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A central limit theorem for the gossip process
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Abstract

The Aldous gossip process represents the dissemination of information in geographical
space as a process of locally deterministic spread, augmented by random long range
transmissions. Starting from a single initially informed individual, the proportion of
individuals informed follows an almost deterministic path, but for a random time shift,
caused by the stochastic behaviour in the very early stages of development. In this
paper, it is shown that, even with the extra information available after a substantial
development time, this broad description remains accurate to first order. However,
the precision of the prediction is now much greater, and the random time shift is
shown to have an approximately normal distribution, with mean and variance that can
be computed from the current state of the process.
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1 Introduction

A model for the dissemination of information in space, in which random long-range
contacts facilitate spread, was introduced in Aldous [1]. In an idealized version, pro-
posed by Chatterjee & Durrett [6], individuals are represented as a continuum, evenly
distributed over a two-dimensional torus of large area L. Information spreads locally at
constant rate from individuals to their neighbours, so that a disc of informed individuals,
centred on an initial informant, grows steadily in the torus. However, information is
also spread by long range transmissions to other, randomly chosen points of the torus,
according to a Poisson process, whose rate is proportional to the area of currently
informed individuals. Any such transmission initiates a new disc of informed individuals.
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CLT for the gossip process

The process can also be interpreted as a model of the spread of an SI disease, in which
local infection is supplemented by occasional long-range contacts.

With Lt denoting the area of informed individuals by time t, Chatterjee & Durrett [6]
showed that, after some randomness in the initial stages of the process, the proportion of
the torus Lt/L that has been informed by time t closely follows a particular, deterministic
path. The times at which Lt/L increases from almost zero to almost one is relatively
short, and occurs around a time tL, which is a fixed multiple of logL. In what follows, we
therefore concentrate on times relative to tL. Roughly speaking, Chatterjee & Durrett [6]
showed that, for large L, we have

LtL+u/λ

L
≈ `(u+ U) for any u ∈ R

for some function `, where λ is a scaling factor related to the speed of spread of
information, and where U is a random variable. The path ` is the same for all realizations
of the process, but the position on the path at a particular time varies from realization
to realization because of the random time shift U . This result was generalized to
gossip processes on rather general homogeneous Riemannian manifolds by Barbour &
Reinert [5], hereafter referred to as [BR], as well as to related ‘small world’ processes;
they also derived a uniform bound on the approximation error. In addition, the equation
describing the deterministic development was interpreted in terms of the Laplace
transform of the limiting random variable corresponding to an associated Crump–Mode–
Jagers (CMJ) branching process (see Jagers [9]).

By analogy with the theory of Markov population processes (Kurtz [11, 12]), one might
expect that the fluctuations around the deterministic path of the proportions informed
would be approximately Gaussian, with standard deviation O(L−1/2), at least while the
proportion informed is not too small or too close to 1. Here, however, the random
quantity of most interest — the difference between the actual course of the process and
a prediction of the course based on information available early in its development —
involves the fluctuations of the process while the proportion informed is rather small,
and the standard analogy does not apply. Instead, in view of the approximation already
established, it seems reasonable at times v � tL to predict the value of LtL+u/λ/L by

`(u+Û(v)), where Û(v) is the expected value of U , given the information at time v, and to
augment the point prediction with a confidence interval around `(u+ Û(v)), derived from
the (approximate) conditional distribution of LtL+u/λ/L, given the current information.

The validity of the procedure is justified in detail in Section 3. The broad argument is
to exploit the fact that LtL+u/λ/L is the probability that a point K, chosen independently
and uniformly at random in C, belongs to the informed set LtL+u/λ:

LtL+u/λ/L = P[K ∈ LtL+u/λ | LtL+u/λ].

As it stands, this changes nothing. However, it indicates that a good approximation
might be obtained by replacing P[K ∈ LtL+u/λ | LtL+u/λ] by P[K ∈ LtL+u/λ | Ls], or,
equivalently, replacing LtL+u/λ/L by E{LtL+u/λ/L | Ls}, for s < tL + u/λ chosen so
that s is close enough to tL + u/λ. In particular, for prediction from v, we need to
choose s ∈ (v, tL + u/λ) so that

Ev
∣∣(LtL+u/λ/L)− E{LtL+u/λ/L | Ls}

∣∣ � SDv(LtL+u/λ/L), (1.1)

where Ev and SDv denote expectation and standard deviation given the information at
time v.

The advantage of using E{LtL+u/λ/L | Ls} is that P[K ∈ LtL+u/λ | Ls] can be ap-
proximated as the probability of at least one of many small balls, with centres chosen
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CLT for the gossip process

independently and at random in C, intersecting Ls. These balls are the islands in an inde-
pendent ‘backwards’ gossip process, run for a length of time tL+(u/λ)−s from K. There
are many such balls if tL + (u/λ)− s is not too small, and the intersection probability can
be approximated by a Poisson probability, using the Stein–Chen method; see Lemma 3.4.
The mean of the Poisson distribution can, with considerable effort, be shown to be
close to `(log[CW (s, v)] + u), where W (s, v) is a quantity that can be simply expressed
in terms of a carefully chosen branching process, and C is a constant. Now, given
the information available at time v, the quantity W (v, v) (which loosely corresponds to
exp{Û(v)}) is known, and the conditional distribution of the difference W (s, v)−W (v, v)

is approximately normal, as is shown in Theorem 2.8 in Section 2. This, in turn, leads to
a normal approximation for the difference between `(log[CW (s, v)]+u) and its prediction
`(log[CW (v, v)] + u) at time v. This implies the main result of the paper, that

σ−1
(
LtL+u/λ/L− `(log[CW (v, v)] + u)

)
≈d N (0, 1), (1.2)

for suitable choice of the standard deviation σ depending on u and W (v, v); a precise
statement is given in Theorem 1.1. The error in the normal approximation is shown to be
small if the number of individuals informed at time v is large, even if their proportion in
the whole population may be very small. For practical purposes, in an epidemic, the very
earliest development may well pass almost unnoticed — the origins are often obscure —
but prediction on the basis of the information gained from the first few hundred cases
is an important public health goal, in which case using the normal approximation is
reasonable.

1.1 Detailed formulation

We now describe the problem in more detail. We consider the gossip process (Lt, t ≥
0) evolving on a smooth closed homogeneous Riemannian manifold C of dimension d, such
as a sphere or a torus, having large finite volume |C| =: L with respect to its intrinsic
metric. An individual at point P ∈ C informed at time 0 gives rise to deterministic
local spread that informs the set K(P, s) by time s > 0; in addition, random ‘long range
transmissions’ to independent and uniformly distributed points of C occur at rate ρ times
the intrinsic volume of the set currently informed. Thus the process can be constructed
from knowledge of the points 0 = τ0 < τ1 < · · · of a point process Π on R+ (characterized
immediately below), together with an independent sequence of independent points
P1, P2, . . ., uniformly distributed in C, and an initial point P = P0. The informed set and
its volume are denoted by

Lt :=
⋃

j : τj≤t

K(Pj , t− τj) and Lt := |Lt|. (1.3)

The point process Π is simple, and has conditional intensity ρLt at time t with respect to
the filtration (Ft, t ≥ 0), where Ft := σ((τj , Pj), j ≥ 0, τj ≤ t).

The sets K(P, s) are assumed to be closed balls, centred at P and of radius s, with
respect to a metric that makes C a geodesic space: P ′ ∈ K(P, 2t) exactly when K(P, t) ∩
K(P ′, t) 6= ∅. Since C is assumed to be homogeneous, the volume of K(P, s) is independent
of P , and we will therefore denote it by νs = νs(K). The sets K(P, s) are also assumed to
be locally almost Euclidean in the sense that νs ≈ sdν for some constant ν = ν(K) > 0.
More precisely, we will assume that, for constants cg, γg > 0,∣∣∣∣ νssd ν − 1

∣∣∣∣ ≤ cg

(
sd ν

L

)γg/d
, s > 0. (1.4)

The quantity ν > 0 has physical dimensions (length/time)d, so that ν1/d can be inter-
preted as a local velocity of spread of information in any particular direction. Assump-
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CLT for the gossip process

tion (1.4) is satisfied, for instance, for balls with respect to geodesic distance on the
surface of a (d+ 1)-dimensional sphere of large radius R, when L = cdR

d and

νs
sd ν

− 1 =
dRd

sd

∫ s/R

0

(sin t)d−1 dt− 1 = O
(
(s/R)2

)
,

(Li, 2011), in which case we can take γg = 2 in all dimensions d ≥ 2.
Using (1.4), the probability of there being no long range transmission before time u

is given by

exp
{
−
∫ u

0

ρνs ds
}
≈ exp

{
−
∫ u

0

ρsdν ds
}

= exp
{
−ρνud+1/(d+ 1)

}
,

so that the mean time to the first long range transmission is approximately∫ ∞
0

exp
{
−ρνud+1/(d+ 1)

}
du = (ρν)−1/(d+1)

∫ ∞
0

e−w
d+1/(d+1) dw.

Thus
λ := (ρd!ν)1/(d+1), (1.5)

having physical dimensions (1/time), is such that 1/λ represents the time scale for the
first long range transmission, and then λ−dν reflects the size of the initial neighbour-
hood when the first long range transmission occurs; the exact specification of λ is to
make it equal to the growth rate of the associated CMJ process ([BR], p.986). For our
approximations to be good, the size of the initial neighbourhood when the first long
range transmission occurs should be small compared to L, so that, defining

Λ := Lλd/ν, (1.6)

a quantity without physical dimension, we shall take Λ to be large. Note that, if this is
so, the approximations made above have small error, in view of (1.4).

To start with, the points of Π closely match the birth events of a CMJ process X,
whose birth intensity as a function of age s is given by ρνs. In fact, the approximation Lt
of Lt, constructed by using the CMJ process X to approximate Π and with the same
sequence of points (Pj , j ≥ 1), is excellent for times t ≤ αλ−1 log Λ if α < 1/2 ([BR], §2.2),
and still gives an approximation to the volume Lt of Lt at time t that is accurate to the
first order if α < 1 ([BR], Theorem 3.2 and (2.23)). This CMJ approximation takes the
form

Lt/L ∼ KΛ−1eλt+logW , t→∞, (1.7)

for a constant K, where W is a limiting random variable associated with the CMJ
process X. Taking

t = tΛ(u) := λ−1(log Λ + u), (1.8)

with u ≤ (α− 1) log Λ large and negative in the range in which this approximation holds,
this implies that LtΛ(u−logW )/L closely follows the curve

u 7→ `0(u), (1.9)

where `0(u) := Keu.
In [BR], Theorem 3.2, an analogous approximation

LtΛ(u−logW )/L ≈ `(u+ log ĉd)

is established, with uniformly small error, for all values of u, with ĉd defined before (1.11),
and with the time shift U given by λ−1 logW + c, for a suitably chosen constant c.
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CLT for the gossip process

Clearly, to be compatible with (1.9), `(u) ∼ Keu as u → −∞, as follows from ([BR],
following (2.23)).

For any fixed u, the distribution of LtΛ(u)/L is close to that of `(u+logW +log ĉd), and
is a bounded random variable. Hence it can only be approximately normally distributed,
after appropriate centring and normalization, in circumstances in which the distribution
of logW is concentrated close to some fixed value. This is not true of the distribution
of W at time 0. However, when predicting from a time v = αλ−1 log Λ for any fixed α,
0 < α < 1, the conditional distribution of W , given the information up to time v, is
concentrated close to an approximation W (v, v) provided only that α > 0, even though
the size of the informed set is still relatively small when compared to L for any α < 1.
The aim is now to show that the difference ∆(v) := W (v, v)−W , suitably normalized, is
approximately normally distributed.

It turns out to be easier to work with a ‘flattened’ CMJ process X̂, rather than with
the original CMJ process X. The process X̂ has birth rate at age s given by ρsdν, and
is thus the same process for all L, whereas X depends implicitly on L through the
function νs. The quantity λ then turns out to be the Malthusian parameter of X̂. In a CMJ
process with Malthusian parameter µ, at large times, a randomly sampled individual has
average age approximately 1/µ. For X̂, µ = λ, and replacing s by 1/λ in (1.4) confirms
that the two CMJ processes X and X̂ have birth rates that are close to each other if Λ

is large. The essentials of the proof of the normal approximation to ∆(v) are carried
out in Section 2. The argument hinges on examining a collection of (complex valued)
martingales (Wj(·), 0 ≤ j ≤ d) associated with X̂, that are defined in (2.13) below. In
particular, W (t, v) := W0(t), t ≥ v, is non-negative and square integrable, having limit
W0(∞) =: W . It is then shown that W0(v)−W , suitably normalized, is close enough to
the integral of a function f(W0(v), u) with respect to an independent standard Brownian
motion B(u), giving the normal approximation.

The arguments in Section 3, as outlined before (1.2), rely heavily on comparisons
between birth and growth processes. The actual process (Lt, t ≥ 0) is compared with
the branching approximation X, and X is compared to its flattened version X̂. Further
(flattened) CMJ processes X̂+ and X̂− are then introduced, to act as upper and lower
bounds for X; the comparison is formalized in Lemma 3.1. All the detailed computations
in Section 3 are made using these processes, including the reduction of the intersection
probability in Lemma 3.4 to a tractable form in Lemma 3.7.

To state our theorem, we take

Ŵ (v) := e−λv
d∑
l=0

∑
j∈Ĵv

{λ(v − τj)}l

l!
(1.10)

as an approximation to W , where the set Ĵv indexes the set of all non-intersecting
neighbourhoods of Lv. For each of these, the radii (v − τj) can be determined, and

so Ŵ (v) can be derived from Lv. Then let ĉd := d!/(d+ 1), and

ζ(d) :=

{
1/2 if d ≤ 6,

1− cos(2π/d) if d ≥ 7,
(1.11)

and define
`(u) := 1− φ∞(eu), where φ∞(θ) := E{e−θW }, (1.12)

whereW is as above; see also (2.13) and (2.18). Let dBW denote the bounded Wasserstein
distance between probability measures on R:

dBW(P,Q) := sup
f∈FBW

{∣∣∣∫ f dP −
∫
f dQ

∣∣∣},
EJP 23 (2018), paper 123.
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where FBW consists of all Lipschitz functions f : R→ [−1, 1] whose Lipschitz constant is
at most 1. The theorem is as follows.

Theorem 1.1. With the above definitions, suppose that v = αλ−1 log Λ for 0 < α <

2 min{γg/d, ζ(d)/(1 + ζ(d))}, where γg is as in (1.4). Then, for any u1 < u0 ∈ R, there
exists a γ > 0 and an event E∗(v) ∈ σ(Lv) with P[E∗(v)c] = O(Λ−γ) such that

dBW

(
L
{
eλv/2{LtΛ(u)/L− `(u+ log[ĉdŴ (v)])}

∣∣Fv ∩ E∗(v)
}
,N (0, σ2(u, Ŵ (v)))

)
= O(Λ−γ),

uniformly in u1 ≤ u ≤ u0, where tΛ(u) = λ−1(log Λ + u) as in (1.8) and

σ2(u,w) :=
{D`(u+ log[ĉdw])}2

(d+ 1)w
.

So, for instance, for spherical neighbourhoods in d ≤ 6, it is possible to take any α strictly
between 0 and 2/3 in Theorem 1.1. The order statements can be replaced by inequalities,
valid for all Λ sufficiently large, in which the constants depend only on d, u1 and u0;
however, the lower bound on the value of Λ then also involves α and the constants cg
and γg from (1.4).

In fact, the proof shows a little more: that we could realize the normal random
variables N (0, σ2(u,W (v, v))), for different values of u, as σ(u,W (v, v))N for the same
standard normal random variable N . The interpretation of this is that the fluctuations in
LtΛ(u)/L are essentially those of `(u+log[ĉdW ]), and that the remaining randomness after
time v is overwhelmingly that of the difference W −W (v, v), a single random variable.
This, at first sight surprising, result reflects the phenomenon common to branching
processes, that the randomness determining the growth of a super-critical branching
process occurs at the very beginning of its development.

2 The branching process

In this section, we investigate the limit W , as t→∞, of a martingale W (t) associated
with a particular CMJ branching process. We show that (W (t) −W ) is approximately
normally distributed, and give an explicit bound on the accuracy of the approximation.
Although, for a (multitype) Galton–Watson process, a central limit theorem of this sort
is not difficult to establish (Asmussen & Hering [2, Theorem 7.1]), the corresponding
theorems for general CMJ processes seem not to be available. Here, we are able to
exploit the particular structure of our CMJ process to prove what we need.

We start by identifying the branching process that we work with, which can be
expressed as a Markov process in a (d + 1)-dimensional space. The properties of the
coordinate processes (Hj(t), 0 ≤ j ≤ d), and of some equivalent (complex valued)
martingales (Wj(t), 0 ≤ j ≤ d) are established in Lemma 2.1. The component W0 is a
non-negative real valued martingale, and W is its limit as t→∞. Using Kolmogorov’s
inequality, the fluctuations of the sample paths of the processes Wj are controlled in
Lemma 2.2, and this in turn gives control over the processes Hj .

The martingale difference W0(v + t) −W0(v) is written in (2.23) as an integral of

an explicit function of the process Hd+1(u) := λ
∫ h

0
Hd(w) dw with respect to a standard

compensated Poisson process. Using the control that we have over the Hj , we determine
successively simpler approximations to this process, in (2.29) and (2.31), at each stage
making sure that the error incurred is sufficiently small (Lemma 2.4 and Corollary 2.6).
Finally, in (2.35), an expression is obtained in which integration with respect to the
compensated Poisson process has been replaced by integration with respect to standard
Brownian motion, and this can be used with an error controlled in Lemma 2.7. The
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results of these steps are collected as a functional approximation in Theorem 2.8. The
version that is used to prove Theorem 3.10 in Section 3 is given as Corollary 2.10.

2.1 Properties of the flattened process

The first step is to determine a suitable W . We do so by way of a ‘flattened’ version X̂
of the CMJ branching process X. The process X̂ is the counting process associated
with a point process (τ̂j , j ≥ 0) on R+, with τ̂0 = 0 a.s., whose compensator is given by

Â(t) :=
∫ t

0
â(u) du, where â(u) := ρν

∑
j: τ̂j≤u(u − τ̂j)d, and where ρ, as before, denotes

the intensity per unit volume. At time t, X̂(t) can be thought of as consisting of M0(t) :=

1 + max{r ≥ 0: τ̂r ≤ t} neighbourhoods, whose volumes at time t are given by (t− τ̂r)dν,
asymptotically close to, but not the same as the volume νt−τ̂r . The intensity â is then
precisely that of a CMJ process, in which neighbourhoods play the part of individuals,
and the point process ξ of an individual’s offspring is an inhomogeneous Poisson process
with rate ρνsd at age s. The mean number of offspring of an individual is thus infinite,
but the Malthusian parameter λ, chosen so that the equation∫ ∞

0

e−λsρνsd ds = 1

is satisfied, is finite, and is given by λ := (d!ρν)1/(d+1). Note that

(ξ(t), t ≥ 0) =d (ξ1(λt), t ≥ 0), (2.1)

where ξ1 is the inhomogeneous Poisson process with rate sd/d! at age s.
We can immediately deduce some useful general properties of the process X̂. To start

with, because the variance of the discounted offspring number
∫∞

0
e−λsξ(ds) is finite,

being given by
∫∞

0
e−2λsρνsd ds, it follows from Ganuza & Durham [7, Theorem 1] that

there exist finite constants c1 and c2 such that, for all u > 0,

e−λuEM0(u) ≤ c1; e−2λuE{M2
0 (u)} ≤ c2; (2.2)

in view of (2.1), c1 and c2 depend only on d. Then the intensity â(u) can be expressed as
ρνMd(u), where

Md(u) = ud +

∫
(0,u]

(u− v)dM0(dv) = d

∫ u

0

(u− v)d−1M0(v) dv. (2.3)

This in turn implies from (2.2) that

e−λuEMd(u) ≤ c1d!λ−d; e−2λuE{M2
d (u)} ≤ c2{d!λ−d}2, u > 0, (2.4)

using Cauchy–Schwarz for the second inequality.
However, X̂ also has special structure that will prove useful in what follows, relating

to the sums

Ml(t) =

M0(t)∑
j=1

(t− τj−1)l, l ≥ 1, (2.5)

of the l-th powers of the ages of the neighbourhoods. Note that Md(t) is as defined
previously, and that

d

dt
M1(t) = M0(t) for a.e. t;

d

dt
Mi(t) = iMi−1(t), i ≥ 2.

(2.6)
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Since M0 has intensity â = ρνMd, letting Z denote a unit rate Poisson process, we can
write

M0(t) = M0(0) + Z

(
ρν

∫ t

0

Md(u) du

)
. (2.7)

Defining Hi(t) := Mi(t)λ
i/i!, for any λ > 0, the equations (2.6) reduce to

d

dt
H1(t) = λH0(t) for a.e. t;

d

dt
Hi(t) = λHi−1(t), i ≥ 2;

(2.8)

with the particular choice λ := (d!ρν)1/(d+1), equation (2.7) becomes

H0(t) = M0(0) + Z

(
ρν

∫ t

0

d!λ−dHd(u) du

)
= H0(0) + Z(Hd+1(t)), (2.9)

so that Â(t) = Hd+1(t). In particular, from (2.8) and (2.9), it follows that the process H̃
defined by

H̃(t) := (H0(t), H1(t), . . . ,Hd(t)) (2.10)

is a Markov process. It also follows directly from (2.8) and (2.9), or as a consequence
of (2.1), that

{H̃(t), t ≥ 0} =d {H̃1(λt), t ≥ 0}, (2.11)

where H̃1 denotes the process with λ = 1. Note that ρ may depend on L, as also may λ.
In order to describe the properties of the process X̂ in more detail, we introduce the

(complex valued) processes

Wj(t) = 1 +

∫
(0,t]

e−λxju{M0(du)− Â(du)}, (2.12)

where xj := exp{2πıj/(d+ 1)} ∈ C, j ∈ {0, 1, . . . , d}, which are martingales with respect

to the natural filtration (F̂t, t ≥ 0) of X̂. In particular, for j = 0, we have xj = 1, and

W (t) := W0(t) = 1 +

∫
(0,t]

e−λu{M0(du)− Â(du)} (2.13)

is a real valued, càdlàg martingale, and plays a key part our arguments. It is shown in
the next lemma that it is also non-negative, and the rest of the section is then devoted
to proving a normal approximation to eλt/2(W (t) −W (∞)), which is the basis for the
central limit theorem for the gossip process itself. Note that the distribution of W (·) can
be derived from the corresponding martingale W 1(·) for the process with λ = 1, since,
from (2.11),

{W (t), t ≥ 0} =d {W 1(λt), t ≥ 0}; (2.14)

from this, it also follows that the distribution ofW (∞) is the same for all λ. The remaining
martingales Wj are useful, because they enable the quantities Hj(·) to be expressed in a
tractable form, as in the next lemma.

Lemma 2.1. With notation as above, we have

W (t) =

d∑
r=0

e−λtHr(t) > 0, t ≥ 0,

and

e−λtHj(t) =
1

d+ 1

d∑
l=0

xlj e
−λ(1−xl)tWl(t).
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Proof. It follows from (2.8) that, for any x ∈ C,

d

dt
{e−λxtxrHr(t)} = λxe−λxt{−xrHr(t) + xr−1Hr−1(t)}, r ≥ 1,

and, by partial integration, that∫
[0,t]

e−λxuH0(du) = e−λxtH0(t) + λx

∫ t

0

e−λxuH0(u) du.

Hence

d

dt

d∑
r=1

{e−λxtxrHr(t)} = λxe−λxt{−xdHd(t) +H0(t)},

and thus
d∑
r=0

{e−λxtxrHr(t)} =

∫
[0,t]

e−λxu{H0(du)− λxd+1Hd(u) du}. (2.15)

Taking x = xj for any j ∈ {0, 1, . . . , d}, we have xd+1 = 1, making the right hand side

equal to Wj(t), because λHd(u) du = Hd+1(du) = Â(du), by (2.8) and (2.9); hence

Wj(t) =

d∑
r=0

{e−λxjtxrjHr(t)}. (2.16)

The first statement of the lemma follows by taking j = 0, and the second by using the
orthogonality relation

∑d
l=0 x

l
jx
r
l = (d+ 1)δjr.

Now, writing rj := <xj and noting that â(u) = λHd(u) ≤ λeλuW (u), it follows
from (2.12) that, for 0 ≤ j ≤ d and for v < t < w,

E{|Wj(w)−Wj(t)|2 | F̂v} =

∫
(t,w]

e−2λrjuE{â(u) | F̂v} du

≤ W (v)

∫
(t,w]

λe−λ(2rj−1)u du. (2.17)

Using this bound with v = 0, we see that the variances of the terms with 1 ≤ l ≤ d in the
sum in Lemma 2.1 converge to zero as t → ∞. However, the term with l = 0 remains
significant as t→∞, since, by (2.17) with v = 0 and j = 0, it follows that W (·) is square
integrable, and that

W := W (∞) := lim
t→∞

W (t) exists a.s.; and EW = 1, VarW ≤ 1. (2.18)

Note that the distribution of W , through its Laplace transform φ∞ as in (1.12), already
appears in the statement of Theorem 1.1, and is the same for all λ, as remarked
following (2.14). Thus each of the Hj satisfies

e−λtHj(t) →P W/(d+ 1) as t→∞. (2.19)

We shall exploit more detailed versions of these asymptotics in Section 3.
In order to use Lemma 2.1 to describe further the behaviour of the Hj(t), we need

good control of the fluctuations of the processes (Wl, 0 ≤ l ≤ d). As indicated by (2.17),
their asymptotic behaviour depends substantially on whether or not rl > 1/2. Note, for
future reference, that min{(1− r1), 1/2} = ζ(d), where ζ(d) is as in (1.11).
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Lemma 2.2. For any 1 ≤ l ≤ d and 0 < η < min{(1− rl), 1/2}, and for any K > 0, define
the events

Eη1l(v;K) :=
{

sup
t≥v
{e−λt(1−rl−η)|Wl(t)−Wl(v)|} ≤ K

}
;

similarly, for 0 < η < 1/2, define

Eη10(v;K) :=
{

sup
t≥v
{eληt|W (t)−W (∞)|} ≤ K

}
.

Then there exist constants C(l, η), 0 ≤ l ≤ d, such that, for all K > 0,

P[{Eη1l(v;K)}c | H̃(v)] ≤ C(l, η)K−2W (v)e−λ(1−2η)v.

Proof. Combining (2.16) with (2.10), it follows that L
(
(W0(s), . . . ,Wd(s)), s ≥ v | F̂v

)
depends on F̂v only through the value of H̃(v). Then, noting that, for r + η ≤ 1, 1 ≤ l ≤ d
and for any w > t ≥ v,

sup
t≤s≤w

{e−λs(1−r−η)|Wl(s)−Wl(v)|} ≤ e−λt(1−r−η) sup
t≤s≤w

|Wl(s)−Wl(v)|,

and using Kolmogorov’s inequality on the real and imaginary parts of Wl, it follows that

P
[

sup
t≤s≤w

{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K
∣∣∣ H̃(v)

]
≤ 4K−2e−2λt(1−rl−η)E{|Wl(w)−Wl(v)|2 | H̃(v)} .

For rl > 1/2, taking w =∞, it follows from (2.17) that

P
[
sup
s≥v
{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K

∣∣∣ H̃(v)
]

≤ 4K−2e−2λv(1−rl−η)W (v)e−λv(2rl−1)/(2rl − 1) = 4K−2W (v)e−λv(1−2η)/(2rl − 1).

For rl = 1/2, taking t = v + jλ−1 and w = v + (j + 1)λ−1, it follows from (2.17) that

P
[

sup
t≤s≤w

{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K
∣∣∣ H̃(v)

]
≤ 4K−2W (v)e−(λv+j)(1−2η)(j + 1),

and adding over j ∈ Z+ gives

P
[
sup
s≥v
{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K

∣∣∣ H̃(v)
]
≤ 4W (v)e−λv(1−2η)

K2(1− e−(1−2η))2
.

For rl < 1/2, taking t = v + jλ−1 and w = v + (j + 1)λ−1, it follows from (2.17) that

P
[

sup
t≤s≤w

{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K
∣∣∣ H̃(v)

]
≤ 4W (v)e−(λv+j)(1−2η) e1−2rl

K2(1− 2rl)
,

and adding over j ∈ Z+ gives

P
[
sup
s≥v
{e−λs(1−rl−η)|Wl(s)−Wl(v)|} ≥ K

∣∣∣ H̃(v)
]
≤ 4eW (v)e−λv(1−2η)

K2(1− e−(1−2η))(1− 2rl)
.

For l = 0, the result is proved in analogous fashion, starting from

sup
t≤s≤t+λ−1

{eληs|W (s)−W (∞)|} ≤ 2eη(λt+1) sup
s≥t
|W (s)−W (t)|,
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and observing that, from (2.17),

P
[
sup
s≥t
|W (s)−W (t)| > a | H̃(v)

]
≤ a−2E{W (t)e−λt | H̃(v)} = a−2e−λtW (v).

As a result of this lemma, we can sharpen (2.19) by giving an explicit bound on the
error made when approximating e−λtHj(t) by W (v)/(d + 1) for any t ≥ v. To state the
bound, we define

Q(v) := d+ 2 +

d∑
l=1

e−λ(1−rl−η)v |Wl(v)|; Eη1 (v) :=

d⋂
l=0

Eη1l(v; 1), (2.20)

noting that, on Eη1 (v), Q(t) ≤ Q(v) + d for all t ≥ v. Then for all t ≥ v and 0 ≤ j ≤ d, and
if η < ζ(d), we have∣∣∣∣e−λtHj(t)−

W (v)

(d+ 1)

∣∣∣∣
≤ 1

d+ 1

{
|W (t)−W (v)|+

d∑
l=1

e−λ(1−rl)t {|Wl(v)|+ |Wl(t)−Wl(v)|}

}

≤ 1

d+ 1

{
d∑
l=1

e−λ(1−rl)t |Wl(v)|+ (d+ 2)e−ληt

}
≤ e−ληvQ(v)

d+ 1
, (2.21)

on Eη1 (v). Furthermore, from Lemma 2.2,

P[{Eη1 (v)}c | H̃(v)] ≤ θ1(v) := W (v)e−λ(1−2η)v
(
C(0, η) +

d∑
l=1

C(l, η)
)
. (2.22)

2.2 Approximating an integral representation of W (v + t)−W (v)

The aim of this section is to prove an approximation theorem, when v is large, for
the process X(0)

v (t) := W (v + t) −W (v) in t ≥ 0. We recall (2.7) and (2.9), and use the
representation (2.12), writing

X(0)
v (t) =

∫ v+t

v

e−λu{M0(du)−Hd+1(du)}

=

∫ Hd+1(v+t)

Hd+1(v)

e−λH
−1
d+1(w){Z(1)(dw)− dw} , (2.23)

where Z(1) is a unit rate Poisson process, with increments independent of F̂v, starting
with Z(1)(Hd+1(v)) = M0(v) = H0(v), and where Hl(u), l ≥ 0, are constructed in u ≥ v

from the Poisson process Z(1), using (2.8) and (2.9), with initial values Hl(v), 0 ≤ l ≤ d.
Once again, the process X(0)

v depends on its past F̂v only through H̃(v). Since the
expression (2.23) is too complicated to use directly, we simplify it in a series of stages.

We start by approximating H−1
d+1(w) in w ≥ Hd+1(v). In view of (2.21), we have

Hd+1(t) ≈ eλtW (v)/(d+ 1), or w ≈ eλH
−1
d+1(w)W (v)/(d+ 1); the precise result is as follows.

Note that, for our purposes, γη(v) can be thought of as small.

Lemma 2.3. Fix any η < ζ(d). Then, on the event Eη1 (v), we have

W (v)(1− γη(v))

w(d+ 1)
≤ e−λH

−1
d+1(w+H∗(v)) ≤ W (v)(1 + γη(v))

w(d+ 1)
,

for all w ≥ {W (v)/(d + 1)}eλv, where γη(v) := (d + 1){Q(v)/W (v)}e−ληv, H∗(v) :=

Hd+1(v)− eλvW (v)/(d+ 1), and Q(v) is as defined in (2.20).
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Proof. We begin by noting that Hd+1(u) =
∫ u

0
λHd(t) dt, so that, from (2.21), for u ≥ v,∣∣∣∣Hd+1(u)−Hd+1(v)− (eλ(u−v) − 1)eλv

W (v)

d+ 1

∣∣∣∣
≤
∫ u

v

λeλt

{
d∑
l=1

|Wl(v)|e−λ(1−rl)t + (d+ 2)e−ληv

}
dt

≤ Q(v)eλ(u−v)eλ(1−η)v . (2.24)

So, defining

tv(s) := λ−1 log

{
1 +

s(d+ 1)

eλvW (v)

}
and t−1

v (u) :=
eλvW (v)

d+ 1
(eλu − 1), (2.25)

it follows that, on Eη1 (v),

|{Hd+1(tv(s) + v)−Hd+1(v)} − s|

≤ Q(v)eλ(1−η)v

{
1 +

s(d+ 1)

eλvW (v)

}
=: hv(s). (2.26)

Now substitute s = t−1
v (u) into (2.26) for u ≥ 0, giving

W (v)

d+ 1
eλ(u+v)(1− γη(v)) +H∗(v) ≤ Hd+1(u+ v) ≤ W (v)

d+ 1
eλ(u+v)(1 + γη(v)) +H∗(v).

Writing w = Hd+1(u+ v) and inverting, it then follows immediately that

λ−1 log

{
(w −H∗(v))(d+ 1)

W (v)(1 + γη(v))

}
≤ H−1

d+1(w) ≤ λ−1 log

{
(w −H∗(v))(d+ 1)

W (v)(1− γη(v))

}
,

establishing the lemma.

This now allows (2.23) to be rewritten in the form

X(0)
v (t) =

∫ Hd+1(v+t)−Hd+1(v)

0

e−λH
−1
d+1(w+Hd+1(v))(Z(2)(dw)− dw), (2.27)

where Z(2) is a unit rate Poisson process, with respect to which both upper limit and
integrand are predictable, the latter being decreasing in w and bounded between

W (v)(1− γη(v))

w(d+ 1) +W (v)eλv
and

W (v)(1 + γη(v))

w(d+ 1) +W (v)eλv
, (2.28)

for all w ≥ 0, on the event Eη1 (v). In order to show that we can replace both the integrand
and the upper limit of integration in (2.27) with simpler expressions, without making too
great an error, we use Lemma 4.1 from the Appendix.

We first replace the integrand in (2.27), showing that X(0)
v is close to X(1)

v , defined by

X(1)
v (t) :=

∫ Hd+1(v+t)−Hd+1(v)

0

W (v)

w(d+ 1) +W (v)eλv
(Z(2)(dw)− dw), (2.29)

using (2.28). We set

v−(η) := max
{

0, [λ(1− η)]−1 log{e−2(d+ 1)}
}
.
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Lemma 2.4. With the above definitions, for any η < ζ(d) and any v ≥ v−(η), we have

P
[
eλv/2 sup

t≥0
|X(0)

v (t)−X(1)
v (t)| > {W (v)Q(v)γη(v)}1/2 | H̃(v)

]
≤ θ2(v) := θ1(v) + θ̃2(v),

where θ1(v) is as in (2.22), and θ̃2(v) := 2e−W (v)eληv/{2e}.

Proof. It follows from (2.27) that X(t) = X
(0)
v (t) − X

(1)
v (t) is an integral of the form

considered in Lemma 4.1, albeit with a random upper limit, and its corresponding
function F satisfies

|F (u)| ≤ G(u) :=
γη(v)W (v)

u(d+ 1) +W (v)eλv
, for all u ≥ 0, (2.30)

on Eη1 (v), in view of (2.28). We can thus apply Lemma 4.1 to the process X̃ with
F̃ (t) := F (t)1{|F (u)| ≤ G(u), 0 ≤ u < t} and with G̃(u) := G(u) as in (2.30), noting that
then, recalling (2.22),

P[X(t) = X̃(t) for all t ≥ 0 | F̂v] ≥ P[Eη1 (v) | H̃(v)] ≥ 1− θ1(v).

Now, from (2.30), we have G̃2(0,∞) = {γη(v)}2{W (v)/(d+ 1)}e−λv. We can then choose
a := e−λv/2{W (v)Q(v)γη(v)}1/2 in Lemma 4.1, because

a ≤ eG̃2(0,∞)/G̃∗(0,∞) = eγη(v){W (v)/(d+ 1)}

if v ≥ v−(η), and the result follows.

The next step is to simplify the upper limit in (2.29), using Lemma 4.1 to show that,
with tv(s) as defined in (2.25), (X

(1)
v (tv(s)), s ≥ 0) is close to the process (X

(2)
v (s), s ≥ 0)

given by

X(2)
v (s) :=

∫ s

0

W (v)

w(d+ 1) +W (v)eλv
(Z(2)(dw)− dw). (2.31)

For this, we need to control sups≥0, |z|<hv(s) |X
(2)
v (s + z) − X

(2)
v (s)|, for hv(s) defined

in (2.26).

Lemma 2.5. With the definitions given in (2.26), (2.29) and (2.31), and for any η < ζ(d),
we have

P
[
eλv/2 sup

s≥0, |z|<hv(s)

|X(2)
v (s+ z)−X(2)

v (s)| > 4εη(v)
∣∣∣ H̃(v)

]
I[Eη21(v)]

≤ θ3(v) :=

{
2

[
1 +

W (v)

g(v)

]
+

8e e2ληv/3

Q(v)(d+ 1)2

}
e−W (v)eληv/3/{2e(d+2)},

where εη(v) := {W (v)Q(v)}1/2e−ληv/3, g(v) := Q(v)(d+ 2)e−ληv and

Eη21(v) := {W (v) ≤ e2(d+ 2)2Q(v)eλv/3} ∩ {Q(v) ≤ 2e(d+ 1)−2e2ληv/3} ∈ σ(H̃(v)).

(2.32)

Proof. We consider the ranges 0 ≤ s ≤W (v)eλv and s > W (v)eλv separately. In the first
range of s, define sj := jeλvg(v) for 0 ≤ j ≤M := bW (v)/g(v)c, and set sM+1 := W (v)eλv:
then sj+1 − sj ≥ hv(sj) for each j. By Lemma 4.1, with G(u) the constant e−λv and
a := e−λv/2εη(v), we have

P
[

sup
sj≤s≤sj+1

eλv/2|X(2)
v (s)−X(2)

v (sj)| > εη(v) | H̃(v)
]
I[Eη21(v)] ≤ 2 exp{−εη(v)2/(2eg(v))},
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for 0 ≤ j ≤ M , since a ≤ eg(v) = eG(sj)(sj+1 − sj) on Eη21(v). Hence, by a standard
argument,

P
[

sup
0≤s≤W (v)eλv, |z|<hv(s)

eλv/2|X(2)
v (s+ z)−X(2)

v (s)| > 3εη(v)
∣∣∣ H̃(v)

]
I[Eη21(v)]

≤ 2{1 +W (v)/g(v)} exp{−W (v)eληv/3/{2e(d+ 2)}}. (2.33)

In the second range of s, we define

sj := W (v)eλv(1 + g̃(v))j , where g̃(v) := g(v)(d+ 1)/W (v),

noting that sj+1 − sj = sj g̃(v) ≥ hv(sj). By Lemma 4.1 with G(u) := s−1
j {W (v)/(d+ 1)},

we have

P
[

sup
sj≤s≤sj+1

eλv/2|X(2)
v (s)−X(2)

v (sj)| > εη(v)
∣∣∣ H̃(v)

]
I[Eη21(v)]

≤ 2 exp{−{εη(v)}2(d+ 1)2(1 + g̃(v))j/(2eW (v)g̃(v))}, j ≥ 0,

since a := e−λv/2εη(v) ≤ eg(v) = e{W (v)/(d+ 1)}g̃(v) = eG(sj)(sj+1 − sj) on Eη21(v), and
hence

P
[

sup
s≥W (v)eλv, |z|<hv(s)

eλv/2|X(2)
v (s+ z)−X(2)

v (s)| > 4εη(v)
∣∣∣ H̃(v)

]
I[Eη21(v)]

≤ 2 exp{−W (v)(d+ 1)eληv/3/{2e(d+ 2)}}
∑
j≥0

exp{−j{εη(v)}2(d+ 1)2/(2eW (v))}

≤ 8e e2ληv/3

Q(v)(d+ 1)2
exp{−W (v)(d+ 1)eληv/3/{2e(d+ 2)}}, (2.34)

since also {εη(v)2}(d + 1)2/(2eW (v)) ≤ 1 on Eη21(v). We need 4εη(v) here as the bound
on the supremum difference, rather than the usual 3εη(v), because it is possible to have
s(1 − g̃(v)) < sj−1 for some sj < s < sj+1; however, it then has to be the case that, for
such s, s(1− g̃(v)) ≥ sj−2 if g̃(v) ≤ 1/2, which is the case on Eη21(v).

In view of Lemma 2.5 and (2.26), we immediately have the following corollary.

Corollary 2.6. With the definitions of Lemma 2.5,

P
[
eλv/2 sup

s≥0
|X(1)

v (tv(s))−X(2)
v (s)| > 4εη(v)

∣∣∣ H̃(v)
]
I[Eη21(v)] ≤ θ1(v) + θ3(v).

We now show that X(2)
v is close in distribution to the process X(3)

v defined by

X(3)
v (s) :=

∫ s

0

W (v)

w(d+ 1) +W (v)eλv
B(dw), (2.35)

where, for the integrator, the compensated Poisson process Z(2)(w)− w from X
(2)
v has

been replaced by a standard Brownian motion B(w). Note that eλv/2X(3)
v is itself just a

time-changed Brownian motion:(
{(d+ 1)/W (v)}1/2X(3)

v

(
{W (v)/(d+ 1)}eλvs

)
, s ≥ 0

)
=d

(
B(s/(s+ 1)), s ≥ 0

)
, (2.36)

and so, conditional on W (v), X(3)
v (∞) ∼ N (0,W (v)/(d+ 1)).

Lemma 2.7. Fix r ≥ 1. Then there are constants cr1 and cr2, depending only on d, with
the following properties. For all v such that λv ≥ cr1, it is possible to construct X(2)

v

and X(3)
v on the same probability space, in such a way that

P
[
eλv/2 sup

s≥0
|X(3)

v (s)−X(2)
v (s)| ≥ cr2(1 +W (v))λve−λv/2

]
≤ θ4(v) := e−3rλv.
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Proof. For any r ≥ 1, there are constants Cr,Kr with the property that, for any n ≥ 1, a
standard Poisson process Z and a standard Brownian motion B can be constructed on
the same probability space in such a way that P[Acr(n)] ≤ Krn

−(r+1), where

Ar(n) :=

{
sup

0≤s≤n

|Z(s)− s−B(s)|
log n

≤ Cr
}
.

This follows from Komlós, Major & Tusnády [10, Theorem 1 (ii)], together with elementary
exponential bounds for the fluctuations of the standard Poisson process and Brownian
motion over the time interval [0, 1]. Fix r, and take n := e3λv for v ≥ v1, where v1 is chosen
so that e3λv1 ≥ 2Kr, implying that P[Acr(n)] ≤ 1

2e
−3rλv. Then use the corresponding

choices of Z and B to realize X(2)
v and X(3)

v , which we express, by partial integration, in
the form

X(2)
v (s) = W (v)

{
Z(s)− s

s(d+ 1) +W (v)eλv
+

∫ s

0

Z(u)− u
(u(d+ 1) +W (v)eλv)2

du

}
,

X(3)
v (s) = W (v)

{
B(s)

s(d+ 1) +W (v)eλv
+

∫ s

0

B(u)

(u(d+ 1) +W (v)eλv)2
du

}
. (2.37)

Taking the difference, it is immediate that, for 0 ≤ s ≤ e3λv and on Ar(e3λv),

|Z(s)− s−B(s)|
s(d+ 1) +W (v)eλv

≤ Cr
3λv

W (v)eλv

and that ∫ s

0

|Z(u)− u−B(u)|
(u(d+ 1) +W (v)eλv)2

du ≤ Cr
3λv

W (v)(d+ 1)eλv
.

This shows that, on Ar(e3λv),

eλv/2|X(3)
v (s)−X(2)

v (s)| ≤ 6Crλve
−λv/2 for 0 ≤ s ≤ e3λv.

Then, taking F (u) = W (v)/{u(d+1)+W (v)eλv}, a = eCr{W (v)/(d+1)}λve−λv, t1 = e3λv

and t2 =∞ in Lemma 4.1, with the choice of a permissible for all v ≥ v2, where v2 ≥ λ−1

is chosen such that λv2e
−λv2 ≤ 1/Cr, we have

P
[

sup
e3λv≤s<∞

|X(2)
v (s)−X(2)

v (e3λv)| > eCr{W (v)/(d+1)}λve−λv
]
≤ 2 exp{−(e/2)(Crλv)2eλv}.

The same bound is satisfied also for supe3λv≤s<∞ |X
(3)
v (s)−X(3)

v (e3λv)|, as can be deduced
from the representation (2.36). Now choose v3≥λ−1 so that 8 exp{−(e/2)(Crλv3)2eλv3}≤
e−3rλv, and set v0 := max{v1, v2, v3}.

Summarizing the conclusions Lemmas 2.4 and 2.7 and of Corollary 2.6, we have the
following theorem. In the error terms, θ1(v) is defined in (2.22), θ2(v) in Lemma 2.4,
θ3(v) in Lemma 2.5 and θ4(v) in Lemma 2.7.

Theorem 2.8. With the definitions (2.12), (2.25) and (2.35), fixing any η < ζ(d), we can

construct W and a time changed Brownian motion X(3)
v on the same probability space,

in such a way that, for all v ≥ λ−1c1∗,

P
[
eλv/2 sup

u≥0
|{W (u+v)−W (v)}−X(3)

v (t−1
v (u))| > K(v)e−ληv/3

∣∣∣ H̃(v)
]
I[Eη21(v)] ≤

4∑
i=1

θi(v),

where K(v) := 4{W (v)Q(v)}1/2 + Q(v)
√
d+ 1 + c2∗(1 + W (v)e−λv/3), Eη21(v) ∈ σ(H̃(v))

is as defined in (2.32), and the constants c1∗ and c2∗, which depend only on d, can be
deduced from Lemma 2.7 with r = 1.
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2.3 Consequences for the gossip process

Theorem 2.8 is not yet in a form easily applied to the gossip process. To start with,
the statement of the theorem involves the σ(H̃(v))-measurable random variables W (v),
Q(v), K(v) and θi(v), 1 ≤ i ≤ 4, and it is useful to have some idea of their magnitude. It
is also useful to specify how big the probability P[Eη21(v)] may be. To derive appropriate
statements, we begin with the random elements W (v) and Wl(v), 1 ≤ l ≤ d.
Lemma 2.9. For any 0 < η < ζ(d), we have

P[e−λ(1−rl−η)v |Wl(v)| > 2] ≤


e−2λv(1−rl−η)(2rl − 1)−1 if rl > 1/2;

λv e−λv(1−2η) if rl = 1/2;

e−λv(1−2η)(1− 2rl)
−1 if rl < 1/2,

(2.38)

for 1 ≤ l ≤ d. Furthermore, for any s > 0,

P[W (v) ≥ 1 + s] ≤ s−2 and P[W (v) ≤ s] ≤ exp

{
−
{log+(w0/s)}d+1

2 (d+ 1)!

}
, (2.39)

for a suitably chosen w0 > 0.

Proof. The first part follows from (2.17) and Chebyshev’s inequality, and, for W (v), the
bound on the upper tail holds because VarW (v) ≤ VarW (∞) ≤ 1 and EW (v) = 1. For
the lower tail, note that W (∞) > 0 a.s., so that, because W (·) is càdlàg and positive
on R+, we have W∗ := inft>0W (t) > 0 a.s. also. Suppose that w0 > 0 is chosen so that
P[W∗ ≥ w0] ≥ 1/2. Then, for 0 < x ≤ w0, W (t) > x if any of the offspring of the initial
individual that are born before time tx generate families with W∗ > w0, where e−λtx =

x/w0. The probability that there are no such offspring is just exp{−ρνtd+1
x /{2(d+ 1)}}.

Hence, for t ≥ tx and x ≤ w0,

P[W (t) ≤ x] ≤ exp

{
−ρν{log(w0/x)}d+1

2λ(d+1)(d+ 1)

}
= exp

{
−{log(w0/x)}d+1

2 (d+ 1)!

}
.

In view of (2.20), if 0 < η < ζ(d), then Q(v) ≤ 3(d+ 1) on the event

Eη22(v) :=

d⋂
l=1

{e−λ(1−rl−η)v |Wl(v)| ≤ 2}, (2.40)

and the first part (2.38) of Lemma 2.9 directly implies that

P[{Eη22(v)}c] ≤ c(d)(1 + λv1{d=6}) e
−2λv(ζ(d)−η), (2.41)

for a suitable constant c(d); of course, by definition, Q(v) ≥ d + 2. The second part
of Lemma 2.9 implies that E23(v) := {W (v) ≤ 1 + eληv/3} is such that P[{E23(v)}c] ≤
e−2ληv/3. From these observations and (2.32), it follows that

Eη22(v) ∩ E23(v) ⊂ Eη21(v),

if v is such that e2ληv/3 ≥ (d+ 1)3, and hence, for such v,

P[{Eη21(v)}c] ≤ c(d)(1 + λv)e−2λv(ζ(d)−η) + e−2ληv/3; (2.42)

in addition,
K(v)e−ληv/3 ≤

√
d+ 1 {4

√
2 + 2(d+ 1) + 3c2∗} e−ληv/6
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on Eη22(v) ∩ E23(v) also.
For the quantities θi, 1 ≤ i ≤ 4, note that, from (2.22),

θ1(v) ≤ C(d, η)e−λv(ζ(d)−η) on the event Eη24(v) := {W (v) ≤ 1 + eλv(ζ(d)−η)}, (2.43)

and that P[{Eη24(v)}c] ≤ e−2λv(ζ(d)−η). Then, as in Lemma 2.7, θ4(v) = e−3λv if we take r =

1. From Lemma 2.4, θ2(v) = θ1(v)+ θ̃2(v), and both θ̃2(v) and θ3(v), defined in Lemma 2.5,
are super-exponentially small in ληv on the event Eη25(v) := {W (v) ≥ e−ληv/6}. Finally,
by the last inequality in Lemma 2.9,

P[{Eη25(v)}c] ≤ exp
{
−(1/2){log(w0) + ληv/6}d+1/(d+ 1)!

}
,

which is also super-exponentially small in ληv. Hence, taking

Eη(v) := Eη22(v) ∩ E23(v) ∩ Eη24(v) ∩ Eη25(v), (2.44)

for which P[{Eη(v)}c] ≤ C(d)(λve−2λv(ζ(d)−η) + e−2ληv/3), and assuming that v is such
that e2ληv/3 ≥ (d+ 1)3, we have the following consequence of Theorem 2.8. To state it,
and for future use, we define

tmax(Λ) := (3/2)λ−1 log Λ, (2.45)

an upper bound for the times to be considered in proving the central limit theorem.

Corollary 2.10. For any 0 < η < ζ(d) and v ≤ tmax(Λ) such that e2ληv/3 ≥ (d + 1)3 and
λv ≥ c1∗, there are constants C = C(d, η) and C ′ = C ′(d) and an event Eη(v) ∈ σ(H̃(v)),
with P[{Eη(v)}c] ≤ C ′λve−2λv(ζ(d)−η) + e−2ληv/3), such that, for any u ≥ 0 such that
tΛ(u) ≤ tmax(Λ),

|E
{
f(eλv/2{W (u+ v)−W (v)}) | F̂v

}
− E

{
f(eλv/2X(3)

v (t−1
v (u))) | F̂v

}
|I[Eη(v)]

≤ C{e−ληv/6 + e−λv(ζ(d)−η)}, (2.46)

uniformly for all f ∈ FBW.

Taking any c0, . . . , cd ∈ R+ and setting C(x) :=
∑d
l=0 clx

l, we also observe from
Lemma 2.1 that∣∣∣ d∑
l=0

cle
−λsHl(s)−(d+1)−1C(1)W (s)

∣∣∣ ≤ C(1)

d+ 1

d∑
l=1

e−λ(1−rl)s|Wl(s)| ≤ C(1)e−ληs (2.47)

on Eη22(s), the probability of whose complement is bounded in (2.41).

3 The central limit theorem

In this section, the central limit theorem is proved much as outlined in the introduc-
tion. With σ2

L(v, u) := Var {LtΛ(u)/L | Fv}, we show in Lemma 3.2 that

E
{∣∣(LtΛ(u)/L)− E{LtΛ(u)/L | Fs}

∣∣ ∣∣∣Fv} � σL(v, u), (3.1)

if s is chosen to be sufficiently long after v. The approximation of E{LtΛ(u)/L | Fs} as
a Poisson probability is then accomplished in Lemma 3.4, with an error that is small
if tΛ(u)− s is sufficiently large. Lemmas 3.5–3.7 approximate the mean of the Poisson
distribution by successively simpler quantities, and bound the errors involved in the
approximations. The combined result of these steps is summarized in Corollary 3.8,
showing that, given Fv, the distribution of LtΛ(u)/L is close to that of `(log[ĉdW (s, v)]+u).
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Now the normalized difference eλv/2(W (s, v)−W (v, v)) can be shown, using Corol-
lary 2.10, to have a normal approximation. Because of the normalization, it is important
at this point to check that the approximation errors in the previous steps are all much
smaller than e−λv/2; this places some restrictions on how large v may be. The lineariza-
tion of the difference `(log[ĉdW (s, v)] + u)− `(log[ĉdW (v, v)] + u), needed to show that it
is itself approximately normally distributed, is accomplished in Lemma 3.9, and the final
result is given in Theorem 3.10.

3.1 Comparisons of processes

The detailed calculations make heavy use of comparisons between a number of
processes, that we justify in Lemma 3.1 by realizing them on the same probability spaces.
The process L itself can be realized by starting with the times (τ̄j , j ≥ 0) of the branching
process X, paired with a sequence of independent uniform points (P j , j ≥ 0) of C. This
yields a process

Y (t) := {(τ̄j , P j), j ∈ J t}, t ≥ 0, (3.2)

in terms of which we define

J t := {j ≥ 0: τ̄j ≤ t}; N t := |J t|; M t :=
∑
j∈Jt

(t− τ̄j)d. (3.3)

We can then define the set valued process

L(t) :=
⋃
j∈Jt

K(P j , t− τ̄j), (3.4)

obtained by taking the unions of the neighbourhoods generated by Y (t). The process Y
can be augmented to a process Ỹ of quadruples, by including a set of pairs (K(j), Qj),

j ≥ 0, where 0 ≤ K(j) < j and Qj ∈ C, denoting the subsets from which the long range
contacts were made and the positions of the individuals within them: given Y (τ̄j−),

P[K(j) = l] =
ντ̄j−τ̄l∑j
l′=0 ντ̄j−τ̄l′

, 0 ≤ l < j,

and Qj is then chosen uniformly from the set K(PK(j), τ̄j − τ̄K(j)). The process L is

derived from Ỹ sequentially, by thinning. The pair (τ̄j , P j) is not included in L unless
K(j) = min{l ≥ 0: Qj ∈ K(P l, τ̄j − τ̄l)}. This thinning process ensures that, when
neighbourhoods overlap in C, only contacts from the neighbourhood that was informed
earliest are allowed, ensuring that the rate of long range transmissions from Lt remains
equal to ρLt. Note that, if P j ∈ Lτ̄j−, the pair (τ̄j , P j) is included in defining L; however,
it is redundant in (1.3), the newly informed individual having previously been informed,
and it never contributes to further transmission, because of the definition of the thinning
step. The resulting set of times and positions we denote by ((τj , Pj), j ≥ 0), with

Js := {j ≥ 0: τj ≤ s}; Ns := |Js|; Ms :=
∑
j∈Js

(s− τj)d, (3.5)

and L is as given by (1.3); it satisfies Lt ⊂ Lt, with strict inclusion for all large enough
times.

The process L acts as a tractable upper bound for L, and it is useful also to have
tractable lower bounds. In particular, when calculating the probability that a neighbour-
hood K(P, s) intersects Lt, where s is fixed and P is a uniform random point of C, the
way in which the neighbourhoods of Lt intersect one another enters in a complicated
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way. However, if Lt happened to consist of a union of non-intersecting neighbourhoods,
which were also separated from one another by distance at least 2s, then the probability
could be deduced by simply adding the intersection probabilities for the individual
neighbourhoods. Then, because the neighbourhoods K are balls in a geodesic metric
space, the probability of two neighbourhoods K(P, s) and K(Q, t) intersecting, if one or
both of P and Q are chosen uniformly and independently in C, is given by

qL(s, t) = L−1νs+t, (3.6)

where νs+t can be estimated in terms of ν(s+ t)d, in view of (1.4). Of course, as t grows,
intersections occur in Lt, but, at least for a while, their effect may not be too large. So
the next step is to construct subsets of Lt with the necessary separation properties, and
which are amenable to analysis.

Fix any s, t > 0, and thin the process Ỹ to obtain a set valued process Ls,t as follows.
Start with τs,t0 = 0 and P s,t0 = P0, defining

Ls,tu := K(P0, u) for 0 ≤ u < τ̄1;

let Rs,t0 := ∅ denote the initial set of indices of censored points of Ỹ . Then proceed
sequentially. Suppose that the quadruples ((τ̄l, P l,K(l), Ql), 0 ≤ l ≤ j − 1) ⊂ Ỹ have
already been considered. If K(j) ∈ Rs,tj−1, set Rs,tj := Rs,tj−1 ∪ {j} and proceed to the next
quadruple; descendants of censored points are also censored. If not, thin much as in the
construction of L, except that a point P j is also thinned if it belongs to N2s+t−τ̄j (L

s,t
τ̄j−),

where, for V ⊂ C and u > 0,
Nu(V ) :=

⋃
y∈V
K(y, u); (3.7)

set

Ls,tu :=

j⋃
l=0

1{l/∈Rs,tj }
K(P l, u− τ̄l), τ̄j ≤ u < τ̄j+1. (3.8)

The extra thinning in (3.7) ensures that the neighbourhoods in Ls,tt are at distance at
least 2s from one another. If Js,tu denotes the set of indices of the points of Ỹ that
enter Ls,t up to time u, then Ls,tu consists of the collection of disjoint neighbourhoods
(K(P j , u − τ̄j), j ∈ Js,tu ), and new points are generated at rate ρ

∑
j∈Js,tu νu−τ̄j (1 − πs,tu ),

where the censoring probability πs,tu is given by

πs,tu := L−1
∑
j∈Js,tu

ν2s+(t−τ̄j)+(t−u). (3.9)

In our applications, we can find suitably small bounds for πs,tu , so that the growth of the
numbers of neighbourhoods in Ls,t is still reasonably close to that of the CMJ process X.
In view of the ‘hard core’ censoring, the points (P j , j ∈ Js,tu ) are no longer independent
of one another, but their marginal distribution is still uniform on C if P0 is chosen at
random. Note also that Ls,tu ⊂ Lu for each s, t ≥ 0 and 0 < u ≤ t.

We shall also use comparisons between the CMJ process X and ‘flattened’ versions
X̂−, X̂0 and X̂+ that are of the form discussed in the previous section. We start by noting
that, from the inequality (1.4),

νsd{1− ηΛ} ≤ νs ≤ νsd{1 + ηΛ}, 0 < s ≤ tmax(Λ), (3.10)

where tmax(Λ) := 3
2λ log Λ is as in (2.45), and

ηΛ := cg

(
3 log Λ

2Λ1/d

)γg
. (3.11)
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Hence, up to time tmax(Λ), the process X is stochastically dominated by the flattened
process X̂+, defined as in the previous section, having intensity ρ+ := ρ(1 + ηΛ) per
unit volume, and hence growth rate λ+ := λ{1 + ηΛ}1/d; similarly, it stochastically
dominates the flattened process X̂− with ρ− := ρ(1 − ηΛ) and λ− := λ{1 − ηΛ}1/d. We
also define the flattened process X̂0 with intensity ρ per unit volume, and with growth
rate λ. The quantities M+

j , M0
j and M−j , and their standardized versions H+

j , H0
j and H−j ,

correspond to these processes. We make the relationships between the processes precise
with the following construction.

Lemma 3.1. Let the successive birth times in the branching processes X, X̂−, X̂0

and X̂+ be denoted by (τ̄j , τ̂
−
j , τ̂

0
j , τ̂

+
j , j ≥ 0), respectively, and let (Tt, T

−
t , T

0
t , T

+
t ) denote

the sets of birth times up to time t in each of the processes. If, for some 0 ≤ s < tmax(Λ),
T−s ⊂ Ts ⊂ T+

s and T−s ⊂ T 0
s ⊂ T+

s , then the processes X, X̂−, X̂0 and X̂+ can be defined
on the same probability space, in such a way that, for all s ≤ t ≤ tmax(Λ),

T−t ⊂ Tt ⊂ T+
t and T−t ⊂ T 0

t ⊂ T+
t a.s.

Proof. The birth rate of X at time t is given by

r(X, t) := ρ
∑

j : τj∈Tt

νt−τ̄j ,

and of X̂0 by

r(X̂0, t) := λH0
d(t) = λd+1

∑
j : τ̂0

j ∈T 0
t

(t− τ̂0
j )d/d! = ρν

∑
j : τ̂0

j ∈T 0
t

(t− τ̂0
j )d,

with analogous representations for r(X̂−, t) and r(X̂+, t). Thus, for any time t such that

T−t ⊂ Tt ⊂ T+
t and T−t ⊂ T 0

t ⊂ T+
t , (3.12)

we have r(X̂−, t) ≤ r(X, t) ≤ r(X̂+, t) and r(X̂−, t) ≤ r(X̂0, t) ≤ r(X̂+, t). Hence, for s
as given, we can construct all four processes on the same probability space, for s ≤
t ≤ tmax(Λ), by realizing X̂+ on [s, tmax(Λ)] together with an independent sequence
of independent random variables (Uj , j ≥ 1) uniformly distributed on [0, 1], and then
thinning in the following way. At each successive point τ̂+

j > s, include it as a point of X

if Ujr(X̂+, t) ≤ r(X, t); similarly, if Ujr(X̂+, t) ≤ r(X̂−, t), include τ̂+
j as a point of X̂−,

and if Ujr(X̂+, t) ≤ r(X̂0, t), include τ̂+
j as a point of X̂0. This construction preserves

the inclusions (3.12) for all times up to tmax(Λ), and, because independently thinned
Poisson processes are again Poisson processes, also yields the right distributions for the
processes X, X̂0 and X̂−.

In what follows, we shall use F++
t to denote the filtration for the combined construction

in Lemma 3.1. We shall henceforth only consider times in [0, tmax(Λ)], and will take Λ

large enough that
exp{3ηΛtmax(Λ)} ≤ 2 and ηΛ ≤ 1. (3.13)

3.2 Relating the proportion informed to the function `

The first step in our detailed calculations is to replace Lt/L with E{Lt/L | F̃s}, where
F̃s := σ(Ỹu, 0 ≤ u ≤ s), for suitable s < t; this conditional expectation is easier to handle.
We start by bounding the conditional variance Var {Lt/L | F̃s}, for suitable values of s < t.

The basis for our argument is given by the observations that

E{1− Lt/L | F̃s} = P[K /∈ Lt | F̃s] and E{(1− Lt/L)2 | F̃s} = P[K,K ′ /∈ Lt | F̃s],
(3.14)
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where K and K ′ are chosen independently and uniformly in C, implying that

Var {Lt/L | F̃s} = P[K,K ′ /∈ Lt | F̃s]− {P[K /∈ Lt | F̃s]}2. (3.15)

On the other hand,

{K /∈ Lt} = {L̃Kt,s ∩ Ls = ∅}, (3.16)

where L̃Kt,s denotes the set of all points at time s that, if informed, would inform K

by time t. Now, for the gossip process, L̃Kt,s is independent of F̃s, and has the same
distribution as Lt−s. In view of (3.16), we thus have

P[K /∈ Lt | F̃s] = P[L̃Kt,s ∩ Ls = ∅ | F̃s], (3.17)

where Ls is F̃s-measurable and L̃Kt,s is independent of F̃s, and

P[K,K ′ /∈ Lt | F̃s] = P[{L̃Kt,s ∩ Ls = ∅} ∩ {L̃K
′

t,s ∩ Ls = ∅} | F̃s], (3.18)

with L̃Kt,s and L̃K′t,s independent of F̃s, but not of each other. Indeed, in view of (3.15), it

is the extent of their dependence that measures Var {Lt/L | F̃s}.
Writing ts := t− s, our argument now involves bounding the differences

P[L̃Kt,s ∩ Ls = ∅ | F̃s]− P[LK(ts) ∩ Ls = ∅ | F̃s] and (3.19)

P[{L̃Kt,s ∩ Ls = ∅} ∩ {L̃K
′

t,s ∩ Ls = ∅} | F̃s]

− P[{LK(ts) ∩ Ls = ∅} ∩ {LK
′

(ts) ∩ Ls = ∅} | F̃s] (3.20)

between the probabilities (3.17) and (3.18) and the smaller ones obtained by replacing

L̃Kt,s and L̃K′t,s by their related (independent) branching and growth processes LK and LK
′

.
These, as observed in the joint construction at the beginning of the section, give rise to
stochastically larger sets than L̃Kt,s and L̃K′t,s . If both of the differences (3.19) and (3.20)

are smaller than some ε, then the independence of LK and LK
′

immediately implies that
Var {Lt/L | F̃s} ≤ 4ε. Using this strategy, we prove the following lemma.

Lemma 3.2. Under the above assumptions, there is a constant C3.2 = C3.2(d) such that

Var {Lt/L | F̃s} ≤ C3.2Λ−2(1 + (λs)d)e2λ(t−s)(λdMs +Ns).

Proof. To control the differences (3.19) and (3.20), we begin by running a process Ỹ K ,

defined following (3.2), until time ts, and thin to obtain L̃Kt,s. As in (3.3), define J
K

u :=

{j ≥ 0: τ̄Kj ≤ u}, and set N
K

u := |JKu | and M
K

u :=
∑
j∈JKu

(u − τ̄Kj )d. We then thin Ỹ K

further to construct the process (L0,ts,K(u), 0 ≤ u ≤ ts), by the method used to construct
Ls,t in (3.8).

We now consider the difference

∆s,t := P[L0,ts,K(ts) ∩ Ls = ∅ | F̃s]− P[LKts ∩ Ls = ∅ | F̃s],

which is an upper bound for the real quantity (3.19) of interest to us. The quantity ∆s,t

is no larger than the conditional expectation given F̃s of the number ZKt,s of intersections

between censored islands of LKts and the islands of Ls. If an island born in X
K

at u is
censored, the expected number of censored islands that result at ts is at most c1eλ+(ts−u),

by (2.2) and because X
K

is stochastically dominated by X̂+. These islands each have
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radius at most (ts − u). Hence, given F̃s, the expected number of intersections resulting
from a censored island born at u is at most

c1e
λ+(ts−u)

∑
j∈Js

L−1ν(s−τj)+(ts−u)

≤ c1e
λ+(ts−u)ν(1 + ηΛ)L−1

∑
j∈Js

((s− τj) + (ts − u))d

≤ 2dc1νe
λ+(ts−u)L−1(Ms +Ns(ts − u)d),

in view of (3.6), (1.4) and (3.13); N and M are as in (3.3). Similarly, using (3.9), the

conditional probability π0,ts,K
u of an island born in X

K
at u being censored for L0,ts,K ,

given the history up to u, is bounded above by

(1 + ηΛ)νL−1

∫
(0,u)

{2s+ (ts − v) + (ts − u)}dNK
(dv)

≤ 2.3d−1νL−1

∫
(0,u)

{(2s)d + (2(ts − u))d + (u− v)d}NK
(dv)

= 2.3d−1νL−1
{
N
K

u−{(2s)d + (2(ts − u))d}+M
K

u−
}
.

Hence, again using N
K

as an upper bound for the number of uncensored islands, and

noting that the birth intensity in X
K

at time u is at most

ρ
∑
j∈Ju

νu−τ̄Kj ≤ 2νρM
K

u ,

we have

E{ZKt,s | F̃s}

≤ E

{∫ ts

0

2.3d−1νL−1
{
N
K

u−{(2s)d + 2d(ts − u)d}+M
K

u−
}

2dc1νe
λ+(ts−u)L−1(Ms +Ns(ts − u)d)N

K
(du)

∣∣∣ F̃s}
≤ 2d+13d−1c1ρ{ν}3L−2 (3.21)

E

{∫ ts

0

{
N
K

u {(2s)d + 2d(ts − u)d}+M
K

u

}
eλ+(ts−u)(Ms +Ns(ts − u)d)M

K

u du
∣∣∣ F̃s} .

Now, by (2.2), (2.4) and Cauchy–Schwarz, and because X
K

is stochastically dominated
by X̂+,

E
{

(N
K

u {(2s)d + (ts − u)d}+M
K

u )M
K

u

}
≤ c2d!λ−d+ {(2s)d + (ts − u)d + d!λ−d+ }e2λ+u.

Using this in (3.21), and noting that λ+ ≤ λ(1 + ηΛ) and that ρνd! = λd+1, gives the
following bound for (3.19):

0 ≤ P[L̃Kt,s ∩ Ls = ∅ | F̃s]− P[LKts ∩ Ls = ∅ | F̃s] ≤ E{ZKt,s | F̃s}
≤ C1(d)(1 + (λ+s)

d)λ−d+ {ν}2L−2e2λ+ts(Ms + λ−d+ Ns) (3.22)

≤ C1(d)Λ−2(1 + (λ+s)
d)e2λts(λdMs +Ns). (3.23)

We now need to bound (3.20). This can be done by introducing a process L0,ts,K,K
′
,

constructed in the same way as L0,ts,K , but starting from two initial points K,K ′ and
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using a CMJ process X
K,K′

, which is the same as using two independent CMJ processes

X
K

and X
K′

, by the branching property. Now L0,ts,K,K
′
(ts) ⊂ (L̃Kt,s ∪ L̃K

′

t,s ), and the

conditional expection given F̃s of the number ZK,K
′

t,s of intersections between censored

islands of X
K,K′

ts and the islands of Ls satisfies

E{ZK,K
′

t,s | F̃s} ≤ C2(d){ν}2L−2(1 + (λ+s)
d)e2λ+ts(λdMs +Ns), (3.24)

by an argument exactly as before, but for a larger constant C2(d) than C1(d) appearing

in (3.23). Since E{ZK,K
′

t,s | F̃s} is a bound for the difference in (3.20), we have enough to
prove the lemma.

Remark 3.3. With s = α1λ
−1 log Λ and t = α2λ

−1 log Λ, where α1 < α2 ≤ 1, and since
E(λdMs +Ns) = O(eλ+s), from (2.4), it follows that Var {Lt/L | F̃s} is typically of order
O
(
Λ2α2−α1−2(log Λ)d

)
.

Our main interest is in approximating the distribution of Lt/L when

t = tΛ(u) := λ−1{log Λ + u}, (3.25)

for u fixed. This is because the times (tΛ(u), u ∈ R) asymptotically represent the period
in which Lt/L increases from 0 to 1. Taking α1 = α < 1 and α2 = 1 in the remark, it
follows that Var {LtΛ(u)/L | F̃s} is typically of order O(Λ−α) for s := αλ−1 log Λ. Now pick
v := α1λ

−1 log Λ and s := α2λ
−1 log Λ, with α1 < α2 < 1. Then

Var {Lt/L | F̃v} = Var {E(Lt/L | F̃s) | F̃v}+ E{Var (Lt/L | F̃s) | F̃v} ,

in which the latter term, again by the remark, is typically of order O(Λ−α2) if t = tΛ(u).
Supposing that Var {Lt/L | F̃v} is actually of magnitude Λ−α1 , this indicates that the
conditional distribution of Lt/L given F̃v is essentially that of the conditional distribution
of E(Lt/L | F̃s) given F̃v. So the next step is to examine E{(1− Lt/L) | F̃s} in detail, for
t = tΛ(u), and to express it in more amenable form.

The next lemma once again uses the backward branching process LK from a randomly

chosen point K. We define FKs,t := F̃s
∨
FKt−s;0, where FKv;0 := σ(N

K

u , 0 ≤ u ≤ v) contains

the information about when the islands of LK were formed, up to time v, but not where

they are centred. We then write Zs,t for the number of islands of LKts that intersect Ls.
Lemma 3.4. With the definitions above, there is a constant C3.4 = C3.4(d) such that∣∣E{(1− Lt/L) | F̃s} − E

{
exp{−MK

s,t} | F̃s
}∣∣

≤ C3.4{Λ−1Ns(λt)
d + Λ−2(1 + (λ+s)

d)e2λ(t−s)(λdMs +Ns)},

where MK
s,t := E{Zs,t | FKs,t}.

Proof. We start by using (3.14), (3.16) and (3.23) to show that, for t > s,

|E{(1−Lt/L) | F̃s}−P[LKts∩Ls = ∅ | F̃s]| ≤ C1(d)Λ−2(1+(λ+s)
d)e2λts(λdMs+Ns). (3.26)

We now use Poisson approximation to approximate the probability P[LKts ∩ Ls = ∅ | F̃s],
using the conditional independence between the locations of the islands of LKts , given FKs,t,
as the basis of the approximation.
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We first observe that the conditional probability that an island of LKts with radius v
intersects Ls, given FKs,t, is at most∑

j∈Js

νs−τj+vL
−1 ≤ 2NsνL

−1td = (1 + ηΛ)Λ−1Ns(λt)
d, (3.27)

in view of (3.6), by (1.4), (3.11) and (3.13), and because v ≤ t − s. This, using Zs,t to

denote the number of islands of LKts that intersect Ls, implies that

dTV (L(Zs,t | FKs,t),Po (MK
s,t)) ≤ 2Λ−1Ns(λt)

d, (3.28)

by Barbour, Holst & Janson [4, (1.23)]), where MK
s,t := E{Zs,t | FKs,t}. Hence, from (3.28),∣∣P[Zs,t = 0 | F̃s]− E{exp(−MK

s,t) | F̃s}
∣∣ ≤ 2Λ−1Ns(λt)

d,

and combining this with (3.26) gives the lemma.

We now define

M̃K
s,t :=

∫ ts

0

∑
j∈Js

νL−1(s− τj + ts − v)dN
K

(dv), (3.29)

as an approximation to MK
s,t. The following lemma bounds the accuracy of the approxi-

mation for t = tΛ(u).

Lemma 3.5. For any γ > 0, there is an event B3.5(γ, s) ∈ F̃s with P[{B3.5(γ, s)}c] ≤
C3.5Λ−γ such that, for t = tΛ(u),

E{|M̃K
s,t −MK

s,t| | F̃s}I[B3.5(γ, s)] ≤ C ′3.5Λγeu{Λ−1{λs}deλs + ηΛ},

where C3.5 and C ′3.5 depend only on d.

Proof. We begin by introducing the censored version Ls,s of the process L. We denote
the indices of islands in Ls,ss by Js,ss ⊂ Js, and write rjs := s− τ̄j . It then follows that∫ ts

0

∑
j∈Js,ss

L−1νrjs+ts−vN
K

(dv) ≤ MK
s,t ≤

∫ ts

0

∑
j∈Js

L−1νrjs+ts−vN
K

(dv), (3.30)

with the lower bound using the separation between the islands of Ls,s. Now, from (3.10),
(3.11) and (3.30),

MK
s,t ≥

∫ ts

0

∑
j∈Js,ss

L−1νrjs+ts−vN
K

(dv)

≥ (1− ηΛ)

∫ ts

0

∑
j∈Js,ss

L−1ν(rjs + ts − v)dN
K

(dv),

and

MK
s,t ≤

∫ ts

0

∑
j∈Js

L−1νrjs+ts−vN
K

(dv)

≤ (1 + ηΛ)

∫ ts

0

∑
j∈Js

L−1ν(rjs + ts − v)dN
K

(dv).
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Hence

MK
s,t − M̃K

s,t ≤ ηΛM̃
K
s,t + (1 + ηΛ)

∫ ts

0

∑
j∈Js\Js

L−1ν(rjs + ts − v)dN
K

(dv), (3.31)

and

M̃K
s,t −MK

s,t ≤ ηΛM̃
K
s,t + (1 + ηΛ)

∫ ts

0

∑
j∈Js\Js,ss

L−1ν(rjs + ts − v)dN
K

(dv). (3.32)

This implies that

|M̃K
s,t −MK

s,t| ≤ ηΛM̃
K
s,t + (1 + ηΛ)

∫ ts

0

∑
j∈Js\Js,ss

L−1ν(rjs + ts − v)dN
K

(dv)

≤ ηΛM̃
K
s,t + 2d

NK

ts

∑
j∈Js\Js,ss

L−1rdjs + L−1(Ns −Ns,s
s )M

K

ts

 ,(3.33)

where Ns,s
s := |Js,ss |. Thus we need to bound the conditional expectation given F̃s of the

right hand side of (3.33).
Define B1(γ, s) by

B1(γ, s) :=

λd ∑
j∈Js\Js,ss

rdjs + d!(Ns −Ns,s
s ) ≤ Λ−1+γ{λ+s}de2λ+s

 ∈ F̃s. (3.34)

Since LK is independent of L in (3.33), it follows that we can easily take the expectation,
given F̃s, of its second term. For t = tΛ(u), and using (2.2) and (2.4), this gives

E
{

2d

NK

ts

∑
j∈Js\Js,ss

L−1rdjs + L−1(Ns −Ns,s
s )M

K

ts

 ∣∣∣ F̃s}I[B1(γ, s)]

≤ 2dc1Λ−1eλ+ts

λd ∑
j∈Js\Js,ss

rdjs + d!(Ns −Ns,s
s )

 I[B1(γ, s)]

≤ 2d+2c1Λ−1+γeu{λ+s}deλs, (3.35)

where we have twice used e(λ+−λ)t ≤ 2 for t ≤ tmax(Λ), as follows from (3.13). For the
first term in (3.33), from (3.29), we have

M̃K
s,t ≤ 2dνL−1

NK

ts

∑
j∈Js

rdjs +NsM
K

ts

 .

Defining

B2(γ, s) :=

λd ∑
j∈Js

rdjs + d!Ns ≤ Λγeλ+s

 ,

it thus follows from the independence of L and LK that, for t = tΛ(u),

ηΛE{M̃K
s,t | F̃s}I[B2(γ, s)] ≤ 2d+1d!c1ηΛΛγeu, (3.36)

using (3.13) to bound e(λ+−λ)t.
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To complete the proof of the lemma, we need to show that

P[(B1(γ, s))c] + P[(B2(γ, s))c] = O(Λ−γ).

For P[(B1(γ, s))c], we bound E{Ns−Ns,s
s } and E

{∑
j∈Js\Js,ss rdjs

}
, and then use Markov’s

inequality. We begin by bounding the conditional probability πs,su , given the past up to
time u− < s, that an island of X, born to an uncensored parent at u, is censored in Ls,s.
Using (3.9), it is no greater than

L−1

∫
(0,u)

νds−v+s−u+2sN(dv) ≤ (1 + ηΛ)νL−1(4s)dNu− .

If it is censored, bounding X
K

by the branching process X̂+ and using (2.2) and (2.4),
the expected number of its offspring by time s, all of which are also censored, is at most
c1e

λ+(s−u), and the expected volume censored at most c1d!λ−d+ eλ+(s−u). Hence

E{Ns −Ns,s
s }

≤ (1 + ηΛ)νL−1(4s)dE

{∫ s

0

c1e
λ+(s−u)Nu−N(du)

}
≤ c1(1 + ηΛ)νL−1(4s)dE

{∫ s

0

eλ+(s−u)M+
0 (u)ρ(1 + ηΛ) + νM+

d (u) du

}
≤ 4c1c2ρ{ν}2d!λ−d+ L−1(4s)d

∫ s

0

eλ+(s+u) du

≤ 4c1c2(1 + ηΛ)Λ−1(4λs)de2λ+s, (3.37)

again by (2.2) and (2.4), and from Cauchy–Schwarz. Then, by a similar argument,

E

 ∑
j∈Js\Js,ss

rdjs

 ≤ (1 + ηΛ)νL−1(4s)dE

{∫ s

0

c1d!λ−deλ+(s−u)Nu−N(du)

}
≤ 2c1c2d!Λ−1(4s)de2λ+s. (3.38)

Combining (3.37) and (3.38) and using Markov’s inequality, P[{B1(γ, s)}c] ≤ cΛ−γ , for a
constant c depending only on d.

For P[(B2(γ, s))c], we again bound X
K

by the branching process X̂+ and use (2.2)
and (2.4), giving

ENs ≤ c1e
λ+s; E

∑
j∈Js

rdjs

 ≤ EM+
d (s) ≤ c1d!λ−d+ eλ+s. (3.39)

Hence, from Markov’s inequality, P[{B1(γ, s)}c] ≤ c′Λ−γ , for a constant c′ depending
only on d, and the lemma is proved by taking B0(γ, s) = B1(γ, s) ∩B2(γ, s).

We now replace E{exp(−M̃K
s,t) | F̃s} by an expression involving the function ` defined

in (1.12), and using the quantity W ∗(s) defined by

W ∗(s) := e−λs
d∑
l=0

∑
j∈Js

(λ(s− τ̄j))l

l!
≤ e−λs

d∑
l=0

H+
l (s) = e(λ+−λ)sW+(s), (3.40)

where the inequality follows from Lemma 3.1, so that, from (3.13), EW ∗(s) ≤ 2.
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Lemma 3.6. Take s ≤ λ−1 log Λ, and let M̃K
s,t be defined as in (3.29), W ∗(s) as in (3.40)

and ` as for Lemma 1.12. Then, for any γ > 0 and 0 < η < ζ(d), there is an
event B3.6(γ, η, s) ∈ F̃s and constants C3.6 and C ′3.6, depending only on d, such that

P[{B3.6(γ, η, s)}c] ≤ C3.6(Λ−γ + λse−2λ(ζ(d)−η)s)

and that ∣∣E{e−M̃K
s,tΛ(u) | F̃s} −

(
1− `(log[ĉdW

∗(s)] + u)
)∣∣ I[B3.6(γ, η, s)]

≤ C ′3.6(1 + eu)
(
Λγ(ηΛ log Λ + Λ−1eλs) + e−ληs

)
,

uniformly in tΛ(u) ≤ tmax(Λ), where ĉd := d!/(d+ 1).

Proof. We first observe, from (3.29) and (1.6) that

M̃K
s,t = L−1ν

∑
j∈Js

∫ ts

0

d∑
l=0

(
d

l

)
rljs(ts − u)d−lN

K
(du)

= Λ−1
d∑
l=0

(
d

l

)∑
j∈Js

{λrjs}l
 (∫ ts

0

{λ(ts − u)}d−lNK
(du)

)
, (3.41)

with rjs := s− τ̄j as before. Now realize X̂−, X and X̂+ together as in Lemma 3.1, so
that

H−l (s) ≤
∑
j∈Js

(λrjs)
l

l!
≤ H+

l (s) a.s., for 0 ≤ s ≤ tmax(Λ). (3.42)

Then, for such s, it follows from (2.47), then using Lemma 4.2, (2.40) and (2.41), that, on
an event B+

1 (η, s) ∈ F++
s such that P[{B+

1 (η, s)}c] ≤ c(d)(1 + λs)e−2λ(ζ(d)−η)s, we have

d∑
l=0

clH
+
l (s) ≤ C(1)

(
1

d+ 1

d∑
l=0

H+
l (s) + eλ+(1−η)s

)
(3.43)

and
d∑
l=0

clH
−
l (s) ≥ C(1)

(
1

d+ 1

d∑
l=0

H−l (s)− eλ−(1−η)s

)
, (3.44)

for all choices of c0, . . . , cd, where C(1) :=
∑d
l=0 cl. Define

B+
2 (γ, s) :=

{
1

d+ 1

d∑
l=0

(H+
l (s)−H−l (s)) ≤ eλsΛγηΛ log Λ

}
∈ F++

s . (3.45)

Then, on B+
1 (η, s) ∩B+

2 (γ, s) and for 0 ≤ s ≤ tmax(Λ), we have

∑
j∈Js

(λrjs)
l

l!
≤ H+

l (s) ≤ 1

d+ 1

d∑
l=0

H+
l (s) + eλ+(1−η)s

≤ 1

d+ 1

d∑
l=0

H−l (s) + eλ+(1−η)s + eλsΛγηΛ log Λ

≤ 1

d+ 1
eλsW ∗(s) + ε(γ, η, s), (3.46)

for all 0 ≤ l ≤ d, from (3.42), (3.43), (3.40) and (3.45), where

ε(γ, η, s) := 2eλ(1−η)s + eλsΛγηΛ log Λ.
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Arguing analogously, we also deduce that

∑
j∈Js

(λrjs)
l

l!
≥ 1

d+ 1
eλsW ∗(s)− ε(γ, η, s).

Now P[{B+
1 (η, s)}c] ≤ c(d)(1 + λs)e−2λ(ζ(d)−η)s. Then, since

E

{
d∑
l=0

Hl(s)

}
= eλsEW (s) = eλs,

and using (3.13), we have

E

{
d∑
l=0

(H+
l (s)−H−l (s))

}
= eλ+s − eλ−s ≤ 8eλsηΛ log Λ

in 0 ≤ s ≤ tmax(Λ), and hence, by Markov’s inequality,

P[{B+
2 (γ, s)}c] ≤ 8Λ−γ . (3.47)

Thus the event

B3(γ, η, s) :=

d⋂
l=0


∣∣∣∣∣∣
∑
j∈Js

(λrjs)
l

l!
− 1

d+ 1
eλsW ∗(s)

∣∣∣∣∣∣ ≤ ε(γ, η, s)
 ∈ F̃s (3.48)

is such that
P[{B3(γ, η, s)}c] ≤ C1(d)(Λ−γ + λse−2λ(ζ(d)−η)s), (3.49)

for a suitable constant C1(d).
Now, taking cl := Λ−1Cl(s, t), where

Cl(s, t) :=

∫ ts

0

d!{λ(ts − u)}d−l

(d− l)!
N
K

(du), (3.50)

(3.41) implies that∣∣∣∣∣M̃K
s,t −

eλsW ∗(s)

Λ(d+ 1)

d∑
l=0

Cl(s, t)

∣∣∣∣∣ I[B3(γ, η, s)]

≤ Λ−1
d∑
l=0

Cl(s, t)e
λs{2e−ληs + ΛγηΛ log Λ}.

Hence also∣∣∣∣∣E(e−M̃K
s,t | F̃s

)
− E

(
exp

{
−e

λsW ∗(s)

Λ(d+ 1)

d∑
l=0

Cl(s, t)

} ∣∣∣ F̃s)
∣∣∣∣∣ I[B3(γ, η, s)]

≤ Λ−1E

{
d∑
l=0

Cl(s, t)
∣∣∣ F̃s} eλs{2e−ληs + ΛγηΛ log Λ}. (3.51)

Now, because X
K

can also be bounded between copies X̂K
− and X̂K

+ of X̂− and X̂+,
using Lemma 3.1, we have the inequality

d!HK,−
d−l (ts) ≤ Cl(s, t) ≤ d!HK,+

d−l (ts), 0 ≤ l ≤ d. (3.52)
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Hence, since the K-processes can be chosen to be independent of F̃s, it follows that

E

{
d∑
l=0

Cl(s, t)e
λs | F̃s

}
≤ d!eλ+(t−s)+λsE{WK(ts)} ≤ 2 d!eλt, (3.53)

for any 0 < s ≤ t ≤ tmax(Λ). Thus, from (3.51), it follows that∣∣∣∣∣E(e−M̃K
s,t | F̃s

)
− E

(
exp

{
−e

λsW ∗(s)

Λ(d+ 1)

d∑
l=0

Cl(s, t)

} ∣∣∣ F̃s)
∣∣∣∣∣ I[B3(γ, η, s)]

≤ 2 d!Λ−1eλt{2e−ληs + ΛγηΛ log Λ}. (3.54)

The next step is to examine the difference∣∣∣∣∣E
(

exp

{
−e

λsW ∗(s)

Λ(d+ 1)

d∑
l=0

Cl(s, t)

} ∣∣∣ F̃s)− φ1
λ(tΛ(u)−s)(ĉde

uW ∗(s))

∣∣∣∣∣ ,
where φ1

s(θ) := E{e−θW 1(s)}. To start with, from (3.52) and Lemma 2.1,

d!eλ−tsWK,−(ts) ≤
d∑
l=0

Cl(s, t) ≤ d!eλ+tsWK,+(ts).

Hence, for any non-negative and F̃s-measurable random variable Θs, we have

φ+
ts(Θsd!eλ+ts) ≤ E

{
exp

(
−Θs

d∑
l=0

Cl(s, t)

) ∣∣∣ F̃s} ≤ φ−ts(Θsd!eλ−ts), (3.55)

where

φ+
t (θ) := E{e−θW

+(t)} = φ1
λ+t(θ) and φ−t (θ) := E{e−θW

−(t)} = φ1
λ−t(θ), (3.56)

and φ1 is as above, with the final equalities a consequence of (2.14). Since λ(1− ηΛ) ≤
λ− ≤ λ+ ≤ λ(1 + ηΛ), we conclude from Lemma 4.2 and (3.13) that

max{|φ+
t (θeλ+t)− φ+

t (θeλt)|, |φ−t (θeλ−t)− φ−t (θeλt)|} ≤ 2e−1ηΛλt;

max{|φ+
t (θ)− φ1

λt(θ)|, |φ−t (θ)− φ1
λt(θ)|} ≤ θe−1ηΛ λte

−λt, (3.57)

as long as t ≤ tmax(Λ). Taking Θ(s) := {(d + 1)Λ}−1eλsW ∗(s) and t = tΛ(u), and using
(3.55), (3.57) and (3.13), this gives∣∣∣∣∣E

{
exp

(
−e

λsW ∗(s)

Λ(d+ 1)

d∑
l=0

Cl(s, t)

) ∣∣∣ F̃s}− φ1
λ(t−s)(ĉde

uW ∗(s))

∣∣∣∣∣
≤ 4e−1ηΛλts + e−1Θ(s)d!eλ+tsηΛ λtse

−λts

≤ 4e−1ηΛ(log Λ + u) + 3ĉde
λsW ∗(s)Λ−1ηΛ log Λ. (3.58)

From (3.40), we have E{W ∗(s)} ≤ 2. Thus, defining

B4(γ, s) := {W ∗(s) ≤ Λγ} ∈ F̃s, (3.59)

it follows that P[{B4(γ, s)}c] ≤ 2Λ−γ), and, combining (3.54) and (3.58), that∣∣∣E{e−M̃K
s,tΛ(u) | F̃s} − φ1

λ(tΛ(u)−s)(ĉde
uW ∗(s))

∣∣∣I[B3(γ, η, s) ∩B4(γ, s)]

≤ C2(d)(ΛγηΛ log Λ + e−ληsΛ−1eλs), (3.60)
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uniformly in tΛ(u) ≤ tmax(Λ). But now, from Lemma 4.2, on the event B4(γ, s),

|φ1
λ(tΛ(u)−s)(ĉde

uW ∗(s))− φ1
∞(ĉde

uW ∗(s))| ≤ 1

2e
ĉde

uW ∗(s) exp{−λ(tΛ(u)− s)}

≤ 1

2e
ĉdΛ

γ−1eλs,

and φ1
∞(ĉde

uW ∗(s)) = 1−`(log(ĉdW
∗(s))+u) by (1.12), (2.14) and (2.18). This establishes

the lemma, with B3.6(γ, η, s) := B3(γ, η, s) ∩B4(γ, s), in view of (3.49) and (3.59).

3.3 Replacing W ∗(s) by W (s, v)

Our aim is to approximate the conditional distribution of LtΛ(u)/L, given F̃v, for
suitably chosen v. After Lemma 3.6, the problem has largely been reduced to considering
the conditional distribution of W ∗(s). However, in order to use the results of Section 2, it
is advantageous to replace W ∗(s) by a function of a flattened branching process; W ∗(s)
is constructed from the birth times τ̄j of the original branching process X. Accordingly,
we define

W (s, v) := e−λs
d∑
l=0

H0
l (s− v, v), s ≥ v, (3.61)

for H0
l (·, v), 0 ≤ l ≤ d, corresponding to the (flattened) branching process X̂0 of

Lemma 3.1, taken to have initial condition H0
l (0, v) =

∑
j∈Jv (λ(v − τ̄j))l/l! ∈ σ(H̃(v)),

0 ≤ l ≤ d. Note that W (v, v) = W ∗(v). The error involved in replacing W ∗(s) by W (s, v)

is bounded in the following lemma.

Lemma 3.7. For v ≤ s ≤ λ−1 log Λ, we have

E
{∣∣`(log[ĉde

uW ∗(s)] + u)− `(log[ĉde
uW (s, v)] + u)

∣∣ ∣∣∣ F̃v} ≤ 4ĉde
uW ∗(v)ηΛ log Λ.

Proof. We once more use Lemma 3.1 to justify that both W ∗(s) and W (s, v) belong to
the interval [

e−λs
d∑
l=0

H−l (s− v, v), e−λs
d∑
l=0

H+
l (s− v, v)

]
, (3.62)

where the processes X̂−(·, v) and X̂+(·, v) both have the same initial condition as X̂0(·, v).
Now

E

{
d∑
l=0

H+
l (s− v, v)

∣∣∣ F̃v} = eλ+(s−v)
d∑
l=0

H0
l (0, v)

and

E

{
d∑
l=0

H−l (s− v, v)
∣∣∣ F̃v} = eλ−(s−v)

d∑
l=0

H0
l (0, v);

hence

E
{
|W ∗(s)−W (s, v)| | F̃v

}
≤ e−λsE

{
d∑
l=0

{H+
l (s− v, v)−H−l (s− v, v)}

∣∣∣ F̃v}

≤ e−λv
d∑
l=0

H0
l (0, v){e(λ+−λ)(s−v) − e(λ−−λ)(s−v)} ≤ 4W ∗(v)ηΛ log Λ,
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by (3.13). This, together with (1.12) and Lemma 4.2, implies that

E
{∣∣`(log[ĉde

uW ∗(s)] + u)− `(log[ĉde
uW (s, v)] + u)

∣∣ ∣∣∣ F̃v}
≤ E{ĉdeu|W (s, v)−W ∗(s)| | F̃v} ≤ 4ĉde

uW ∗(v)ηΛ log Λ,

as required.

We now combine the results of Lemmas 3.2–3.7 to give the following result, relating
the distribution of LtΛ(u)/L to that of `(log[ĉde

uW (s, v)] + u).

Corollary 3.8. Take v := α1λ
−1 log Λ and s := α2λ

−1 log Λ for 0 < α1 < α2 < 1, and fix
0 < η < ζ(d). Then there is an event B3.8(γ, η, v) ∈ F̃v, and constants C0

3.8 := C0
3.8(u0, d),

C1
3.8 := C1

3.8(u0, d) and C2
3.8 := C2

3.8(d), such that

E
{
|f(LtΛ(u)/L)− f(`(log[ĉdW (s, v)] + u))|

∣∣∣ F̃v} ≤ C0
3.8‖f‖∞pΛ + C1

3.8‖f ′‖∞εΛ,

and such that P[{B3.8(γ, η, v)}c] ≤ C2
3.8pΛ, where

εΛ := Λγ{Λ−α2/2(log Λ)d/2 + Λα2−1(log Λ)d + Λ−α1 + ηΛ log Λ}+ Λ−α2η;

pΛ := Λ−γ/2 + Λ−(ζ(d)−η) log Λ.

Proof. We take the results of Lemmas 3.2–3.7 in turn. Using Lemma 3.1, we have

E{λdMs +Ns | F̃v} ≤ E{d!H+
d (s) +H+

0 (s) | H̃(v)}
≤ d!E{W+(s)eλ+s | H̃(v)} ≤ 2 d!W ∗(v)eλs. (3.63)

Define the event B(1)
3.8(γ, v) := {W ∗(v) ≤ Λγ}, whose probability is at most Λ−γ , by

Markov’s inequality. Then, from Lemma 3.2 and (3.63), it follows that

E{Var {Lt/L | F̃s} | F̃v} ≤ C3.22 d!W ∗(v)Λ−2(1 + (λs)d)eλ(2t−s),

implying that, on B(1)
3.8(γ, v), we have

E
{
|1− (LtΛ(u)/L)− E{1− (LtΛ(u)/L) | F̃s}|

∣∣∣ F̃v} ≤ Ca(d)Λγ−α2/2eu(log Λ)d/2. (3.64)

Next, from Lemma 3.4 and (3.63) and on the event B(1)
3.8(γ, v), we have

E
{∣∣E{1− (LtΛ(u)/L) | F̃s} − E

{
exp{−MK

s,tΛ(u)} | F̃s
}∣∣ ∣∣∣ F̃v}

≤ Cb(d)W ∗(v)(log Λ)d{Λ−1eλs + e2ue−λs)}
≤ Cb(d)Λγ(log Λ)d{Λα2−1 + e2uΛ−α1}. (3.65)

Turning to Lemma 3.5, we find that

E
{∣∣E{exp{−MK

s,tΛ(u)} | F̃s
}
− E

{
exp{−M̃K

s,tΛ(u)} | F̃s
}∣∣ I[B3.5(γ, s)]

∣∣∣ F̃v}
≤ Cc(d)Λγeu{Λ−1{log Λ}deλs + ηΛ}
= Cc(d)Λγeu{Λα2−1{log Λ}d + ηΛ}. (3.66)

Then, from Lemma 3.6, we have

E
{∣∣E{e−M̃K

s,tΛ(u) | F̃s} − `(log[ĉdW
∗(s)] + u)

∣∣ I[B3.6(γ, η, s)]
∣∣∣ F̃v}

≤ C ′3.6(1 + eu)(Λγ(ηΛ log Λ + Λ−1eλs) + e−ληs)

= C ′3.6(1 + eu)(Λγ(ηΛ log Λ + Λα2−1) + Λ−α2η). (3.67)
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Finally, from Lemma 3.7, on the event B(1)
3.8(γ, v), we have

E
{∣∣`(log[ĉdW

∗(s)] + u)− `(log[ĉdW (s, v)] + u)
∣∣ ∣∣∣ F̃v} ≤ 4ĉde

uΛγηΛ log Λ. (3.68)

Combining (3.64) to (3.68), we deduce that, on the event B(1)
3.8(γ, v), and uniformly in

u ≤ u0,

E
{∣∣(LtΛ(u)/L)− `(log[ĉdW (s, v)] + u)

∣∣ I[B̂(γ, η, s)]
∣∣∣ F̃v}.

≤ C∗(d, u0)
(
Λγ{Λ−α2/2(log Λ)d/2 + Λα2−1(log Λ)d + Λ−α1 + ηΛ log Λ}+ Λ−α2η

)
=: C∗(d, u0)εΛ, (3.69)

where B̂(γ, η, s) := B3.6(γ, η, s) ∩B3.5(γ, s).
For the exceptional set, from Lemmas 3.6 and 3.5, we have

P[B̂(γ, η, s)}c] ≤ C3.6{Λ−γ + λse−2λ(ζ(d)−η)s) + C3.5Λ−γ}
≤ Ce(d){Λ−γ + Λ−2(ζ(d)−η) log Λ}.

On the other hand, for any set B ∈ F with P[B] = p, and for any σ-field G ⊂ F , we have

p = P[B] ≥ P[{P[B | G] >
√
p}]√p,

by the total probability formula, implying that P[B | G] ≤ √p with probability at least

1−√p. Hence there is an event B(2)
3.8(γ, η, v) ∈ F̃v, whose complement has probability at

most

(Ce(d))1/2{Λ−γ/2 + Λ−(ζ(d)−η) log Λ} =: (Ce(d))1/2pΛ, (3.70)

on which P[{B̂(γ, η, s)}c | F̃v] ≤ (Ce(d))1/2pΛ. Now define Zu := `(log[ĉdW (s, v)] + u) and
Yu := LtΛ(u)/L. Then, for any bounded Lipschitz function f , we conclude from (3.69)
and (3.70) that, for u ≤ u0 and on the event

B3.8(γ, η, v) := B
(1)
3.8(γ, v) ∩B(2)

3.8(γ, η, v),

we have

E
{
|E{f(Yu)} − E{f(Zu)}| | F̃v

}
≤ E

{
|E{f(Yu)} − E{f(Zu)}|I[B̂(γ, η, s)]

+|E{f(Yu)} − E{f(Zu)}|I[{B̂(γ, η, s)}c]
∣∣∣ F̃v}

≤ ‖f ′‖∞E{|Yu − Zu|I[B̂(γ, η, s)] | F̃v}+ 2‖f‖∞P[{B̂(γ, η, s)}c | F̃v]
≤ ‖f ′‖∞C∗(d, u0)εΛ + 2‖f‖∞(Ce(d))1/2pΛ.

This proves the corollary.

3.4 The main theorem

We now use Corollary 3.8 to compare the conditional distributions, given F̃v, of the
normalized random variables Y (u, v) and Z(u, v), where

Y (u, v) := eλv/2{(LtΛ(u)/L)− `(log[ĉdW
∗(v)] + u)};

Z(u, v) := eλv/2{`(log[ĉdW (s, v)] + u)− `(log[ĉdW
∗(v)] + u)}, (3.71)
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for a careful choice of s, with the centring constant `(log[ĉdW
∗(v)] + u) chosen because

W ∗(v) = E{W (s, v) | F̃v}. These are the correct standardizations to achieve a non-trivial
limit. Thus we wish to compare Ef(Y (u, v)) with Ef(Z(u, v)), for Lipschitz functions f
that have ‖f‖∞ ≤ 1 and ‖f ′‖∞ ≤ 1. This corresponds to taking ‖f‖∞ ≤ 1 and ‖f ′‖∞ ≤
eλv/2 in Corollary 3.8, because of the pre-factors eλv/2 in the definitions of Y (u, v)

and Z(u, v). Thus, although pΛ is already small for large Λ, if η < ζ(d), we need also
to show that, for v = α1λ

−1 log Λ, it is possible to choose α2, η and γ so as to make
eλv/2εΛ = Λα1/2εΛ small with Λ. Recalling the definition (3.11) of ηΛ, the expression
for εΛ in Corollary 3.8 shows that this is the case, for γ > 0 chosen small enough, if,

α1 < α2; α2 < 1− α1/2; γ < α1/2; α1 < 2α2η and α1 < 2γg/d.

So, for
α1 < 2 min{γg/d, ζ(d)/(1 + ζ(d)},

choose 0 < η < ζ(d) so that 2η/(1 + η) > α1 and then α2 so that α1/(2η) < α2 < 1− α1/2;
then, if we choose

0 < γ = 2
3 min{γg/d− α1/2, (α2 − α1)/2, 1− α1/2− α2, α1/2, α2η − α1/2}, (3.72)

it follows that there are constants C = C(d, u0) and C ′ = C ′(d) such that

|E{f(Y (u, v)) | Fv} − E{f(Z(u, v)) | Fv}| ≤ C{Λ−γ/2(log Λ)d + Λ−(ζ(d)−η)}, (3.73)

for all f ∈ FBW, except on an event of probability at most C ′{Λ−γ/2 + Λ−(ζ(d)−η)}.
Particular choices are to take

η :=
1

2

(
ζ(d) +

α1

2− α1

)
, and α2 :=

1

2

{
1 +

α1

2

(
1

η
− 1

)}
, (3.74)

in which case we can take any 0 < γ′ < min{γ/2, (ζ(d) − η)}, and express the error
in (3.73) as CΛ−γ

′
, except on an event of probability at most C ′Λ−γ

′
, albeit with different

constants C = C(u0, d) and C ′(d).
Corollary 3.8 and (3.73) compare the distribution of LtΛ(u)/L with that of the quantity

`(log[ĉdW (s, v)] + u), for any u ≤ u0. The path of LtΛ(u)/L is approximated, to first order,
by a time shift of the deterministic path `(u), and the shift is the same throughout the path,
being determined by the value of the single F̃s-measurable random variable W (s, v). In
the remaining argument, we exploit this to show that, to a good approximation, the path
after time v is that of the approximation `(log[ĉdW

∗(v)] + ·), together with a perturbation
that can be expressed in the form e−λv/2Nhv(·), where hv(·) is an F̃v-measurable function
depending on the value of W ∗(v), and L(N | F̃v) is the standard normal distribution.

To do so, in view of (3.73), we now need a central limit theorem for Z(u, v) as defined
in (3.71). Writing

K2(u, v) := (D`)(u+ log[ĉdW
∗(v)])/W ∗(v) = k

d

dx
{`(log x)}

∣∣∣
kW∗(v)

, (3.75)

where the final equality holds for all k > 0, the next lemma shows that Z(u, v) is close in
distribution to K2(u, v) eλv/2{W (s, v)−W ∗(v)}.
Lemma 3.9. Let Z(u, v) be defined as in (3.71), and let v := α1λ

−1 log Λ and s :=

α2λ
−1 log Λ; suppose that γ is as for (3.72) and γ′ = 1

2 min{γ/2, (ζ(d)− η)}, where η is as
in (3.74). Then there is a constant C = C(d, u0) such that, for all f ∈ FBW, and on the
event {W ∗(v) ≤ Λγ},

|E{f(Z(u, v)) | F̃v} − E{f(K2(u, v) eλv/2{W (s, v)−W ∗(v)})} | F̃v}| ≤ CΛ−γ
′
,

uniformly in u ≤ u0.
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Proof. From (1.12), we have g(x) := `(log x) = 1− E{e−xW }, so that, by Taylor’s expan-
sion, for any x, y > 0, we can write

|g(x+ y)− (g(x) + yg′(x))| ≤ 1
2y

2‖g′′‖∞ = 1
2y

2EW 2 ≤ 1
2y

2.

from (2.17). Thus, in making a linear approximation to

`(log[kW (s, v)])− `(log[kW ∗(v)]) = g(kW (s, v))− g(kW ∗(v)),

the remainder term can be bounded by 1
2k

2(W (s, v)−W ∗(v))2. Now, because W ∗(v) =

E{W (s, v) | F̃v}, we have

E{(W (s, v)−W ∗(v))2 | F̃v} = V (s, v) := Var (W (s, v) | F̃v) ≤ W ∗(v)e−λv,

where the inequality follows using (2.17). Hence, for any k > 0, and using (3.75), we
have

E
{∣∣eλv/2{`(log[kW (s, v)])− `(log[kW ∗(v)])} − eλv/2{W (s, v)−W ∗(v)}K2(u, v)

∣∣ | F̃v}
≤ 1

2k
2V (s, v) ≤ 1

2k
2W ∗(v)e−λv. (3.76)

Thus, taking k = ĉde
u in (3.76), and on {W ∗(v) ≤ Λγ}, it follows that

E
{∣∣eλv/2{`(log[ĉdW (s, v)] + u)− `(log[ĉdW

∗(v)] + u)}

−K2(u, v)eλv/2{W (s, v)−W ∗(v)}
∣∣ ∣∣∣ F̃v}

≤ 1
2 ĉ

2
de

2uΛγ−α1/2, (3.77)

and the lemma follows because γ′ + γ < 3γ/2 ≤ α1/2, from (3.72).

We are now in a position to prove a central limit theorem, with an error bound
expressed in terms of the bounded Wasserstein distance.

Theorem 3.10. Suppose that v = αλ−1 log Λ for 0 < α < 2 min{γg/d, ζ(d)/(1 + ζ(d)},
where γg is as in (1.4) and ζ(d) as in (1.11) (so that ζ(d) = 1/2 for d ≤ 6). Suppose
that γ is as for (3.72) and γ′ = 1

2 min{γ/2, (ζ(d) − η′), (α2 − α)}, where η′ and α2 are
as in (3.74), with α1 = α. Suppose that Λ is large enough that (3.13) is satisfied,
and that Λ4αζ(d)/7 ≥ (d + 1)3 and α log Λ > c1∗, where c1∗ is as in Theorem 2.8. Then,
for any u1 < u0 ∈ R, there exist constants C(d, u1, u0) and C ′(d, u1, u0) and an event
E∗(v) ∈ σ(H̃(v)) with P[E∗(v)c] ≤ C ′(d, u1, u0)Λ−γ

′
such that

dBW

(
L{eλv/2((LtΛ(u)/L)− `(log[ĉdW

∗(v)] + u)) | F̃v ∩ E∗(v)},
N (0, {K2(u, v)}2W ∗(v)/(d+ 1))

)
≤ C(d, u1, u0)Λ−γ

′
,

uniformly in u1 ≤ u ≤ u0, where K2(u, v) is defined in (3.75), ĉd in Lemma 3.6 and tΛ(u)

in (3.25).

Proof. In view of (3.73) and Lemma 3.9, it suffices to show that

dBW

(
L(eλv/2{W (s, v)−W ∗(v)} | F̃v),N (0,W ∗(v)/(d+ 1))

)
≤ C1(d, u1, u0)Λ−γ

′
,

with s = α2λ
−1 log Λ and α2 as in (3.74). Corollary 2.10, with η = 6ζ(d)/7, shows that

there is an event Eη(v) ∈ H̃(v) with P[{Eη(v)}c] ≤ C ′(d)Λ−2αζ(d)/7 such that, on Eη(v),

dBW

(
L(eλv/2{W (s, v)−W ∗(v)} | F̃v),L(eλv/2X(3)

v (t−1
v (s− v) | F̃v)

)
≤ C(d){L−αζ(d)/7},
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provided that Λ4αζ(d)/7 ≥ (d+ 1)3. Then, from (2.25) and (2.36),

L
(
eλv/2X(3)

v (t−1
v (s− v))

)
= N

(
0,
W ∗(v)

d+ 1
(1− e−λ(s−v))

)
,

and the theorem follows because dBW(N (0, σ2
1),N (0, σ2

2)) = O(|σ1 − σ2|) and

W ∗(v)e−λ(s−v) = W ∗(v)Λ−(α2−α) ≤ Lγ
′−(α2−α),

on {W ∗(v) ≤ Λγ
′}, and γ′ ≤ 1

2 (α2 − α), from (3.72).

This theorem is not quite the same as Theorem 1.1, because both mean and variance
are expressed in terms of W ∗(v) = W (v, v), which, as is seen from its definition in (3.40),
is not necessarily determined by knowledge of Lv alone, because all the birth times of X
come into its definition. Instead, one can observe Ŵ (v) as in (1.10). We now show that
this is enough.

We construct a lower bound Ŵ−(v) for Ŵ (v) by summing over the subset of the birth
times Ĵv ⊂ Jv in (1.10) that belong to Jv ∩ J̃v, where Jv is defined in (3.5), and

J̃v :=
{
j ≥ 0: P j /∈

⋃
l∈Jv
l<j

K(P j , 2v)
}
,

with Jv the birth times of X before v, defined in (3.3). These give rise to non-intersecting
neighbourhoods at time v, though not necessarily to all such, and they form a subset
more amenable to calculation. Then it is immediate from (1.4) that, for all Λ sufficiently
large,

E|Jv \ J̃v| ≤ 2E{|Jv|(|Jv| − 1)L−1(2v)dν}
≤ 2c2e

2λ+vΛ−1(2λv)d,

the final inequality following from (2.2). Then, using arguments analogous to those in
Lemma 3.2, we have

E|Jv \ Jv| ≤ E
{∫ v

0

L−1νM+
d (u) c1e

λ+(v−u)M+
0 (du)

}
= E

{
ρν

∫ v

0

L−1ν(M+
d (u))2 c1e

λ+(v−u) du
}

≤ ρν2L−1c1(c2d!λ−d+ )2

∫ v

0

eλ+(v+u) du ≤ CΛ−1e2λ+v.

Hence, for v ≤ tmax(Λ),

0 ≤ E{Ŵ (v)− Ŵ−(v)} = O

{
Λ−1

d∑
l=0

eλv(log Λ)d+l

}
,

and, for v = αλ−1 log Λ, this is of order O(Λ−1+α(log Λ)2d). The most sensitive place
where this enters is into `(log[ĉdW

∗(v)] + u), when the difference has to be small relative
to Λ−α/2, because of the factor eλv/2; but this is the case if α < 2/3, as in the statement
of the theorem, by Lemma 4.2. The conversion of E∗(v) into an event that can be
determined from Lv can be accomplished in similar fashion, by modifying the definitions
of its constituent events in terms of Wj(v), 0 ≤ j ≤ v.
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Appendix

We note here two technical lemmas that are used in the previous arguments. The
first establishes a bound on the extreme fluctuations of an integral with respect to a
compensated Poisson process.

Lemma 4.1. Let X(t) :=
∫ t

0
F (u){Z(du) − du}, where Z is a Poisson process and the

process F is predictable and a.s. bounded in modulus by the deterministic function G.
Define G2(s, t) :=

∫ t
s
{G(u)}2 du and G∗(s, t) := sups≤u≤tG(u). Then

P
[

sup
t1≤t≤t2

|X(t)−X(t1)| > a
]
≤ 2 exp

{
−a2/{2eG2(t1, t2)}

}
,

for all 0 ≤ a ≤ eG2(t1, t2)/G∗(t1, t2). If G is decreasing, we have

P
[

sup
t1≤t≤t2

|X(t)−X(t1)| > a
]
≤ 2 exp

{
−a2/{2e{G(t1)}2(t2 − t1)}

}
,

for all 0 ≤ a ≤ eG(t1)(t2 − t1).

Proof. For any θ, the process

Y (t) := exp

{
θX(t)−

∫ t

0

{eθF (u) − 1− θF (u)} du
}

is a supermartingale (van de Geer [8, p. 1795]), and stopping at a easily yields

P
[

sup
t1≤t≤t2

(X(t)−X(t1)) > a
]
≤ e−θaE

{
exp

(∫ t2

t1

{eθF (u) − 1− θF (u)} du
)}

≤ e−θa exp
(e

2
θ2G2(t1, t2) du

)
,

if 0 ≤ θG∗(t1, t2) ≤ 1. The corresponding bound for inft1≤t≤t2(X(t) − X(t1)) is proved
in analogous fashion. Now, if a ≤ eG2(t1, t2), choose θ = a/{eG2(t1, t2)}, giving the first
conclusion of the lemma. The second follows by choosing θ = a/{eG(t1)2(t2 − t1)}.

The second lemma establishes some smoothness of the function φ1
s(θ) := E{e−θW 1(s)}.

Lemma 4.2. With φ1
s defined as above, and for any s, h, θ > 0, we have

|φ1
s+h(θ)− φ1

s(θ)| ≤ 1
2θe
−1e−s(1− e−h);

|φ1
s(θ(1 + δ))− φ1

s(θ)| ≤ δmin{e−1, θ}.

Proof. We note that W 1(s) ≥ 0 and that EW 1(s) = 1 for all s. Then, writing Xs(h) :=

W 1(s+ h)−W 1(s) and using (2.17), we have

E{Xs(h) | F̂s} = 0; E{(Xs(h))2 | F̂s} ≤ W 1(s)e−s(1− e−h), (4.1)

for any s, h > 0. Hence, using (4.1), and taking expectations first conditional on F̂s, we
have

φ1
s+h(θ)− φ1

s(θ) = E
{
e−θW

1(s){(e−θXs(h) − 1 + θXs(h))− θXs(h)}
}

= E
{
e−θW

1(s)E{(e−θXs(h) − 1 + θXs(h)) | F̂s}
}
.

This implies that

|φ1
s+h(θ)− φ1

s(θ)| ≤ 1
2E{e

−θW 1(s)θ2W 1(s)e−s(1− e−h)} ≤ θ

2e
e−s(1− e−h),

since xe−x ≤ e−1, proving the first inequality.
For the second, since e−x(1− e−δx) ≤ δe−1 in x ≥ 0 and EW 1(s) = 1,

|φ1
s(θ(1 + δ))− φ1

s(θ)| = |E{e−θW
1(s)(1− e−θδW

1(s))}| ≤ δmin{e−1, θ}.
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