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Abstract: In this paper, we give a new generalization error bound of Mul-
tiple Kernel Learning (MKL) for a general class of regularizations, and dis-
cuss what kind of regularization gives a favorable predictive accuracy. Our
main target in this paper is dense type regularizations including �p-MKL.
According to the numerical experiments, it is known that the sparse reg-
ularization does not necessarily show a good performance compared with
dense type regularizations. Motivated by this fact, this paper gives a gen-
eral theoretical tool to derive fast learning rates of MKL that is applicable
to arbitrary mixed-norm-type regularizations in a unifying manner. This
enables us to compare the generalization performances of various types of
regularizations. As a consequence, we observe that the homogeneity of the
complexities of candidate reproducing kernel Hilbert spaces (RKHSs) af-
fects which regularization strategy (�1 or dense) is preferred. In fact, in
homogeneous complexity settings where the complexities of all RKHSs are
evenly same, �1-regularization is optimal among all isotropic norms. On the
other hand, in inhomogeneous complexity settings, dense type regulariza-
tions can show better learning rate than sparse �1-regularization. We also
show that our learning rate achieves the minimax lower bound in homoge-
neous complexity settings.

Keywords and phrases:Multiple kernel learning, fast learning rate, mini-
max lower bound, regularization, generalization error bounds.
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1. Introduction

Multiple Kernel Learning (MKL) proposed by Lanckriet et al. (2004) is one
of the most promising methods that adaptively select the kernel function in
supervised kernel learning. Kernel method has been widely used in machine
learning and data analysis and several studies have supported its usefulness
(Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004). However the
performance of kernel methods critically relies on the choice of the kernel func-
tion. Many methods have been proposed to deal with the issue of kernel selection.
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Ong et al. (2005) studied hyperkernels as a kernel of kernel functions. Argyriou
et al. (2006) considered DC programming approach to learn a mixture of kernels
with continuous parameters. Some studies tackled a problem to learn non-linear
combination of kernels as in Bach (2009); Cortes et al. (2009a); Varma and Babu
(2009). Among them, learning a linear combination of finite candidate kernels
with non-negative coefficients is the basic, fundamental and commonly used ap-
proach. The seminal work of MKL by Lanckriet et al. (2004) considered learning
convex combination of candidate kernels as well as its linear combination. This
work opened up the sequence of the MKL studies. Bach et al. (2004) showed
that MKL can be reformulated as a kernel version of the group lasso (Yuan and
Lin, 2006). This formulation gives an insight that MKL can be described as a
�1-mixed-norm regularized method. As a generalization of MKL, �p-MKL that
imposes �p-mixed-norm regularization has been proposed (Micchelli and Pontil,
2005; Kloft et al., 2009). �p-MKL includes the original MKL as a special case as
�1-MKL. Another direction of generalization is elasticnet-MKL (Shawe-Taylor,
2008; Tomioka and Suzuki, 2009) that imposes a mixture of �1-mixed-norm and
�2-mixed-norm regularizations. Numerical studies have shown that �p-MKL with
p > 1 and elasticnet-MKL show better performances than �1-MKL in several
situations (Kloft et al., 2009; Cortes et al., 2009b; Tomioka and Suzuki, 2009).
An interesting notion here is that both �p-MKL and elasticnet-MKL produce
denser estimator than the original �1-MKL while they show favorable perfor-
mances. The goal of this paper is to give a theoretical justification to these
experimental results favorable for the dense type MKL methods. To this aim,
we give a unifying framework to derive a fast learning rate of an arbitrary norm
type regularization, and discuss which regularization is preferred depending on
the problem settings.

In the pioneering paper of Lanckriet et al. (2004), a convergence rate of
MKL was given as

√
M/n, where M is the number of given kernels and n is

the sample size. Ying and Zhou (2007) introduced a uniform Glivenko-Cantelli
class and analyzed learning a Gaussian kernel with flexible kernel width. This
work was improved by Micchelli et al. (2016). Srebro and Ben-David (2006)
gave simpler analysis for learning kernels based on the pseudo-dimension of the
given kernel class. Ying and Campbell (2009) gave a convergence bound utiliz-
ing Rademacher chaos and gave some upper bounds of the Rademacher chaos
utilizing the pseudo-dimension of the kernel class. Cortes et al. (2009b) pre-
sented a convergence bound for a learning method with L2 regularization on
the kernel weight. Cortes et al. (2010) gave the convergence rate of �p-MKL as√
log(M)/n for p = 1 and M1− 1

p /
√
n for 1 < p ≤ 2. Kloft et al. (2011) gave a

similar convergence bound with improved constants. Kloft et al. (2010) gener-
alized this bound to a variant of the elasticnet type regularization and widened
the effective range of p to all range of p ≥ 1 while 1 ≤ p ≤ 2 had been imposed
in the existing works. One concern about these bounds is that all bounds intro-
duced above are “global” bounds in a sense that the bounds are applicable to
all candidates of estimators. Consequently all convergence rate presented above
are of order 1/

√
n with respect to the number n of samples. However, by utiliz-

ing the localization techniques including so-called local Rademacher complexity
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(Bartlett et al., 2005; Koltchinskii, 2006) and peeling device (van de Geer, 2000),
we can derive a faster learning rate. Instead of uniformly bounding all candi-
dates of estimators, the localized inequality focuses on a particular estimator
such as empirical risk minimizer, thus can give a sharp convergence rate. As for
a kernel learning, Wu et al. (2007) derived a fast learning rate for classification
problem with kernel parameter optimization, but it does not give explicit anal-
ysis for learning linear combination of kernels with convex regularization as in
�p-MKL.

Localized bounds of MKL have been given mainly in sparse learning settings
(Koltchinskii and Yuan, 2008; Meier et al., 2009; Koltchinskii and Yuan, 2010),
and there are only few studies for non-sparse settings in which the sparsity of
the ground truth is not assumed. The first localized bound of MKL is derived
by Koltchinskii and Yuan (2008) in the setting of �1-MKL. The second one was
given by Meier et al. (2009) who gave a near optimal convergence rate for elas-
ticnet type regularization. Koltchinskii and Yuan (2010) considered a variant
of �1-MKL and showed it achieves the minimax optimal convergence rate. All
these localized convergence rates were considered in sparse learning settings,
and it has not been discussed how a dense type regularization outperforms the
sparse �1-regularization. Kloft and Blanchard (2011) gave a localized conver-
gence bound of �p-MKL. However, their analysis assumed a strong condition
where RKHSs have no-correlation to each other. Suzuki and Sugiyama (2013)
gave a fast learning rate of the elasticnet regularization and discussed the dif-
ference between �1-regularization and the elasticnet regularization based on the
smoothness of the true function.

In this paper, we show a unifying framework to derive fast convergence rates
of MKL with various regularization types. The framework is applicable to arbi-
trary mixed-norm regularizations including �p-MKL and elasticnet-MKL. Our
learning rate utilizes the localization technique, thus is tighter than global type
learning rates. We discuss our bound in two situations: homogeneous complex-
ity situation and inhomogeneous complexity situation where homogeneous com-
plexity means that all RKHSs have the same complexities and inhomogeneous
complexity means that the complexities of RKHSs are different to each other. In
the homogeneous situation, we apply our general framework to some examples
and show our bound achieves the minimax-optimal rate. As a by-product, we
obtain a tighter convergence rate of �p-MKL than existing results. Moreover we
show that our bound indicates that �1-MKL shows the best performance among
all “isotropic” mixed-norm regularizations in homogeneous settings. Next we
analyze our bound in inhomogeneous settings where the complexities of the
RKHSs are not uniformly same. We show that dense type regularizations can
give better generalization error bounds than the sparse �1-regularization in the
inhomogeneous setting. Here it should be noted that in real settings inhomoge-
neous complexity is more natural than homogeneous complexity. Finally we give
numerical experiments to show the validity of the theoretical investigations. We
see that the numerical experiments well support the theoretical findings. As far
as the author knows, this is the first theoretical attempt to clearly show the
inhomogeneous complexities are advantageous for dense type MKL.
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2. Preliminary

In this section we give the problem formulation, the notations and the assump-
tions required for the convergence analysis.

2.1. Problem formulation

Suppose that we are given n i.i.d. samples {(xi, yi)}ni=1 distributed from a prob-
ability distribution P on X ×R where X is an input space. We denote by Π the
marginal distribution of P on X . We are given M reproducing kernel Hilbert
spaces (RKHS) {Hm}Mm=1 each of which is associated with a kernel km. We con-
sider a mixed-norm type regularization with respect to an arbitrary given norm
‖ · ‖ψ, that is, the regularization is given by the norm ‖(‖fm‖Hm)Mm=1‖ψ of the
vector (‖fm‖Hm)Mm=1 for fm ∈ Hm (m = 1, . . . ,M)1. For notational simplicity,

we write ‖f‖ψ = ‖(‖fm‖Hm)Mm=1‖ψ for f =
∑M

m=1 fm (fm ∈ Hm).
The general formulation of MKL, we consider in this paper, fits a function

f =
∑M

m=1 fm (fm ∈ Hm) to the data by solving the following optimization
problem:

f̂ =

M∑
m=1

f̂m = argmin
fm∈Hm (m=1,...,M)

1

n

n∑
i=1

(
yi −

M∑
m=1

fm(xi)

)2

+ λ
(n)
1 ‖f‖2ψ. (1)

We call this “ψ-norm MKL”. This formulation covers many practically used
MKL methods (e.g., �p-MKL, elasticnet-MKL, variable sparsity kernel learning
(see later for their definitions)), and is solvable by a finite dimensional optimiza-
tion procedure due to the representer theorem (Kimeldorf and Wahba, 1971).
In this paper, we mainly focus on the regression problem (the squared loss).
However the discussion can be generalized to Lipschitz continuous and strongly
convex losses as in Bartlett et al. (2005) (see Section 7).

Example 1: �p-MKL The first motivating example of ψ-norm MKL is �p-
MKL (Kloft et al., 2009) that employs �p-norm for 1 ≤ p ≤ ∞ as the regularizer:

‖f‖ψ = ‖(‖fm‖Hm)Mm=1‖�p = (
∑M

m=1 ‖fm‖pHm
)

1
p . If p is strictly greater than 1

(p > 1), the solution of �p-MKL becomes dense. In particular, p = 2 corresponds
to averaging candidate kernels with uniform weight (Micchelli and Pontil, 2005).
It is reported that �p-MKL with p greater than 1, say p = 4

3 , often shows better
performance than the original sparse �1-MKL (Cortes et al., 2010).

Example 2: elasticnet-MKL The second example is elasticnet-MKL
(Shawe-Taylor, 2008; Tomioka and Suzuki, 2009) that employs mixture of �1 and

�2 norms as the regularizer: ‖f‖ψ = τ‖f‖�1 +(1− τ)‖f‖�2 = τ
∑M

m=1 ‖fm‖Hm +

1 We assume that the mixed-norm ‖(‖fm‖Hm )Mm=1‖ψ satisfies the triangular inequal-

ity with respect to (fm)Mm=1, that is, ‖(‖fm + f ′
m‖Hm )Mm=1‖ψ ≤ ‖(‖fm‖Hm )Mm=1‖ψ +

‖(‖f ′
m‖Hm )Mm=1‖ψ . To satisfy this condition, it is sufficient if the norm is monotone, i.e.,

‖a‖ψ ≤ ‖a+ b‖ψ for all a, b ≥ 0.
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(1− τ)(
∑M

m=1 ‖fm‖2Hm
)

1
2 with τ ∈ [0, 1]. Elasticnet-MKL shares the same spirit

with �p-MKL in a sense that it bridges sparse �1-regularization and dense �2-
regularization. Efficient optimization method for elasticnet-MKL is proposed by
Suzuki and Tomioka (2011).

Example 3: Variable Sparsity Kernel Learning Variable Sparsity Kernel
Learning (VSKL) proposed by Aflalo et al. (2011) divides the RKHSs into M ′

groups {Hj,k}Mj

k=1, (j = 1, . . . ,M ′) and imposes a mixed norm regularization

‖f‖ψ = ‖f‖(p,q) =
{∑M ′

j=1(
∑Mj

k=1 ‖fj,k‖
p
Hj,k

)
q
p

} 1
q

where 1 ≤ p, 1 ≤ q, and

fj,k ∈ Hj,k. An advantageous point of VSKL is that by adjusting the parameters
p and q, various levels of sparsity can be introduced. The parameters can control
the level of sparsity within group and between groups. This point is beneficial
especially for multi-modal tasks like object categorization.

2.2. Notations and assumptions

Here, we prepare notations and assumptions that are used in the analysis. Let
H⊕M = H1 ⊕ · · · ⊕ HM . We utilize the same notation f ∈ H⊕M indicating
both the vector (f1, . . . , fM ) and the function f =

∑M
m=1 fm (fm ∈ Hm). This

is a little abuse of notation because the decomposition f =
∑M

m=1 fm might
not be unique as an element of L2(Π) in general. However, we will assume
an incoherence assumption (Assumption 4), and under this assumption, the
decomposition is unique. Therefore, this notation will not cause any confusion
in this article.

Throughout the paper, we assume the following technical conditions (see also
Bach (2008)).

Assumption 1. (Realizable Assumption)
(A1) There exists f∗ = (f∗

1 , . . . , f
∗
M ) ∈ H⊕M such that E[Y |X] = f∗(X) =∑M

m=1 f
∗
m(X), and the noise ε := Y − f∗(X) is bounded as |ε| ≤ L or is a

normal variable with mean 0 and variance L2 (ε ∼ N(0, L2)).

Assumption 2. (Kernel Assumption)
(A2) For each m = 1, . . . ,M , Hm is separable (with respect to the RKHS

norm) and supX∈X |km(X,X)| ≤ 1.

The first assumption in (A1) ensures the model H⊕M is correctly specified,
and the technical assumption |ε| ≤ L allows εf to be Lipschitz continuous with
respect to f .

Let an integral operator Tkm : L2(Π) → L2(Π) corresponding to a kernel
function km be

Tkmf =

∫
km(·, x)f(x)dΠ(x).

It is known that this operator is compact, positive, and self-adjoint (see Theorem
4.27 of Steinwart (2008)). Thus it has at most countably many non-negative
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eigenvalues. We denote by μ�,m be the �-th largest eigenvalue (with possible
multiplicity) of the integral operator Tkm . By Theorem 4.27 of Steinwart (2008),
the sum of μ�,m is bounded (

∑
� μ�,m < ∞), and thus μ�,m decreases with

order �−1 (μ�,m = o(�−1)). We further assume the sequence of the eigenvalues
converges even faster to zero.

Assumption 3. (Spectral Assumption) There exist 0 < sm < 1 and 0 < c
such that

(A3) μ�,m ≤ c�−
1

sm , (∀� ≥ 1, 1 ≤ ∀m ≤ M),

where {μ�,m}∞�=1 is the spectrum of the operator Tkm corresponding to the kernel
km. Otherwise, the RKHS Hm is finite dimensional with a bounded dimension;
sm = 0 and there exists c > 0 such that

μ�,m > 0 (∀� ≤ c), μ�,m = 0 (∀� > c).

It was shown that the spectral assumption (A3) is equivalent to the classical
covering number assumption (Steinwart et al., 2009). Recall that the ε-covering
number N(ε,BHm , L2(Π)) with respect to L2(Π) is the minimal number of balls
with radius ε needed to cover the unit ball BHm in Hm (van der Vaart and
Wellner, 1996). If the spectral assumption (A3) and the boundedness assumption
(A2) holds, there exists a constant C that depends only on s and c such that

logN(ε,BHm , L2(Π)) ≤ Cε−2sm , (2)

and the converse is also true (see Steinwart et al. (2009, Theorem 15) and
Steinwart (2008) for details). Therefore, if sm is large, the RKHSs are regarded
as “complex”, and if sm is small, the RKHSs are “simple”.

An important class of RKHSs where sm is known is Sobolev space. (A3) holds
with sm = d

2α for Sobolev space Wα,2(X ) of α-times continuously differentia-
bility on the Euclidean ball X of Rd (Edmunds and Triebel, 1996). Moreover,
for α-times differentiable kernels on a closed Euclidean ball in Rd, (A3) holds
for sm = d

2α (Steinwart, 2008, Theorem 6.26). According to Theorem 7.34 of
Steinwart (2008), for Gaussian kernels with compact support distribution, that
holds for arbitrary small 0 < sm. The covering number of Gaussian kernels with
unbounded support distribution is also described in Theorem 7.34 of Steinwart
(2008).

When sm = 0, the RKHS Hm is finite dimensional because of Assumption
3. The uniform boundedness of the dimensions of the RKHSs could be relaxed
trivially, but we do not go into details of that direction for theoretical simplicity.

Let κM be defined as follows:

κM := sup

{
κ ≥ 0

∣∣∣ κ ≤ ‖
∑M

m=1 fm‖2
L2(Π)∑M

m=1 ‖fm‖2
L2(Π)

, ∀fm ∈ Hm (m = 1, . . . ,M)

}
. (3)

κM represents the correlation of RKHSs. We assume all RKHSs are not com-
pletely correlated to each other.
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Table 1

Summary of the constants we use in this article.

n The number of samples.
M The number of candidate kernels.
L The bound of the noise (A2).
c The coefficient for Spectral Assumption; see (A3).
sm The decay rate of spectrum; see (A3).
κM The smallest eigenvalue of the design matrix; see Eq. (3).
C1 The coefficient for Embedded Assumption; see (A5).

Assumption 4. (Incoherence Assumption) κM is strictly bounded from
below; there exists a constant C0 > 0 such that

(A4) 0 < C−1
0 < κM .

This condition is motivated by the incoherence condition (Koltchinskii and
Yuan, 2008; Meier et al., 2009) considered in sparse MKL settings. This ensures

the uniqueness of the decomposition f∗ =
∑M

m=1 f
∗
m of the ground truth. This

can be easily checked as follows: for different decompositions f =
∑M

m=1 fm =∑M
m=1 gm, it holds that 0 = ‖f − f‖2L2(Π) = ‖

∑M
m=1(fm − gm)‖2L2(Π) ≥

κ
∑M

m=1 ‖fm − gm‖2L2(Π), then fm = gm for all m. Bach (2008) also assumed
this condition to show the consistency of �1-MKL.

Finally we give a technical assumption with respect to ∞-norm.

Assumption 5. (Embedded Assumption) Under the Spectral Assumption,
there exists a constant C1 > 0 such that

(A5) ‖fm‖∞ ≤ C1‖fm‖1−sm
Hm

‖fm‖smL2(Π).

This condition is met when the input distribution Π has a density with respect
to the uniform distribution on X that is bounded away from 0 and the RKHSs
are continuously embedded in a Sobolev space Wα,2(X ) where sm = d

2α , d is
the dimension of the input space X and α is the “smoothness” of the Sobolev
space. Many practically used kernels satisfy this condition (A5). For example,
the RKHSs of Gaussian kernels can be embedded in all Sobolev spaces. There-
fore the condition (A5) seems rather common and practical. More generally,
there is a clear characterization of the condition (A5) in terms of real interpo-
lation of spaces. One can find detailed and formal discussions of interpolations
in Steinwart et al. (2009), and Proposition 2.10 of Bennett and Sharpley (1988)
gives the necessary and sufficient condition for the assumption (A5).

Constants we use later are summarized in Table 1.

3. Convergence rate of ψ-norm MKL

Here we derive the learning rate of ψ-norm MKL in the most general setting.
We suppose that the number of kernels M can increase along with the number
of samples n. The motivation of our analysis is summarized as follows:
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• Give a unifying framework to derive a sharp convergence rate of ψ-norm
MKL.

• (homogeneous complexity) Show the convergence rate of some examples
using our general framework, prove its minimax-optimality, and show the
optimality of �1-regularization under conditions that the complexities sm
of all RKHSs are same.

• (inhomogeneous complexity) Discuss how the dense type regularization
outperforms sparse type regularization, when the complexities sm of all
RKHSs are not uniformly same.

We define

η(t) := ηn(t) = max(1,
√
t, t/

√
n),

for t > 0. For given positive reals {rm}Mm=1 and given n, we define α1, α2, β1, β2

as follows:

α1 := α1({rm}) = 3

(
M∑

m=1

r−2sm
m

n

) 1
2

, α2 := α2({rm}) = 3

∥∥∥∥( smr1−sm
m√
n

)M
m=1

∥∥∥∥
ψ∗

,

β1 := β1({rm}) =3

(
M∑

m=1

r
− 2sm(3−sm)

1+sm
m

n
2

1+sm

) 1
2

,

β2 := β2({rm}) =3

∥∥∥∥∥∥
(

smr

(1−sm)2

1+sm
m

n
1

1+sm

)M

m=1

∥∥∥∥∥∥
ψ∗

, (4)

(note that α1, α2, β1, β2 implicitly depends on the reals {rm}Mm=1). Then the
following theorem gives the general form of the learning rate of ψ-norm MKL.

Theorem 1. Suppose Assumptions 1-5 are satisfied. Let {rm}Mm=1 be arbitrary

positive reals that can depend on n, and assume λ
(n)
1 ≥

(
α2

α1

)2
+
(

β2

β1

)2
. Then

there exists a constant φ depending only on {sm}Mm=1, c, C1, L such that for all

n and t′ that satisfy log(M)√
n

≤ 1 and 4φ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12 and

for all t ≥ 1, we have

‖f̂ − f∗‖2L2(Π) ≤
24η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 4λ

(n)
1 ‖f∗‖2ψ, (5)

with probability 1−exp(−t)−exp(−t′). In particular, for λ
(n)
1 =

(
α2

α1

)2
+
(

β2

β1

)2
,

we have

‖f̂ − f∗‖2L2(Π) ≤
24η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 4

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ. (6)
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The proof will be given in Appendix C. The statement of Theorem 1 itself
is complicated. Thus we will show later concrete learning rates on some exam-
ples such as �p-MKL. The convergence rate (6) depends on the positive reals
{rm}Mm=1, but the choice of {rm}Mm=1 are arbitrary. Thus by minimizing the
right hand side of Eq. (6), we obtain tight convergence bound as follows:

‖f̂ − f∗‖2L2(Π) = Op

(
min

{rm}M
m=1:

rm>0

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ

+
M log(M)

n

})
. (7)

There is a trade-off between the first two terms (a) := α2
1 + β2

1 and the third

term (b) :=

[(
α2

α1

)2
+
(

β2

β1

)2]
‖f∗‖2ψ, that is, if we take {rm}m large, then the

term (a) becomes small and the term (b) becomes large, on the other hand, if
we take {rm}m small, then it results in large (a) and small (b). Therefore we
need to balance the two terms (a) and (b) to obtain the minimum in Eq. (7).

We discuss the obtained learning rate in two situations, (i) homogeneous
complexity situation, and (ii) inhomogeneous complexity situation:
(i) (homogeneous) All sms are same: there exists 0 < s < 1 such that sm =
s (∀m) (Sec.4).
(ii) (inhomogeneous) All sms are not same: there exist m,m′ such that sm �= sm′

(Sec.5).

4. Analysis on homogeneous settings

Here we assume all sms are same, say sm = s for all m (homogeneous setting).
In this section, we give a simple upper bound of the minimum of the bound (7)
(Sec.4.1), derive concrete convergence rates of some examples using the simple
upper bound (Sec.4.2) and show that the simple upper bound achieves the
minimax learning rate of ψ-norm ball if ψ-norm is isotropic (Sec.4.3). Finally
we discuss the optimal regularization (Sec.4.4). In Sec.4.2, we also discuss the
difference between our bound of �p-MKL and existing bounds.

4.1. Simplification of convergence rate

If we restrict the situation as all rms are same (rm = r (∀m) for some r), then the
minimization in Eq. (7) can be easily carried out as in the following lemma. Let 1
be the M -dimensional vector each element of which is 1: 1 := (1, . . . , 1)	 ∈ RM ,
and ‖ · ‖ψ∗ be the dual norm of the ψ-norm2.

Lemma 2. Suppose sm = s (∀m) with some 0 < s < 1, and set

λ
(n)
1 = 18M

1−s
1+s n− 1

1+s ‖1‖
2s

1+s

ψ∗ ‖f∗‖−
2

1+s

ψ , then for all n and t′ that sat-

2The dual of the norm ‖ · ‖ψ is defined as ‖b‖ψ∗ := supa{b�a | ‖a‖ψ ≤ 1}.



2150 T. Suzuki

isfy 4φ
κM

{
9
(

M√
n

) 1−s
1+s

(‖1‖ψ∗‖f∗‖ψ)
2s

1+s ∨ M log(M)√
n

}
η(t′) ≤ 1

12 and n ≥

(‖1‖ψ∗‖f∗‖ψ/M)
4s

1−s , and for all t ≥ 1, we have

‖f̂ − f∗‖2L2(Π) ≤ Cη(t)2
{
M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n

}
,

with probability 1 − exp(−t) − exp(−t′) where C is a constant depending on φ
and κM . In particular we have

‖f̂ − f∗‖2L2(Π) = Op

{
M1− 2s

1+sn− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n

}
. (8)

The proof is given in Appendix F.1. Lemma 2 is derived by assuming rm =
r (∀m), which might make the bound loose. However, when the norm ‖ · ‖ψ is
isotropic (whose definition will appear later), that restriction (rm = r (∀m))
does not make the bound loose, that is, the upper bound obtained in Lemma 2
is tight and achieves the minimax optimal rate (the minimax optimal rate is the
one that cannot be improved by any estimator). In the following, we investigate
the general result of Lemma 2 through some important examples.

4.2. Convergence rate of some examples

4.2.1. Convergence rate of �p-MKL

Here we derive the convergence rate of �p-MKL (1 ≤ p ≤ ∞) where ‖f‖ψ =∑M
m=1(‖fm‖pHm

)
1
p (for p = ∞, it is defined as maxm ‖fm‖Hm). It is well known

that the dual norm of �p-norm is given as �q-norm where q is the real satisfying

1
p + 1

q = 1. For notational simplicity, let Rp :=
(∑M

m=1 ‖f∗
m‖pHm

) 1
p

. Then sub-

stituting ‖f∗‖ψ = Rp and ‖1‖ψ∗ = ‖1‖�q = M
1
q = M1− 1

p into the bound (8),
the learning rate of �p-MKL is given as

‖f̂ − f∗‖2L2(Π) =Op

(
n− 1

1+sM1− 2s
p(1+s)R

2s
1+s
p +

M log(M)

n

)
. (9)

If we further assume n is sufficiently large such that

n ≥ M
2
pR−2

p (logM)
1+s
s , (10)

then the leading term is the first term, and thus we have

‖f̂ − f∗‖2L2(Π) = Op

(
n− 1

1+sM1− 2s
p(1+s)R

2s
1+s
p

)
. (11)

Note that as the complexity s of RKHSs becomes small the convergence rate

becomes fast. It is known that n− 1
1+s is the minimax optimal learning rate for
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single kernel learning. The derived rate of �p-MKL is obtained by multiplying a
coefficient depending on M and Rp to the optimal rate of single kernel learning.
To investigate the dependency of Rp to the learning rate, let us consider two
extreme settings, i.e., sparse setting (‖f∗

m‖Hm)Mm=1 = (1, 0, . . . , 0) and dense
setting (‖f∗

m‖Hm)Mm=1 = (1, . . . , 1) as in Kloft et al. (2011).

• (‖f∗
m‖Hm)Mm=1 = (1, 0, . . . , 0): Rp = 1 for all p. Therefore the convergence

rate n− 1
1+sM1− 2s

p(1+s) is fast for small p and the minimum is achieved at
p = 1. This means that �1 regularization is preferred for sparse truth.

• (‖f∗
m‖Hm)Mm=1 = (1, . . . , 1): Rp = M

1
p , thus the convergence rate is

Mn− 1
1+s for all p. Interestingly for dense ground truth, there is no de-

pendency of the convergence rate on the parameter p (later we will show
that this is not the case in inhomogeneous setting (Sec.5)). That is, the
convergence rate is M times the optimal learning rate of single kernel

learning (n− 1
1+s ) for all p. This means that for the dense settings, the

complexity of solving MKL problem is equivalent to that of solving M
single kernel learning problems.

Comparison with existing bounds Here we compare the bound for �p-
MKL we derived above with the existing bounds. Let H�p(Rp) be the �p-mixed

norm ball with radius Rp: H�p(Rp) := {f =
∑M

m=1 fm | (
∑M

m=1 ‖fm‖pHm
)

1
p ≤

Rp}. There are two types of convergence rates: global bound and localized
bound.

(comparison with existing global bound) Cortes et al. (2010); Kloft et al.
(2010, 2011) gave “global” type bounds for �p-MKL as

R(f) ≤ R̂(f) + C

⎧⎨⎩
√

log(M)
n Rp (p = 1),

M
1− 1

p√
n

Rp (p > 1),
(for all f ∈ H�p(Rp)), (12)

where R(f) and R̂(f) is the population risk and the empirical risk. The bounds
by Cortes et al. (2010) and Kloft et al. (2011) are restricted to the situation
1 ≤ p ≤ 2. On the other hand, our analysis and that of Kloft et al. (2010) covers
all p ≥ 1.

Since our bound is specialized to the regularized risk minimizer f̂ defined
at Eq. (1) while the existing bound (12) is applicable to all f ∈ H�p(Rp), our
bound is sharper than theirs for sufficiently large n. To see this, suppose that

n ≥
{
M2R−2

1 (logM)−
1+s
1−s (p = 1),

M
2
pR−2

p (p > 1),
(13)

then we have n− 1
1+sM1− 2s

p(1+s)R
2s

1+s
p ≤ n− 1

2 (M1− 1
p ∨ log(M))Rp and hence our

localized bound is sharper than the global one. Interestingly, the range of n
presented in Eq. (13) where the localized bound exceeds the global bound is same
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(up to logM term) as the range presented in Eq. (10) (n ≥ M
2
pR−2

p (logM)
1+s
s )

where the first term in our bound (9) dominates its second term so that the
simplified bound (11) holds. That means that, at the “phase transition point”
from global to localized bound, the first informative term in our bound becomes
the leading term.

Finally we note that, since s can be large as long as Spectral Assumption
(A3) is satisfied, the bound (12) is recovered by our analysis by approaching s
to 1.

(comparison with existing localized bound) Kloft and Blanchard (2011)
gave a tighter convergence rate utilizing the localization technique as

‖f̂ − f∗‖2L2(Π) = Op

(
minp′≥p

{
p′

p′−1n
− 1

1+sM
1− 2s

p′(1+s)R
2s

1+s

p′

})
, (14)

under a strong condition κM = 1 that imposes all RKHSs are completely uncor-
related to each other. Comparing our bound with their result, there is minp′≥p

and p′

p′−1 in their bound (if there is not the term p′

p′−1 , then the minimum of

minp′≥p is attained at p′ = p, thus our bound is tighter). Due to this, we ob-
tain a quite different consequence from theirs. According to our bound (11), the
optimal regularization among all �p-norm that gives the smallest generalization
error is �1-regularization (this will be discussed later in Sec.4.4) while their con-
sequence says that the optimal p changes depending on the “sparsity” of the true
function f∗. Moreover we will observe that �1-regularization is optimal among
all isotropic mixed-norm-type regularization. The details of the optimality will
be discussed in Sec.4.4.

4.2.2. Convergence rate of elasticnet-MKL

Elasticnet-MKL employs a mixture of �1 and �2 norm as the regularizer:

‖f‖ψ = τ‖f‖�1 + (1− τ)‖f‖�2

where τ ∈ [0, 1].

Then its dual norm is given by ‖b‖ψ∗ = mina∈RM

{
max

(
‖a‖�∞

τ ,
‖a−b‖�2

1−τ

)}
.

Therefore by a simple calculation, we have ‖1‖ψ∗ =
√
M

1−τ+τ
√
M
. Hence Eq. (8)

gives the convergence rate of elasticnet-MKL as

‖f̂ − f∗‖2L2(Π)

= Op

(
n− 1

1+s
M1− s

1+s

(1− τ + τ
√
M)

2s
1+s

(τ‖f∗‖�1 + (1− τ)‖f∗‖�2)
2s

1+s +
M log(M)

n

)
.

Note that, when τ = 0 or τ = 1, this rate is identical to that of �2-MKL or
�1-MKL obtained in Eq. (9) respectively.
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4.2.3. Convergence rate of VSKL

Variable Sparsity Kernel Learning (VSKL) employs a mixed norm regularization
defined by

‖f‖ψ = ‖f‖(p,q) =
{∑M ′

j=1

(∑Mj

k=1 ‖fj,k‖
p
Hj,k

) q
p

} 1
q

,

where RKHSs are divided into M ′ groups {Hj,k}Mj

k=1, (j = 1, . . . ,M ′) and 1 ≤
p, 1 ≤ q.

Lemma 3. The dual of the mixed norm is given by

‖b‖ψ∗ =

{∑M ′

j=1

(∑Mj

k=1 |bj,k|p
∗
) q∗

p∗

} 1
q∗

,

for bj,k ∈ R (k = 1, . . . ,Mj , j = 1, . . . ,M ′).

The proof will be given in Appendix F.2. Therefore the dual norm of the vec-

tor 1 is given by ‖1‖ψ∗ =

(∑M ′

j=1 M
q∗
p∗
j

) 1
q∗

. Hence, by Eq. (8), the convergence

rate of VSKL is given as

‖f̂ − f∗‖2L2(Π)

=Op

(
n− 1

1+s

⎛⎝M ′∑
j=1

Mj

⎞⎠1− 2s
1+s

⎡⎢⎣
⎛⎝M ′∑

j=1

M
q∗
p∗
j

⎞⎠
1
q∗
⎧⎨⎩

M ′∑
j=1

(

Mj∑
k=1

‖f∗
j,k‖pHj,k

)
q
p

⎫⎬⎭
1
q

⎤⎥⎦
2s

1+s

+
M log(M)

n

)
.

One can check that this convergence rate coincides with that of �p-MKL when
M ′ = 1.

4.3. Minimax lower bound

In this section, we show that the derived learning rate (8) achieves the minimax-
learning rate on the ψ-norm ball

Hψ(R) :=
{
f =

∑M
m=1 fm

∣∣∣ ‖f‖ψ ≤ R
}
,

when the norm is isotropic.

Definition 4. We say that ψ-norm ‖·‖ψ is isotropic when there exits a universal
constant c̄ such that

c̄M = c̄‖1‖�1 ≥ ‖1‖ψ∗‖1‖ψ, ‖b‖ψ ≤ ‖b′‖ψ (if 0 ≤ bm ≤ b′m (∀m)), (15)

(note that the inverse inequality M ≤ ‖1‖ψ∗‖1‖ψ of the first condition always
holds by the definition of the dual norm).
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Practically used regularizations usually satisfy the isotropic property. In fact,
�p-MKL, elasticnet-MKL and VSKL satisfy the isotropic property with c̄ = 1.

We derive the minimax learning rate in a simpler situation. First we assume
that each RKHS is same as others. That is, the input vector is decomposed
into M components like x = (x(1), . . . , x(M)) where {x(m)}Mm=1 are M i.i.d.
copies of a random variable X̃, and Hm = {fm | fm(x) = fm(x(1), . . . , x(M)) =

f̃m(x(m)), f̃m ∈ H̃} where H̃ is an RKHS shared by all Hm. Thus f ∈ H⊕M is

decomposed as f(x) = f(x(1), . . . , x(M)) =
∑M

m=1 f̃m(x(m)) where each f̃m is a

member of the common RKHS H̃. We denote by k̃ the kernel associated with
the RKHS H̃. We call this situation a completely homogeneous model.

In addition to the condition about the upper bound of spectrum (Spectral
Assumption (A3)), we assume that the spectrum of all the RKHSs Hm have the
same lower bound of polynomial rate.

Assumption 6. (Strong Spectral Assumption) There exist 0 < s < 1 and
0 < c, c′ such that

(A6) c′�−
1
s ≤ μ̃� ≤ c�−

1
s , (1 ≤ ∀�),

where {μ̃�}∞�=1 is the spectrum of the integral operator Tk̃ corresponding to the

kernel k̃. In particular, the spectrum of Tkm also satisfies μ�,m ∼ �−
1
s (∀�,m).

Without loss of generality, we may assume that E[f(X̃)] = 0 (∀f ∈ H̃). Since
each fm receives i.i.d. copy of X̃, Hms are orthogonal to each other:

E[fm(X)fm′(X)] = E[f̃m(X(m))f̃m′(X(m′))] = 0

(∀fm ∈ Hm, ∀fm′ ∈ Hm′ , 1 ≤ ∀m �= m′ ≤ M). (16)

We also assume that the noise {εi}ni=1 is an i.i.d. standard normal sequence.
Under the assumptions described above, we have the following minimax

L2(Π)-error.

Theorem 5. Suppose R > 0 is given and n > c̄2M2

R2‖1‖2
ψ∗

is satisfied. We suppose

the completely homogeneous model, and assume that Assumption 6 holds, the
condition (16) is satisfied, and the noise {εi}ni=1 is an i.i.d. standard normal
sequence. Then the minimax-learning rate on Hψ(R) for isotropic norm ‖ · ‖ψ
is lower bounded as

min
f̂

max
f∗∈Hψ(R)

E
[
‖f̂ − f∗‖2L2(Π)

]
≥ CM1− 2s

1+sn− 1
1+s (‖1‖ψ∗R)

2s
1+s , (17)

where inf is taken over all measurable functions of n samples {(xi, yi)}ni=1.

The proof will be given in Appendix E. One can see that the convergence
rate derived in Eq. (8) achieves the minimax rate on the ψ-norm ball (Theorem

5) up to M log(M)
n that is negligible when the number of samples is large. Indeed

if

n ≥ M2 log(M)
1+s
s

‖1‖2ψ∗‖f∗‖2ψ
, (18)
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then the first term in Eq. (8) dominates the second term M log(M)
n and the upper

bound coincides with the minimax optima rate. Note that the condition (18)
for the sample size n is equivalent to the condition for n assumed in Theorem 5

up to factors of log(M)
1+s
s and a constant.

The fact that ψ-norm MKL achieves the minimax optimal rate (17) indicates
that the ψ-norm regularization is well suited to make the estimator included in
the ψ-norm ball.

4.4. Optimal regularization strategy

Here we discuss which regularization gives the best performance based on the
generalization error bound given by Lemma 2. Surprisingly the best regulariza-
tion that gives the optimal performance among all isotropic ψ-norm regulariza-
tions is �1-norm regularization. This can be seen as follows. According to Eq. (8),
we have seen that the convergence rate of ψ-norm MKL is upper bounded as

‖f̂ − f∗‖2L2(Π) = Op

{
M1− 2s

1+sn− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n

}
,

and this is mini-max optimal on ψ-norm ball if ψ-norm is isotropic. Here by the
definition of the dual norm ‖ · ‖ψ∗ , we always have

‖f∗‖�1 =

M∑
m=1

‖f∗
m‖Hm =

M∑
m=1

1× ‖f∗
m‖Hm ≤ ‖1‖ψ∗‖f∗‖ψ. (19)

Therefore the leading term of the convergence rate for �1-norm regularization is
upper bounded by that for other arbitrary ψ-norm regularization as

M1− 2s
1+sn− 1

1+s ‖f∗‖
2s

1+s

�1
≤ M1− 2s

1+sn− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s ,

(here it should be noticed that the dual norm of �1-norm is �∞-norm and
‖1‖�∞ = 1). This shows that the upper bound (8) is minimized by �1-norm
regularization. In other words, �1-regularization is optimal among all (isotropic)
ψ-norm regularization in homogeneous settings.

This consequence is different from that of Kloft and Blanchard (2011) where
the optimal regularization among �p-MKL is discussed. Their consequence says
that the best performance is achieved at p � 1 and the best p depends on the
variation of the RKHS norms of {f∗

m}Mm=1: if f
∗ is close to sparse (i.e., ‖f∗

m‖Hm

decays rapidly), small p is preferred, on the other hand if f∗ is dense (i.e.,
{‖f∗

m‖Hm}Mm=1 is uniform), then large p is preferred. This consequence seems
reasonable, but our consequence is different: �1-norm regularization is always op-
timal in �p-regularizations. The antinomy of the two consequences comes from

the additional terms minp′≥p and p′

p′−1 in their bound (14) (there are no such

terms in our bound). This difference makes our bound tighter than their bound
but simultaneously leads to a somewhat counter-intuitive consequence that is
contrastive against the some experiment results supporting dense type regu-
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larization. However such experimental observations are justified by considering
inhomogeneous settings. Here we should notice that the homogeneous setting
is quite restrictive and unrealistic because it is required that the complexities
of all RKHSs are uniformly same. In real settings, it is natural to assume the
complexities varies depending on RKHS (inhomogeneous). In the next section,
we discuss how dense type regularizations outperform the �1-regularization.

5. Analysis on inhomogeneous settings

In the previous sections (analysis on homogeneous settings), we have seen �1-
MKL shows the best performance among isotropic ψ-norm and have not ob-
served any theoretical justification supporting the fact that dense MKL methods
like � 4

3
-MKL can outperform the sparse �1-MKL (Cortes et al., 2010). In this sec-

tion, we show dense type regularizations can outperform the sparse regulariza-
tion in inhomogeneous settings (where there exists m,m′ such that sm �= sm′).
For simplicity, we focus on �p-MKL, and discuss the relation between the learn-
ing rate and the norm parameter p.

Let us consider an extreme situation where s1 = s2 = · · · = sd = s for some
0 < s < 1 and 1 ≤ d ≤ M , and sm = 0 (m > d) under Assumption 3 (that is,
all RKHSs Hm for m ≥ d are finite dimensional). In this situation, we may have

α1 = 3

(
dr−2s

1 +M − d

n

) 1
2

, α2 = 3
sr1−s

1√
n

‖1d‖ψ∗ ,

β1 = 3

(
dr

− 2s(3−s)
1+s

1 +M − d

n
2

1+s

) 1
2

, β2 = 3
sr

(1−s)2

1+s

1

n
1

1+s

‖1d‖ψ∗ .

for all norm ψ where 1d = ( 1, . . . , 1︸ ︷︷ ︸
d elements

, 0, . . . , 0)	. Note that these α1, α2, β1 and

β2 have dependency on the choice of the norm ‖·‖ψ. Through a bit cumbersome
calculation, we obtain the following lemma that describes how the choice of
the regularization affects the generalization error in an inhomogeneous setting.
The lemma indicates that, in an inhomogeneous setting, �p-regularization with
1 < p < ∞ could achieve better generalization than p = 1 and p = ∞. Here, we
denote by f̂ (p) the trained function by �p-MKL.

Lemma 6. Suppose that there exits 1 < s < 1, and 1 ≤ d ≤ M such that sm = s
for 1 ≤ m ≤ d and sm = 0 (m > d) under Assumption 3 and ‖f∗

m‖Hm ≤ 1 for

all m. If n ≥ M
4s

1−s ∨ (M log(M))
1+s
s and ‖f∗‖�p ≥ 1 for all p ≥ 1, then the

bound (7) implies

‖f̂ (p) − f∗‖2L2(Π) = Op

(
n− 1

1+s d1−
2s

p(1+s) ‖f∗‖
2s

1+s

�p

)
.

In particular, if d = M b1 and ‖f∗
m‖Hm = m−b2 for 0 < b1 < 1 and 0 < b2 < 1,

then it holds that

‖f̂ (1) − f∗‖2L2(Π) = Op

(
n− 1

1+sM
2s

1+s (1−b2)+
1−s
1+s b1

)
,
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Fig 1. The generalization error bound (20) of �p-MKL with respect to p.

‖f̂ (∞) − f∗‖2L2(Π) = Op

(
n− 1

1+sM b1
)
,

‖f̂ (b−1
2 ) − f∗‖2L2(Π) = Op

(
n− 1

1+sM b1(1− 2sb2
1+s ) log(M)b2

2s
1+s

)
.

The proof is given in Appendix F.3. If d is very small so that b1 < 2s
1+s (1−b2),

then it is easy to check that the bound for f̂ (∞) is better than that of f̂ (1).
This indicates that when the complexities of RKHSs are highly inhomogeneous,
the generalization ability of dense type regularization (e.g., �∞-MKL) can be
better than sparse type regularization (�1-MKL). Moreover, by the assumption

0 < b1, b2 < 1, we can see that the bound for f̂ (b−1
2 ) is better than those of

both f̂ (1) and f̂ (∞). This indicates that the inhomogeneity of the complexities
of the RKHSs and the norms of (f∗

m)m affects the optimal regularization. In
particular, an intermediate regularization (�1/b2-regularization) could be better
than the extremal ones (�1 and �∞-regularizations).

Next we numerically calculate the convergence rate:

min
{rm}M

m=1:
rm>0

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ

}
. (20)

Here we randomly generated sm from the uniform distribution on [0, 1/3] and
‖f∗

m‖Hm from the uniform distribution on [0, 1] with n = 100 and M = 10. Then
calculated the minimum of Eq. (20) using a numerical optimization solver where
�p-norm is employed as the regularizer (�p-MKL). We used Differential Evolution
technique3 (Lampinen, 2005; Chakraborty, 2008) to obtain the minimum value.
Figure 1 plots the minimum value of Eq. (20) against the parameter p of �p-
norm. We can see that the generalization error once goes down and then goes
up as p gets large. The optimal p is attained around p = 1.4 in this example.

3 We used the Matlab R© code available in Chakraborty (2008).
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In real settings, it is likely that one uses various types of kernels and the
complexities of RKHSs become inhomogeneous. As mentioned above, it has
been often reported that �1-MKL is outperformed by dense type MKL such as
� 4

3
-MKL in numerical experiments (Cortes et al., 2010). Our theoretical analysis

in this section well support these experimental results.

6. Numerical comparison between homogeneous and inhomogeneous
settings

Here we investigate numerically how the inhomogeneity of the complexities af-
fects the performances using synthetic data. In particular, we numerically com-
pare two situations: (a) all complexities of RKHSs are same (homogeneous sit-
uation) and (b) one RKHS is complex and other RKHSs are evenly simple
(inhomogeneous situation).

The experimental settings are as follows. The input random variable is 20 di-
mensional vector x = (x(1), . . . , x(20)) where each element x(m) is independently
identically distributed from the uniform distribution on [0, 1]:

x(m) ∼ Unif([0, 1]) (m = 1, . . . , 20).

For each coordinate m = 1, . . . , 20, we put one Gaussian RKHS Hm with a
Gaussian width ζm: the number of kernels is 20 (M = 20) and

km(x, x′) = exp

(
− (x(m) − x′ (m))2

2ζ2m

)
(m = 1, . . . , 20),

for x = (x(1), . . . , x(20)) and x′ = (x′ (1), . . . , x′ (20)). To generate the ground
truth f∗, we randomly generated 5 center points μi,m (i = 1, . . . , 5) for each
coordinate m = 1, . . . , 20 where μi,m is independently generated by the uniform
distribution on [0, 1]. Then we obtain the following form of the true function:

f∗(x) =
20∑

m=1

f∗
m(x),

where f∗
m(x) =

5∑
i=1

αi,m exp

(
− (x(m) − μi,m)2

2ζ2m

)
∈ Hm,

for x = (x1, . . . , xm). Each coefficient αi,m is independently identically dis-
tributed from the standard normal distribution. The output y is contaminated
by a noise ε where the noise ε is distributed from the Gaussian distribution with
mean 0 and standard deviation 0.1:

y = f∗
m(x) + ε,

ε ∼ N (0, 0.1).
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We generated 200 or 400 realizations {(xi, yi)}ni=1 (n = 200 or n = 400),
and estimated f∗ using �p-MKL with p = 1, 1.1, 1.2, . . . , 3 4. The estimator is

computed with various regularization parameters λ
(n)
1 . The generalization error

‖f̂ − f∗‖2L2(Π) was numerically calculated. We repeated the experiments for 100
times, averaged the generalization errors over 100 repetitions for each p and each
regularization parameter, and obtained the optimal average generalization error
among all regularization parameters for each p. The true function was randomly
generated for each repetition. We investigated the generalization errors in the
following homogeneous and inhomogeneous settings:

1. (homogeneous) ζm = 0.5 for m = 1, . . . , 20.
2. (inhomogeneous) ζ1 = 0.01 and ζm = 0.5 for m = 2, . . . , 20.

The difference between the above homogeneous and inhomogeneous settings is
the value of ζ1; whether ζ1 = 0.5 or ζ1 = 0.01. The inhomogeneous situation is
analogous to that investigated in Sec.5 where we assumed one RKHS is complex
and the other RKHSs are evenly simple (small ζ1 corresponds to a complex
RKHS).

Figure 2 shows the average generalization errors in the homogeneous setting
with (a) n = 200 and (c) n = 400, and the inhomogeneous setting with (b)
n = 200 and (d) n = 400. Each broken line corresponds to one regularization
parameter. The bold solid line shows the best (average) generalization error
among all the regularization parameters. We can see that in the homogeneous
setting �1-regularization shows the best performance, on the other hand, in
the inhomogeneous setting the best performance is achieved at p > 1 for both
n = 200 and 400. This experimental results beautifully matches the theoretical
investigations.

7. Generalization of loss function

Here we discuss how a general loss function other than squared loss can be
involved into our analysis. As in the standard local Rademacher complexity
argument (Bartlett et al., 2005), we consider a class of loss functions that are
Lipschitz continuous and strongly convex. Suppose that the loss function Ψ :
R × R → R satisfies Lipschitz continuity: for all R > 0, there exists a constant
T (R) such that

|Ψ(y, f1)−Ψ(y, f2)| ≤ T (R)|f1 − f2|
(∀f1, f2 ∈ R such that |f1|, |f2| ≤ R, ∀y ∈ R). (21)

Moreover, suppose that, for all y ∈ R, Ψ(y, f) is a strongly convex with a
modulus ρ(R) > 0:

Ψ(y, f1) + Ψ(y, f2)

2
≥ Ψ

(
y,

f1 + f2
2

)
+

ρ(R)

2
|f1 − f2|2

4We included a bias term in this experiment, that is, we fitted f̂(x) + b to the data:

minfm,b
1
n

∑n
i=1(yi −

∑M
m=1 fm(xi)− b)2 + λ

(n)
1 ‖f‖2�p .
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Fig 2. The expected generalization error E[‖f̂ − f∗‖2
L2(Π)

] against the parameter p for �p-

MKL. Each broken line corresponds to one regularization parameter. The bold solid line shows
the best generalization error among all the regularization parameters.

(∀f1, f2 ∈ R such that |f1|, |f2| ≤ R). (22)

Some detailed discussions about these conditions and examples can be found in
Bartlett et al. (2006). Under the loss functions satisfying these properties, we
obtain simplified bound where some conditions can be omitted as follows:

• We can remove the condition 4φ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12 ,
• The term exp(−t′) is not needed in the tail probability.

To obtain a fast convergence rate on a general loss functions Ψ, we move the
regularization term in Eq. (1) into a constraint, and then consider the following
optimization problem:

f̂ =

M∑
m=1

f̂m = argmin
fm∈Hm (m=1,...,M),

‖f‖ψ≤R̂

1

n

N∑
i=1

Ψ

(
yi,

M∑
m=1

fm(xi)

)
, (23)
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where R̂ is a regularization parameter. The above optimization problem is essen-
tially equivalent to the original formulation (1), but by considering the constraint
type regularization instead of the penalty type regularization the theoretical
analysis of statistical performance can be simplified.

We define Pg as the expectation of a function g : R× R → R:

Pg := E(X,Y )∼P [g(X,Y )].

For notational simplicity, we write PΨ(f) = PΨ(Y, f) = E(X,Y )∼P [Ψ(Y, f(X))]
for a function f . We suppose there exists a minimizer for PΨ(f) as follows.

Assumption 7. (Minimizer Existence Assumption)
There exists unique f∗ = (f∗

1 , . . . , f
∗
M ) ∈ H⊕M such that

(A7) f∗ =

M∑
m=1

f∗
m = argmin

fm∈Hm (m=1,...,M)

PΨ

(
M∑

m=1

fm(X)

)
.

Note that, due to the incoherence assumption (Assumption 4) and the strong
convexity (22) of the loss function, if there exists a minimizer, then that is
automatically unique.

To bound the convergence rate on a general loss function, it is convenient

to utilize local Rademacher complexity on ψ-norm ball. Let H(r)
ψ (R) := {f ∈

H⊕M | ‖f‖L2(Π) ≤ r, ‖f‖ψ ≤ R}. Then the local Rademacher complexity of

H(r)
ψ (R) is defined as

Rn(H(r)
ψ (R)) := E{σi,xi}n

i=1

⎡⎣ sup
f∈H(r)

ψ (R)

1

n

n∑
i=1

σif(xi)

⎤⎦ ,
where σi ∈ {±1} is the i.i.d. Rademacher random variable with P (σi = 1) =
P (σi = −1) = 1

2 . Evaluating the local Rademacher complexity is a key ingre-
dient to show a fast convergence rate on a general loss function. We obtain the
following estimation of the local Rademacher complexity (the proof will be given
in Appendix F.4).

Lemma 7. Let {rm}Mm=1 be arbitrary positive reals. Under Assumptions 2-
5, there exists a constant φ̃ depending on {sm}Mm=1, c, C1 such that for all n

satisfying log(M)√
n

≤ 1 we have

Rn(H(r)
ψ (R)) ≤ φ̃

(
α1

r√
κM

+ α2R+ β1
r√
κM

+ β2R+

√
M log(M)

n

r√
κM

)
.

Finally note that the supremum norm of f with ‖f‖ψ ≤ R̂ can be bounded
as

‖f‖∞ ≤
M∑

m=1

‖fm‖∞ ≤
M∑

m=1

‖fm‖Hm ≤ ‖1‖ψ∗‖f‖ψ ≤ ‖1‖ψ∗R̂.

Then, we obtain the excess risk bound as in the following theorem.
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Theorem 8. Suppose Assumptions 2-5 and 7 are satisfied and the loss function
Ψ satisfies the conditions (21) and (22). Let {rm}Mm=1 be arbitrary positive reals
that can depend on n and let T̄ = T (‖1‖ψ∗R̂) and ρ̄ = ρ(‖1‖ψ∗R̂). Set R̂ =

‖f∗‖ψ. Then there exists a constant φ̃′ depending on {sm}Mm=1, c, C1 such that

for all n satisfying log(M)√
n

≤ 1, we have

P (Ψ(f̂)−Ψ(f∗
R̂
))

≤ φ̃′ρ̄

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ φ̃′ T̄

2

ρ̄

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ

+
{22T̄‖1‖ψ∗R̂+ 27ρ̄}t

n
, (24)

with probability 1− exp(−t).

This can be shown by applying the bound of the local Rademacher complexity
(Lemma 7) to Corollary 5.3 of Bartlett et al. (2005)5. Compared with the bound
in Eq. (6), we notice that there is no exp(−t′) term in the tail probability bound,

and thus we don’t need the condition 4φ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12 .
Because of this, the range of n where the error bound holds is relaxed compared
with that in Theorem 1. These simplifications are due to the Lipschitz continuity
of the loss function. In Theorem 1, we should have bounded the discrepancy
between the empirical and population means of the squared loss: 1

n

∑n
i=1(f̂(xi)−

f∗(xi))
2 − P (f̂ − f∗)2. Since the squared loss is not Lipschitz continuous, we

required an additional bound for that discrepancy using Assumption 5 for the
supremum norm, and it was shown that that discrepancy is negligible at the cost
of exp(−t′) in the tail probability. On the other hand, for Lipschitz continuous
losses, we no longer need to bound such a quantity. Thus the tail probability
loss exp(−t′) is not induced.

Since the bound (24) is basically same as Eq.(6), we obtain the same discus-
sions as in the previous sections. For example, in the homogeneous setting, we
obtain the following convergence bound.

Lemma 9. When sm = s (∀m) with some 0 < s < 1, if we set R̂ = ‖f∗‖ψ,
then for all n satisfying log(M)√

n
≤ 1 and n ≥ (‖1‖ψ∗‖f∗‖ψ/M)

4s
1−s , and for all

t ≥ 1, we have

P (Ψ(f̂)−Ψ(f∗)) ≤ C

{
M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n
+

t

n

}
,

with probability 1 − exp(−t) where C is a constant depending on φ̃′, κM ,
ρ(‖1‖ψ∗R̂), and T (‖1‖ψ∗R̂).

5 In Corollary 5.3 of Bartlett et al. (2005), the range of the function class is assumed to
be included in the interval [−1, 1]. Here we utilize more general settings where the interval is

[−a, a] and ‖1‖ψ∗ R̂ is substituted to a. See Lemma 9 of Kloft and Blanchard (2011).
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8. Conclusion and future work

We have shown a unifying framework to derive the learning rate of MKL with
arbitrary mixed-norm-type regularization. To analyze the general result, we
considered two situations: homogeneous settings and inhomogeneous settings.
We have seen that the convergence rate of �p-MKL obtained in homogeneous
settings is tighter and requires less restrictive condition than existing results.
We have also shown convergence rates of some examples (elasticnet-MKL and
VSKL), and proved the derived learning rate is minimax optimal when ψ-norm
is isotropic. An interesting consequence was that �1-regularization is optimal
among all isotropic ψ-norm regularization in homogeneous settings. In the anal-
ysis of inhomogeneous settings, we have shown that the dense type regularization
can outperform the sparse �1-regularization using analytically obtained bounds
and numerically computed bounds. We observed that our bound well explains
the experimental results favorable for dense type MKL. Finally we numerically
investigated the generalization errors of �p-MKL in a homogeneous setting and
an inhomogeneous setting. The numerical experiments supported the theoretical
findings that �1-regularization is optimal in homogeneous settings but, on the
other hand, dense type regularizations are preferred in inhomogeneous settings.
This is the first result that suggests that the inhomogeneity of the complexities
of RKHSs well justifies the favorable performances for dense type MKL.

An interesting future work is about the M log(M)
n term appeared in the bound

Eq. (8). Because of this term, our bound is O(M log(M)) with respect to M

while in the existing work that is O(
√

log(M) ∨M1− 1
p ) for �p-MKL. Therefore

our bound is not tight in the global bound regime (n ≤ M
2
pR−2

p log(M)
1+s
s for

�p-MKL). It is an interesting issue to clarify whether the term M log(M)
n can

be replaced by other tighter bounds or not. To do so, it might be helpful to
combine our technique developed in this paper and that developed by Kloft
and Blanchard (2011) where the local Rademacher complexity for �p-MKL is
derived.

Appendix A: Relation between entropy number and spectral
condition

Associated with the ε-covering number, the i-th entropy number ei(Hm →
L2(Π)) is defined as the infimum over all ε > 0 for which N(ε,BHm , L2(Π)) ≤
2i−1. If the spectral assumption (A3) for 0 < s < 1 (Assumption 3) and the
boundedness assumption (A2) hold, the relation (2) implies that the i-th entropy
number is bounded as

ei(Hm → L2(Π)) ≤ Ci−
1
2s , (25)

where C is a constant. To bound empirical process a bound of the entropy num-
ber with respect to the empirical distribution is needed. The following proposi-
tion gives an upper bound of that (see Corollary 7.31 of Steinwart (2008), for
example).
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Proposition 10. If there exists constants 0 < s < 1 and C ≥ 1 such that
ei(Hm → L2(Π)) ≤ Ci−

1
2s , then there exists a constant cs > 0 only depending

on s such that

EDn∼Πn [ei(Hm → L2(Dn))] ≤ csC(min(i, n))
1
2s i−

1
s ,

in particular EDn∼Πn [ei(Hm → L2(Dn))] ≤ csCi−
1
2s .

Appendix B: Basic propositions

The following two propositions are keys to prove Theorem 1. Let (σi)
n
i=1 be i.i.d.

Rademacher random variables, i.e., σi ∈ {±1} and P (σi = 1) = P (σi = −1) =
1
2 .

Proposition 11. (Steinwart, 2008, Theorem 7.16) Let Bσ,a,b ⊂ Hm be a
set such that BB,a,b = {fm ∈ Hm | ‖fm‖L2(Π) ≤ B, ‖fm‖Hm ≤ a, ‖fm‖∞ ≤ b}.
Assume that there exist constants 0 < s < 1 and 0 < c̃s such that

EDn [ei(Hm → L2(Dn))] ≤ c̃si
− 1

2s .

Suppose that {ξi}ni=1 is a sequence of i.i.d. sub-Gaussian random variables satis-
fying E[eξit] ≤ exp(t2/2) for all t ∈ R. Then there exists a constant C ′

s depending
only s such that

E

[
sup

fm∈BB,a,b

∣∣∣∣∣ 1n
n∑

i=1

ξifm(xi)

∣∣∣∣∣
]
≤ C ′

s

(
B1−s(c̃sa)

s

√
n

∨ (c̃sa)
2s

1+s b
1−s
1+s n− 1

1+s

)
.

(26)

In particular, this bound hods for the Rademacher random variable ξi = σi and
the standard normal random variable ξi ∼ N(0, 1).

Moreover, for s = 0, the following proposition holds.

Proposition 12. Under the same notation in Proposition 11 and the spectral
assumption (Assumption 3) for Hm with sm = 0, it holds that

E

[
sup

fm∈Bσ,a,b

∣∣∣∣∣ 1n
n∑

i=1

ξifm(xi)

∣∣∣∣∣
]
≤
√

c

n
B.

Proof. Since the RKHS Hm is finite dimensional (say d-dimensional), there ex-
ists ϕ : X → Rd such that each element f can be expressed by f(x) = β	ϕ(x)
by a vector β ∈ Rd. Let Σ = E[ϕ(X)ϕ(X)	] ∈ Rd×d. Then, since the dimension
of the RKHS Hm is d, we have Σ � O. Thus,

E

[
sup

fm∈BB,a,b

∣∣∣∣∣ 1n
n∑

i=1

ξifm(xi)

∣∣∣∣∣
]
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=E

[
sup

βm:fm=β�
mϕ∈BB,a,b

∣∣∣∣∣ 1n
n∑

i=1

ξiβ
	
mϕ(xi)

∣∣∣∣∣
]

≤E

[
sup

βm:fm=β�
mϕ∈BB,a,b

‖βm‖Σ

∥∥∥∥∥ 1n
n∑

i=1

ξiϕ(xi)

∥∥∥∥∥
Σ−1

]

≤E

[
B

∥∥∥∥∥ 1n
n∑

i=1

ξiϕ(xi)

∥∥∥∥∥
Σ−1

]

≤B

√√√√√E

⎡⎣ 1

n2

n∑
i=1

n∑
j=1

ξiξjϕ(xi)	Σ−1ϕ(xj)

⎤⎦
=B

√
1

n
Tr[Σ−1Σ] ≤

√
d

n
B ≤

√
c

n
B,

where the last inequality is by Assumption 3.

Proposition 13. (Talagrand’s Concentration Inequality (Talagrand
(1996); Bousquet (2002))) Let G be a function class on X that is separa-
ble with respect to ∞-norm, and {xi}ni=1 be i.i.d. random variables with val-
ues in X . Furthermore, let B ≥ 0 and U ≥ 0 be B := supg∈G E[(g − E[g])2]
and U := supg∈G ‖g‖∞, then there exists a universal constant K such that, for

Z := supg∈G
∣∣ 1
n

∑n
i=1 g(xi)− E[g]

∣∣, we have

P

(
Z ≥ K

[
E[Z] +

√
Bt

n
+

Ut

n

])
≤ e−t.

Since the above proposition assumes that the functions are uniformly
bounded, it can not be applied to evaluate the supremum of an empirical pro-
cess with unbounded summands; in particular, supg∈G |

∑n
i=1 εig(xi)| where εi

is an i.i.d. Gaussian noise. To bound this type of Gaussian process, we utilize
the Gaussian concentration inequality.

Proposition 14 (Gaussian concentration inequality (Theorem 2.5.8 in Giné
and Nickl (2015))). Let {ξi}ni=1 be i.i.d. Gaussian sequence with mean 0 and
variance L2, and {xi}ni=1 ⊂ X be a given set of input variables. Then, for a set
G of functions from X to R which is separable with respect to L∞-norm and
supf∈G

∣∣∑n
i=1

1
nξig(xi)

∣∣ < ∞ almost surely, it holds that for every r > 0,

P

(
sup
g∈G

∣∣∣∣∣
n∑

i=1

1

n
ξig(xi)

∣∣∣∣∣ ≥ Eξ

[
sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

ξig(xi)

∣∣∣∣∣
∣∣∣∣{xi}ni=1

]

+

√
2L‖G‖n√

n

√
r

∣∣∣∣{xi}ni=1

)
≤ e−r

where ‖G‖2n = supg∈G
1
n

∑n
i=1 g(xi)

2. Here the probability is taken with respect
to {ξi}ni=1.
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Here, the bound still depends on the observations {xi}ni=1. To derive the
population bound, we utilize the following bound for the self-bounding random
variable.

Definition 15 (Self-bounding random variable). Let X1, . . . , Xn be a sequence
of independent random variables. A random variable Z = f(X1, . . . , Xn) is
called self-bounding if there exists a sequence of random variables Zk =
fk(X1, . . . , Xk−1, Xk+1, . . . , Xn) (k = 1, . . . , n) such that

0 ≤ Z − Zk ≤ 1 (1 ≤ k ≤ n),

n∑
k=1

(Z − Zk) ≤ Z.

Proposition 16 (Theorem 3.3.15 of Giné and Nickl (2015)). Let Z be a self-
bounding random variable. Then, for t > 0, it holds that

P (Z ≥ E[Z] +
√
E[Z]t+ t/3) ≤ e−t.

In particular, we have
P (Z ≥ 2E[Z] + t) ≤ e−t.

(i) For example, Z = supg∈G
∑n

i=1 g(Xi) is a self-bounding random variable,
when G is separable with respect to L∞-norm and 0 ≤ g(x) ≤ 1 for all x ∈ X
and g ∈ G.

(ii) Z = f(x1, . . . , xn) = Eξ[supg∈G |
∑n

i=1 ξig(xi)| |{xi}ni=1] is also self-
bounding, when G is separable with respect to L∞-norm and 0 ≤ g(x) ≤
1 for all x ∈ X and g ∈ G and ξi is independent standard normal.
This can be checked as Zk = Eξ[supg∈G |

∑n
i=1,i �=k ξig(xi)| |{xi}ni=1] and

Z ≤ Eξ[supg∈G |
∑n

i=1,i �=k ξig(xi)| |{xi}ni=1] + Eξ[supg∈G |ξkg(xk)||xk] ≤ Zk +

Eξ[|ξk|] ≤ Zk +
√
Eξ[|ξk|2] ≤ Zk + 1, and the convexity of (ξ1, . . . , ξn) �→

supg∈G |
∑n

i=1 ξig(xi)| gives Z ≥ E(ξ)i �=k
[supg∈G |Eξk [

∑n
i=1 ξig(xi)]| |{xi}ni=1] =

Zk.
Therefore, with Proposition 16, we obtain the following lemma.

Lemma 17. Let {ξi}ni=1 be i.i.d. Gaussian sequence with mean 0 and variance
L2. For a set G of functions from X to R which is separable with respect to
L∞-norm and supg∈G ‖g‖∞ < U , it holds that for every t > 0,

P (‖G‖2n ≥ 2‖G‖2L2(Π) + U2t/n) ≤ e−t,

and

P

(
Eξ

[
sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

ξig(xi)

∣∣∣∣∣
∣∣∣∣{xi}ni=1

]
≥ 2Eξ

[
sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

ξig(xi)

∣∣∣∣∣
]
+

LUt

n

)
≤ e−t.

As a consequence, we have the following lemma which corresponds to a Gaus-
sian process version of Proposition 13.
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Lemma 18. Under the same assumptions with Proposition 13 except that B :=
supg∈G E[g2], U := supg∈G ‖g‖∞ and Z := supg∈G |

∑n
i=1

1
nξig(xi)| where

{ξi}ni=1 is a sequence of i.i.d. normal variables with mean 0 and variance L2.
Then, there exists a universal constant K > 0 such that

Px,ξ

(
Z ≥ K

[
E[Z] + L

√
Bt

n
+

LUt

n

])
≤ 3e−t,

where the probability is taken with respect to {ξi}ni=1 and {xi}ni=1.

Proof. Combining Proposition 14 and Lemma 17, it holds that, for t > 0,

P

⎛⎝Z ≥ 2E [Z] +
LUt

n
+

√
2L
√

2‖G‖2L2(Π) + U2t/n
√
n

√
t+

LUt

n

⎞⎠
≤ e−t + e−t + e−t.

Then, by arranging the terms in the left hand side, we obtain the assertion.

Appendix C: Proof of Theorem 1

Let rm > 0 (m = 1, . . . ,M) be arbitrary positive reals. Given {rm}Mm=1, we

determine U
(m)
n,sm(fm) as follows:

U (m)
n,sm(fm) := 3

⎛⎝r−sm
m√
n

∨ r
− sm(3−sm)

1+sm
m

n
1

1+sm

⎞⎠(‖fm‖L2(Π) + smrm‖fm‖Hm

)
+

√
log(M)

n
‖fm‖L2(Π).

It is easy to see U
(m)
n,sm(fm) is an upper bound of the quantity

‖fm‖1−sm
L2(Π)

‖fm‖sm
Hm√

n
∨

‖fm‖
(1−sm)2

1+sm
L2(Π)

‖fm‖
sm(3−sm)

1+sm
Hm

n
1

1+sm

(this corresponds to the RHS of Eq. (26)) because

‖fm‖1−sm
L2(Π)‖fm‖smHm√

n
=

r1−sm
m√
n

(‖fm‖L2(Π)

rm

)1−sm

‖fm‖smHm

(Young)

≤ r1−sm
m√
n

(
(1− sm)

‖fm‖L2(Π)

rm
+ sm‖fm‖Hm

)
≤ r−sm

m√
n

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)
, (27)

where we used Young’s inequality a1−smbsm ≤ (1 − sm)a + smb in the second
line, and similarly we obtain

‖fm‖
(1−sm)2

1+sm

L2(Π) ‖fm‖
sm(3−sm)

1+sm

Hm

n
1

1+sm
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≤ r
− sm(3−sm)

1+sm
m

n
1

1+sm

(
‖fm‖L2(Π) +

sm(3− sm)

1 + sm
rm‖fm‖Hm

)

≤ 3
r
− sm(3−sm)

1+sm
m

n
1

1+sm

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)
,

where we used sm(3−sm)
1+sm

≤ 3sm in the last inequality.
Now we define

φ := max
(
KL

[
2C̃∗ + 1 + C1

]
,K
[
2C1C̃∗ + C1 + C2

1

])
,

where C̃∗ is a constant defined later in Lemma 23, C1 is the one introduced
in Assumption 5, K is the maximum of the universal constants appeared in
Talagrand’s concentration inequality (Proposition 13) and Lemma 18, and L is
the one introduced in Assumption 1 to bound the magnitude of noise. Remind
the definition of η(t):

η(t) := ηn(t) = max(1,
√
t, t/

√
n).

We define events E1(t) and E2(t
′) as

E1(t) =

{∣∣∣∣∣ 1n
n∑

i=1

εifm(xi)

∣∣∣∣∣ ≤ φU (m)
n,sm(fm)η(t), ∀fm ∈ Hm (m = 1, . . . ,M)

}
,

(28)

E2(t
′) =

{∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣ ≤ φ
√
n

(
M∑

m=1

U (m)
n,sm(fm)

)2

η(t′),

∀fm ∈ Hm (m = 1, . . . ,M)

}
. (29)

Using Lemmas 24 and 25 that will be shown in Appendix D, we see that
the events E1(t) and E2(t

′) occur with probability no less than 1− exp(−t) and
1− exp(−t′) respectively as in the following Lemma.

Lemma 19. Under the Basic Assumption (Assumption 1), the Spectral As-
sumption (Assumption 3) and the Embedded Assumption (Assumption 5), the
probabilities of E1(t) and E2 are bounded as

P (E1(t)) ≥ 1− exp(−t), P (E2(t
′)) ≥ 1− exp(−t′).

Proof. Lemma 25 immediately gives P (E1(t)) ≥ 1−exp(−t) by noticing φ̄ in the
statement of Lemma 25 satisfies φ̄ ≤ φ. Moreover, since φ̄′ in the statement of
Lemma 24 satisfies φ̄′ ≤ φ, we have P (E2(t

′)) ≥ 1− exp(−t′) by Lemma 24.

Remind the definition (4) of α1, α2, β1, β2:

α1 = 3

(
M∑

m=1

r−2sm
m

n

) 1
2

, α2 = 3

∥∥∥∥∥
(
smr1−sm

m√
n

)M

m=1

∥∥∥∥∥
ψ∗

,
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β1 = 3

⎛⎝ M∑
m=1

r
− 2sm(3−sm)

1+sm
m

n
2

1+sm

⎞⎠
1
2

, β2 = 3

∥∥∥∥∥∥∥
⎛⎝smr

(1−sm)2

1+sm
m

n
1

1+sm

⎞⎠M

m=1

∥∥∥∥∥∥∥
ψ∗

, (30)

for given reals {rm}Mm=1. The following theorem immediately gives Theorem 1.

Theorem 20. Suppose Assumptions 1-4 are satisfied. Let {rm}Mm=1 be arbitrary

positive reals that can depend on n, and assume λ
(n)
1 ≥

(
α2

α1

)2
+
(

β2

β1

)2
. Then for

all n and t′ that satisfy log(M)√
n

≤ 1 and 4φ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12

and for all t ≥ 1, we have

‖f̂ − f∗‖2L2(Π) ≤
24η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 4λ

(n)
1 ‖f∗‖2ψ.

with probability 1− exp(−t)− exp(−t′).

Proof of Theorem 20. By the assumption of the theorem, we can assume Lemma
19 holds, that is, the event E1(t) ∩ E2(t

′) occurs with probability 1− exp(−t)−
exp(−t′). Below we discuss on the event E1(t) ∩ E2(t

′).
Since yi = f∗(xi) + εi, we have

‖f̂ − f∗‖2L2(Π) + λ
(n)
1 ‖f̂‖2ψ

≤(‖f̂ − f∗‖2L2(Π) − ‖f̂ − f∗‖2n) +
2

n

n∑
i=1

M∑
m=1

εi(f̂m(xi)− f∗
m(xi)) + λ

(n)
1 ‖f∗‖2ψ .

Here on the event E2(t
′), the above inequality gives

‖f̂ − f∗‖2L2(Π) + λ
(n)
1 ‖f̂‖2ψ

≤φ
√
n

(
M∑

m=1

U (m)
n,sm(f̂m − f∗

m)

)2

η(t′)+
2

n

n∑
i=1

M∑
m=1

εi(f̂m(xi)− f∗
m(xi))

+ λ
(n)
1 ‖f∗‖2ψ. (31)

Before we prove the statements, we show an upper bound of
∑M

m=1 U
(m)
n,sm(fm)

required in the proof. By definition, we have

U (m)
n,sm(fm)

=3

⎛⎝r−sm
m√
n

∨ r
− sm(3−sm)

1+sm
m

n
1

1+sm

⎞⎠(‖fm‖L2(Π) + smrm‖fm‖Hm

)
+

√
log(M)

n
‖fm‖L2(Π)

≤3
r−sm
m√
n

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)
≤+ 3

r
− sm(3−sm)

1+sm
m

n
1

1+sm

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)
(32)
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+

√
log(M)

n
‖fm‖L2(Π). (33)

Now the sum of the first term is bounded as

M∑
m=1

3
r−sm
m√
n

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)
=3

M∑
m=1

r−sm
m√
n

‖fm‖L2(Π) + 3

M∑
m=1

smr1−sm
m√
n

‖fm‖Hm

≤3

(
M∑

m=1

r−2sm
m

n

) 1
2
(

M∑
m=1

‖fm‖2L2(Π)

) 1
2

+ 3

∥∥∥∥∥
(
smr1−sm

m√
n

)M

m=1

∥∥∥∥∥
ψ∗

‖f‖ψ,

where we used Cauchy-Schwarz inequality and the duality of the norm in the
last inequality. The sum of the second term of the RHS of Eq. (33) is bounded
as

M∑
m=1

3
r
− sm(3−sm)

1+sm
m

n
1

1+sm

(
‖fm‖L2(Π) + smrm‖fm‖Hm

)

=3
M∑

m=1

r
− sm(3−sm)

1+sm
m

n
1

1+sm

‖fm‖L2(Π) + 3
M∑

m=1

smr
(1−sm)2

1+sm
m

n
1

1+sm

‖fm‖Hm

≤3

⎛⎝ M∑
m=1

r
− 2sm(3−sm)

1+sm
m

n
2

1+sm

⎞⎠
1
2 (

M∑
m=1

‖fm‖2L2(Π)

) 1
2

+ 3

∥∥∥∥∥∥∥
⎛⎝smr

(1−sm)2

1+sm
m

n
1

1+sm

⎞⎠M

m=1

∥∥∥∥∥∥∥
ψ∗

‖f‖ψ,

where we used Cauchy-Schwarz inequality and the duality of the norm in the
last inequality. Finally we have the following bound of the third term of the
RHS of Eq. (33):

M∑
m=1

√
log(M)

n
‖fm‖L2(Π) ≤

√
M log(M)

n

(
M∑

m=1

‖fm‖2L2(Π)

) 1
2

.

Combine these inequalities and the relation
∑M

m=1 ‖fm‖2L2(Π) ≤ 1
κM

‖f‖2L2(Π)

(Assumption 4) to obtain

M∑
m=1

U (m)
n,sm(fm)

≤3

(
M∑

m=1

r−2sm
m

n

) 1
2 ‖f‖L2(Π)√

κM
+ 3

∥∥∥∥∥
(
smr1−sm

m√
n

)M

m=1

∥∥∥∥∥
ψ∗

‖f‖ψ
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+ 3

⎛⎝ M∑
m=1

r
− 2sm(3−sm)

1+sm
m

n
2

1+sm

⎞⎠
1
2

‖f‖L2(Π)√
κM

+ 3

∥∥∥∥∥∥∥
⎛⎝smr

(1−sm)2

1+sm
m

n
1

1+sm

⎞⎠M

m=1

∥∥∥∥∥∥∥
ψ∗

‖f‖ψ

+

√
M log(M)

n

‖f‖L2(Π)√
κM

. (34)

Then by the definition (4) of α1, α2, β1, β2, we have

M∑
m=1

U (m)
n,sm(fm)

≤α1

‖f‖L2(Π)√
κM

+ α2‖f‖ψ + β1

‖f‖L2(Π)√
κM

+ β2‖f‖ψ +

√
M log(M)

n

‖f‖L2(Π)√
κM

.

(35)

Step 1.

By Eq. (35), the first term on the RHS of Eq. (31) can be upper bounded as

φ
√
n

(
M∑

m=1

U (m)
n,sm(f̂m − f∗

m)

)2

η(t′)

≤4φ
√
n
(
α2
1

‖f̂ − f∗‖2L2(Π)

κM
+ α2

2‖f̂ − f∗‖2ψ + β2
1

‖f̂ − f∗‖2L2(Π)

κM
+

β2
2‖f̂ − f∗‖2ψ +

M log(M)

n

‖f̂ − f∗‖2L2(Π)

κM

)
η(t′)

≤4φ
√
n

κM
α2
1η(t

′)

(
‖f̂ − f∗‖2L2(Π) +

(
α2

α1

)2

‖f̂ − f∗‖2ψ

)

+
4φ

√
n

κM
β2
1η(t

′)

(
‖f̂ − f∗‖2L2(Π) +

(
β2

β1

)2

‖f̂ − f∗‖2ψ

)

+
4φ

√
n

κM

M log(M)

n
η(t′)‖f̂ − f∗‖2L2(Π).

By assumption, we have 4φ
√
n

κM
max{α2

1, β
2
1 ,

M log(M)
n }η(t′) ≤ 1

12 . Hence the RHS
of the above inequality is bounded by

φ
√
n

(
M∑

m=1

U (m)
n,sm(f̂m − f∗

m)

)2

η(t′)

≤1

4

{
‖f̂ − f∗‖2L2(Π) +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f̂ − f∗‖2ψ

}
. (36)
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Step 2. On the event E1(t), we have

2

n

n∑
i=1

M∑
m=1

εi(f̂m(xi)− f∗
m(xi)) ≤ 2

M∑
m=1

η(t)φU (m)
n,sm(f̂m − f∗

m)

≤ 2η(t)φ

[
α1

‖f̂ − f∗‖L2(Π)√
κM

+ α2‖f̂ − f∗‖ψ + β1

‖f̂ − f∗‖L2(Π)√
κM

+ β2‖f̂ − f∗‖ψ

+

√
M log(M)

n

‖f̂ − f∗‖L2(Π)√
κM

]
(∵ Eq.(34))

≤ 2
η(t)φα1√

κM

(
‖f̂ − f∗‖L2(Π) +

α2

α1
‖f̂ − f∗‖ψ

)
+ 2

η(t)φβ1√
κM

(
‖f̂ − f∗‖L2(Π) +

β2

β1
‖f̂ − f∗‖ψ

)
+ 2

η(t)φ√
κM

√
M log(M)

n
‖f̂ − f∗‖L2(Π)

≤ 12η(t)2φ2α2
1

κM
+

1

24

(
‖f̂ − f∗‖L2(Π) +

α2

α1
‖f̂ − f∗‖ψ

)2

+
12η(t)2φ2β2

1

κM
+

1

24

(
‖f̂ − f∗‖L2(Π) +

β2

β1
‖f̂ − f∗‖ψ

)2

+
6η(t)2φ2

κM

M log(M)

n
+

1

12
‖f̂ − f∗‖2L2(Π)

≤ 12η(t)2φ2α2
1

κM
+

1

12

[
‖f̂ − f∗‖2L2(Π) +

(
α2

α1

)2

‖f̂ − f∗‖2ψ

]

+
12η(t)2φ2β2

1

κM
+

1

12

[
‖f̂ − f∗‖2L2(Π) +

(
β2

β1

)2

‖f̂ − f∗‖2ψ

]

+
6η(t)2φ2

κM

M log(M)

n
+

1

12
‖f̂ − f∗‖2L2(Π)

≤ 12η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+

1

4

{
‖f̂ − f∗‖2L2(Π) +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f̂ − f∗‖2ψ

}
. (37)

Step 3.

Substituting the inequalities (36) and (37) to Eq. (31), we obtain

‖f̂ − f∗‖2L2(Π) + λ
(n)
1 ‖f̂‖2ψ

≤12η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
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+
1

2

{
‖f̂ − f∗‖2L2(Π) +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f̂ − f∗‖2ψ

}
+ λ

(n)
1 ‖f∗‖2ψ. (38)

Now, by the triangular inequality, the term ‖f̂ − f∗‖2ψ can be bounded as

‖f̂ − f∗‖2ψ ≤
(
‖f̂‖ψ + ‖f∗‖ψ

)2
≤ 2
(
‖f̂‖2ψ + ‖f∗‖2ψ

)
.

Thus, when λ
(n)
1 ≥

(
α2

α1

)2
+
(

β2

β1

)2
, Eq. (38) yields

1

2
‖f̂ − f∗‖2L2(Π) ≤

12η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 2λ

(n)
1 ‖f∗‖2ψ.

Therefore by multiplying 2 to both sides, we have

‖f̂ − f∗‖2L2(Π) ≤
24η(t)2φ2

κM

(
α2
1 + β2

1 +
M log(M)

n

)
+ 4λ

(n)
1 ‖f∗‖2ψ.

This gives the assertion.

Appendix D: Bounding the probabilities of E1(t) and E2(t
′)

Here we derive bounds of the probabilities of the events E1(t) and E2(t
′) (see

Eq. (28) and Eq. (29) for their definitions). The goal of this section is to derive
Lemmas 24 and 25.

Using Propositions 13 and 11, we obtain the following ratio type uniform
bound.

Lemma 21. Suppose that {ξi}ni=1 is a sequence of i.i.d. sub-Gaussian random
variables satisfying E[eξit] ≤ exp(t2/2) for all t ∈ R. Under the Spectral As-
sumption (Assumption 3) and the Embedded Assumption (Assumption 5), there
exists a constant Csm depending only on sm, c and C1 such that

E

[
sup

fm∈Hm:‖fm‖Hm=1

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]
≤ Csm .

Proof of Lemma 21. (i) First, we analyze the situation 0 < sm < 1. Let
Hm(δ) := {fm ∈ Hm | ‖fm‖Hm = 1, ‖fm‖L2(Π) ≤ δ} and z = 21/sm > 1.
Define τ := smrm. Then by combining Propositions 10 and 11 with Assumption
5, we have

E

[
sup

fm∈Hm:‖fm‖Hm=1

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]

≤E

[
sup

fm∈Hm(τ)

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]
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+

∞∑
k=1

E

[
sup

fm∈Hm(τzk)\Hm(τzk−1)

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]

≤C ′
sm

τ1−sm c̃smsm√
n

3 r−sm
m√

n
smrm

∨
C

1−sm
1+sm
1 τ

(1−sm)2

1+sm c̃
2sm

1+sm
sm

n
1

1+sm

3 r
− sm(3−sm)

1+sm
m

n
1

1+sm

smrm

+

∞∑
k=1

C ′
sm

zk(1−sm)τ1−sm c̃smsm√
n

3 r−sm
m√

n
τzk−1

∨
C

1−sm
1+sm
1 z

k
(1−sm)2

1+sm τ
(1−sm)2

1+sm c̃
2sm

1+sm
sm

n
1

1+sm

3 r
− sm(3−sm)

1+sm
m

n
1

1+sm

τzk−1

≤
C ′

sm

3

(
s−sm
m c̃smsm ∨ s−3sm

m C
1−sm
1+sm
1 c̃

2sm
1+sm
sm

)(
1 +

∞∑
k=1

z1−ksm ∨ z1−k
sm(3−sm)

1+sm

)

=
C ′

sms−3sm
m

3

(
c̃smsm ∨ C

1−sm
1+sm
1 c̃

2sm
1+sm
sm

)(
1 +

z1−sm

1− z−sm
∨ z1−

sm(3−sm)
1+sm

1− z−
sm(3−sm)

1+sm

)

≤9C ′
sm

(
c̃smsm ∨ C

1−sm
1+sm
1 c̃

2sm
1+sm
sm

)(
1 +

z1−sm

1− z−sm
∨ z1−

sm(3−sm)
1+sm

1− z−
sm(3−sm)

1+sm

)
,

where we used s−sm
m ≤ 3 for 0 < sm in the last line. Thus by setting, Csm =

9C ′
sm

(
c̃smsm ∨ C

1−sm
1+sm
1 c̃

2sm
1+sm
sm

)(
1 + z1−sm

1−z−sm ∨ z
1− sm(3−sm)

1+sm

1−z
− sm(3−sm)

1+sm

)
, we obtain the as-

sertion.
(ii) Second, we analyze the situation sm = 0. In this situation, it is easy

to see that, for any fm ∈ Hm, it holds that fm/U
(m)
n,sm(fm) ∈ Hm and

‖fm/U
(m)
n,sm(fm)‖L2(Π) ≤

√
n. Therefore, by Propositions 12, we have that

E

[
sup

fm∈Hm:‖fm‖Hm=1

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]

≤E

[
sup

fm∈Hm:‖fm‖L2(Π)≤1

∣∣∣∣∣ 1n
n∑

i=1

ξifm(xi)

∣∣∣∣∣
]
≤
√

c

n

√
n =

√
c.

Therefore, we obtain the assertion also for sm = 0.

This lemma immediately gives the following corollary.

Corollary 22. Suppose that {ξi}ni=1 is a sequence of i.i.d. sub-Gaussian ran-
dom variables satisfying E[eξit] ≤ exp(t2/2) for all t ∈ R. Under the Spectral
Assumption (Assumption 3) and the Embedded Assumption (Assumption 5),
there exists a constant Csm depending only on sm, c and C1 such that

E

[
sup

fm∈Hm

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]
≤ Csm .



Fast learning rate of non-sparse MKL 2175

Proof. By dividing the denominator and the numerator by the RKHS norm
‖fm‖Hm , we have

E

[
sup

fm∈Hm

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]

=E

[
sup

fm∈Hm

| 1n
∑n

i=1 ξifm(xi)|/‖fm‖Hm

U
(m)
n,sm(fm)/‖fm‖Hm

]

=E

[
sup

fm∈Hm

| 1n
∑n

i=1 ξifm(xi)/‖fm‖Hm |
U

(m)
n,sm(fm/‖fm‖Hm)

]

=E

[
sup

fm∈Hm:‖fm‖Hm=1

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]
≤Csm . (∵ Lemma 21)

Lemma 23. Assume that (ξ)ni=1 is a sequence of Rademacher variables (σi)
n
i=1

or a sequence of i.i.d. standard normal variables. If log(M)√
n

≤ 1, then under

the Spectral Assumption (Assumption 3) and the Embedded Assumption (As-
sumption 5) there exists a constant C̃∗ depending only on {sm}Mm=1, c, C1 such
that

E

[
max
m

sup
fm∈Hm

| 1n
∑n

i=1 ξifm(xi)|
U

(m)
n,sm(fm)

]
≤ C̃∗.

Proof of Lemma 23. First, we assume that (ξ)ni=1 is a Rademacher sequence

(σi)
n
i=1. Notice that the L2(Π)-norm and the ∞-norm of σifm(xi)

U
(m)
n,sm (fm)

can be eval-

uated by∥∥∥∥∥ σifm(xi)

U
(m)
n,sm(fm)

∥∥∥∥∥
L2(Π)

=
‖fm‖L2(Π)

U
(m)
n,sm(fm)

≤
‖fm‖L2(Π)√

log(M)
n ‖fm‖L2(Π)

≤
√

n

log(M)
, (39)

∥∥∥∥∥ σifm(xi)

U
(m)
n,sm(fm)

∥∥∥∥∥
∞

=
‖fm‖∞

U
(m)
n,sm(fm)

≤
C1‖fm‖1−sm

L2(Π)‖fm‖smHm

U
(m)
n,sm(fm)

≤ C1

3

√
n ≤ C1

√
n,

(40)

where the second line is shown by using the relation (27). Let C∗ := maxm Csm

where Csm is the constant appeared in Lemma 21. Thus Talagrand’s inequality
(Proposition 13) and Corollary 22 imply

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≥ K

[
C∗ +

√
t

log(M)
+

C1t√
n

])

≤
M∑

m=1

P

(
sup

fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≥ K

[
C∗ +

√
t

log(M)
+

C1t√
n

])
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≤
M∑

m=1

P

(
sup

fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≥ K

[
Csm +

√
t

log(M)
+

C1t√
n

])
≤Me−t.

By setting t ← t+ log(M), we obtain

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≥ K

[
C∗ +

√
t+ log(M)

log(M)
+

C1(t+ log(M))√
n

])
≤ e−t

for all t ≥ 0. Consequently the expectation of the max-sup term can be bounded
as

E

[
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

]

≤K

[
C∗ + 1 +

C1 log(M)√
n

]

+

∫ ∞

0

K

[
C∗ +

√
t+ 1 + log(M)

log(M)
+

C1(t+ 1 + log(M))√
n

]
e−tdt

≤2K

[
C∗ +

√
2 +

√
π

4 log(M)
+

C1(2 + log(M))√
n

]
≤ C̃∗,

where we used
√
t+ 1 + log(M) ≤

√
t+
√
1 + log(M) and

∫∞
0

√
te−tdt =

√
π
4 ,

log(M)√
n

≤ 1, and C̃∗ = 2K[C∗ +
√
2 +
√

π
4 + 3C1].

The proof for the i.i.d. standard normal sequence {ξi}ni=1 is almost identical
to that for the Rademacher sequence except that we use Lemma 18 instead of
Talagrand’s inequality (Proposition 13).

Lemma 24. Suppose the Basic Assumption (Assumption 1), the Spectral As-
sumption (Assumption 3) and the Embedded Assumption (Assumption 5) hold.

Define φ̄ = KL
[
2C̃∗ + 1 + C1

]
. If log(M)√

n
≤ 1, then the following holds

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 εifm(xi)|
U

(m)
n,sm(fm)

≥ φ̄η(t)

)
≤ e−t.

Proof of Lemma 24. First, we assume a situation where |εi| ≤ L. By the con-
traction inequality (Ledoux and Talagrand, 1991, Theorem 4.12) and Lemma
23, we have

E

[
max
m

sup
fm∈Hm

| 1n
∑n

i=1 εifm(xi)|
U

(m)
n,sm(fm)

]
≤ 2E

[
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σiεifm(xi)|
U

(m)
n,sm(fm)

]
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≤ 2LC̃∗,

where we used εi ≤ L (Basic Assumption). Using this and Eq. (39) and Eq. (40),
Talgrand’s inequality (Proposition 13) gives

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 εifm(xi)|
U

(m)
n,sm(fm)

≥ KL

[
2C̃∗ +

√
t+

C1t√
n

])
≤ e−t.

Thus we have

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 εifm(xi)|
U

(m)
n,sm(fm)

≥ KL
[
2C̃∗ + 1 + C1

]
max

(
1,
√
t,

t√
n

))
≤ e−t.

Therefore by the definition of φ̄ and η(t), we obtain the assertion.

Next, we consider the situation where εi is a Gaussian noise (N(0, L2)). In
this situation, we apply Lemma 18 instead of Talgrand’s inequality (Proposition
13). Then, we obtain the assertion as in the bounded noise situation.

Lemma 25. Suppose the Basic Assumption (Assumption 1), the Spectral As-
sumption (Assumption 3) and the Embedded Assumption (Assumption 5) hold.

Let φ̄′ = K[2C1C̃∗ + C1 + C2
1 ]. Then, if

log(M)√
n

≤ 1, we have for all t ≥ 0

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣ ≤ φ′√n

(
M∑

m=1

U (m)
n,sm(fm)

)2

η(t),

for all fm ∈ Hm (m = 1, . . . ,M) with probability 1− exp(−t).

Proof of Lemma 25.

E

⎡⎢⎢⎣ sup
fm∈Hm

(m=1,...,M)

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1 U

(m)
n,sm(fm)

)2
⎤⎥⎥⎦

≤2E

⎡⎢⎣ sup
fm∈Hm

(m=1,...,M)

∣∣∣ 1n∑n
i=1 σi(

∑M
m=1 fm(xi))

2
∣∣∣(∑M

m=1 U
(m)
n,sm(fm)

)2
⎤⎥⎦

≤ sup
fm∈Hm

(m=1,...,M)

∥∥∥∑M
m=1 fm

∥∥∥
∞∑M

m=1 U
(m)
n,sm(fm)

× 2E

⎡⎢⎣ sup
fm∈Hm

(m=1,...,M)

∣∣∣ 1n∑n
i=1 σi(

∑M
m=1 fm(xi))

∣∣∣∑M
m=1 U

(m)
n,sm(fm)

⎤⎥⎦ ,
(41)
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where we used the contraction inequality in the last line (Ledoux and Talagrand,
1991, Theorem 4.12). Thus using Eq. (40), the RHS of the inequality (41) can
be bounded as

2C1

√
nE

⎡⎢⎣ sup
fm∈Hm

(m=1,...,M)

∣∣∣ 1n∑n
i=1 σi(

∑M
m=1 fm(xi))

∣∣∣∑M
m=1 U

(m)
n,sm(fm)

⎤⎥⎦
≤2C1

√
nE

⎡⎢⎣ sup
fm∈Hm

(m=1,...,M)

max
m

∣∣ 1
n

∑n
i=1 σifm(xi)

∣∣
U

(m)
n,sm(fm)

⎤⎥⎦ ,
where we used the relation ∑

m am∑
m bm

≤ max
m

(
am
bm

)
(42)

for all am ≥ 0 and bm ≥ 0 with a convention 0
0 = 0. By Lemma 23, the right

hand side is upper bounded by 2C1
√
nC̃∗. Here we again apply Talagrand’s

concentration inequality, then we have

P

⎛⎜⎜⎝ sup
fm∈Hm

(m=1,...,M)

∣∣∣∣∥∥∥∑M
m=1 fm

∥∥∥2
n
−
∥∥∥∑M

m=1 fm

∥∥∥2
L2(Π)

∣∣∣∣(∑M
m=1 U

(m)
n,sm(fm)

)2

≥ K
[
2C1C̃∗

√
n+

√
tnC1 + C2

1 t
]⎞⎟⎟⎠ ≤ e−t,

where we substituted the following upper bounds of B and U .

B ≤ sup
fm∈Hm

(m=1,...,M)

E

⎡⎢⎣
⎛⎜⎝ (

∑M
m=1 fm)2(∑M

m=1 U
(m)
n,sm(fm)

)2
⎞⎟⎠

2⎤⎥⎦
≤ sup

fm∈Hm

(m=1,...,M)

E

⎡⎢⎣ (
∑M

m=1 fm)2(∑M
m=1 U

(m)
n,sm(fm)

)2 (‖
∑M

m=1 fm‖∞)2(∑M
m=1 U

(m)
n,sm(fm)

)2
⎤⎥⎦

(40)

≤ sup
fm∈Hm

(m=1,...,M)

(∑M
m=1 ‖fm‖L2(Π)

)2
(∑M

m=1 U
(m)
n,sm(fm)

)2 (∑M
m=1 C1

√
nU

(m)
n,sm(fm))2(∑M

m=1 U
(m)
n,sm(fm)

)2
(39)

≤ C2
1n

2 1

log(M)
≤ C2

1n
2,
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where in the second inequality we used the relation

E

[(∑M
m=1 fm

)2]
= E

[∑M
m,m′=1 fmfm′

]
≤
∑M

m,m′=1 ‖fm‖L2(Π)‖fm′‖L2(Π)

= (
∑M

m=1 ‖fm‖L2(Π))
2

and in the third and forth inequality we used Eq. (40) and Eq. (39) with Eq.(42)
respectively. Here we again use Eq. (39) with Eq.(42) to obtain

U = sup
fm∈Hm

(m=1,...,M)

∥∥∥∥∥∥∥
(
∑M

m=1 fm)2(∑M
m=1 U

(m)
n,sm(fm)

)2
∥∥∥∥∥∥∥
∞

≤ C2
1n.

Therefore the above inequality implies the following inequality

sup fm∈Hm

(m=1,...,M)

∣∣∣∣‖∑M
m=1 fm‖2

n
−‖∑M

m=1 fm‖2

L2(Π)

∣∣∣∣(∑M
m=1 U

(m)
n,sm (fm)

)2

≤ K
[
2C1C̃s + C1 + C2

1

]√
nmax(1,

√
t, t/

√
n),

with probability 1 − exp(−t). Remind φ̄′ = K
[
2C1C̃∗ + C1 + C2

1

]
, then we

obtain the assertion.

Appendix E: Proof of Theorem 5 (minimax learning rate)

Let the δ-packing number Q(δ,H, L2(Π)) of a function class H be the largest
number of functions {f1, . . . , fQ} ⊆ H such that ‖fi−fj‖L2(Π) ≥ δ for all i �= j.

Proof of Theorem 5. The proof utilizes the techniques developed by Raskutti
et al. (2009, 2010) that applied the information theoretic technique developed by
Yang and Barron (1999) to the MKL settings. To simplify the notation, we write
F := Hψ(R), N(ε,H) := N(ε,H, L2(Π)) and Q(ε,H) := Q(ε,H, L2(Π)). It can
be easily shown that Q(2ε,F) ≤ N(2ε,F) ≤ Q(ε,F). Here due to Theorem 15
of Steinwart et al. (2009), Assumption 6 yields

logN(ε, H̃(1)) ∼ ε−2s . (43)

We utilize the following inequality given by Lemma 3 of Raskutti et al. (2009):

min
f̂

max
f∗∈Hψ(Rp)

E‖f̂ − f∗‖2L2(Π) ≥
δ2n
4

(
1− logN(εn,F) + nε2n/2σ

2 + log 2

logQ(δn,F)

)
.

First we show the assertion for the �∞-norm ball: Hψ(R) = H�∞(R) :={
f =

∑M
m=1 fm

∣∣∣ max1≤m≤M ‖fm‖Hm ≤ R
}
. In this situation, there is a con-

stant C that depends only s such that

logQ(δ,F) ≥ CM logQ(δ/
√
M, H̃(R)), logN(ε,F) ≤ M logN(ε/

√
M, H̃(R)),
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(this is shown in Lemma 5 of Raskutti et al. (2010), but we give the proof in
Lemma 26 for completeness). Using this expression, the minimax-learning rate
is bounded as

min
f̂

max
f∗∈H�p (Rp)

E‖f̂ − f∗‖2L2(Π)

≥ δ2n
4

(
1− M logN(εn/

√
M, H̃(R)) + nε2n/2σ

2 + log 2

CM logQ(δn/
√
M, H̃(R))

)
.

Here we choose εn and δn to satisfy the following relations:

n

2σ2
ε2n ≤ M logN

(
εn/

√
M, H̃(R)

)
, (44)

M logN
(
εn/

√
M, H̃(R)

)
≥ log 2, (45)

4 logN
(
εn/

√
M, H̃(R)

)
≤ C logQ

(
δn/

√
M, H̃(R)

)
. (46)

With εn and δn that satisfy the above relations (44) and (46), we have

min
f̂

max
f∗∈H�p (Rp)

E‖f̂ − f∗‖2L2(Π) ≥
δ2n
16

. (47)

By Eq. (43), the relation (44) can be rewritten as

n

2σ2
ε2n ≤ CM

(
εn

R
√
M

)−2s

.

It is sufficient to impose

ε2n ≤ Cn− 1
1+sMR

2s
1+s , (48)

with a constant C. Since we have assumed that n > c̄2M2

R2‖1‖2
ψ∗

(=

1
R2 for ‖ · ‖ψ = ‖ · ‖�∞), the conditions (45) can be satisfied if the constant C in
Eq. (48) is taken sufficiently small so that we have

log 2 ≤ logN(εn/
√
M, H̃(R)) ∼

(
εn

R
√
M

)−2s

. (49)

The relation (46) can be satisfied by taking δn = cεn with an appropriately
chosen constant c. Thus Eq. (47) gives

min
f̂

max
f∗∈H�p (Rp)

E‖f̂ − f∗‖2L2(Π) ≥ Cn− 1
1+sMR

2s
1+s , (50)

with a constant C. This gives the assertion for p = ∞.
Finally we show the assertion for general isotropic ψ-norm ‖·‖ψ. To show that,

we prove that H�∞(R‖1‖ψ∗/(c̄M)) ⊂ Hψ(R). This is true if
R‖1‖ψ∗

c̄M 1 ∈ Hψ(R)
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because of the second condition of the definition (15) of isotropic property. By

the isotropic property, the ψ-norm of
R‖1‖ψ∗

c̄M 1 is bounded as∥∥∥∥R‖1‖ψ∗

c̄M
1

∥∥∥∥
ψ

=
R‖1‖ψ∗

c̄M
‖1‖ψ

isotropic

≤ R

c̄M
c̄M = R.

Thus we have
R‖1‖ψ∗

c̄M 1 ∈ Hψ(R) and thus H�∞(R‖1‖ψ∗/(c̄M)) ⊂ Hψ(R).
Therefore we have

min
f̂

max
f∗∈Hψ(R)

E‖f̂ − f∗‖2L2(Π) ≥ min
f̂

max
f∗∈H�∞ (R‖1‖ψ∗/(c̄M))

E‖f̂ − f∗‖2L2(Π)

≥ Cn− 1
1+sM

(
R‖1‖ψ∗

c̄M

) 2s
1+s

, (∵ Eq. (50)).

Note that due to the condition n > c̄2M2

R2‖1‖2
ψ∗

, Eq. (50) is still valid under the

condition that
R‖1‖ψ∗

c̄M is substituted into R in Eq. (50) (more precisely, Eq. (49)

is valid). Resetting C ← Cc̄−
2s

1+s , we obtain the assertion.

Lemma 26. There is a constant C such that

logQ(δ,H�∞(R)) ≥ CM logQ(δ/
√
M, H̃(R)),

for sufficiently small δ.

Proof. The proof is analogous to that of Lemma 5 in Raskutti et al. (2010). We

describe the outline of the proof. LetN = Q(
√
2δ/

√
M, H̃(R)) and {f1

m, . . . , fN
m }

be a
√
2δ/

√
M -packing of Hm(R). Then we can construct a function class Υ as

Υ =

{
fj =

M∑
m=1

f jm
m | j = (j1, . . . , jM ) ∈ {1, . . . , N}M

}
.

We denote by [N ] := {1, . . . , N}. For two functions fj , fj′ ∈ Υ, we have by
the construction

‖fj − fj′‖2L2(Π) =

M∑
m=1

‖f jm
m − f

j′m
m ‖2L2(Π) ≥

2δ2

M

M∑
m=1

1[jm �= j′m].

Thus, it suffices to construct a sufficiently large subset A ⊂ [N ]M such that all
different pairs j, j′ ∈ A have at least M/2 of Hamming distance dH(j, j′) :=∑M

m=1 1[jm �= j′m].
Now we define dH(A, j) := minj′∈A dH(j′, j). If |A| satisfies∣∣∣∣{j ∈ [N ]M

∣∣∣ dH(A, j) ≤ M

2

}∣∣∣∣ < |[N ]M | = NM , (51)
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then there exists a member j′ ∈ [N ]M such that j′ is more than M
2 away from

A with respect to dH , i.e. dH(A, j′) > M
2 . That is, we can add j′ to A as long

as Eq. (51) holds. Now since∣∣∣∣{j ∈ [N ]M
∣∣∣ dH(A, j) ≤ M

2

}∣∣∣∣ ≤ |A|
(

M

M/2

)
NM/2, (52)

Eq. (51) holds as long as A satisfies

|A| ≤ 1

2

NM(
M

M/2

)
NM/2

=: Q∗.

The logarithm of Q∗ can be evaluated as follows

logQ∗ = log

(
1

2

NM(
M

M/2

)
NM/2

)
= M logN − log 2− log

(
M

M/2

)
− M

2
logN

≥ M

2
logN − log 2− log 2M ≥ M

2
log

N

16
.

There exists a constant C such that N = Q(
√
2δ/

√
M, H̃(R)) ≥

CQ(δ/
√
M, H̃(R)) because logQ(δ, H̃(R)) ∼

(
δ
R

)−2s
. Thus we obtain the asser-

tion for sufficiently large N .

Appendix F: Proof of technical lemmas

F.1. Proof of Lemma 2

Remind that Eq. (7) gives

‖f̂ − f∗‖2L2(Π)

= Op

(
min

{rm}M
m=1:

rm>0

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ +

M log(M)

n

})
.

(53)

We derive an upper bound of the right hand side by adding a constraint rm =
r (∀m). Since sm = s (∀m), under the constraint rm = r (∀m) we have

α2

α1
=

3
sr1−s

√
n

‖1‖ψ∗

3

√
M

r−2s

n

=
1√
M

sr ‖1‖ψ∗ ,

β2

β1
=

3
sr

(1−s)2

1+s

n
1

1+s
‖1‖ψ∗

3

√
M

r
− 2s(3−s)

1+s

n
2

1+s

=
1√
M

sr ‖1‖ψ∗ ,
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Thus α2

α1
= β2

β1
, and Eq. (53) becomes

‖f̂ − f∗‖2L2(Π) = Op

(
min
r>0,
rm=r

{
α2
1 + β2

1 + 2
1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ +

M log(M)

n

})
.

(54)

By the definition, we see that the first two terms are monotonically decreasing
function with respect to r and the third term is monotonically increasing func-
tion. The minimum of the right hand side is attained by balancing α2

1 + β2
1 and

2 1
M s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ. Since α2

1 + β2
1 ≤ 2max

(
α2
1, β

2
1

)
, Eq. (54) indicates that

‖f̂ − f∗‖2L2(Π)

≤ Op

(
min
r>0,
rm=r

{
2max

(
α2
1, β

2
1

)
+ 2

1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ +

M log(M)

n

})
.

(55)

To balance the first term and the second term, we need to consider two situa-
tions: α2

1 = 1
M s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ or β2

1 = 1
M s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ.

First we balance the terms α2
1 and 1

M s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ under the restriction
that rm = r (∀m):

α2
1 =

1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ

⇔ 9M
r−2s

n
=

1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ

⇔ r−1 = (s/3)
1

1+s M− 1
1+s n

1
2(1+s) (‖1‖ψ∗‖f∗‖ψ)

1
1+s . (56)

For this r, we obtain

α2
1 = 9M

r−2s

n

=9
1

1+s s
2s

1+s M1− 2s
1+s n− 1

1+s (‖1‖ψ∗‖f∗‖ψ)
2s

1+s

≤9M1− 2s
1+s n− 1

1+s (‖1‖ψ∗‖f∗‖ψ)
2s

1+s , (57)

where we used s
2s

1+s ≤ 1 and 9
1

1+s ≤ 9 in the last inequality.

Next we balance the terms β2
1 and 1

M s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ under the restriction
that rm = r (∀m):

β2
1 =

1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ

⇔ 9M
r−

2s(3−s)
1+s

n
2

1+s

=
1

M
s2r2 ‖1‖2ψ∗ ‖f∗‖2ψ

⇔ r−1 = (s/3)
1+s

1+4s−s2 M
− 1+s

1+4s−s2 n
1

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
1+s

1+4s−s2 .
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For this r, we obtain

β2
1 = 9M

r−
2s(3−s)

1+s

n
2

1+s

=9
1+s

1+4s−s2 s
2s(3−s)

1+4s−s2 M
− 1−2s+s2

1+4s−s2 n
− 2

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
2s(3−s)

1+4s−s2

≤9M
1−2s+s2

1+4s−s2 n
− 2

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
2s(3−s)

1+4s−s2 ,

where we used s
2s(3−s)

1+4s−s2 ≤ 1 and 9
1+s

1+4s−s2 ≤ 9 in the last inequality.
Therefore the right hand side of Eq. (55) is further bounded as

‖f̂ − f∗‖2L2(Π)

≤ Op

(
4max

{
9M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s ,

9M
1−2s+s2

1+4s−s2 n
− 2

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
2s(3−s)

1+4s−s2

}
+

M log(M)

n

)

= Op

(
M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M
(1−s)2

1+4s−s2 n
− 2

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
2s(3−s)

1+4s−s2 +
M log(M)

n

)
.

Finally, if n ≥ (‖1‖ψ∗‖f∗‖ψ/M)
4s

1−s , the first term of the right hand side of this
bound is not less than the second term:

M1− 2s
1+s n− 1

1+s (‖1‖ψ∗‖f∗‖ψ)
2s

1+s ≥ M
(1−s)2

1+4s−s2 n
− 2

1+4s−s2 (‖1‖ψ∗‖f∗‖ψ)
2s(3−s)

1+4s−s2 .

More precisely, with r given in Eq. (56), the upper bound (57) of α1 gives

that, for n ≥ (‖1‖ψ∗‖f∗‖ψ/M)
4s

1−s , we have

√
nmax

{
α2
1, β

2
1 ,

M log(M)

n

}
≤

√
n9M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s ∨ M log(M)√

n

= 9

(
M√
n

) 1−s
1+s

(‖1‖ψ∗‖f∗‖ψ)
2s

1+s ∨ M log(M)√
n

.

Thus by setting λ
(n)
1 = 18M

1−s
1+s n− 1

1+s ‖1‖
2s

1+s

ψ∗ ‖f∗‖−
2

1+s

ψ ≥
(

α2

α1

)2
+
(

β2

β1

)2
,

then Theorem 1 gives that for all n and t′ that satisfy log(M)√
n

≤ 1 and

4φ
κM

{
9
(

M√
n

) 1−s
1+s

(‖1‖ψ∗‖f∗‖ψ)
2s

1+s ∨ M log(M)√
n

}
η(t′) ≤ 1

12 and for all t ≥ 1, we
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have

‖f̂ − f∗‖2L2(Π) ≤
24η(t)2φ2

κM

(
18M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n

)
+ 4× 18M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s (58)

≤Cη(t)2
(
M1− 2s

1+s n− 1
1+s (‖1‖ψ∗‖f∗‖ψ)

2s
1+s +

M log(M)

n

)
,

with probability 1 − exp(−t) − exp(−t′) where C is a sufficiently large
constant depending on φ and κM . Finally notice that the condition

4φ
κM

{
9
(

M√
n

) 1−s
1+s

(‖1‖ψ∗‖f∗‖ψ)
2s

1+s ∨ M log(M)√
n

}
η(t′) ≤ 1

12 automatically gives

log(M)√
n

≤ 1, thus we can drop the condition log(M)√
n

≤ 1. Then we obtain the

assertion.

F.2. Proof of Lemma 3

We assume 1 < p < ∞ and 1 < q < ∞. The proof for the situations p = 1,∞ or
q = 1,∞ is straight forward. First applying Hölder’s inequality twice, we obtain

〈b,a〉 =
M ′∑
j=1

Mj∑
k=1

bj,kaj,k

≤
M ′∑
j=1

⎧⎪⎨⎪⎩
⎛⎝Mj∑

k=1

|bj,k|p
∗

⎞⎠
1
p∗
⎛⎝Mj∑

k=1

|aj,k|p
⎞⎠

1
p

⎫⎪⎬⎪⎭ (∵ Hölder’s inequality)

≤

⎧⎪⎨⎪⎩
M ′∑
j=1

⎛⎝Mj∑
k=1

|bj,k|p
∗

⎞⎠
q∗
p∗
⎫⎪⎬⎪⎭

1
q∗ ⎧⎪⎨⎪⎩

M ′∑
j=1

⎛⎝Mj∑
k=1

|aj,k|p
⎞⎠

q
p

⎫⎪⎬⎪⎭
1
q

(∵ Hölder’s inequality).

Therefore we obtain that

‖b‖ψ∗ ≤

⎧⎨⎩
M ′∑
j=1

(

Mj∑
k=1

|bj,k|p
∗
)

q∗
p∗

⎫⎬⎭
1
q∗

. (59)

On the other hand, if we set

aj,k = b
1

p−1

j,k

(
∑Mj

k=1 b
p∗

j,k)
q∗
p∗ −1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

,
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then we have

‖a‖ψ =

⎧⎪⎨⎪⎩
M ′∑
j=1

⎛⎝Mj∑
k=1

b
p

p−1

j,k

⎞⎠
q
p
⎛⎝Mj∑

k=1

bp
∗

j,k

⎞⎠q( q∗
p∗ −1)

⎫⎪⎬⎪⎭
1
q

1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

=

⎧⎪⎪⎨⎪⎪⎩
M ′∑
j=1

⎛⎝Mj∑
k=1

b
p

p−1

j,k

⎞⎠q
(

1
p−1+ q∗

p∗
)⎫⎪⎪⎬⎪⎪⎭

1
q

1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

=

⎧⎪⎪⎨⎪⎪⎩
M ′∑
j=1

⎛⎝Mj∑
k=1

b
p

p−1

j,k

⎞⎠
q∗

q∗−1

(
q∗−1
p∗

)⎫⎪⎪⎬⎪⎪⎭
1
q

1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

= 1,

and

〈a, b〉 =
M ′∑
j=1

⎧⎪⎨⎪⎩
⎛⎝Mj∑

k=1

b
1+ 1

p−1

j,k

⎞⎠⎛⎝Mj∑
k=1

bp
∗

j,k

⎞⎠
q∗
p∗ −1

⎫⎪⎬⎪⎭ 1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

=

M ′∑
j=1

⎛⎝Mj∑
k=1

bp
∗

j,k

⎞⎠
q∗
p∗

1

{
∑M ′

j′=1(
∑Mj′

k=1 b
p∗

j′,k)
q∗
p∗ } 1

q

=

⎧⎪⎨⎪⎩
M ′∑
j′=1

⎛⎝Mj′∑
k=1

bp
∗

j′,k

⎞⎠
q∗
p∗
⎫⎪⎬⎪⎭

1
q∗

.

Therefore we obtain

‖b‖ψ∗ ≥

⎧⎪⎨⎪⎩
M ′∑
j′=1

⎛⎝Mj′∑
k=1

bp
∗

j′,k

⎞⎠
q∗
p∗
⎫⎪⎬⎪⎭

1
q∗

. (60)

Combining Eqs.(60),(60), we have ‖b‖ψ∗ =

{∑M ′

j′=1

(∑Mj′
k=1 b

p∗

j′,k

) q∗
p∗

} 1
q∗

. Thus

we obtain the assertion.

F.3. Proof of Lemma 6

Suppose that ‖ · ‖ψ is the �p-norm ‖ · ‖�p , and remind that 1d =
( 1, . . . , 1︸ ︷︷ ︸
d elements

, 0, . . . , 0)	.
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Since we can evaluate

α1 = 3

(
dr−2s

1 +M − d

n

) 1
2

, α2 = 3
sr1−s

1√
n

‖1d‖ψ∗ ,

β1 = 3

(
dr

− 2s(3−s)
1+s

1 +M − d

n
2

1+s

) 1
2

, β2 = 3
sr

(1−s)2

1+s

1

n
1

1+s

‖1d‖ψ∗ ,

then we have(
α2

α1

)2

=

s2r
2(1−s)
1

n ‖1d‖2ψ∗

dr−2s
1 +M−d

n

� min

{
s2r21
d

,
s2r

2(1−s)
1

M − d

}
‖1d‖2ψ∗ ,

and

(
β2

β1

)2

=

s2r

2(1−s)2

1+s
1

n
2

1+s
‖1d‖2ψ∗

dr
− 2s(3−s)

1+s
1 +M−d

n
2

1+s

� min

⎧⎨⎩s2r21
d

,
s2r

2(1−s)2

1+s

1

M − d

⎫⎬⎭ ‖1d‖2ψ∗ .

Suppose dr−2s
1 ≥ M−d and dr

− 2s(3−s)
1+s

1 ≥ M−d, then we have α2
1 � dr−2s

1 n−1,

β2
1 � dr

− 2s(3−s)
1+s

1 n− 2
1+s ,

(
α2

α1

)2
� s2r21

d ‖1d‖2ψ∗ and
(

β2

β1

)2
� s2r21

d ‖1d‖2ψ∗ . Thus the

minimization problem in Eq. (7) with the constraint for r1 becomes

min
r1>0:

dr−2s
1 ≥M−d,

dr
− 2s(3−s)

1+s
1 ≥M−d

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ

}

� min
r1>0:

dr−2s
1 ≥M−d,

dr
− 2s(3−s)

1+s
1 ≥M−d

{
dr−2s

1 n−1 + dr
− 2s(3−s)

1+s

1 n− 2
1+s +

r21
d
‖1d‖2ψ∗‖f∗‖2ψ

}
. (61)

If we neglect the constraints dr−2s
1 ≥ M − d and dr

− 2s(3−s)
1+s

1 ≥ M − d,
the minimum is attained at r1 (up to a constant factor) that satisfies

max{dr−2s
1 n−1, dr

− 2s(3−s)
1+s

1 n− 2
1+s } = 1

dr
2
1‖1d‖2ψ∗‖f∗‖2ψ, i.e.

r1 = max

{
n− 1

2(1+s)

(
‖1d‖ψ∗‖f∗‖ψ

d

)− 1
1+s

, n
− 1

1+4s−s2

(
‖1d‖ψ∗‖f∗‖ψ

d

)− 1+s

1+4s−s2

}
.

Therefore if n ≥
(

‖1d‖ψ∗‖f∗‖ψ

d

) 4s
1−s

(this is satisfied because M = ‖f∗‖�1 ≥
‖f∗‖�p ≥ ‖f∗‖�∞ = 1, ‖1d‖ψ∗ ≤ ‖1d‖1 ≤ d and n ≥ M

4s
1−s is imposed),



2188 T. Suzuki

then the minimum is attained at r1 = n− 1
2(1+s)

(
‖1d‖ψ∗‖f∗‖ψ

d

)− 1
1+s

. Finally the

condition n ≥ (M log(M))
1+s
s yields that dr−2s

1 ≥ M−d and dr
− 2s(3−s)

1+s

1 ≥ M−d

for r1 = n− 1
2(1+s)

(
‖1d‖ψ∗‖f∗‖ψ

d

)− 1
1+s

. Therefore the constraints for r1 in Eq. (61)

can be removed. Summarizing the above discussions, we obtain

min
{rm}M

m=1:
rm>0

{
α2
1 + β2

1 +

[(
α2

α1

)2

+

(
β2

β1

)2
]
‖f∗‖2ψ

}
� n− 1

1+s
(‖1d‖ψ∗‖f∗‖ψ)

2s
1+s

d
s−1
1+s

.

Thus we obtain the following bound:

‖f̂ (p) − f∗‖2L2(Π) ≤ Op

(
n− 1

1+s
(d1−

1
p ‖f∗‖ψ)

2s
1+s

d
s−1
1+s

+
M log(M)

n

)
.

Now since n ≥ (M log(M))
1+s
s , the above convergence rates can be simplified

as

‖f̂ (p) − f∗‖2L2(Π) = Op

(
n− 1

1+s d1−
2s

p(1+s) ‖f∗‖
2s

1+s

ψ

)
.

In particular, if d = M b1 and ‖f∗
m‖Hm = m−b2 , then it holds that

‖f̂ (1) − f∗‖2L2(Π) = Op

(
n− 1

1+sM
2s

1+s (1−b2)+
1−s
1+s b1

)
,

‖f̂ (∞) − f∗‖2L2(Π) = Op

(
n− 1

1+sM b1
)
,

‖f̂ (b−1
2 ) − f∗‖2L2(Π) = Op

(
n− 1

1+sM b1(1− 2sb2
1+s ) log(M)b2

2s
1+s

)
.

This gives the assertion.

F.4. Proof of Lemma 7 (derivation of local Rademacher complexity)

For f ∈ H⊕M , we define

Un,∗(f) := α1

‖f‖L2(Π)√
κM

+α2‖f‖ψ+β1

‖f‖L2(Π)√
κM

+β2‖f‖ψ+
√

M log(M)

n

‖f‖L2(Π)√
κM

.

Then by Eq. (35) we obtain

M∑
m=1

U (m)
n,sm(fm) ≤ Un,∗(f).

We know that there exists a constant φ̃ such that

P

(
max
m

sup
fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≥ φ̃η(t)

)
≤ e−t, (62)
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(see Lemma 24). Let η̄(t) := max{
√
t, t/n}, and the event St be

St :=

{
φ̃η̄(t) ≤ max

m
sup

fm∈Hm

| 1n
∑n

i=1 σifm(xi)|
U

(m)
n,sm(fm)

≤ φ̃η̄(t+ 1)

}
.

Then, by Eq. (62), we have P (St) ≤ e−t for t ≥ 1. Using this relation, we obtain
the following upper bound of the local Rademacher complexity:

Rn(H(r)
ψ (R))

=E

⎡⎣ sup
f∈H(r)

ψ (R)

1

n

n∑
i=1

σif(xi)

⎤⎦
=

∞∑
t=0

E

⎡⎣ sup
f∈H(r)

ψ (R)

1

n

n∑
i=1

σif(xi) | St

⎤⎦P (St)

≤E

⎡⎣ sup
f∈H(r)

ψ (R)

1

n

n∑
i=1

σif(xi) | S0

⎤⎦+
∞∑
t=1

E

⎡⎣ sup
f∈H(r)

ψ (R)

1

n

n∑
i=1

σif(xi) | St

⎤⎦P (St)

≤E

⎡⎣ sup
f∈H(r)

ψ (R)

M∑
m=1

φ̃U (m)
n,sm(fm) | S0

⎤⎦
+

∞∑
t=1

E

⎡⎣ sup
f∈H(r)

ψ (R)

M∑
m=1

φ̃η(t+ 1)U (m)
n,sm(fm) | St

⎤⎦ e−t

≤E

⎡⎣ sup
f∈H(r)

ψ (R)

φ̃Un,∗(f) | S0

⎤⎦+

∞∑
t=1

E

⎡⎣ sup
f∈H(r)

ψ (R)

φ̃η(t+ 1)Un,∗(f) | St

⎤⎦ e−t

≤φ̃

(
α1

r√
κM

+ α2R+ β1
r√
κM

+ β2R+

√
M log(M)

n

r√
κM

)

×
(
1 +

∞∑
t=1

η(t+ 1)e−t

)
.

Since

∞∑
t=1

η(t+ 1)e−t ≤
∫ ∞

t=1

(√
t+ 1 +

t+ 1√
n

)
e−(t−1)dt ≤ 5,

we obtain

Rn(H(r)
ψ (R)) ≤ 6φ̃

(
α1

r√
κM

+ α2R+ β1
r√
κM

+ β2R+

√
M log(M)

n

r√
κM

)
.

By re-setting φ̃ ← 6φ̃, we obtain the local Rademacher complexity upper bound.
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