
Electronic Journal of Statistics
Vol. 12 (2018) 824–850
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1409

Efficient estimation in the partially

linear quantile regression model for

longitudinal data

Seonjin Kim

Department of Statistics
Miami University, Oxford, OH 45056

e-mail: kims20@miamioh.edu

and

Hyunkeun Ryan Cho

Department of Biostatistics
University of Iowa, Iowa City, IA 52242

e-mail: hyunkeun-cho@uiowa.edu

Abstract: The focus of this study is efficient estimation in a quantile re-
gression model with partially linear coefficients for longitudinal data, where
repeated measurements within each subject are likely to be correlated.
We propose a weighted quantile regression approach for time-invariant and
time-varying coefficient estimation. The proposed approach can employ two
types of weights obtained from an empirical likelihood method to account
for the within-subject correlation: the global weight using all observations
and the local weight using observations in the neighborhood of the time
point of interest. We investigate the influence of choice of weights on asymp-
totic estimation efficiency and find theoretical results that are counter in-
tuitive; it is essential to use the global weight for both time-invariant and
time-varying coefficient estimation. This benefits from the within-subject
correlation and prevents an adverse effect due to the weight discordance.
For statistical inference, a random perturbation approach is utilized and
evaluated through simulation studies. The proposed approach is also illus-
trated through a Multi-Center AIDS Cohort study.
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1. Introduction

Efficient estimation has been attracting significant attention in parametric quan-
tile regression (QR) models for longitudinal data; see [9, 6, 19, 5, 11, 20, 14, 3].
However, this has not been investigated in semiparametric or nonparametric
QR models. In response to this gap in literature, this paper thoroughly inves-
tigates estimation efficiency in the partially linear quantile regression model;
for τ ∈ (0, 1), the τth conditional quantile of the jth response from subject i
measured at time tij , denoted by Yi(tij), is formulated as

Qτ{Yi(tij)|Xi(tij), Zi(tij)} = Zi(tij)
Tβτ (tij) +Xi(tij)

Tατ (1.1)

for i = 1, . . . , n and j = 1, . . . ,mi, where m1, . . . ,mn are the number of mea-
surements taken from n subjects and Zi(tij) = {Zi1(tij), . . . , Ziq(tij)}T and
Xi(tij) = {Xi1(tij), . . . , Xip(tij)}T are a q-dimensional and p-dimensional co-
variate vector, respectively. We remark that model (1.1) allows us to explore
efficient estimation in various quantile regression frameworks, such as the para-
metric QR model including only Xi(tij)

Tατ and the time-varying coefficient QR
model including only Zi(tij)

Tβτ (tij). To fit the partially linear QR model for
longitudinal data, [21] considers B-spline basis functions, yet it does not achieve
estimation efficiency due to ignoring the within-subject correlation commonly
existing in longitudinal studies.

This paper extends the empirical likelihood based weighted QR approach
[19] to the partial linear QR framework. We develop a weighted marginal QR
and a weighted local linear QR for estimation of time-varying parameters βτ (t)
and time-invariant parameters ατ , respectively. Two types of weights are con-
sidered from the empirical likelihood: the global weight using correlations of all
observations and the local weight using correlations of observations in the neigh-
borhood of the time point of interest. For comparison purposes, we also consider
the equal weight where the within-subject correlation is completely ignored in
estimation. We have investigated the impact of the choice of weights and have
obtained very interesting results that oppose to one’s intuition in accommodat-
ing the local weight and global weight for efficient estimation of βτ (t) and ατ ,
respectively. According to our theoretical results, the estimator of ατ obtained
based on the aforementioned intuition is not always more efficient than that
obtained by completely ignoring the within-subject correlation.

The key finding in our asymptotic analyses is as follows. Asymptotic estima-
tion efficiency of ατ can be gained when the global weight is used in the weighted



826 S. Kim and H. R. Cho

marginal QR for estimation of ατ . On the other hand, estimation efficiency of
βτ (t) is not asymptotically affected by the choice of the weights in the sense
that the limiting variances of the estimator of βτ (t) are identical with the three
weights considered. One may conclude from the foregoing result that the choice
of weights in estimation of βτ (t) is not crucial. However, it has a significant effect
on the asymptotic estimation efficiency of ατ , since a loss of estimation efficiency
of ατ has been found from the discordance between the weights used for esti-
mation of βτ (t) and ατ . In summary, the global weight should be used in both
estimation of βτ (t) and ατ to achieve estimation efficiency of ατ ; the amount of
estimation efficiency for ατ gained from the proposed approach corresponds to
that obtained in [19] under the parametric QR model.

For statistical inference on βτ (t) and ατ , we implement the random perturba-
tion approach [8]. This does not require estimation of the complicated limiting
variance of the estimators. Through extensive simulation studies, the proposed
inference approach accomplishes good empirical coverage probabilities very close
to the nominal level in all cases under consideration. In addition, the simulation
results confirm that estimation efficiency of ατ can be achieved when the global
weight is used for both estimation of βτ (t) and ατ .

This article is organized as follows. In Section 2, we introduce how to obtain
empirical likelihood weights and propose the weighted QR approach in the par-
tially linear QR model. In Section 3, we investigate asymptotic properties of the
estimators of βτ (t) and ατ under various combinations of weights and propose
the best strategy that leads to estimation efficiency of ατ asymptotically. Sec-
tion 4 presents a two-step procedure to implement the proposed approach and
a cross-validation approach to choose the optimal bandwidth. In Section 5, we
assess the finite sample performance of the proposed approach through simula-
tion studies and apply this to the analysis of real-life data. Regularity conditions
and proofs of theoretical results are provided in the Appendix.

2. Estimation procedures with auxiliary information

For the ease of presentation, we denote Yij = Yi(tij), Zij = Zi(tij), and Xij =
Xi(tij) in (1.1) and write Uij = (tij , Zij , Xij). If repeated measures within a
subject are assumed independent, estimators of βτ (t) and ατ in (1.1) can be
obtained as

{β̃τ (t), β̃
∗
τ (t)} = argmin

β,β∗

n∑
i=1

mi∑
j=1

ρτ [Ỹ
∗
ij−ZT

ij{β+β∗(tij−t)}]K{(tij−t)/h}, (2.1)

and

α̃τ = argmin
α

n∑
i=1

mi∑
j=1

ρτ
(
Ỹ #
ij −XT

ijα
)
, (2.2)

where ρτ (u) = u{τ − 1(u < 0)} is called the check function with an indicator

function 1(·), Ỹ ∗
ij = Yij −XT

ijα̃τ and Ỹ #
ij = Yij − ZT

ij β̃τ (tij) are partial quantile
residuals, and K(·) is a kernel function with a bandwidth h. However, this
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procedure ignores the within-subject correlation and therefore can cause a loss
of estimation efficiency.

In order to account for the within-subject correlation, [19] proposed a weight-
ed QR with subject-specific weights obtained from the empirical likelihood
in the parametric mean regression model. Since these weights contain auxil-
iary information with regards to the within-subject correlation, estimation effi-
ciency of regression quantiles is improved. Here, we adopt auxiliary information
from the partial linear mean regression model. This is the counterpart of (1.1),
Yij = ZT

ijδ(tij) +XT
ijγ+ εij , where γ is a p-dimensional vector of time-invariant

parameters, δ(·) is a q-dimensional vector of time-varying functions, and the er-
ror εij satisfies the conditional variance σ

2(Uij) = E(ε2ij |Uij) and the conditional
mean E(εij |Uij) = 0.

For efficient estimation of γ and δ(tij), [13] developed kernel estimating
equations and profile estimating equations involving a working correlation ma-
trix of the repeated measures, denoted by Ri. Following the matrix expan-
sion idea of quadratic inference functions [17], i.e., R−1

i =
∑s

�=1 b�Bi� where
Bi1, . . . , Bis are known basis matrices and b1, . . . , bs are unknown coefficients,
we extend the ith component in kernel estimating equations as gi{δ(t|γ)} =
(gi1{δ(t|γ)}, . . . , gis{δ(t|γ)})T =⎛

⎜⎜⎝
ZiKi(t)

1/2V
−1/2
i Bi1V

−1/2
i Ki(t)

1/2{Y ′
i − ZT

i δ(t|γ)}
...

ZiKi(t)
1/2V

−1/2
i BisV

−1/2
i Ki(t)

1/2{Y ′
i − ZT

i δ(t|γ)}

⎞
⎟⎟⎠ (2.3)

and the ith one in profile estimating equations as

hi(γ) =

⎛
⎜⎜⎝

(Xi + ZT
i

∂δi
∂γ )V

−1/2
i Bi1V

−1/2
i (Y ′′

i −XT
i γ)

...

(Xi + ZT
i

∂δi
∂γ )V

−1/2
i BisV

−1/2
i (Y ′′

i −XT
i γ)

⎞
⎟⎟⎠ =

⎛
⎜⎝

hi1(γ)
...

his(γ)

⎞
⎟⎠ , (2.4)

where Y ′
i = Yi − XT

i γ, Y
′′
i = Yi − ZT

i δi, Yi = (Yi1, . . . , Yimi)
T , Zi = (Zi1,

. . . , Zimi), Xi = (Xi1, . . . , Ximi), δi = {δ(ti1|γ), . . . , δ(timi |γ)}T , Ki(t) =
diag[K{(ti1 − t)/h1}, . . . ,K{(timi − t)/h1}], and Vi = diag{σ2(Ui1), . . . ,
σ2(Uimi)}. In what follows, we omit conditioning γ in δ(t|γ), denoted by δ(t),
if no confusion arises. See Remark 2.1 below for discussion about the choice of
basis matrices.

To secure auxiliary information with regards to the within-subject correla-
tion, two types of subject-specific weights can be provided as L{δ(t)} =

max

{
n∏

i=1

wi{δ(t)}
∣∣∣∣

n∑
i=1

wi{δ(t)}gi{δ(t)} = 0,

n∑
i=1

wi{δ(t)} = 1, 0 ≤ wi{δ(t)}
}
,

(2.5)

and

L(γ) = max

{
n∏

i=1

wi(γ)

∣∣∣∣
n∑

i=1

wi(γ)hi(γ) = 0,
n∑

i=1

wi(γ) = 1, 0 ≤ wi(γ)

}
. (2.6)
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Since L{δ(t)} and L(γ) consider observations in the neighborhood of the time
point of interest and all observations, respectively, their corresponding weights,
wi{δ(t)} and wi(γ), are called the local weight and global weight. Following [16],

the optimal local weight is given wi{δ̂(t)} = n−1[1 + gi{δ̂(t)}Tλδ̂(t)]
−1, where

δ̂(t) = argmaxδ(t) L{δ(t)} and λδ̂(t) satisfies n−1
∑n

i=1 gi{δ̂(t)}[1 + gi{δ̂(t)}T ×
λδ̂(t)]

−1 = 0. Similarly, the optimal global weight is wi(γ̂) = n−1{1+hi(γ̂)
Tλγ̂}−1

with γ̂ = argmaxγ L(γ) and λγ̂ holding n−1
∑n

i=1 hi(γ̂){1 + hi(γ̂)
Tλγ̂}−1 = 0.

To incorporate the auxiliary information for estimation of regression quantiles
in the partial linear QR model (1.1), we propose weighted quantile regressions
for estimation of βτ (t) and ατ . With a given ατ , the weighted local linear QR

is formulated to estimate βτ (t) as
{
β̂τ (t|ατ ), β̂

∗
τ (t|ατ )

}
=

argmin
β,β∗

n∑
i=1

wn
i

mi∑
j=1

ρτ [Y
∗
ij − ZT

ij{β + β∗(tij − t)}]K
(
tij − t

h

)
, (2.7)

where Y ∗
ij = Yij − XT

ijατ and wn
i are weights used for time-varying coefficient

estimation. Here, the superscript n in wn
i stands for nonparametric estimation.

Given β̂τ (t|ατ ) from (2.7), an estimator of ατ is obtained by minimizing the
weighted marginal QR as

α̂τ = argmin
α

n∑
i=1

wp
i

mi∑
j=1

ρτ

(
Y #
ij −XT

ijα
)
, (2.8)

where Y #
ij = Yij − ZT

ij β̂τ (tij), w
p
i are weights used for time-invariant coefficient

estimation, and the superscript p in wp
i stands for parametric estimation.

The performance of our estimation method relies on the choice of two weights,
wn

i and wp
i , that plays an important role to achieve estimation efficiency. With

the local weight wi{δ̂(t)} and global weight wi(γ̂), four combinations for
(
wn

i , w
p
i

)
can be considered as

(
wi(γ̂), wi(γ̂)

)
,
(
wi{δ̂(t)}, wi{δ̂(t)}

)
,
(
wi(γ̂), wi{δ̂(t)}

)
, and(

wi{δ̂(t)}, wi(γ̂)
)
. Intuitively, the last one would be a natural choice because

they are obtained from the empirical likelihood for their counterpart in the mean
regression model. We note that wn

i = wp
i = 1/n is the case, where the within-

subject correlation is completely ignored, corresponding to (2.1) and (2.2).

Remark 2.1. Basis matrices Bi1, . . . , Bis are determined by the type of working
correlation structure. For example, if Ri is assumed a first-order autoregressive
model denoted by AR(1), then R−1

i is decomposed as R−1
i = b1Bi1 + b2Bi2 +

b3Bi3, where Bi1 is the identity matrix, Bi2 is a symmetric matrix with 1 on the
sub-diagonal entries and 0 elsewhere, and Bi3 is a symmetric matrix with 1 in
elements (1, 1) and (mi,mi) and 0 elsewhere. If Ri corresponds to a compound
symmetry structure, two basis matrices Bi1 and Bi2 are required, where Bi1 is
an identity matrix and Bi2 is a symmetric matrix with 0 on the diagonal and 1
elsewhere. See [17] for more details.
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3. Theoretical studies

In this section, we investigate the impact of auxiliary information on asymptotic
properties of β̂τ (t|α̂τ ) and α̂τ based on three weights: global weight wi(γ̂), local

weight wi{δ̂(t)}, and equal weight across subjects we
i = 1/n.

3.1. Asymptotic properties of β̂τ (t|ατ )

We assume that Ui(t) = {t, Zi(t), Xi(t)} are independent realizations of the pro-
cess U(t) = {t, Z(t), X(t)} and tij are independent and identically distributed
with a probability density function pT (·). Let ξij(τ) = Yij − Qτ (Yij |Xij , Zij)
and denote fξτ (·|Uij) and Fξτ (·|Uij) by the conditional density and distribu-
tion functions of ξij(τ) given Uij , respectively. For simplicity of theoretical
derivation, we let mi = m for all subjects, yet the theorems derived in this
paper can be proved with different mi < ∞ in a straightforward manner. Ac-
cordingly, we let N = nm, simplify R−1

i as R−1
i = R−1 =

∑s
�=1 b�B�, where

B� = B1� = · · · = Bn�, and denote the (i, j)th component of the �th basis
matrix B� by b�ij . We define Ω(t) = {ΓT (t)Σ−1(t)Γ(t)}−1, Σ(t) = B1 ⊗ Σσ(t),

Γ(t) = B2 ⊗Σσ(t), where B1 is a q by q symmetric matrix with
∑m

j=1 b
�
jjb

�′

jj in

the element (�, �′),B2 is a q-dimensional vector with
∑m

j=1 b
�
jj in the �th element,

Σσ(t) = E[Z(t)Z(t)T /σ2{U(t)}], and ⊗ is the Kronecker product. We further
define M = Σ(t)−1{I − Γ(t)Ω(t)ΓT (t)Σ−1(t)} with the identity matrix I, and
L = Ψ−1(γ0){I−Υ(γ0)Ξ(γ0)Υ

T (γ0)Ψ
−1(γ0)} with Ψ(γ0) = E{h(γ0)h(γ0)T },

Υ(γ0) = E{∂h(γ0)/∂γ}, and Ξ(γ0) = {ΥT (γ0)Ψ
−1(γ0)Υ(γ0)}−1, where γ0 is

the true value of γ.

Theorem 1. Let ΣfZ(t) = E[Z(t)Z(t)T fξτ {0|U(t)}], μK =
∫
R
u2K(u)du, and

ϕK =
∫
R
K2(u)du. If α̂τ is

√
n consistent, under conditions (A1)–(A5) and

(B1)–(B3) in the Appendix, for τ ∈ (0, 1) and any interior point t in the support
of pT (·), we have

√
Nh
{
β̂τ (t|α̂τ )− βτ (t)−

β
′′

τ (t)μk

2
h2
}

d→ N

(
0,

ϕk

pT (t)
Σ−1

fZ(t)S(t)Σ
−1
fZ(t)

)
. (3.1)

1. If the equal weight we
i is used in (2.7) for estimation of βτ (t), i.e., w

n
i =

we
i , we have

S(t) = τ(1− τ)ΣZ(t), (3.2)

where ΣZ(t) = E{Z(t)Z(t)T }.
2. If the local weight wi{δ̂(t)} is used in (2.7) for estimation of βτ (t), i.e.,

wn
i = wi{δ̂(t)}, we have

S(t) =
{
τ(1− τ)ΣZ(t)−Λτ (t)

TMΛτ (t)
}
= τ(1− τ)ΣZ(t), (3.3)
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since Λτ (t)
TMΛτ (t) = 0 always holds, regardless of the working cor-

relation structure, where Λτ (t) = B2 ⊗ Λτ (t) and Λτ (t) = E[E{(τ −
1ξ<0)ε|U(t)}Z(t)Z(t)T /σ2{U(t)}].

3. If the global weight wi(γ̂) is used in (2.7) for estimation of βτ (t), i.e.,
wn

i = wi(γ̂), we have

S(t) = τ(1− τ)ΣZ(t)−
mhpT (t)

ϕk
G(t)TLG(t) → τ(1− τ)ΣZ(t), (3.4)

where G(t)T = {G1(t)
T , . . . , Gs(t)

T }T with GT
� (t) = E[Z(t)E{(τ − 1ξ<0)

hi�(γ0)
T |U(t)}].

Theorem 1 states that the asymptotic theory of β̂τ (t|α̂τ ) does not depend on
α̂τ , if α̂τ is

√
n consistent. Thus, in what follows we omit conditioning ατ in

β̂τ (t|ατ ). More importantly, the variances of β̂τ (t) under three different weights
are asymptotically equal. The results also suggest that the auxiliary informa-
tion through the empirical likelihood does not improve asymptotic estimation
efficiency in the time-varying coefficient QR model, which is a simple case of
model (1.1). The phenomenon that the additional term Λτ (t)

TMΛτ (t) in (3.3)
is zero can be explained as follows: as bandwidth h → 0, at most one mea-
surement per subject is ultimately used in the estimation of βτ (t) and hence,
the working correlation structure does not make an impact on the asymptotic
result. The use of the global weight also fails to yield an asymptotically more
efficient estimator of βτ (t) than the one assuming the independent correlation
structure. This is because the convergence rate of the additional term generated
by the global weight in (3.4) is faster than that of the variance of β̂τ (t).

3.2. Asymptotic properties of α̂τ

According to the asymptotic result as in Theorem 1, the choice of weights among
the three considered weights seems to be trivial for estimation of βτ (t). However,
in the semiparametric regression, the asymptotic results of the time-invariant
coefficient estimator is often influenced by those of the time-varying coefficient
estimator. For example, the invariant coefficient estimator is often biased in
the semiparametric regression unless undersmoothing is used [13, 1]. Therefore,
the choice of weights for estimation of βτ (t) may play an important role in the
asymptotic properties of α̂τ . As shown in [19], the natural choice of weights wp

i

in (2.8) for estimation of ατ is the global weight wi(γ̂). Thus, we first investigate
asymptotic properties of α̂τ with wp

i = wi(γ̂) and discuss the impact of using
other weights for estimation of ατ later.

To appreciate how the choice of weights wn
i in (2.7) for estimation of βτ (t)

influences estimation efficiency of ατ , its estimator is denoted by α̂τ (w
n
i ) in

this section. We define U = E(XiCiXT
i ), where Ci = (Ci,jk)pj,k=1 is the con-

ditional correlation matrix for Ci,jk = E(τ − 1ξij<0, τ − 1ξik<0|Xi), Hij =

D(tij)Σ
−1
fZ(tij)Zij ,D(t) = E[fξτ {0|U(t)}X(t)Z(t)T ], ΣfX =

∑m
j=1 E{fξτ (0|Uij)

XijX
T
ij}, A = (A1, . . . ,As), A� =

∑m
j=1 E[(Xij − Hij)Cov{τ − 1ξij<0,
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hi�(γ0)|Uij}], B = (B1, . . . ,Bs), and B� =
∑m

j=1 E
[
HijCov{τ − 1ξij<0,

hi�(γ0)|Uij}
]
.

Theorem 2. Assume that conditions (A1)–(A5) and (B1)–(B3) in the Ap-
pendix hold and the global weight wi(γ̂) is used in (2.8) for estimation of ατ ,
i.e., wp

i = wi(γ̂).

1. If the global weight wi(γ̂) is used in (2.7) for estimation of βτ (t), an asymp-
totic distribution of α̂τ{wi(γ̂)} at τ ∈ (0, 1) is

√
n

[
α̂τ{wi(γ̂)} − ατ − h2μk

2
bατ

]
d→ N(0,Σ−1

fXV Σ−1
fX), (3.5)

where bατ =
∑m

j=1 D(tij)β
′′
τ (tij), and V = τ(1− τ)U −ALA.

2. If the local weight wi{δ̂(t)} or the equal weight we
i is used as wn

i in (2.7)

to estimate βτ (t), oth α̂τ [wi{δ̂(t)}] and α̂τ (w
e
i ) at τ ∈ (0, 1) satisfies

√
n

{
α̂τ (w

n
i )− ατ − h2μk

2
bατ

}
d→ N(0,Σ−1

fX(V + BLB)Σ−1
fX).

Theorem 2 shows that the choice of weights for estimation of βτ (t) has a sig-
nificant influence on the limiting variance of the estimator of ατ . An asymptotic
variance of α̂τ{wi(γ̂)} cannot be larger than that of α̂τ [wi{δ̂(t)}] and α̂τ (w

e
i ),

due to a nonnegative definite matrix L. In general, L is most likely to be pos-
itive definite, since the number of estimating equations in (2.4) is larger than
the dimensionality of γ. It is important to note that use of the global weight in
both estimation of βτ (t) and ατ does not only improve estimation efficiency of
ατ , but also prevents efficiency loss from the discordance between wn

i and wp
i .

If X(t) and Z(t) are uncorrelated across time t with E{X(t)}t = 0 or
E{Z(t)}t = 0 and homogeneous errors ξij , then {D(t)}t = 0 holds. Conse-
quently, it follows from B = 0 and the bias term bατ = 0 that α̂τ (w

n
i ) satisfies a√

n-consistency and its asymptotic variance is identical regardless of the choice
of wn

i in estimation of βτ (t). However, the foregoing conditions are too strong to
satisfy in practice, since longitudinal data often involve heteroscedasticity and
the covariates from observational studies are more likely to be correlated. To
remove the bias of α̂τ caused from nonparametric estimation, undersmoothing
is typically needed [13, 1].

When the equal weight is used for estimation of βτ (t) and ατ , the limiting
variance of α̂τ is τ(1− τ)Σ−1

fXUΣ−1
fX , excluding Σ−1

fXALAΣ−1
fX from Σ−1

fXV Σ−1
fX

in (3.5). This causes a loss of parametric estimation efficiency. In addition, use
of the global weight, only for estimation of ατ , might lead to a less efficient es-
timator than the one obtained from completely ignoring within-subject depen-
dence (wp

i = wn
i = we

i ), since ALA − BLB is not always nonnegative definite.
Therefore, it is essential to use the global weight for time-invariant coefficient
estimation as well as time-varying coefficient estimation to obtain the desired
efficient estimator for ατ .
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3.3. Inference with a perturbation approach

The conventional statistical inference on βτ (t) and ατ that plugs a consistent
estimate of the limiting variance function into (3.1) and (3.5) can be very chal-
lenging in practice. A random perturbation approach provides a viable alter-
native [8]. We generate independent positive random variables {vi}ni=1 from a
distribution having both mean and variance 1, such as an exponential distribu-
tion with mean 1. Then we obtain β̂τ,v(t) and α̂τ,v by minimizing two weighted
objective functions iteratively,

n∑
i=1

viwi(γ̂)

m∑
j=1

ρτ [Y
∗
ij − ZT

ij{β(t) + β∗(tij − t)}]K{(tij − t)/h},

and
n∑

i=1

viwi(γ̂)

m∑
j=1

ρτ{Y #
ij −XT

ijα}.

Theorem 3. Assume that conditions (A1)–(A5) and (B1)–(B3) hold. Given

the data {Yij , Uij}, β̂τ,v(t) and α̂τ,v satisfy that for τ ∈ (0, 1),

√
Nh
{
β̂τ,v(t)− βτ (t)−

β
′′
τ (t)μk

2
h2
}

d→ N
(
0,

τ(1− τ)ϕk

pT (t)
Σ−1

fZ(t)ΣZ(t)Σ
−1
fZ(t)

)
,

and

√
n

{
α̂τ,v − ατ − h2μk

2
bατ

}
d→ N(0,Σ−1

fXV Σ−1
fX).

Theorem 3 ensures that the asymptotic distributions of β̂τ,v(t) and α̂τ,v are

same as those of β̂(t) and α̂τ as shown in Theorem 2. This confirms that the

empirical distributions of β̂(t) and α̂τ can be approximated by those of repeated

evaluations of β̂τ,v(t) and α̂τ,v. Specifically, for statistical inference about β(t)

and ατ , the covariance matrix of β̂(t) and α̂τ can be evaluated by the sample

covariance matrix constructed from a large collection of β̂τ,v(t) and α̂τ,v.

4. Implementation

After presenting a procedure that finds the local weight wi{δ̂(t)} and the global
weight wi(γ̂), we implement estimation of βτ (t) and ατ . In the first step, we

obtain two weights, wi{δ̂(t)} and wi(γ̂), via the following iterative estimating
procedure:

(1-1) Set the time-invariant parameter γ varies over time and fit a time-varying
coefficient model, Yij = XT

ijγ(tij) + ZT
ijδ(tij) + εij , using the local linear

least squares to obtain an initial value of δ̂(t).

(1-2) Substitute δ̂(t) into (2.4), estimate γ by maximizing (2.6), and compute
wi(γ̂).
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(1-3) Replace γ in (2.3) with γ̂ and obtain δ̂(t) and wi{δ̂(t)} that maximizes
(2.5).

(1-4) Iterate steps (1-2) and (1-3) until the convergence criterion is reached.

In the second step, we replace wn
i in (2.7) and wp

i in (2.8) with wi(γ̂) and
estimate βτ (t) and ατ as follows:

(2-1) Set an initial value of β̂τ (t) through the time-varying coefficient QR model,
Qτ (Yij |Xij , Zij) = XT

ijατ (tij)+ZT
ijβτ (tij), using the weighted local linear

QR in (2.7).

(2-2) Update β̂τ (t) in (2.8) and obtain α̂τ that minimizes (2.8).
(2-3) Given α̂τ from step (2-2), estimate βτ (t) by minimizing (2.7).
(2-4) Iterate steps (2-2) and (2-3) until the convergence criterion is met.

When we estimate δ(t) and γ in the first step, both gi{δ(t)} and hi(γ) con-
tain the diagonal variance matrix Vi, which can be readily estimated using the
method of moments [12]. Moreover, we need to construct a consistent estimator

of ∂δ̂(t|γ)/∂γ in hi(γ). Following [16], we have

δ̂(t|γ)− δ(t) =
1

NhpT (t)
Ω(t)Γ(t)Σ(t)−1

n∑
i=1

gi{δ(t)}+ op(1).

Then, we can easily show that

∂δ̂(t|γ)
∂γ

p→ −Σσ(t)
−1E[Z(t)X(t)T /σ2{U(t)}].

Since Σσ(t) and E[Z(t)X(t)T /σ2{U(t)}] can be estimated by

(Nh2)
−1/2

n∑
i=1

m∑
j=1

ZijZ
T
ijK{(tij − t)/h2}/σ̂2(Uij)

and

(Nh2)
−1/2

n∑
i=1

m∑
j=1

ZijX
T
ijK{(tij − t)/h2}/σ̂2(Uij),

respectively, an estimator of ∂δ̂(t|γ)/∂γ is

−
∑n

i=1

∑m
j=1 ZijX

T
ijK{(tij − t)/h2}∑n

i=1

∑m
j=1 ZijZT

ijK{(tij − t)/h2}
. (4.1)

Estimation of βτ (t) and ατ relies on the choice of bandwidths. We adopt a
leave-one-subject-out cross-validation approach [18, 23]. Given fixed bandwidths
h1 in (2.3) and h2 in (4.1), we fit a model to all observations except the ith

subject and obtain δ̂−i(t) and γ̂−i via the above first step. The cross validation
is defined as

CV(h1, h2) =

n∑
i=1

m∑
j=1

{
Yij −XT

ij γ̂
−i − ZT

ij δ̂
−i(tij)

}2

.
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We choose optimal bandwidths h1 and h2 that minimize CV(h1, h2). To choose
a bandwidth h in (2.7), we first evaluate the bandwidth hls through the local
linear least squares as

hls = argmin
h

n∑
i=1

m∑
j=1

{
Yij −XT

ij γ̃
−i − ZT

ij δ̃
−i(tij)

}2

,

where γ̃−i = argminγ
∑n

k �=i wi(γ̂
−i)

∑m
j=1

(
Y p
kj −XT

kjγ
)2

, Y p
kj = Ykj −

ZT
kj δ̃

−i(tkj),

{δ̃−i(t), δ̃∗−i(t)} =

argmin
δ,δ∗

n∑
k �=i

wi(γ̂
−i)

m∑
j=1

[
Y n
kj − ZT

kj{δ + δ∗(tkj − t)}
]2

K

(
tkj − t

hls

)
,

and Y n
kj = Ykj −XT

kj γ̃
−i. Similar to the proposed iterative estimation procedure

above, δ̃−i(t) and γ̃−i can be estimated. Following [25], the bandwidth h is
computed as h = hls[τ(1 − τ)/φ2{Φ−1(τ)}]1/5, where φ and Φ are standard
normal density and distribution functions, respectively. To eliminate the bias
terms in Theorem 1-3, at least theoretically, βτ (t) should be undersmoothed,
and thus the bandwidth is adjusted as hn−2/15 [13].

5. Numerical studies

5.1. Simulation studies

We investigate the finite sample performance of the proposed approach (wp
i =

wn
i = wi(γ̂)) and its inference at τ = 0.5, comparing it to procedures with other

combinations of wp
i and wn

i with 500 simulation runs and a sample size of 100.
We design the ith subject’s measurement times as tij = 0.5(j − 1) + U(0, 0.5)
for j = 1, . . . , 5. This leads to five unequally spaced time points between 0 and
2.5. Each data set is generated from the partial linear model

Yij = β0(tij) + β1(tij)Z1,ij + α1X1,ij + α2X2,ij + εij ,

where three covariates, Z1,ij , X1,ij , and X2,ij , are generated from a U(0, 1)
with cor(Z1,ij , X1,ij) = cor(Z1,ij , X2,ij) = cor(X1,ij , X2,ij) = ρ1 being either 0
or 0.5, α1 = α2 = 1, and two time-varying coefficient curves were followed as
β0(t) = (t−2)2/3 and β1(t) = −cos(tπ/2). Here, we consider three distributions
for the random errors, εi = (εi1, . . . , εi5)

T :
Case 1 (Homogeneous errors) : εi ∼ N(0,Σ), where Σ is an AR(1) correlation
structure with a correlation coefficient ρ0 of either 0.3 or 0.7.
Case 2 (Covariates dependent heteroscedastic errors): εi = (0.7 + 0.2Z1,i +
0.3X2

1,i)ζi, where ζi ∼ N(0,Σ) and Σ is defined in Case 1.
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Case 3 (Time dependent heteroscedastic errors): εi = (0.8 + 0.1ti)ζi, where ζi
is specified in Case 2.

We first obtain a global weight and a local weight using the empirical like-
lihood under the AR(1) working correlation structure. Next, we use the global
weight in (2.8) for estimation of α1,0.5 and α2,0.5 at τ = 0.5 and investigate
how the choice of weights in (2.7) for estimation of β0,0.5(t) and β1,0.5(t) influ-
ences the time-invariant estimation based on three different weights of wn

i : the
global weight, the local weight, and the equal weight. For comparison, the con-
ventional quantile regression using the equal weight in both time-invariant and
time-varying coefficient estimation is also investigated. The standard Gaussian
kernel is used and the bandwidths are selected as shown in Section 4. To evaluate
estimation efficiency of the proposed approach, we compute the mean squared er-

ror for time-invariant coefficients, MSE(α̂) =
∑2

i=1

∑500
j=1(α̂

(j)
i,0.5−αi)

2/1000, and

the mean integrated squared error for time-varying coefficients, MISE{β̂(t)} =∑2
i=1

∑500
j=1

∑16
k=1{β̂

(j)
i,0.5(tk) − βi(tk)}2/16000, where α̂

(j)
i,0.5 and β̂

(j)
i,0.5(t) are es-

timates of αi,0.5 and βi,0.5(t) from the jth simulated data set and t1, . . . , t16 are
evenly space time points on [0.5, 2.0].

Table 1

Empirical relative efficiency (relative to the proposed estimator with (wi(γ̂), wi(γ̂))) for
Case 1-3.

ρ1 = 0 ρ1 = 0.5
Case ρ0 wn

i wp
i β(t) α β(t) α

1 0.7 wi{δ̂(t)} wi(γ̂) 1.04 1.13 0.98 1.21
we

i wi(γ̂) 1.01 1.13 1.00 1.05
we

i we
i 1.02 1.55 0.99 1.40

0.3 wi{δ̂(t)} wi(γ̂) 1.02 1.10 1.07 1.07
we

i wi(γ̂) 1.01 1.10 0.99 1.02
we

i we
i 0.98 1.09 0.99 1.08

2 0.7 wi{δ̂(t)} wi(γ̂) 1.04 1.21 0.99 1.18
we

i wi(γ̂) 1.01 1.19 0.99 1.08
we

i we
i 1.03 1.45 0.98 1.52

0.3 wi{δ̂(t)} wi(γ̂) 1.02 1.03 0.98 1.09
we

i wi(γ̂) 1.01 1.06 1.00 1.05
we

i we
i 1.00 1.13 1.00 1.12

3 0.7 wi{δ̂(t)} wi(γ̂) 1.07 1.35 1.02 1.20
we

i wi(γ̂) 0.98 1.08 1.00 1.03
we

i we
i 0.99 1.41 1.00 1.39

0.3 wi{δ̂(t)} wi(γ̂) 1.03 1.00 1.07 1.01
we

i wi(γ̂) 0.98 1.02 0.98 1.00
we

i we
i 0.97 1.08 0.99 1.06

Table 1 reports a relative efficiency of the proposed estimator using
(
wn

i , w
p
i

)
=(

wi(γ̂), wi(γ̂)
)
to the one using either

(
wi{δ̂(t)}, wi(γ̂)

)
,
(
we

i , wi(γ̂)
)
, or

(
we

i , w
e
i

)
,

defined by the ratio of the mean squared errors and the mean integrated squared
errors. The larger the value of the relative efficiency, the more efficient the pro-
posed estimator. When the correlation coefficient ρ0 is 0.7, the approaches uti-
lizing the global weight for time-invariant coefficient estimation outperform the
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one ignoring the within-subject correlation in terms of smaller values of the
mean squared errors. On the other hand, the relative efficiencies are closer to
one as the within-subject correlation becomes weaker. This suggests that ac-
commodating an informative correlation can improve the parametric estimation
efficiency when the within-subject correlation is presented. When the results of
the approaches using the global weight for time-invariant coefficient estimation
are compared, the proposed approach using the global weight for time-varying
coefficient estimation yields a more efficient estimator than the others, using
either the local weight or the equal weight in all cases. This confirms that the
additional parametric estimation efficiency gain can be achieved when the global
weight is used for both time-invariant and time-varying coefficient estimation.
On the other hand, the relative efficiencies of the estimated time-varying coef-
ficients are all close to one, as expected from the asymptotic results of β̂τ (t) in
Section 3.

We further investigate the statistical inference based on the proposed random
perturbation approach using the global weight on both estimations. We evalu-
ate the empirical standard error with 200 repetitions based on an exponential
distribution with mean 1 and compute coverage probabilities of pointwise con-
fidence intervals at the nominal 95% level. Since the coverage probabilities of
varying coefficients are measured at sixteen time points, we average them out
and provide those in Table 2. The results support that the proposed approach is
effective on the statistical inference in that the coverage probabilities are close
to the nominal level in all cases under consideration.

Table 2

Empirical coverage probabilities of 95% confidence intervals for the proposed estimator.

ρ1 = 0 ρ1 = 0.5
Case ρ0 β1(t) β2(t) α1 α2 β1(t) β2(t) α1 α2

1 0.7 95.2 95.6 97.2 97.6 95.0 95.2 98.0 97.6
0.3 94.2 95.0 94.4 95.0 94.2 95.4 95.6 96.0

2 0.7 96.0 95.6 96.6 97.0 94.4 95.4 97.8 97.2
0.3 94.4 94.6 94.0 95.4 94.2 95.2 95.0 95.0

3 0.7 94.4 94.8 96.8 97.0 94.4 94.8 96.4 97.0
0.3 93.6 94.6 94.2 96.8 94.8 95.0 95.0 95.4

5.2. Application to real data

In this section, we apply the proposed approach to longitudinal data from the
Multi-Center AIDS Cohort study and evaluate the effects of pre-HIV infection
CD4 cell count, smoking, and age at HIV infection on CD4 cell count. In general,
CD4 cell count is considered a biomarker indicating the health status of HIV
infected patients. The objective of this study is to explore the dynamic change of
covariate effects on CD4 cell count over time and determine the trend of CD4 cell
count depletion after HIV infection at different quantiles. This dataset consists
of 283 homosexual men who became infected by HIV between 1984 and 1991.
Although each patient was supposed to be repeatedly measured every 6 months,
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many patients missed some of their scheduled visits. Thus, unequal numbers of
repeated measurements, which range from 1 to 14, are followed at different
times. [10] illustrated the study design, methods, and medical implications in
more detail.

[7, 4] confirmed that the baseline effect and the pre-infection CD4 cell count
effect on the mean response may vary over time, yet neither smoking nor
age has a significant impact on the mean response. Therefore, we postulate
the quantile regression model with partially linear time-varying coefficients,
Qτ{Y (t)} = β0,τ (t) + β1,τ (t)Z1 + α1,τX1 + α2,τX2, where Qτ{Y (t)} is the τth
conditional quantile of CD4 cell count at year t, Z1 is the centered pre-infection
CD4 cell count, X1 is 1 if the subject smoked after infection and 0 otherwise,
and X2 is the individual’s centered age at infection. Here, the covariates Z1 and
X2 are computed by subtracting the averages of CD4 cell counts and age at
infection from the subject pre-infection CD4 cell count and age at infection, re-
spectively. This allows us to facilitate the biological interpretations, since β0,τ (t)
corresponds to the τth conditional quantile of CD4 cell count at year t for a
nonsmoker with an average pre-infection CD4 cell count and an average age at
infection.

We assume an AR(1) working correlation structure and assess the covariate
effects on the post-infection CD4 cell count over time at τ = 0.25, 0.5, and 0.75.
We apply the proposed approach with the global weight to the estimation of
both time-invariant and time-varying coefficients and use the cross validation
approach in Section 4 for bandwidth selection under the standard Gaussian
kernel. For statistical inference, the proposed perturbation approach with 200
repetitions and an exponential distribution with mean 1 is implemented to ob-
tain the empirical distributions of the estimators of ατ and βτ (t).

Table 3

Estimates and their standard errors (se) of α1 and α2.

τ = 0.25 τ = 0.5 τ = 0.75
α̂1(se) 1.336(1.06) 0.217(1.35) -1.250(1.19)
α̂2(se) -0.051(0.08) -0.096(0.09) -0.056(0.08)

Table 3 reports estimates of α1,τ and α2,τ along with their standard errors
at τ = 0.25, 0.5, and 0.75. The results confirm that age at infection is nega-
tively associated with the CD4 cell count regardless of quantiles, while the sign
of smoking effect at τ = 0.75 is different from that of the smoking effect at
τ = 0.25 and 0.5. However, both smoking and age effects are not statistically
significant in all quantiles under consideration. Similar results are reported with
the conditional mean model in [7, 4].

Figure 1 provides the estimated time-varying coefficient curves of the base-
line and the pre-CD4 cell count and their pointwise confidence intervals at the
nominal 95% level. This figure indicates that the baseline CD4 cell count dete-
riorates over time at all quantiles under consideration, yet the decreasing rate
of CD4 cell count at τ = 0.25 is higher than the one at τ = 0.75. In addition,
the effect of the pre-infection CD4 cell count is statistically significant with pos-
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itive estimates overall at all quantiles. The pre-infection CD4 effect appears to
be constant over time at τ = 0.75, while this effect decreases as time goes on
at τ = 0.25 and 0.5. This finding at the median is comparable with the ones
illustrated by kernel smoothing methods [22, 23], an empirical likelihood [24],
and a profile weighted least square [4] for the conditional mean regression.

Fig 1. Estimated varying-coefficient curves (solid) for the baseline and the pre-infection CD4
cell count along with the 95% confidence interval (dotted) at the 25th percentile (the first
column), 50th percentile (the second column), and 75th percentile (the last column).

Appendix: Proofs

Write xn 	 yn if xn/yn → 1, xn = O(yn) if supn |xn/yn| < ∞, and xn = o(yn)
if xn/yn → 0. The bandwidths h1 in (2.3) and h in (2.7) are different. However,
since h1 = O(h), for the ease of presentation we abuse notation h = h1 in the
proof. We also omit τ from ξij(τ). The following conditions are needed for our
asymptotic results.

(A1) fξ(·|Uij) is bounded, positive, and twice continuously differentiable on
{v : 0 < Fξ(v|Uij) < 1}. fξ{0|U(t)} and pT (t) are continuously differentiable in
a neighborhood of t.

(A2) X(t) and Z(t) are bounded. ΣZ(t) = E{Z(t)Z(t)T } and ΣfZ(t) =
E[fξτ {0|U(t)}Z(t)Z(t)T ] are positive definite and differentiable.

(A3) Let m < ∞, nh → ∞ and nh5 < ∞.

(A4) K(·) is symmetric with bounded support and bounded derivative.
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(A5) βτ (·) is twice continuously differentiable in a neighborhood of t.
(A1)–(A5) are the standard regularity conditions in studying nonparametric
quantile regression [2] and the following conditions are considered in the empir-
ical likelihood [16].

(B1) δ(·) is twice continuously differentiable in a neighborhood of t.
(B2) There exists γ0 such that E{hi(γ0)} = 0, Ψ(γ0) is positive definite, and

∂hi(γ)/∂γ is continuous in a neighborhood of γ0 and is of full rank. There exists
δ(t) such that E[gi{δ(t)}] = 0 and ∂gi(δ)/∂δ is continuous in a neighborhood
of δ(t) and is of full rank.

(B3) Σσ(t) and Λτ (t) are positive definite and differentiable. GT
� (t) is differ-

entiable.
(B2) and (B3) are not required for the quantile regression, yet these are quite
standard for the marginal mean regression [12, 17], and thereby the proposed
method is generally applicable for longitudinal data.

Without loss of generality, the inverse of the correlation matrix is decomposed
as R−1 = a0I+C, where a0 is an unknown coefficient and C is the matrix con-
taining off-diagonal elements in R−1. Accordingly, gi{δ(t)} in (2.3) is rewritten
as(

gi1{δ(t)}
gi2{δ(t)}

)
=

(
ZiKi(t)

1/2V
−1/2
i IV

−1/2
i Ki(t)

1/2{Y ′
i − ZT

i δ(t)}
ZiKi(t)

1/2V
−1/2
i CV

−1/2
i Ki(t)

1/2{Y ′
i − ZT

i δ(t)}

)
, (5.1)

and use (5.1) to prove Lemma 1 and Theorem 1.

Lemma 1. Under conditions (B1)–(B3), we have

1

Nh

n∑
i=1

gi{δ(t)}gi{δ(t)}T
p→ ϕKpT (t)C1 ⊗ Σσ(t), (5.2)

1

Nh

n∑
i=1

∂gi{δ(t)}
∂δ(t)

p→ −pT (t)C2 ⊗ Σσ(t), (5.3)

where

C1 =

(
1 1

m

∑m
j=1 cjj

1
m

∑m
j=1 cjj

1
m

∑m
j=1 c

2
jj

)
, C2 =

(
1

1
m

∑m
j=1 cjj

)

and cij is the (i, j)th component of C.

Proof of Lemma 1. Write ei = Y ′
i − ZT

i δ(t) and Kij = K{(tij − t)/h}. Recall
σ2
ij = E(ε2ij |Uij), where εij = Yij −XT

ijγ −ZT
ijδ(tij). Simple linear algebra gives

gi{δ(t)} =

(
gi1{δ(t)}
gi2{δ(t)}

)
=

( ∑m
j=1

∑m
j′=1 ZijK

1/2
ij K

1/2
ij′ eij′/(σijσij′)∑m

j=1

∑m
j′=1 ZijK

1/2
ij cjj′K

1/2
ij′ eij′/(σijσij′)

)

where eij is the jth element of ei. To prove (5.2) and (5.3), it is sufficient to
show the convergence of block matrices of (Nh)−1

∑n
i=1 gi{δ(t)}gi{δ(t)}T and
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(Nh)−1
∑n

i=1 ∂gi{δ(t)}/∂δ(t) in probability. Here we show the convergence of
the (2,2)th block matrix of (Nh)−1

∑n
i=1 gi{δ(t)}gi{δ(t)}T and the 2nd block

matrix of (Nh)−1
∑n

i=1 ∂gi{δ(t)}/∂δ(t) in probability. The convergence of other
block matrices can be similarly shown.

Since the kernel function K has bounded support, it is sufficient to consider
|tij−t| = O(h). By the boundedness of Zij and Taylor’s expansion δ(tij)−δ(t) =
(tij − t)δ′(t) + o(h) = O(h), we have

E(ZijZ
T
ije

2
ij/σ

4
ij |tij) = E{ZijZ

T
ij/σ

4
ijE(e2ij |Uij)|tij}

= E{ZijZ
T
ij/σ

4
ijE([εij + ZT

ij{δ(tij)− δ(t)}]2|Uij)|tij}
= E(ZijZ

T
ijσ

2
ij/σ

4
ij |tij) +O(h)

	 E(ZijZ
T
ij/σ

2
ij |tij) = Σσ(tij). (5.4)

By the fact that m is bounded, E(KijKij′) = O(h2) for j 
= j′,

E(KijK
1/2
ij′ K

1/2
ij′′ ) = O(h3) for j 
= j′ 
= j′′ and E(K

1/2
ij K

1/2
ij′ K

1/2
ij′′ K

1/2
ij′′′) = O(h4)

for j 
= j′ 
= j′′ 
= j′′′, (5.4) and condition (B3), we can obtain

1

Nh

n∑
i=1

E[gi2{δ(t)}gi2{δ(t)}T ]

=
1

Nh

n∑
i=1

m∑
j=1

m∑
j′=1

m∑
k=1

m∑
k′=1

E{ZijZ
T
ikK

1/2
ij K

1/2
ij′ K

1/2
ik K

1/2
ik′

×cjj′ckk′eij′eik′/(σijσij′σijσik′)}

=
1

Nh

n∑
i=1

m∑
j=1

E(ZijZ
T
ijK

2
ije

2
ij/σ

4
ij)c

2
jj + o(1)

=
1

Nh

n∑
i=1

m∑
j=1

E{K2
ijE(ZijZ

T
ije

2
ij/σ

4
ij |tij)}c2jj + o(1)

=
1

Nh

n∑
i=1

m∑
j=1

E{K2
ijΣσ(tij)}c2jj + o(1)

→ ϕKpT (t)Σσ(t)
1

m

m∑
j=1

c2jj , (5.5)

and also

1

Nh

n∑
i=1

E

[
∂gi2{δ(t)}

∂δ(t)

]

= − 1

Nh

n∑
i=1

m∑
j=1

m∑
j′=1

E{ZijZ
T
ij′K

1/2
ij K

1/2
ij′ cjj′/(σijσij′)}

= − 1

Nh

n∑
i=1

m∑
j=1

E(KijZijZ
T
ij/σ

2
ij)cjj + o(1)

→ −pT (t)Σσ(t)
1

m

m∑
j=1

cjj .
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Similarly, the variance of each component of (Nh)−1
∑n

i=1 gi{δ(t)}gi{δ(t)}T
and (Nh)−1

∑n
i=1 ∂gi{δ(t)}/∂δ(t) converges to 0. This implies the assertion of

Lemma 1.

For convenience, we recall important results in [16]:

(C1) By a similar argument in the proof of Theorem 1 in [16] and Lemma 1,
we have

λδ̂(t) =
1

ϕKpT (t)
Mḡn{δ(t)}+ op{(Nh)−1/2},

where ḡn{δ(t)} = (Nh)−1
∑n

i=1 gi{δ(t)} and M are defined in Section 3.1,
and

λγ̂ = Lh̄n(γ0) + op(n
−1/2)

where h̄n(γ0) = n−1
∑n

i=1 hi(γ0) and L are defined in Section 3.1.

(C2) wi{δ̂(t)} = n−1
[
1+gi{δ̂(t)}Tλδ̂(t)

]−1

= n−1
[
1−gi{δ̂(t)}Tλδ̂(t){1+op(1)}

]
and wi(γ̂) = n−1

[
1 + hi(γ̂)

Tλγ̂

]−1

= n−1
[
1 − hi(γ̂)

Tλγ̂{1 + op(1)}
]
uni-

formly for i.
(C3) max1≤i≤n |gi{δ̂(t)}Tλδ̂(t)| = op(1) and max1≤i≤n |hi(γ̂)

Tλγ̂ | = op(1).

Proof of Theorem 1. When α̂τ is a
√
n consistent estimator of ατ , we have

√
Nh{β̂τ (t|α̂τ )− βτ (t)}

=
√
Nh{β̂τ (t|α̂τ )− β̂τ (t|ατ )}+

√
Nh{β̂τ (t|ατ )− βτ (t)}

=
√
mh

{
∂β̂(t|ατ )

∂αT
τ

}
√
n(α̂τ − ατ ) +

√
Nh{β̂τ (t|ατ )− βτ (t)}+ op(1)

=
√
Nh{β̂τ (t|ατ )− βτ (t)}+ op(1)

since ∂β̂τ (t|ατ )/∂α
T
τ = Σ−1

fZ(t)E[fξ{0|U(t)}Z(t)X(t)T ] + op(1) = Op(1) due

to (5.13). As a result, the asymptotic distribution of β̂τ (t|ατ ) is the same as

that of β̂τ (t|α̂τ ), and thus we assume that ατ is known. Let Θ =
√
Nh[{β −

βτ (t)}T , h{β∗ − β′
τ (t)}T ]T and Jij = {ZT

ij , h
−1(tij − t)ZT

ij}T . Recall Kij =

K{(tij − t)/h}, Y ∗
ij = Yij − XT

ijατ and ξij = Y ∗
ij − ZT

ijβτ (tij). Then we can
write

Y ∗
ij − ZT

ij{β + β∗(tij − t)} = dij + ξij − JT
ijΘ/

√
Nh, (5.6)

where dij = ZT
ij [βτ (tij)−βτ (t)−β′

τ (t)(tij−t)]. Since {β̂τ (t)
T , β̂∗

τ (t)
T }T minimizes

the criterion function in (2.7), by (5.6) Θ̂ =
√
Nh[{β̂τ (t) − βτ (t)}T , h{β̂∗

τ (t) −
β′
τ (t)}T ]T minimizes the following re-parameterized function of Θ:

L(Θ) =

n∑
i=1

wn
i

m∑
j=1

{
ρτ

(
dij + ξij − JT

ijΘ/
√
Nh
)
− ρτ

(
dij + ξij

)}
Kij .
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Let θij = JT
ijΘ/

√
Nh. Applying Knight’s identity ρτ (u − v) − ρτ (u) = −v(τ −

1u<0) +
∫ v

0
(1u≤s − 1u≤0)ds, we can write L(Θ) = −AnΘ+ In, where

An =
1√
Nh

n∑
i=1

wn
i

m∑
j=1

(τ − 1dij+ξij<0)KijJ
T
ij ,

In =

n∑
i=1

wn
i

m∑
j=1

Kijηij , ηij =

∫ θij

0

(1dij+ξij≤s − 1dij+ξij≤0)ds.

Consider In first. By (C2) and (C3), we have

nIn = nIn1 − nIn2 :=

n∑
i=1

m∑
j=1

Kijηij −
n∑

i=1

op(1)

m∑
j=1

Kijηij .

Recall |tij − t| = O(h) due to the bounded support of K. Then, by the bound-

edness of Zij , |θij | ≤ c1/
√
Nh and |dij | ≤ c1h

2 for some constant c1. Applying

the inequality |
∫ θ

0
(1u≤s − 1u≤0)ds| ≤ |θ|1|u|≤|θ|, we have

|ηij | ≤ |θij |1−|θij |≤ξij+dij≤|θij | ≤
c1√
Nh

1−c1ρn≤ξij≤c1ρn , ρn =
1√
Nh

+ h2,

and E(K2
ijη

2
ij) = O(ρn/N). By the Cauchy-Schwarz inequality and condition

(A3), we have var(nIn1) =

n∑
i=1

var

(
m∑
j=1

Kijηij

)
≤

n∑
i=1

{
m

m∑
j=1

E(K2
ijη

2
ij)

}
= O

(
m2

n∑
i=1

ρn/N

)
→ 0.(5.7)

Because dij = O(h2), the Taylor’s expansion yields

E(ηij |Uij) =

∫ θij

0

{
Fξ

(
s− dij

∣∣Uij

)
− Fξ

(
− dij

∣∣Uij

)}
ds 	

θ2ij
2
fξ(0|Uij), (5.8)

uniformly for all (i, j). Then we have

n∑
i=1

m∑
j=1

E{Kijθ
2
ijfξ(0|Uij)} → pT (t)Θ

TW(t)Θ, (5.9)

where W(t) = diag{ΣfZ(t), μKΣfZ(t)} is a block diagonal matrix. By a similar
argument with (5.7)–(5.9), it is easy to show that

nIn2 = op(1)

n∑
i=1

m∑
j=1

Kijηij = op(1). (5.10)

Therefore, by (5.7)–(5.10), we have the convergence in probability:

nIn = E(nIn) + op(1) =

n∑
i=1

m∑
j=1

E{KijE(ηij |Uij)}+ op(1)
p→ pT (t)

2
ΘTW(t)Θ.
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By the convexity lemma [15], Θ̂ has the Bahadur representation:

Θ̂ = argmin
Θ

{
−AnΘ+

pT (t)

2n
ΘTW(t)Θ

}
+ op(1) =

n

pT (t)
W(t)−1AT

n + op(1).

From the first component of Θ̂, we have the asymptotic Bahadur representation:

β̂τ (t|ατ )− βτ (t|ατ )

=
Σ−1

fZ(t)

pT (t)

n

Nh

n∑
i=1

wn
i

m∑
j=1

(τ − 1ξij<0 + ζij)KijZij + op{(Nh)−1/2}, (5.11)

where ζij = 1ξij<0 − 1dij+ξij<0. Let Rn = (Nh)−1n
∑n

i=1 w
n
i

∑m
j=1 ζijKijZij .

Similar to nIn above, the convergence of Rn1 = (Nh)−1
∑n

i=1

∑m
j=1 ζijKijZij

in probability should be shown, since Rn2 = (Nh)−1
∑n

i=1 op(1)
∑m

j=1 ζijKijZij

is negligible by (C3). By the arguments in (5.7)–(5.8) and Taylor’s expansion
dij = (tij − t)2ZT

ijβ
′′
τ (t)/2 + o(h2),

E(Rn1) =
1

Nh

n∑
i=1

m∑
j=1

E{KijZijE(ζij |Uij)}

=
pT (t)μK

2
ΣfZ(t)β

′′
τ (t)h

2 + o(h2), (5.12)

and var(Rn1) = o{(Nh)−1/2}. Thus, it follows from (5.11)–(5.12) that

√
Nh

{
β̂τ (t|ατ )− βτ (t|ατ )−

β′′
τ (t)μK

2
h2

}

=
Σ−1

fZ(t)

pT (t)

n√
Nh

n∑
i=1

wn
i �i + op(1) (5.13)

where �i =
∑m

j=1 �ij with �ij = (τ − 1ξij<0)KijZij .

(i) Suppose that wn
i = we

i = 1/n is used. Note that for j 
= j′, E(�ij�
T
ij′) =

O(h2). Thus,

var

(
1√
Nh

n∑
i=1

�i

)
=

1

Nh

n∑
i=1

m∑
j=1

var{(τ − 1ξij<0)KijZij}+
1

Nh

n∑
i=1

O(m2h2)

→ τ(1− τ)pT (t)ϕKΣZ(t).

The desired result in (3.2) then easily follows from (5.13) and the independence
of �1, . . . , �n.

(ii) Suppose that local weight wn
i = wi{δ̂(t)} is used. By (C2), we have

n√
Nh

n∑
i=1

wi{δ̂(t)}�i =
1√
Nh

n∑
i=1

m∑
j=1

�ij
[
1− gi{δ̂(t)}Tλδ̂(t){1 + op(1)}

]

Recall gi(·) in (5.1). Since K has bounded support and δ̂(t) − δ(t) =
Op{(Nh)−1/2}, by a similar argument with (5.5), we have
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E

⎡
⎣ 1

Nh

n∑
i=1

m∑
j=1

�ijgi2{δ̂(t)}T
⎤
⎦

= E

[
1

Nh

n∑
i=1

m∑
j=1

(τ − 1ξij<0)KijZij

m∑
j′=1

×
m∑

j′′=1

ZT
ij′K

1/2
ij′ K

1/2
ij′′ cj′j′′eij′′/(σij′σij′′)

]
+ o(1)

=
1

Nh

n∑
i=1

m∑
j=1

E
{
(τ − 1ξij<0)εijK

2
ijZijZ

T
ijcjj/σ

2
ij

}
+ o(1)

=
1

Nh

n∑
i=1

m∑
j=1

E
[
E{(τ − 1ξij<0)εij |Uij}K2

ijZijZ
T
ij/σ

2
ij

]
cjj + o(1)

→ pT (t)ϕKΛτ (t)
1

m

m∑
j=1

cjj

and E
[
(Nh)−1/2

∑n
i=1

∑m
j=1 �ijgi1{δ̂(t)}T

]
→ pT (t)ϕKΛτ (t). By the law of

large numbers,

1

Nh

n∑
i=1

m∑
j=1

�ijgi{δ̂(t)}T
p→ pT (t)ϕKΛτ (t)

T . (5.14)

By (5.14), (C1) and Lemma 1, using steps similar to those in the proof of
Theorem 1 in [19], we have

var

⎡
⎣ 1√

Nh

n∑
i=1

m∑
j=1

�ijgi{δ̂(t)}Tλδ̂(t)

⎤
⎦

= var
{√

NhpT (t)ϕKΛτ (t)
Tλδ̂(t)

}
{1 + o(1)}

= var
[√

NhΛτ (t)
TMḡn{δ(t)}

]
{1 + o(1)}

= Λτ (t)
TME

[ 1

Nh

n∑
i=1

gi{δ(t)}gi{δ(t)}T
]
MΛτ (t){1 + o(1)}

= pT (t)ϕKΛτ (t)
TMΣ(t)MΛτ (t) + o(1)

→ pT (t)ϕKΛτ (t)
TMΛτ (t). (5.15)

Similarly, we can obtain

cov
( 1√

Nh

n∑
i=1

m∑
j=1

�ijgi{δ̂(t)}Tλδ̂(t),
1√
Nh

n∑
i=1

m∑
j=1

�ij

)

= cov
(
Λτ (t)

TMλδ̂(t),

n∑
i=1

m∑
j=1

�ij

)
+ o(1)

→ pT (t)ϕKΛτ (t)
TMΛτ (t).
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Thus, we have

var

[
n√
Nh

n∑
i=1

wi{δ̂(t)}�i

]
→ pT (t)ϕK

{
τ(1− τ)ΣZ(t)−Λτ (t)

TMΛτ (t)
}
.

However, it is easy to show that Λτ (t)
TMΛτ (t) = 0 regardless of the depen-

dence matrix C in (5.1) because CT
2 C

−1
1 {I −C2{CT

2 C
−1
1 C2}−1CT

2 C
−1
1 }C2 =

0. The desired result in (3.3) follows from (5.13) and the independence of
�1, . . . , �n.

(iii) Suppose that global weight wn
i = wi(γ̂) is used. By (C2), we have

n√
Nh

n∑
i=1

wi(γ̂)�i =
1√
Nh

n∑
i=1

m∑
j=1

�ij
[
1− hi(γ̂)

Tλγ̂{1 + op(1)}
]
.

Recall hi�(·) defined in (2.4).
We have

E

⎧⎨
⎩ 1

Nh

n∑
i=1

m∑
j=1

�ijhi�(γ̂)
T

⎫⎬
⎭

= E

⎧⎨
⎩ 1

Nh

n∑
i=1

m∑
j=1

KijZij(τ − 1ξij<0)hi�(γ0)
T

⎫⎬
⎭+ o(1)

= E

⎡
⎣ 1

Nh

n∑
i=1

m∑
j=1

KijZijE{(τ − 1ξij<0)hi�(γ0)
T |Uij}

⎤
⎦+ o(1) → pT (t)G�(t)

T .

By the law of large numbers, we have

1

Nh

n∑
i=1

m∑
j=1

�ijhi(γ̂)
T p→ pT (t)G(t)T . (5.16)

By (5.16) and (C1) using steps similar to (5.15),

var

⎧⎨
⎩ 1√

Nh

n∑
i=1

m∑
j=1

�ijhi(γ̂)
Tλγ̂

⎫⎬
⎭

= var
{√

NhpT (t)G(t)Tλγ̂

}
{1 + o(1)}

= var
{√

NhpT (t)G(t)TLh̄n(γ0)
}
{1 + o(1)}

= mhp2T (t)G(t)TLE

[
1

n

n∑
i=1

hi(γ0)hi(γ0)
T

]
LG(t){1 + o(1)}

= mhp2T (t)G(t)TLG(t) + o(1) = o(1). (5.17)

Similarly, we can obtain

cov
( 1√

Nh

n∑
i=1

m∑
j=1

�ijhi(γ̂)
Tλγ̂ ,

1√
Nh

n∑
i=1

m∑
j=1

�ij

)
= o(1).
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Thus, we have

var

{
n√
Nh

n∑
i=1

wi(γ̂)�i

}
→ τ(1− τ)pT (t)ϕKΣZ(t).

The desired result in (3.4) follows from (5.13) and the independence of �1, . . . , �n.

Proof of Theorem 2. Let θ =
√
n(α− ατ ). Then we can write

Y #
ij −XT

ijα = Yij − ZT
ij β̂τ (tij |ατ )−XT

ijα = ξij −XT
ijθ/

√
n− dij ,

where dij = ZT
ij{β̂τ (tij |ατ )−βτ (tij |ατ )}. Similar to the proof of Theorem 1, we

can find the asymptotic Bahadur representation:

√
n(α̂τ − ατ ) =

nΣ−1
fX√
n

n∑
i=1

wi(γ̂)

m∑
j=1

(τ − 1ξij−dij<0)Xij + op(1)

= Bn − Cn + op(1),

where

Bn =
nΣ−1

fX√
n

n∑
i=1

wi(γ̂)
m∑
j=1

(τ − 1ξij<0)Xij ,

Cn =
nΣ−1

fX√
n

n∑
i=1

wi(γ̂)

m∑
j=1

(1ξij−dij<0 − 1ξij<0)Xij .

By a similar argument in (5.8) and the result in (5.13), we have Cn =

nΣ−1
fX√
n

n∑
i=1

wi(γ̂)

m∑
j=1

fξ(0|Uij)Z
T
ij

{
β̂τ (tij |ατ )− βτ (tij |ατ )

}
Xij + op(1)

=
nΣ−1

fX√
n

n∑
i=1

wi(γ̂)

m∑
j=1

fξ(0|Uij)Z
T
ij

{Σ−1
fZ(tij)

pT (tij)

n

Nh

n∑
i′=1

wn
i

×
m∑

j′=1

(τ − 1ξi′j′<0)Ki′j′Zi′j′ +
h2β′′

τ (tij)μK

2

}
Xij + op(1)

=
nΣ−1

fX√
n

n∑
i′=1

wn
i

m∑
j′=1

(τ − 1ξi′j′<0)

{
n

Nh

n∑
i=1

wi(γ̂)

×
m∑
j=1

fξ(0|Uij)

pT (tij)
K
( tij − ti′j′

h

)
XijZ

T
ijΣ

−1
fZ(tij)

}
Zi′j′

+

√
nh2μK

2
Σ−1

fX

{
n

n

n∑
i=1

wi(γ̂)

m∑
j=1

fξ(0|Uij)XijZ
T
ijβ

′′
τ (tij)

}
+ op(1)
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=
nΣ−1

fX√
n

n∑
i=1

wn
i

m∑
j=1

(τ − 1ξij<0)Hij +

√
nh2μK

2
Σ−1

fXbατ + op(1).

It follows that
√
n(α̂τ − ατ ) =

nΣ−1
fX√
n

{
n∑

i=1

wi(γ̂)

m∑
j=1

(τ − 1ξij<0)(Xij −Hij)

−
n∑

i=1

{wn
i − wi(γ̂)}

m∑
j=1

(τ − 1ξij<0)Hij

}
+

√
nh2μK

2
Σ−1

fXbατ + op(1).

(i) Suppose that global weight wn
i = wi(γ̂) is used. By Theorem 1 in [19],

√
n

(
α̂τ − ατ − h2μk

2
bατ

)
d→ N(0,Σ−1

fXV Σ−1
fX).

(ii) Suppose that wn
i = we

i = 1/n is used. Then by (C2), n{wn
i − wi(γ̂)} =

hi(γ̂)
Tλγ̂+op(1). Let Ii1 =

∑m
j=1(τ−1ξij<0)Xij and Ii2 =

∑m
j=1(τ−1ξij<0)Hij .

We can write

n√
n

n∑
i=1

wi(γ̂)

m∑
j=1

(τ − 1ξij<0)(Xij −Hij)

− n√
n

n∑
i=1

{wn
i − wi(γ̂)}

m∑
j=1

(τ − 1ξij<0)Hij

=
1√
n

n∑
i=1

{1− hi(γ̂)
Tλγ̂}(Ii1 − Ii2)−

1√
n

n∑
i=1

hi(γ̂)
Tλγ̂Ii2 + op(1).

Since cov{n−1/2
∑n

i=1 hi(γ̂)
Tλγ̂Iik, n−1/2

∑n
i=1 hi(γ̂)

Tλγ̂Iik′} =
cov{n−1/2

∑n
i=1 Iik, n−1/2

∑n
i=1 hi(γ̂)

Tλγ̂Iik′} for k = 1, 2 and k′ = 1, 2, we
have cov[n−1/2

∑n
i=1{1 − hi(γ̂)

Tλγ̂}(Ii1 − Ii2), n−1/2
∑n

i=1 hi(γ̂)
Tλγ̂Ii2] = 0.

Using a similar step to (5.15), we have

var

{
1√
n

n∑
i=1

hi(γ̂)
Tλγ̂Ii2

}
= BLB.

Thus,

√
n

{
α̂− ατ − h2μk

2
bατ

}
d→ N(0,Σ−1

fX(V + BLB)Σ−1
fX).

(iii) Suppose that local weight wn
i = wi{δ̂(t)} is used. Then by (C2), n{wn

i −
wi(γ̂)} = hi(γ̂)

Tλγ̂ − gi{δ̂(t)}Tλα̂(t) + op(1). We can write
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n√
n

n∑
i=1

wi(γ̂)

m∑
j=1

(τ − 1ξij<0)(Xij −Hij)

− n√
n

n∑
i=1

{wn
i − wi(γ̂)}

m∑
j=1

(τ − 1ξij<0)Hij

=
1√
n

n∑
i=1

{1− hi(γ̂)
Tλγ̂}(Ii1 − Ii2)

− 1√
n

n∑
i=1

[hi(γ̂)
Tλγ̂ − gi{δ̂(t)}Tλα̂(t)]Ii2 + op(1).

Similar to (5.17), cov[n−1/2
∑n

i=1 Iik, n−1/2
∑n

i=1 gi{δ̂(t)}Tλα̂(t)Ii2] = O(h)

and cov[n−1/2
∑n

i=1 hi(γ̂)
Tλγ̂Iik, n−1/2

∑n
i=1 gi{δ̂(t)}Tλα̂(t)Ii2] = O(h) for k =

1, 2 and var[n−1/2
∑n

i=1 gi{δ̂(t)}Tλα̂(t)Ii2] = O(h). Then the rest of the proof is
the same as (ii) above.

Proof of Theorem 3. The proof of Theorem 3 follows from almost the same ar-
gument as given in [8, 19], and thus it is omitted here but available from the
authors upon request.
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