit of the
marginal density. Surprisingly, it can also capture all three modes of the true
mixing density, a feature which is completely obscured in the marginal). Our
experiments in Section 6 will show in a more comprehensive way that our method
far outperforms other approaches in its ability to provide accurate estimates for
multi-modal mixing distributions.
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Fig 2: The first three panels show 95% confidence bands and posterior mean
from 15000 posterior samples from a mixture of 10 normals prior on the latent
variables μ. Panels 4-7 then shows the estimated mixing density using the kernel
estimator with different bandwidth choices.

4. Sensitivity

4.1. Sensitivity analysis across the path

In this section, we provide an example of a sensitivity analysis using our decon-
volution path estimator. We examine data originally collected and analyzed by
Singh et al. (2002) on gene expression for 12,600 genes across two samples: 9
healthy patients and 25 patients with prostate tumors. The data come as a set
of 12,600 t-statistics computed from gene-by-gene tests for whether the mean
gene-expression score differs between the two groups. After turning these 12,600
t-statistics into z-scores via a CDF transform, we estimate a deconvolution path
assuming a Gaussian convolution kernel. We use an �2 penalty and a grid of τ
values evenly spaced on the logarithmic scale between 107 and 10−3.

Each row of Figure 3 shows five points along the deconvolution path; the
regularization parameter is largest in Row A and gets smaller in each successive
row. Within each row, the left column shows the estimated mixing distribution
f̂ for the given value of τ . The middle column shows the histogram of the data
together with the fitted marginal density m̂ = φ ∗ f̂ . The right column shows
the fitted marginal density on the log scale, with a regular grid to facilitate
comparison of the results across different values of τ .

The figure shows that, while the estimate of the mixing distribution changes
dramatically across the deconvolution path, the estimate of the marginal density
is much more stable. Even on the log scale (right column), the differences among
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Fig 3: Rows A–E show five points along the deconvolution path for the prostate
cancer gene-expression data. The regularization parameter is largest in Row A
and gets smaller in each succeeding row.
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the fitted marginal densities are not visually apparent in Panels B through E,
even as the regularization parameter varies across three orders of magnitude.

This vividly demonstrates the well-known fact that deconvolution, especially
of a Gaussian kernel, is a very ill-posed inverse problem. There is little infor-
mation in the data to distinguish a smooth mixing distribution from a highly
multimodal one, and the model-selection heuristics described earlier are imper-
fect. A decision to prefer Panel B to Panel E, for instance, is almost entirely
due to the effect of the prior. Yet for most common deconvolution methods, the
mapping between prior assumptions and the smoothness of the estimate is far
from intuitive. By providing a full deconvolution path, our method makes this
mapping visually explicit.

For reference, it is interesting to compare our deconvolution path to the
results of other methods. Figure 2 shows the result of using MCMC to fit a
10-component mixture of normals to the mixing distribution. The weights in
the Gaussian mixture were assigned three different symmetric Dirichlet priors,
with concentration parameter α ∈ {0.01, 1, 100}. Panels 1-3 in Figure 2 show
the posterior mean and posterior 95% credible envelopes for f0; these settings
span a wide range of expected degrees of smoothness for f0, and they yield a
correspondingly wide range of posterior estimates. Comparing Figures 3 and 2,
we see that the deconvolution path spans essentially the entire range of plausible
posterior estimates for f0 arising under any of the concentration parameters. In
contrast, Panels 4-7 in Figure 2 show that the kernel estimates are either overly
smooth or wiggly.

4.2. Sensitivity to the number of bins

We now proceed to asses the sensitivity of our approach to the choice of the num-
ber of bins. We focus on our �2 regularization deconvolution as the conclusions
for the �1 based method are similar.

To construct our example, we choose a mixing density (f0) from our experi-
ment section, and generate n = 20000 samples {μi}ni=1 and then yi ∼ N(μi, 1),
for i = 1, . . . , n. Using the data {yi}ni=1, we apply the �2 deconvolution method
with different choices of bin size and regularization parameter. The results in
Figure 4 show that, for a fixed choice of τ , the estimated mixing distribution
changes as we change d. This is not surprising, as the parameter d controls how
many terms are involved in the likelihood, and increasing d implies that a fixed
choice of τ becomes a weaker constraint. In practice, we have noticed excellent
empirical results by fixing the parameter d and then performing model selection
to choose τ , for instance as described in Section 3.5.

5. Theoretical properties

In this section we establish some important theoretical properties of our esti-
mators by thinking of them as approximations to problems involving sieves. We
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Fig 4: Each plot depicts the estimated mixing density using �2 regularization
deconvolution with the tuning parameter τ and the bin size d as specified.

start by showing consistency of the mixing density in L1 norm. We do not pro-
vide convergence rates since, unlike the kernel estimator from Fan (1991) and
the predictive recursion from Newton (2002), our method cannot be expressed
in analytical form. Moreover, while the method from Fan (1991) remarkably
attains minimax rates under squared error loss for point estimates of the true
mixing, in an earlier work Carroll and Hall (1988) suggested that convergence
rates for Gaussian deconvolution might be too pessimistic given the unbounded
support nature of the classes of functions considered. This is out of the scope of
our paper, but we do provide evidence in the later sections that our estimator
can outperform existing non-parametric methods.

Throughout we consider k ∈ N − {0} and q > 0 to be fixed. We also denote
by P the set of densities in R, thus P := {f :

∫
R
f(μ)dμ = 1; f ≥ 0}, where dμ

denotes Lebesgue measure. Moreover, given any non-negative function f we say
that b ∈ Tf if

max
(
‖f‖∞, ‖ (logf)(k+1) ‖∞, | (logf)(k) (0)|, . . . , | (logf) (0)|

)
≤ b,

and (logf)
(k+1)

is b-Lipschitz. Here, given an arbitrary function g, we use the
notation ‖ · ‖∞ to indicate the usual supremum norm on the support of g.
Moreover g is called Tm−Lipschitz if it satisfies |g(x) − g(y)| ≤ Tm |x − y|, for
all x and y.

In this section two metrics of interest will be repeatedly used. The first one is
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the usual �1 distance d(f, g) =
∫
R
|f−g|. The other metric of interest will be the

Hellinger distance whose square is given as H2 (f, g) :=
∫
R
|
√
f(μ)−√

g(μ)|2dμ.
We also use the notation DKL (f |g) =

∫
f(μ) log(f(μ)/g(μ))dμ. Finally, for

q ∈ N, we define the functional Jk,q, a generalization of the usual total variation,
as Jk,q (f) :=

∫
R
|f (k+1) (μ) |qdμ.

Next we state some assumptions for our first consistency result. Our appro-
ach is to consider the objective function in (3) restricted to a smaller domain
than that of its original formulation. This will then allows to prove that the new
problem is not ill defined and also its solutions enjoy asymptotic properties of
convergence towards the true mixing density. We refer to Geman and Hwang
(1982) for a general perspective on sieves.

Assumptions and definitions Let A be a set of functions that satisfies the
following.

Assumption 1. If f ∈ A then f ∈ P, f > 0, Jk,q (log f) < ∞, and there exists
a constant tf such that tf ∈ Tf .

Assumption 2. For all m ∈ N, the exists a set Sm ⊂ A and constants
Tm,Km > 0 such that for all f ∈ Sm it holds that tf = Tm and Jk,q (log f) ≤
Km. Moreover, for all m, the set Sm induces a tight set of of probability mea-
sures in (R,B(R)) satisfying Sm ⊂ Sm+1. In addition, ∪m Sm is dense in A
with respect to the metric d.

Assumption 3. Data model: we assume that y1, . . . , yn are independent draws
from the density φ ∗ f0, f0 ∈ A, with φ being an arbitrary density function
satisfying max (‖φ‖∞, ‖φ′‖∞) < ∞ and

∫
R
log (φ ∗ f0(μ))φ ∗ f0(μ)dμ < ∞.

Assumption 4. The set

Am =

{
γ ∈ Sm : DKL (φ ∗ f0||φ ∗ γ) = inf

β∈Sm

DKL (φ ∗ f0||φ ∗ β)
}
,

satisfies d(f0, γ) → 0 as m → ∞ for all γ ∈ Am, where the convergence is
uniform in Am.

Assumption 5. We assume that the y1, . . . , yn are binned into Dn different
intervals with frequency counts {xj}j=1,...,Dn such that n−1 ‖x‖∞ → 0 a.s., and
we denote by ξj an arbitrary point in interval j. Note that this trivially holds
for the case where Dn = n and xj = 1 for all j.

Assumption 6. There exists fm ∈ Am such that

Dn∑
j=1

xj

n
log (φ ∗ fm(ξj)) →

∫
R

log (φ ∗ fm(ξ))φ ∗ f0(ξ)dξ a.s. as n → ∞.

If the xj = 1 and ξj = yj for all j = 1, . . . , this condition can be disregarded.
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Assumptions 1–3 are natural for the original variational problem proposed
earlier. The Lipschitz condition, the bounds on the behavior of the functions at
zero, and the tightness of distributions are merely used to ensure that the sieves
will indeed be compact sets with respect to the metric d. An example of a set
A satisfying these assumptions will be provided below.

With regards to the remaining conditions, Assumption 4 tell us that the sieves
Sm are rich enough to approximate the true mixing density sufficiently well. In
particular, this condition holds if the true mixing density f0 belongs to Sm for
some Sm. On the other hand, the last two assumptions can be disregarded when
the counts in the bins are all one.

Assumption 5 imposes the constraint that n−1 ‖x‖∞ → 0 a.s., where x is the
vector of counts across bins. Note that E(xj) = n pj , where pj is the probability
under the marginal density, of yi falling in bin j. Hence by the Dominated
Convergence Theorem, Assumption 5 implies that pj goes, uniformly in j, to
zero as n goes to infinity.

Before stating our first result, we consider a generic example for which the
assumptions above hold. The example below basically states that the set A can
be taken as the set of probability distributions consisting of finite mixtures of
normals, with a fixed number of components. We could also consider the set
of mixtures of normals with any number of components but with locations and
scales on a compact set.

Example 1. Define the set A as

A :=

⎧⎪⎪⎨
⎪⎪⎩f : f(x) =

K∑
i=1

wf
i

1√
2π

(
σf
i

)2
exp

⎛
⎜⎝−

(
x− μf

i

)2

2
(
σf
i

)2

⎞
⎟⎠ , σf

i > 0, wf ∈ ΠK

⎫⎪⎪⎬
⎪⎪⎭ ,

where ΠK is the K−th standard simplex for some K ∈ N. Moreover, we con-
struct the sieves Sm as

Sm =:
{
f ∈ A : tf = Tm, Jk,q (log f) ≤ Km, σf

i ∈ Iσm, wf
i ≥ 0, μf

i ∈ Iμm

}
with Tm,Km ↑ ∞, and Iσm an increasing sequence of compact sets in (0,∞) for
which

(0,∞) := ∪m Iσm,

and the sets Iμm are also increasing with

(−∞,∞) := ∪m Iμm,

Then, for k ≥ 2, the sets A and Sm satisfy the Assumptions (1) and (2) from

above. If in
∫
R
| (log f)(k+1) |q we replace R by a bounded set, then the same holds

for k = 1.

We are now ready to state our first consistency result. Its proof generalizes
ideas from Theorem 1 in Geman and Hwang (1982).
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Theorem 1. If Assumptions (1-6) hold, then, the problem

minimize
f∈Sm

−
Dn∑
j=1

xj log (φ ∗ f) (ξj) ,

has solution set Mn
m 
= ∅. Moreover, for any sequence mn increasing slowly

enough it holds that
sup

β∈Mn
mn

d (β, f0) → 0 a.s. (13)

In Theorem 1, the sequence Tmn is arbitrary and can grow as fast as desired.
Moreover, the a.s statement is on the probability space (R∞,F , F0 × F0 × F0

. . .) with F0 the measure on (R,B(R)) induced by φ ∗ f0, and with F the com-
pletion of B (R)

∞
. Here B (R) refers to the class of Borel sets in R.

We also observe that Theorem 1 can be restated in terms of the Hellinger
distance. To see this, we recall the well known inequality between densities p
and q: H2(p, q) ≤ d(p, q). Therefore, we can replace d in Equation (13) by the

Hellinger distance (
√
H2).

Finally, we emphasize that Theorem 1 only ensures convergence but provides
no information regarding speed of convergence. We leave for future work the
characterization of the sequence mn.

6. Experiments

6.1. Mixing density estimation

In this section we show the potential gain given by our penalized approaches.
We start by considering the task of recovering the true mixing distribution.
We evaluate the performance of our methods described in Section 3 which we
call L1-deconvolution (L1-D) and L2-deconvolution (L2-D) depending on the
regularization penalty used in the estimation. As competitors we consider a
mixture of normals model (MN), the predictive recursion algorithm (PR) from
Newton (2002), and the Fourier transform kernel deconvolution method (FTKD)
from Fan (1991). Our comparisons are based on four examples which are shown
in Figure 5. These examples are intended to illustrated the performance under
different scenarios involving smooth and sharp densities. Next we describe the
simulation setting and as well as the implementation details of the competing
methods.

As a flexible Bayesian model we decided to use a prior for the mixing den-
sity based on a mixture of 10 normals (MN). Here, the weights of the mixture
components are drawn from a Dirichlet prior with concentration parameter 1.
This is done in order to have a uniform prior on the simplex. For the locations
of the mixture we consider non-informative priors given as N(0, 102) while for
the variances of the mixture components we place a inverse gamma prior with
shape parameter 0.01 and rate 0.01. The complete model can be then thought
as a weak limit approximation to the Dirichlet process, (Ishwaran and Zarepour,
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Fig 5: The first panel shows a histogram of observed data {yi}ni=1 for our
first example, and the L1-D marginal density estimate plotted on top of the
histogram. Here the data has been generated as yi ∼ N(μi, 1) where μi is a
draw from the mixing density. The second panel shows, for this same example,
the histogram of {μi}ni=1 (unobserved draws from the mixing density) and the
L1-D estimate of the mixing density plotted on top of it. Panels 3-6 show the res-
pective cases of Examples 2 and 3. The last two panels show the corresponding
plots for the L2-D solution and Example 4.

2002). Also, Gibss sampling is accomplished straightforwardly by introducing
a data augmentation with a variable zi indicating the component to which μi

belongs.

The next competing model is the predictive recursion algorithm from Newton
(2002) for which we choose the weights wi as in Martin and Tokdar (2012),
close to the limit of the upper bound of the convergence rate for PR given in
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Fig 6: For the mixing density illustrated in Example 1 of Figure 5 we show
the estimated mixing densities with different methods. From left to right the
first two panels correspond to the estimated mixing densities using L2-D and
PR algorithms along with the latent μi’s. The third and four panels show the
estimated density using MN and FTKD both with the latent μi’s. In all cases
the estimation was done with the same data where n = 105

Tokdar et al. (2009). Moreover we average the PR estimator over 10 different
permutations of the input data in order to obtain a smaller expected error
Tokdar et al. (2009).

On the other hand, for the Fourier transform kernel deconvolution method,
we consider different choices of bandwidth: the rule of thumb from Fan (1991),
the plug in bandwidth from Stefanski and Carroll (1990), and the 2-stage plug-
in bandwidth from Delaigle and Gijbels (2002). Our estimates are obtained
using the R package fDKDE available at http://www.ms.unimelb.edu.au/

~aurored/links.html, which addresses the main concerns associated with the
R package decon; see Delaigle (2014).

For the final competitor, the “g-modeling” approach from Efron (2016) (g-M),
we use the newly released R package deconvolveR.

For the cases of the true mixing density we consider four densities of the form

f0(μ) =

K∑
i=1

wi N(μ | θi, σ2
i ).

In all cases considered here, the observations arise as in (1) with a standard
normal sampling model. In our first example we evaluate performance for sam-
ples of a density that has four peaks or explicitly K = 4, w = (0.2, 0.3, 0.3, 0.2),
θ = (−3,−1.5, 1.5, 3) and with variances σ2 = (0.01, 0.01, 0.01, 0.01). For the
second example we consider a mixture of three normals two of which are smooth
while the other has a peak. The true parameters in this case are K = 3, w =
(1/3, 1/3, 1/3), θ = (0,−2, 3) and σ2 = (2, .1, .4). The next example is a mixture
of K = 3 normals, one of which has very high variance. The true parameters
chosen are w = (0.3, 0.4, 0.3), θ = (0, 0, 0) and σ2 = (0.1, 1, 9). Our final example

http://www.ms.unimelb.edu.au/~aurored/links.html
http://www.ms.unimelb.edu.au/~aurored/links.html
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Table 1

Comparisons between the true and estimated mixing densities for different methods given
samples from density Example 1. The acronyms here are given the text. The Mean squared
error (MSE) is multiplied by 102 and reported over an interval containing 95% the mass of
the mixing density. Moreover, the Earth Mover’s Distance is multiplied by 10. For each
performance measure the results reported are obtained averaging over 100 Monte Carlo

simulations.

MSE Earth Mover’s Distance

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

MN PR L2-D L1-D FTKD g-M

2000 9.47 9.12 9.39 9.69 8.89 9.27 3.71 3.52 3.78 3.79 4.35 4.76
10000 8.43 8.72 8.64 7.44 8.87 9.22 3.29 3.31 3.37 2.77 4.26 4.20
25000 8.34 8.46 7.27 5.54 8.88 9.32 3.12 3.18 2.84 2.11 4.24 4.05
50000 8.21 8.23 5.80 4.15 8.85 9.40 3.13 3.07 2.29 1.69 4.22 3.99
100000 8.34 8.05 4.79 3.38 8.69 9.50 3.12 2.98 1.85 1.36 3.91 3.95

is a mixture, with K = 3, giving raise to a very smooth density, the parameters
are w = (0.5, 0.4, .1), θ = (−1.5, 1.5, 4) and σ2 = (1, 2, 2). A visualization of
these examples is shown in Figure 5.

Given these densities, we consider scenarios with varying number of samples
n and for each fixed n we run 100 Monte Carlo simulations. Moreover, for our
methods we set D, the number of evenly space points in the grid, to 250. In all
cases we set the parameter k to be 1 for our deconvolution methods.

The results on Table 1 illustrate a clear advantage of our penalized likelihood
approaches over MN, PR and FTKD which seems even more significant for
larger samples size. The estimated mixing density by L1-D is shown in Figure 5
where we can clearly see that L1-D can capture the peaks of the unknown mixing
density. Moreover, Figure 6 shows that L2-D can also capture the structure of
the true density. In contrast, MN, PR and FTKD all fail to provide reliable
estimators.

For our example density 2, we observe from Table 2 that in general L2-D and
L1-D offer the best performance. In the case of example 3, we observe that the
L1-D again provides better results than the competitors in all the scenarios of
sample sizes considered. Even with only 10000, samples L1-D is closer to the
true density than all the other methods with more samples. Moreover, L2-D
performs much better than PR and FTKD. Also, L2-D seems to be a clear
competitor to MN. In the final example density 4, we observe that L2-D is the
best method in all the scenarios considered.

Overall, we have shown that for estimating the mixing density, L1-D and
L2-D can perform well under different settings, even when other methods ex-
hibit notable deficiencies. The advantage is amplified by the fact that both of
our methods are less computationally intensive than MN, with L2-D requiring
around 40 seconds to handle problems with D = 250, and L1-D under the same
problem conditions typically requires around 5 minutes for a full solution path
across 50 values of the tuning parameter.
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Table 2

Simulation results for Examples 2, 3 and 4. Comparisons between the true and estimated
mixing densities for different methods given samples from each example density. The
acronyms here are given the text. The Mean squared error (MSE) is multiplied by a

constant and reported over an interval containing 95% the mass of the mixing density.
Moreover, the Earth Mover’s Distance is multiplied by a constant. For each performance
measure the results reported are obtained averaging over 100 Monte Carlo simulations.

(a) Example 2 results, here each MSE entry is multiplied by 103. Moreover, each
Earth Mover’s Distance is multiplied by 102.

MSE Earth Mover’s Distance

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

MN PR L2-D L1-D FTKD g-M

2000 6.20 2.54 2.74 2.38 6.07 8.23 13.3 12.0 12.9 11.3 24.6 29.8
10000 3.45 1.75 1.60 1.68 5.98 5.82 8.98 8.14 7.92 7.22 22.8 19.4
25000 2.31 1.46 1.19 1.35 5.99 5.01 5.94 6.69 5.87 5.96 22.0 15.7
50000 1.24 1.28 0.89 1.18 5.89 4.68 5.05 6.19 5.01 5.04 21.6 13.3
100000 0.78 1.07 0.74 0.87 4.97 4.03 4.10 5.45 4.35 4.09 18.3 12.9

(b) Example 3. MSE is multiplied by 103 and each Earth Mover’s Distance is
multiplied by 102.

MSE Earth Mover’s Distance

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

MN PR L2-D L1-D FTKD g-M

2000 5.28 1.83 2.09 0.96 4.95 7.16 11.2 11.7 12.0 9.39 24.2 35.1
10000 3.06 1.38 1.46 0.61 4.86 1.45 6.98 7.69 7.21 5.38 22.1 44.3
25000 1.51 1.16 1.18 0.47 4.61 1.18 4.89 6.12 5.51 3.81 21.0 41.0
50000 0.95 1.06 1.00 0.42 3.77 1.13 4.04 5.69 4.77 3.23 17.3 43.2
100000 0.72 0.95 0.86 0.38 3.48 2.42 3.71 5.24 4.26 2.92 20.0 42.4

(c) Example 4, each MSE entry is multiplied by 104. Moreover, each Earth Mover’s
Distance is multiplied by 102.

MSE Earth Mover’s Distance

n
MN
95%

PR
95%

L2-D
95%

L1-D
95%

FTKD
95%

g-M
95%

MN PR L2-D L1-D FTKD g-M

2000 20.6 4.75 1.82 3.48 3.25 7.06 11.1 10.0 8.07 8.32 15.2 17.4
10000 7.64 1.89 0.65 1.93 2.87 4.20 6.35 6.22 4.34 5.27 14.2 10.2
25000 2.04 1.10 0.48 2.19 2.57 2.34 3.82 4.33 3.14 3.76 13.0 7.75
50000 1.03 0.69 0.36 1.20 2.02 1.95 2.61 3.42 2.12 2.87 10.9 6.37
100000 0.50 0.55 0.39 0.90 1.36 1.49 1.99 2.82 1.71 2.53 8.90 5.29

6.2. Normal means estimation

After evaluating our proposed methodology for the task of estimating the mi-
xing density, we now, for the case of standard normal kernel, focus on the esti-
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Table 3

Mean squared error, of the normal means estimates, times 100 , averaging over 100 Monte
Carlo simulations, for different methods given samples from example 1.

n L2-D L1-D PR MN Efron GMLEBIP SC BG NLP
2000 64.31 64.29 64.16 67.50 70.27 64.48 68.24 65.57 64.11
10000 63.89 63.68 63.86 63.18 70.00 63.80 65.56 64.06 63.27
25000 63.52 63.37 63.69 63.84 69.96 63.39 64.66 63.65 63.60
50000 63.27 63.21 63.55 65.20 69.85 63.23 64.15 63.44 63.26
100000 63.27 63.23 63.59 63.79 69.89 63.21 63.86 63.39 63.18

mation of the normals means {μi}. For this, we consider comparisons using the
best four among the methods used before in addition to other procedures that
we briefly discuss next.

As it is well known (e.g Efron (2011) for description and references ), assuming
that the marginal density is known, one can use Tweedie’s formula to estimate
{μi}. For all the methods here this is the approach that we take, except for
MN in which case we use the posterior means resulting from Gibss sampling
inference. For the methods depending on grid estimator, the number of bins is
set to 250.

For the method of Efron (2011), we set to 5 the degree of the polynomial
approximation to the logarithm of the marginal true density (we found larger
values to be less numerically stable). The Poisson surrogate model is then fitted
in R using the command glm. We also compare against the general maximum
likelihood empirical-Bayes estimator (GMLEB) from Jiang and Zhang (2009),
which is a discretized version of the original Kiefer–Wolfowitz estimator. For
our comparisons we use the algorithm proposed in Koenker and Mizera (2014)
based on an interior point method algorithm (GMLEBIP). We use the R package
REBayes in order to obtain this estimator (Koenker, 2013). On the other hand,
for the shape constrained (SC) estimator from Koenker and Mizera (2014),
we rely on a binned count approach based on a weighted likelihood using R
code provided by the authors. Moreover, we consider the estimator from Brown
and Greenshtein (2009) using the default choice of bandwidth hn = (logn)−1/2,
which we refer to as BG. The final competitor is the non-linear projection (NLP)
estimator from Wager (2013).

From Table 3 it is clear that the best methods for example 1 are L1-D, L2-D,
GMLEBIP, and NLP. Moreover, it is not surprising that GMLEBIP provides
good estimates given that the true mixing density has mixture components that
have small variance.

For example 2, we can see from Table 4 that again L2-D and L1-D provide
competitive estimates. The other suitable methods for this example seem to
be PR and GMLEBIP. With slightly worse estimates MN, BG and SC provide
results that are still competitive, with SC being particularly attractive given its
computational speed to provide solutions.

Finally, for examples 3 and 4 we can see in Tables 5 and 6 respectively that
L1-D and L2-D are the best or among the best methods in terms of mean
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Table 4

Mean squared error, of the normal means estimates, times 100, averaging over 100 Monte
Carlo simulations, for different methods given samples from example 2.

n L2-D L1-D PR MN Efron GMLEBIP SC BG NLP
2000 65.42 65.46 65.36 64.33 69.97 66.20 69.60 66.99 65.75
10000 64.98 65.06 65.08 65.66 69.75 65.29 67.10 65.54 65.95
25000 65.19 65.08 65.32 65.21 69.94 65.12 66.42 65.49 65.09
50000 64.99 65.08 65.13 65.44 69.93 65.03 65.97 65.19 65.24
100000 65.02 64.95 65.14 65.03 69.84 65.02 65.69 65.14 64.96

Table 5

Mean squared error, of the normal means estimates, times 100, averaging over 100 Monte
Carlo simulations, for different methods given samples from example 3.

n L2-D L1-D PR MN Efron GMLEBIP SC BG NLP
2000 64.99 64.96 65.41 69.05 70.54 65.74 69.70 66.99 65.77
10000 64.73 64.76 64.96 64.21 71.34 64.85 66.92 65.36 64.81
25000 64.52 64.57 64.75 64.97 71.42 64.65 66.62 64.82 64.62
50000 64.51 64.61 64.73 65.38 71.52 64.64 66.60 64.67 64.57
100000 64.54 64.41 64.76 64.54 71.96 64.56 65.17 64.62 64.46

Table 6

Mean squared error, of the normal means estimates, times 100, averaging over 100 Monte
Carlo simulations, for different methods given samples from example 4.

n L2-D L1-D PR MN Efron GMLEBIP SC BG NLP
2000 79.63 80.20 79.89 78.68 80.00 80.97 85.47 81.58 80.01
10000 79.32 79.35 79.42 79.34 79.99 79.74 82.18 79.89 79.64
25000 79.39 79.31 79.48 78.79 79.96 79.30 80.98 79.65 79.39
50000 79.21 79.25 79.29 79.85 79.82 79.40 80.58 79.36 79.39
100000 79.29 79.22 79.37 79.51 79.91 79.30 80.15 79.37 79.36

squared distance when recovering the unknown means μi. Table 6 also suggests
that Efron’s estimator is more suitable when the true mixing density is very
smooth with no sharp peaks.

Code An R package has been placed in Github with the proposed methods.
To install the package simply call in R:

install_github(’RRDecon’,’omadrid1’)

The source code is available at https://github.com/omadrid1/RRDecon.

7. Discussion

In many problems in statistics and machine learning, we observe a blurred ver-
sion of an unknown mixture distribution which we would like to recover via de-
convolution. The main challenge is to find an approach that is computationally

https://github.com/omadrid1/RRDecon
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fast but still possesses nice statistical guarantees in the form of rates of conver-
gence. We propose a two-step “bin-and-smooth” procedure that achieves both
of these goals. This reduces the deconvolution problem to a Poisson-regularized
model which can be solved either via standard methods for smooth optimiza-
tion, or with a fast version of the alternating-direction method of multipliers
(ADMM). Our approach reduces the computational cost compared to a fully
Bayesian method and yields a full deconvolution path to illustrate the sensi-
tivity of our solution to the specification of the amount of regularization. We
provide theoretical guarantees for our procedure. In particular, under suitable
regularity conditions, we establish the almost-sure convergence of our estimator
towards the mixing density.

There are a number of directions for future inquiry, including multivariate
extensions and extensions to multiple hypothesis testing. These are active areas
of current research.

Appendix A: Technical supplement

A.1. Example 1

Consider the density
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Hence, there exists constants cij and polynomials satisfying

(logf)
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)
[

K∑
i=1

wi N (x | μi, σ2
i )

]2 .

Hence,

(logf)
′′′
(x)

= −

⎡
⎣−

K∑
i=1

wi(x−μi)

σ4
i

N(x|μi,σ
2
i )

⎤
⎦
⎡
⎣ K∑

i=1

wi N(x|μi,σ
2
i )

⎤
⎦

⎡
⎣ K∑

i=1

wi N(x|μi,σ2
i )

⎤
⎦2

−
−

⎡
⎣−

K∑
i=1

wi(x−μi)

σ2
i

N(x|μi,σ
2
i )

⎤
⎦
⎡
⎣ K∑

i=1

wi
σ2
i

N(x|μi,σ
2
i )

⎤
⎦

⎡
⎣ K∑

i=1

wi N(x|μi,σ2
i )

⎤
⎦2

+

[
K∑

i=1

wiN(x|μi,σ
2
i )

]2∑
i �=j

(
cijT

′
ij(x)+cijTij(x)

(
− x−μi

σ2
i

− x−μj

σ2
j

))
exp

(
− (x−μi)

2

2σ2
i

− (x−μj)
2

2σ2
j

)
⎡
⎣ K∑

i=1

wi√
2πσ2

i

exp

(
− (x−μi)

2

2σ2
i

)⎤
⎦4

+

2

⎡
⎣ K∑

i=1

wi N(x|μi,σ
2
i )

⎤
⎦
⎡
⎣ K∑

i=1

−wi(x−μi)

σ2
i

N(x|μi,σ
2
i )

⎤
⎦∑

i �=j

cijTij(x) exp

(
− (x−μi)

2

2σ2
i

− (x−μj)
2

2σ2
j

)
[

K∑
i=1

wi N(x|μi,σ2
i )

]4

=

∑
i �=j

rij(x) exp

(
− (x−μi)

2

σ2
i

− (x−μj)
2

2σ2
j

)
[

K∑
i=1

wi N(x|μi,σ2
i )

]2

+

∑
|{i1,i2,i3,i4}|≥2

Pi1,i2,i3,i4 (x) exp

⎛
⎝∑4

j=1 −
(x−μij )

2

2σ2
ij

⎞
⎠

[
K∑

i=1

wi N(x|μi,σ2
i )

]4

=

∑
|{i1,i2,i3,i4}|≥2

P̄i1,i2,i3,i4 (x) exp

⎛
⎝∑4

j=1 −
(x−μij )

2

2σ2
ij

⎞
⎠

[
K∑

i=1

wi N(x|μi,σ2
i )

]4

with rij , Pi1,i2,i3,i4 and P̄i1,i2,i3,i4 polynomials. Consequently,

(logf)
′′′′

(x) =

∑
|{i1,...,i8}|≥2 Si1,...,i8(x) exp

(
−
∑8

j=1

(x−μij )
2

2σ8
ij

)
[

K∑
i=1

wi N (x | μi, σ2
i )

]8 .

Now we show some properties of (logf)
(3)

and (logf)
(4)

.



A deconvolution path for mixtures 1741

First, assume that |{σ1, . . . , σK}| > 1 and choose i∗ = arg min
i

1
σ2
i
. Then

(logf)
′′′
(x) =

∑
|{i1,i2,i3,i4}|≥2

P̄i1,i2,i3,i4 (x) exp

(∑4
j=1 −

(x−μij )
2

2σ2
ij

+ 4 (x−μi∗ )
2

2σ2
i∗

)
(

K∑
i=1

wi√
2πσ2

i

exp
(
− (x−μi)

2

2σ2
i

+ (x−μi∗ )
2

2σ2
i∗

))4 .

Hence (logf)
′′′
(x) → 0 as x → ±∞. Also,

∫
R
| (logf)′′′ (x) |dx ≤

∑
|{i1,i2,i3,i4}|≥2

∫
R

|P̄i1,i2,i3,i4 (x)|[ √
2π σi∗
wi∗

]4

× exp

(∑4
j=1 −

(x−μij )
2

2σ2
ij

+ 4 (x−μi∗ )
2

2σ2
i∗

)
≤ ∞,

and we can also easily show that
∫
R
| (logf)′′′ (x) |qdx < ∞ for q > 2. The same

argument also holds if we replace (logf)
′′′

by (logf)
′′′′
.

If |{σ1, . . . , σK}| = 1 then we can assume without loss of generality that
|{μ1, . . . , μK}| > 1 (otherwise the proof is trivial). Then taking i∗ = arg max

i
μi

we have

(logf)
′′′
(x)

=

∑
|{i1,i2,i3,i4}|≥2

P̄i1,i2,i3,i4 (x) exp

(∑4
j=1

[
−x(μi∗−μij )

σ2 −
μ2
ij

2 +
μ2
i∗
2

])
(

K∑
i=1

wi√
2πσ2

exp

(
−x(μi∗−μi)

σ2 −
μ2
ij

2 +
μ2
i∗
2

))4 .

From this, we can see that
∫∞
0

| (logf)′′′ (x) |dx < ∞ and (logf)
′′′
(x) → 0 as x →

∞. Moreover, if we take i∗ = arg min
i

μi then we see that
∫ 0

−∞ | (logf)′′′ (x) |dx <

∞ and (logf)
′′′
(x) → 0 as x → −∞. The same result also holds for (logf)

′′′′
.

On the other hand, we can proceed by induction and show the same properties

for (logf)
(l)

for l > 4.
It remains to check that Sm is tight, and dense in A. The former follows

immediately by the Prokhorov’s theorem, and the latter is immediate by the
fact that A = ∪mSm.

A.2. Gradient expression for �2 regularization

Here we write the mathematical expressions for the gradient of the objective
function when performing L2 de-convolution, As in Section 3.3 of the main
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document. Using the notation there, we have that

[∇l(θ)]j =

D∑
i=1

Gije
θj

(
xi

λi(θ)
− 1

)
,

and

∇‖Δ(k+1)θ‖22 = 2
(
Δ(k+1)

)T

Δ(k+1)θ .

A.3. Proof of Theorem 1

Proof. Motivated by Geman and Hwang (1982), given α ∈ A we define the func-
tion F (ξ, α) = (φ ∗ α) (ξ) for ξ ∈ R. Clearly, F (ξ, α) is a density that induces a
measure in R that is absolutely continuous with respect to the Lebesgue mea-
sure in R. Also, we observe that if α, β ∈ A, then, for any Borel measurable set
E, we have by Tonelli’s theorem that∣∣∫

E
φ ∗ α(μ)dμ−

∫
E
φ ∗ β(μ)dμ

∣∣ =
∣∣∫

R

(∫
E
φ(μ− y)dμ

)
(α(y)− β(y)) dy

∣∣
≤ d(α, β).

Hence d(α, β) = 0 implies that φ ∗ α and φ ∗ β induce the same probability
measures in (R,B (R)).

Next we verify the assumptions in Theorem 1 from Geman and Hwang (1982).
This is done into different steps below. Steps 1-4 verify the assumptions B1-B4
in Theorem 1 from Geman and Hwang (1982). Steps 5-6 are needed in the
general case in which the data is binned. These are also related to ideas from
Wald (1949).

Step 1
Given α ∈ A and ε > 0, the function

ξ → sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ)

is continuous and therefore measurable on ξ. To see this, simply note that for
any β ∈ A we have that

‖ (φ ∗ β)′ ‖∞ = ‖ (φ′ ∗ β) ‖∞ ≤ ‖φ′‖∞
∫
R

β(μ)dμ = ‖φ′‖∞.

Hence all the functions β ∈ Sm are (‖φ′‖∞ + 1)-Lipschitz and the claim follows.
Also, we note that

lim
ε→0

sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ) = φ ∗ α(ξ).

This follows by noticing that∣∣∣∣∣ sup
β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ) − φ ∗ α(ξ)
∣∣∣∣∣ ≤ sup

β∈Sm:d(α,β)<ε

|(φ ∗ (β − α)) (ξ)|

≤ ‖φ‖∞ sup
β:d(α,β)<ε

d (α, β)

≤ ε ‖φ‖∞.
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Step 2
Define Eα (g) :=

∫
R
g(ξ) (φ ∗ α) (ξ)dξ for any function g. Then for any α ∈ A

and ε > 0 we have

Ef0

(
log

(
sup

β∈Sm:d(α,β)<ε

(φ ∗ β) (ξ)
))

≤ Ef0

(
log

(
sup

β:d(α,β)<ε

(φ ∗ β) (ξ)
))

≤
∫
R
log (‖φ‖∞) φ ∗ f0(ξ) dξ

< ∞.

Step 3
Next we show that Sm is compact on (A, d). Throughout, we use the notation

→u to indicate uniform convergence. To show the claim, choose {αl} a sequence

in Sm. Then since {(log(αl))
(k+1)} are Tm−Lipschitz and uniformly bounded

it follows by Arzela-Ascoli Theorem that there exists a sub-sequence {α1,l} ⊂
{αl} such that (log(α1,l))

(k+1) →u gk+1 in [−1, 1] for some function gk+1 :
[−1, 1] → R which is also Tm−Lipschitz. Note that we can again use Arzela-
Ascoli Theorem applied to the sequence {α1,l} to ensure that there exists a

sub-sequence {α2,l} ⊂ {α1,l} such that (log(α1,l))
(k+1) →u gk+1, in [−2, 2].

Thus we extend the domain of gk+1 if necessary.
Proceeding by induction we conclude that for every N ∈ N there exists a

sequence {αN,l}l∈N ⊂ {αN−1,l}l∈N such that

(log(αN,l))
(k+1) →u gk+1, as l → ∞,

in [−N,N ] as l → ∞. Hence with Cantor’s diagonal argument we conclude that
there exists a sub-sequence {αlj} ⊂ {αl} such that

(
log(αlj )

)(k+1) →u gk+1 as j → ∞,

in [−N,N ] for all N ∈ N. Since |
(
log(αlj )

)(k)
(0)| ≤ Tm for all j. Then without

loss of generality, we can assume that

(
log(αlj )

)(k) →u gk as j → ∞,

in [−N,N ] for all N ∈ N and where the function gk satisfies g′k = gk+1. Contin-
uing with this process we can assume, without loss of generality, that

log(αlj ) →u g as j → ∞,

in [−N,N ] for all N ∈ N for some function g satisfying g(j) = gj for all 0 ≤ j ≤
k + 1. Therefore,

αlj →u exp(g) as j → ∞, (14)

in [−N,N ] for all N ∈ N.
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Let us now prove that exp(g) ∈ Sm. First, we observe by the Fatou’s lemma
eg is integrable in R with respect to the Lebesgue measure. Since Sm is tight,
we obtain

d
(
exp(g), αlj

)
→ 0.

This clearly also implies that exp(g) integrates to 1 or exp(g) ∈ P . Note that
also by Fatou’s lemma we have that Jk,q(g) ≤ Km and by construction,

max
(
‖ exp(g)‖∞, ‖g(k+1)‖∞, |g(k)(0)|, . . . , |g(0)|

)
≤ Tm.

Finally, combining all of this with gk+1 being Tm-Lipschitz, we arrive to exp(g) ∈
Sm.

Step 4 By assumption (4), we have that

sup
α∈Am

d (f0, α) → 0, as m → ∞.

Step 5

Let us show that

lim
ε→0

Ef0

(
sup

d(α,β)<ε,β∈Sm

log (φ ∗ β)
)

= Ef0 (log (φ ∗ α))

for all α ∈ Sm. First, note that for all ξ

0 ≤ max

{
0, sup

d(α,β)<ε,β∈Sm

log (φ ∗ β) (ξ)
}

≤ max {0, log (‖φ‖∞)} .

Hence, by Step 1 we obtain

0 ≤ lim
ε→0

Ef0

(
max

{
0, sup

d(α,β)<ε,β∈Sm

log (φ ∗ β)
})

= Ef0 (max {log (φ ∗ α) , 0})

< ∞.

Now we observe that

0 ≤ −min

{
0, sup

d(α,β)<ε,β∈Sm

log (φ ∗ β) (ξ)
}

≤ −min {0, log (φ ∗ α(ξ))} ,

and the claim follows from the monotone convergence theorem.

If xj = 1 and ξj = yj for all j = 1, . . . , Dn, the claim of Theorem 1 follows
from Theorem 1 from Geman and Hwang (1982). Otherwise, we continue the
proof below. In either case we can see that the solution set Mn

m is not empty
given that the map α → φ ∗ α(ξ) is continuous with respect to the metric d for
any ξ.
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Step 6

Note that, by Glivenko-Cantelli Theorem and our assumption on the maxi-
mum number of bins, we have that, almost surely, the random distribution

Gn(ξ) =

Dn∑
j=1

xj

n
I(−∞,ξ])(ξj)

converges weakly to the distribution function associated with φ ∗ f0. Hence,
almost surely, from the Portmanteau theorem we have for any α ∈ Smn and any
δ > 0 it holds that

lim sup
l→∞

Dl∑
j=1

xj

l sup
d(α,β)<δ,β∈Sm

log (φ ∗ β) (ξj)

≤ Ef0

(
sup

d(α,β)<δ,β∈Sm

log (φ ∗ β) (ξ)
)
,

(15)

since the function

ξ → sup
d(α,β)<δ,β∈Sm

log (φ ∗ β) (ξ),

is continuous and bounded by above.

Next we define

m1 = min

{
m : sup

α∈Am

d (α, f0) <
1

2

}
.

Clearly, β1, β2 ∈ Am1 implies d(β1, β2) < 1. Also, we see that the set Π1 := {α ∈
Sm1 : d (α, f0) ≥ 1} ⊂ Sm1 −Am1 is d-compact. Hence, there exists α1

1, . . . , α
1
h1

in Π1 such that Π1 ⊂ ∪h1

l=1{α ∈ Π1 : d
(
α, α1

l

)
< δ1,l} for positive constants

{δ1,l} satisfying that

Ef0

(
sup

d(α,α1
l )<δ1,l,α∈Π1

log (φ ∗ α)
)

< Ef0 (log (φ ∗ fm1))

for l = 1, . . . , h1. Therefore from our assumptions on the sets Am and also from
(15), we arrive at

lim sup
r→∞

Dr∑
j=1

xj

r

(
sup

d(α,α1
l )<δ1,l,α∈Π1

log (φ ∗ α) (ξj)− log (φ ∗ fm1(ξj))

)

≤ Ef0

(
sup

d(α,αl)<δl,α∈Π1

log (φ ∗ α)
)

− Ef0 (log (φ ∗ fm1))

< 0, a.s.
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Hence

lim sup
r→∞

Dr∑
j=1

xj

(
sup

d(α,α1
l )<δ1,l,α∈Π1

log (φ ∗ α) (ξj)− log (φ ∗ fm1(ξj))

)
= −∞ a.s.

This implies

lim
r→∞

sup
α∈Π1

∏Dr

j=1 φ ∗ α(ξj)xj

∏Dr

j=1 φ ∗ fm1(ξj)
xj

= 0 a.s.

Next we define

k1 = min

⎧⎪⎨
⎪⎩k0 : r ≥ k0 implies

sup
α∈Π1

∏Dr

j=1 φ ∗ α(ξj)xj

∏Dr

j=1 φ ∗ fm1(ξj)
xj

< 1

⎫⎪⎬
⎪⎭

and we set mk1 = m1. Therefore,

sup
α∈M

k1
mk1

d (α, f0) < 1.

Next we define m2 as

m2 = min

{
m ≥ m1 : sup

α∈Am

d (α, f0) <
1

4

}
+ 1

Then, β1, β2 ∈ Am2 implies d(β1, β2) < 1/2. We also see that Π2 := {α ∈ Sm2 :
d (α, f0) ≥ 1/2} ⊂ Sm2−Am2 is d-compact. Hence there exists α2

1, . . . , α
2
h2

in Π2

such that Π2 ⊂ ∪h2

l=1{α : d
(
α, α2

l

)
< δ2,l} for positive constants {δ2,l} satisfying

Ef0

(
sup

d(α,α2
l )<δ2,l,α∈Π2

log (φ ∗ α)
)

< Ef0 (log (φ ∗ fm2))

for l = 1, . . . , h2. Therefore,

lim sup
r→∞

Dr∑
j=1

xj

r

(
sup

d(α,α2
l )<δ2,l,α∈Π2

log (φ ∗ α) (ξj)− log (φ ∗ fm2(ξj))

)

≤ Ef0

(
sup

d(α,α2
l )<δ2,l,α∈Π2

log (φ ∗ α)
)

− Ef0 (log (φ ∗ fm2))

< 0 a.s.

So proceeding as before we obtain

lim
r→∞

sup
α∈Π2

∏Dr

j=1 φ ∗ α(ξj)xj

∏Dr

j=1 φ ∗ fm2(ξj)
xj

= 0 a.s.
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Finally we define

k2 = min

⎧⎪⎨
⎪⎩k0 : k0 ≥ k1 and r ≥ k0 implies

sup
α∈Π2

∏Dr

j=1 φ ∗ α(ξj)xj

∏Dr

j=1 φ ∗ fm2(ξj)
xj

< 1

⎫⎪⎬
⎪⎭ ,

and we set mk = m1 for all k1 ≤ k < k2 and mk2 = m2. By construction, we
have that

sup
α∈M

k2
mk2

d (α, f0) < 1/2.

Thus an induction argument allow us to conclude the proof.

Appendix B: Simulation details

For the cases of the true mixing density we consider four densities of the form

f0(μ) =
K∑
i=1

wi N(μ | θi, σ2
i ).

In all cases considered here, the observations arise as in (1) with a standard
normal sampling model. In our first example we evaluate performance for sam-
ples of a density that has four peaks or explicitly K = 4, w = (0.2, 0.3, 0.3, 0.2),
θ = (−3,−1.5, 1.5, 3) and with small variance σ2 = (0.01, 0.01, 0.01, 0.01). For
the second example we consider a mixture of three normals two of which are
smooth while the other has a peak. The true parameters in this case are K = 3,
w = (1/3, 1/3, 1/3), θ = (0,−2, 3) and σ2 = (2, .1, .4). The next example is
a mixture of K = 3 normals, one of which has very high variance. The true
parameters chosen are w = (0.3, 0.4, 0.3), θ = (0, 0, 0) and σ2 = (0.1, 1, 9). Our
final example is a mixture, with K = 3, giving raise to a very smooth density,
the parameters are w = (0.5, 0.4, .1), θ = (−1.5, 1.5, 4) and σ2 = (1, 2, 2). A
visualization of these examples is shown in Figure 5.

B.1. Sensitivity to the number of bins

Figure 7 shows the performance of both L1-D and L2-D generally improves as
we increase D. However, based on our experience, D = 250 is a reasonable
choice. Specially for L1-D whose computational burden increases more rapidly.
For D = 250 it typically takes around 5 min to compute the solution path for
L1-D with 50 values of the regularization parameter. In contrast, L2-D only
requires around 40 seconds under the same setting.
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Fig 7: Sensitivity of our methods to the parameter D. We consider n = 106

samples from Example 1 in the paper. The first panel correponds to L2-D while
the second on to L1-D. The results show the average MSE on a 95% mass interval
of the true mixing density. The average is taken over 20 MC simulations.
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