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Powers of Ginibre eigenvalues
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Abstract

We study the images of the complex Ginibre eigenvalues under the power maps
πM : z 7→ zM , for any integer M . We establish the following equality in distribution,

Gin(N)M
d
=

M⋃
k=1

Gin(N,M, k),

where the so-called Power-Ginibre distributions Gin(N,M, k) form M independent
determinantal point processes. The decomposition can be extended to any radially
symmetric normal matrix ensemble, and generalizes Rains’ superposition theorem for
the CUE (see [21]) and Kostlan’s independence of radii (see [17]) to a wider class of
point processes. Our proof technique also allows us to recover two results by Edelman
and La Croix [12] for the GUE.

Concerning the Power-Ginibre blocks, we prove convergence of fluctuations of
their smooth linear statistics to independent gaussian variables, coherent with the
link between the complex Ginibre Ensemble and the Gaussian Free Field [22].

Finally, some partial results about two-dimensional beta ensembles with radial
symmetry and even parameter β are discussed, replacing independence by conditional
independence.
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Powers of Ginibre eigenvalues

1 Introduction

1.1 Motivations

The complex Ginibre ensemble, that we will denote by Gin(N), consists of matrices
whose coefficients are independent and identically distributed complex Gaussian random
variables. With the appropriate scaling,

G = (Gij)
N
i,j=1, Gij

d
= NC

(
0,

1

N

)
. (1.1)

It has been known since the seminal work of Ginibre (see [13]) that the eigenvalues
of such a matrix form a determinantal point process. The joint density is proportional to∏

1≤i<j≤N

|zi − zj |2e−N
∑N

i=1 |zi|2

with respect to the Lebesgue measure on C.
This density shows strong interaction (repulsion) between eigenvalues. However,

remarkably, Kostlan has shown [17] that their radii are independent in the following
sense.

Theorem 1.1 (Kostlan). If {λ1, . . . , λN} is distributed according to Gin(N), he following
equality in distribution holds:

{N |λ1|2, . . . , N |λN |2} d
= {γ1, . . . , γN},

where the gamma variables are independent, with parameters 1, 2, . . . , N .

The same holds in the more general setting of radially symmetric point processes.
With techniques reviewed in [14], Hough, Krishnapur, Peres and Virág established a
broader version of Kostlan’s theorem, as well as the independence of high powers. In
the Ginibre case, it can be stated as follows.

Theorem 1.2 (Hough, Krishnapur, Peres, Virág). For any integerM ≥ N , the following
equality in distribution holds:

{NM/2λM1 , . . . , N
M/2λMN } d

= {γM/2
1 eiθ1 , . . . , γ

M/2
N eiθN }

where the variables γk, θk are independent, the gamma variables having parameters
1, 2, . . . , N , and the angles being uniform on [0, 2π].

Note that this is not an asymptotic, but an exact result, for any power larger than the
number of points.

In specific settings, two other results hinted that something unusual happens with
quadratic repulsion that would concern more than the radii or the high powers only.
The first of these results was stated for the eigenvalues of a Haar-distributed unitary
matrix (known as the Circular Unitary Ensemble, or CUE). The joint density of these
eigenvalues is proportional to ∏

1≤k<j≤N

|eiθk − eiθj |2

with respect to the Lebesgue measure on the unit circle. Rains established in [21]
a decomposition in M independent CUE blocks, for any power of the eigenvalues of
CUE(N).

Theorem 1.3 (Rains). For anyM ≥ 1,

CUE(N)M
d
=

N⋃
k=1

CUE

(⌈
N − k

M

⌉)
.

where the Circular Unitary Ensembles in the right hand side are independent.
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Powers of Ginibre eigenvalues

The second example involves the eigenvalues of Gaussian hermitian matrices (the
Gaussian Unitary Ensemble, or GUE). This example is different in this,that it does not
exhibit radial symmetry on C. GUE eigenvalues are distributed on R with joint density
proportional to: ∏

1≤i<j≤N

|xi − xj |2e−N
∑

x2
i .

Edelman and La Croix [12] established a block decomposition, which holds for the
squares of the GUE eigenvalues (that is, the singular values of a GUE matrix) and is
made of two independent Laguerre blocks (see [12] for a definition).

Theorem 1.4 (Edelman-Lacroix).

GUE(N)2
d
= LUE(N, 1) ∪ LUE(N, 2),

where LUE(N, k) stand for Laguerre ensembles with half-integer parameters.

The fact that such a result holds for the squares only is essentially due to the lack of
symmetry.

1.2 Results

Our results are essentially a generalization of the above. Instead of relying on
the underlying matrix ensemble, or actually decomposing the density, we rely on a
characterization of the law by the statistics obtained with the so-called product symmetric
polynomials, that is, expressions of the type

E

(
N∏
i=1

P (λi, λi)

)
for any polynomial P in two variables. Such statistics can be exactly computed thanks
to Andréief’s identity, and they characterize the point process (see the Appendix). We
illustrate this in Subsection 2.1 by giving a new proof of Kostlan’s theorem and the
independence ofM th powers forM ≥ N .

Our main new result follows this approach. This is the identity stated in the abstract,
that we refer to as the Power-Ginibre decomposition, summarized in Figure 1.

Theorem 1.5 (Power-Ginibre Decomposition). For fixed integers M ≤ N , let us define
the sets

Ik = {i ∈ J1, NK | i ≡ k [M ]}, 1 ≤ k ≤M.

The following equality in distribution holds, when {λ1, . . . , λN} is distributed according
to Gin(N),

{λM1 , . . . , λMN } d
=

M⋃
k=1

Gin(N,M, k)

where the independent Power-Ginibre distributions Gin(N,M, k) are indexed by the sets
Ik, with joint densities

1

ZN,M,k

∏
i<j

i,j∈Ik

|zi − zj |2
∏
i∈Ik

|zi|
2(k−M)

M e−N |zi|2/Mdm(zi).

In Subsection 2.3, we study the linear statistics of the Power-Ginibre distributions,
using the determinantal structure it exhibits. The first order given by Theorem 2.17
involves the pushforward of the circular law by πM , coherently with a classical result.
The second order given by Theorem 2.21 is in accordance with the Gaussian Free Field
limit established by Rider and Virág in [22].
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Powers of Ginibre eigenvalues

Gin(N)

πM : z 7→ zM

Gin(N)M

Gin(N,M, 2)

Gin(N,M, 1)Gin(N,M, 1)

Gin(N,M,M)

(Superposition)

Gin(N)M

Figure 1: In the first picture, every pair of eigenvalues experiences repulsion, but
the images of two eigenvalues under πM may still be close because they come from
different sheets of the covering map πM . In the second picture, every sheet has quadratic
repulsion within itself, but each sheet is independent from the others.

Section 3 goes beyond the Ginibre case to study ensembles with different supports
and features. Indeed, our proof technique argument does not depend on the reference
measure, but only relies on quadratic repulsion, provided that the distributions involved
exhibit radial symmetry, as stated in 3.1. Such distributions include, for instance,
products of independent Ginibre matrices, minors of the CUE, or the spherical ensemble.
These examples are given in more details in Subsection 3.1.

Our general Power Decomposition encompasses Rains’ result for the CUE, as we
state precisely in Subsection 3.2.1. A peculiarity of the CUE case is the fact that its
characteristic polynomial on the circle is distributed as a product of independent terms,
a property first proved in [4]. We give a new proof of this fact relying on the techniques
we introduce in this paper. In this case, however, our approach does not allow us to
extend the result any further.

Subsection 3.3 focuses on the GUE. In this case, block decomposition does not hold
for all powers, but only forM = 2. This generalizes the result of Edelman and La Croix.
We are also able to provide a direct proof of another fact they mention: as in the CUE

case, the characteristic polynomial at a specific point (z = 0 here) is distributed like a
product of independent variables.

Subsection 3.4 initiates a further generalization of our results to two-dimensional beta
ensembles with radial symmetry, when β is an even integer. In that case, independence
needs be replaced by a form of conditional independence with an explicit discrete
variable I that appears as a random environment. We generalize our study of squared
radii and high powers to this context. However, the lack of a suitable form of Andréief’s
identity prevents us from studying intermediate powers.

1.3 Synoptic table

For the convenience of the reader, we provide a table summing up all results consid-
ered in our paper about three ensembles of random matrix theory: namely, the complex
Ginibre ensemble, the Circular Unitary Ensemble, and the Gaussian Unitary Ensemble.
The three relevant aspects mentioned are the behavior of the radii, the existence of a de-
composition of all or some powers, and the distribution of the characteristic polynomial
at specific points.

Our new result here is the Power-Ginibre decomposition, which fills the last gap in
this global picture. The results about the characteristic polynomial of the CUE and GUE
are not new, but we recover them by another method.
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Powers of Ginibre eigenvalues

Squared Radii Powers
Characteristic
Polynomial

Independence Block Independence Independence at z = 0

Gin. {N |λk|2}N
k=1

d
= {γk}N

k=1 Gin(N)M
d
=

M⋃
k=1

Gin(N,M, k) PN (0)
d
= eiθ

N∏
k=1

√
γk

(Kostlan [17]) (P.-G. Decomposition)

(Trivial) Independence Block Independence Independence at z = 1

CUE |eiθ|2 = 1 CUE(N)M
d
=

N⋃
k=1

CUE

(⌈
N − k

M

⌉)
ZN (1)

d
=

N∏
k=1

(
1 +

√
β1,k−1e

iθk
)

(Rains [21]) (Bourgade & al. [4])

Block Independence Block Independence, M = 2 Independence at z = 0

GUE (Same as powers) GUE(N)2
d
=

2⋃
k=1

LUE(N, k) |PN (0)| d
=

N∏
k=1

χ
2

(
2

⌊
k

2

⌋
+ 1

)
(Edelman-La Croix [12]) (Edelman-La Croix [12])

1.4 Notations and conventions

We denote dm the Lebesgue measure on C, dmN (z) the Lebesgue measure on CN ,
and the standard complex Gaussian distributions by

dµ(z) =
1

π
e−|z|2dm(z), dµ(N)(z) =

NN

πN
e−N‖z‖2

dmN (z).

Note that dµ(N) differs from dµ⊗N in scaling.
The complex Ginibre ensemble Gin(N) is defined by (1.1), with the appropriate N−1/2

scaling. We will sometimes refer to the matrix
√
NG and its eigenvalues as the unscaled

Ginibre ensemble.
The joint density of the eigenvalues of Gin(N) is given by

1

ZN

∏
i<j

|zi − zj |2dµ(N)(z1, . . . , zN ), (1.2)

where ZN = N−N(N−1)/2
∏N

j=1 j!, and it is known (see [13]) that the limiting empirical
spectral measure converges weakly to the circular law,

1

N

∑
δλi

d→ 1

π
1{|λ|<1}dm(λ).

The power map πM : z 7→ zM is a covering map of C∗ withM sheets. It conformally
maps the slice ∠M := {0 < arg(z) < 2π

M , 0 < |z| < 1} to D\[0, 1], and the simple change of
variables ω = πM (z) gives

1

π

∫
D

g(zM )dm(z) =
M

π

∫
∠M

g(zM )dm(z) =
1

πM

∫
D

g(ω)|ω|2/M−2dm(ω), (1.3)

where the weight 1
M |ω|2/M−2 corresponds to the concentration of the measure at the

origin displayed on Figure 2. We will refer to the associated measure on the unit disk
as the twisted (orM -twisted) circular distribution; it is the pushforward of the circular
distribution by πM .

In Section 2.2 we will consider the partial sums of the exponential along an arithmetic
progression. For any integersM ≥ k ≥ 1 and n, we will denote

e
(n)
M,k(x) =

n−1∑
j=0

xMj+k−1

(Mj + k − 1)!
, eM,k(x) =

∑
j≥0

xMj+k−1

(Mj + k − 1)!
.
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Powers of Ginibre eigenvalues

Figure 2: MATLAB simulations of low powers of Gin(2000).

It is clear that, if ζ is a primitiveM th root of unity, for any l ∈ [[1,M ]],

eζ
l−1x =

M∑
k=1

ζ(l−1)(k−1)eM,k(x),

and one can reverse this identity through the Vandermonde matrix
(
ζ(i−1)(j−1)

)M
i,j=1

, so
that it reads

eM,k(x) =
1

M

M∑
l=1

ζ
(k−1)(l−1)

e(ζ
l−1x). (1.4)

Such identities will be used in Section 2.2.

Unless otherwise specified, the capital letters X,Y stand for random variables,
whereas T, S stand for polynomial indeterminates. Capital Z can denote one or the other,
depending on the context.

2 The complex Ginibre ensemble under power maps

The technique that will be used to prove the main theorem is first exemplified in
Subsection 2.1 in order to recover a few well-known results. We then proceed to prove
Theorem 2.12, showing that every power map gives rise to some decomposition in
independent blocks. Subsection 2.3 is devoted to a few asymptotic properties of these
Power-Ginibre blocks, thus checking that their existence is coherent with two main
features of the complex Ginibre ensemble: namely, the circular law, and the Gaussian
Free Field.

2.1 Distribution of radii and large powers

In this section we provide a new proof of some known results. The technique we
use is essentially the same as the one that gives rise to new results in Sections 2.2 and
3.1: characterization of the distribution of a set of complex variable through product
statistics obtained with Andréief’s identity. One technical issue is to prove that such
statistics indeed characterize the distribution. This classical technicality is dealt with in
the Appendix.

2.1.1 Andréief’s identity and product statistics

We following lemma is a key-fact in the study of determinantal processes.
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Lemma 2.1 (Andréief). Let (E, E , ν) be a measure space. For any functions (φi, ψi)
N
i=1 ∈

L2(ν)2N ,

1

N !

∫
EN

det (φi(λj)) det (ψi(λj)) dν⊗N (λ) = det (fi,j) , where fi,j =

∫
E

φi(λ)ψj(λ)dν(λ).

A proof can be found in [3, 10]. For Ginibre, it yields the following explicit formula
for the product statistics.

Corollary 2.2 (Product Statistics). Let E = C, g ∈ L2(µ), and {λ1, . . . , λN} Ginibre
eigenvalues. Then,

E

(
N∏

k=1

g
(
λk

√
N
))

= det (fi,j)
N
i,j=1 where fi,j =

1

(j − 1)!

∫
zi−1z̄j−1g(z)dµ(z).

Proof. The unscaled eigenvalues {λ1
√
N, . . . , λN

√
N} have joint density

1∏N
j=1 j!

∣∣∣∣det(zj−1
i

)N
i,j=1

∣∣∣∣2 dµ⊗N (z1, . . . , zN ).

Therefore, using Lemma 2.1 with φi(z) = zi−1g(z), ψj(z) = zj−1 and dν = dµ yields

E

(
N∏

k=1

g
(
λk

√
N
))

=
N !∏N
k=1 k!

det

(∫
zi−1z̄j−1g(z)dµ(z)

)N

i,j=1

= det (fi,j) .

as was claimed.

2.1.2 Kostlan’s theorem

Corollary 2.2 implies Kostlan’s theorem, provided the statistics of a set of real random
variables are fully characterized by these product statistics. We define the product
symmetric polynomials as the symmetric polynomials given by products of polynomials
in one variable,

PSC(N) =

{
N∏
i=1

P (Ti) | P ∈ C[T ]

}
.

Lemma 2.3. PSC(N) spans SC(N) as a vector space.

The proof can be found in the Appendix. We now give a proof of Kostlan’s theorem,
that we restate for the convenience of the reader:

Theorem 2.4 (Kostlan). {N |λ1|2, . . . , N |λN |2} d
= {γ1, . . . , γN}, where the gamma vari-

ables are independent, with parameters 1, 2, . . . , N .

Proof. Let g ∈ C[X] and apply Corollary 2.2 to the radially symmetric function g(| · |2).
The matrix is then diagonal, with coefficients

fi,i =
1

(i− 1)!

∫
|z|2i−2g(|z|2)dµ(z) = 1

(i− 1)!

∫ ∞

r=0

ri−1g(r)e−rdr = E (g(γi)) .

That is to say,

E

(
N∏
i=1

g(N |λi|2)

)
= E

(
N∏
i=1

g(γi)

)
.

These statistics characterize the distribution of a set of points, as such expressions with
polynomial g generate all symmetric polynomials (see Lemma 2.3), and the distributions
involved are characterized by their moments. The result follows.
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2.1.3 Independence of high powers

An equivalent characterization of distributions holds for sets of random complex variables,
with mixed symmetric polynomial in Z,Z. In this section, Z stands for a polynomial
indeterminate and not a specific random variable. We write Z = T + iS and Z = T − iS.
The product symmetric mixed polynomials are the symmetric polynomials given by
products of mixed polynomials, that is, polynomials in one variable and its complex
conjugate:

PMSC(N) =


N∏
j=1

P (Zj , Zj) | P ∈ C[T, S]


Even though the notation P (Z,Z) is redundant, we use it to make it clear that we are
dealing with a mixed polynomial. We now extend Lemma 2.3 to PMSC(N). This will
allow us to characterize the distribution of a set of complex variables by examining its
product statistics.

Lemma 2.5. PMSC(N) spans MSC(N) as a vector space.

The proof can be found in the Appendix. We now prove the following result, that was
announced in the introduction, restated here for the convenience of the reader.

Theorem 2.6 (Hough, Krishnapur, Peres, Virág). For any integerM ≥ N , the following
equality in distribution holds:

{NM/2λM1 , . . . , N
M/2λMN } d

= {γM/2
1 eiθ1 , . . . , γ

M/2
N eiθN }

where the variables γk, θk are independent, the gamma variables having parameters
1, 2, . . . , N , and the angles being uniform on [0, 2π].

Proof. Let g ∈ C[X,X] and apply Corollary 2.2 to the polynomial g(XM ). If we call
relative degree of a monomial the difference between its degrees in the first and second
variable,

reldeg = degX −degX ,

the monomials of relative degree 0 are the powers of |X|2, and the relative degree of a
product is the sum of the relative degrees. Lemma 2.2 gives

E

(
N∏

k=1

g(λMk N
M/2)

)
= det (fi,j)

N
i,j=1 where fi,j =

1

(j − 1)!

∫
zi−1z̄j−1g(zM )dµ(z).

The relative degrees of the monomials of g(XM ) are multiples of M ≥ N , but on the
other hand

|reldeg(Xi−1X
j−1

)| = |i− j| < N

Expanding the expression zi−1z̄j−1g(zM ) as a sum of monomials, it is clear that only the
monomials with relative degree 0 contribute, and these can be achieved only for i = j.
The matrix is therefore diagonal, with

fj,j =
1

(j − 1)!

∫
|z|2j−2g(zM )dµ(z)

=
1

2π(j − 1)!

∫ 2π

θ=0

∫ ∞

r=0

rj−1g(rM/2eiθj )e−rdrdθj

= E
(
g(γ

M/2
j eiθj ))

)
.
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That is to say,

E

 N∏
j=1

g(λMj N
M/2)

 =

N∏
j=1

E
(
g(γ

M/2
j eiθj )

)
= E

 N∏
j=1

g(γ
M/2
j eiθj )

 .

These statistics characterize the distribution of a set of points, as such expressions with
polynomial g generate all symmetric polynomials (see Lemma 2.5), and the distributions
involved are characterized by their moments. The result follows.

2.2 Power-Ginibre decomposition

We state and prove here our main result, Theorem 1.5: decomposition of the images
of the complex Ginibre Ensemble under a power map as independent blocks, this for
any powerM . This relies on the techniques introduced above, and requires first a few
elementary definitions.

2.2.1 Arithmetic progressions and determinants of striped matrices

We consider the total number of Ginibre points N , an integerM ∈ N, and write

N = qM + r, 0 ≤ r < M

the Euclidean division of N byM . By arithmetic progressions we mean the intersections
of J1, NK with infinite arithmetic progressions of stepM .

Remark 2.7. The set J1, NK is partitioned by r arithmetic progressions of length q + 1

andM − r arithmetic progressions of length q. These are given by the sets

IN,M,k = {i ∈ J1, NK | i ≡ k [M ]}, 1 ≤ k ≤M, (2.1)

whose cardinalities depend on whether k ≤ r or k > r.

We will sometimes use the notation

Ik = IN,M,k, ck = |Ik|.

Definition 2.8. We say that a matrix A ∈ MN (C) isM -striped if

i− j 6≡ 0 [M ] ⇒ Ai,j = 0.

The determinant of an M -striped matrix can be factorized as the product of M
determinants, as shown below.

Lemma 2.9. The determinant of anM -striped matrix A ∈ MN (C) is the product of its
minors indexed by the arithmetic progressions IN,M,k. That is, if Ak = (Ai,j)i,j∈Ik , then

det(A) =

M∏
k=1

det(Ak).

Proof. The M -striped matrix A is equivalent to a block matrix, by conjugation with a
permutation matrix that re-indexes J1, NK according to I1, I2, . . . , IM .

2.2.2 The Power-Ginibre distributions

Even though the relevant determinantal process is Gin(N,M, k), for convenience in the
proofs, we also define its preimage by the power map, R(N,M, k).
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Definition 2.10. For any triple (N,M, k) we define the root distribution R(N,M, k) as
the point process indexed by IN,M,k with joint density

1

ZR(N,M,k)

∏
i<j

i,j∈Ik

NM |zMi − zMj |2
∏
i∈Ik

Nk|zi|2(k−1)dµ(zi),

where

ZR(N,M,k) = ck!
∏
j∈Ik

(j − 1)!.

The Power-Ginibre distribution Gin(N,M, k) is the image of the root distribution under
the power map πM . Equivalently, Gin(N,M, k) is the point process indexed by Ik with
joint density

1

ZN,M,k

∏
i<j

i,j∈Ik

NM |zi − zj |2
∏
i∈Ik

Nk|zi|
2(k−M)

M e−N |zi|2/Mdm(zi),

where

ZN,M,k = πckck!M
ck
∏
j∈Ik

(j − 1)!.

Note that Gin(N, 1, 1) is Gin(N). The following identity is essential in the proof of
Theorem 2.12.

Proposition 2.11. For any g ∈ L2(µ), and {λi}Ik ∼ Gin(N,M, k),

E

(∏
i∈Ik

g
(
λiN

M/2
))

= det (fi,j)i,j∈Ik
where fi,j =

1

(j − 1)!

∫
zi−1z̄j−1g

(
zM
)
dµ(z).

Proof. By definition, {NM/2λi}Ik = {NM/2zMi }Ik where {zi}Ik ∼ R(N,M, k). The points
{NM/2zi}Ik have joint density

1

ck!
∏

j∈Ik
(j − 1)!

∏
i<j

i,j∈Ik

|zMi − zMj |2
∏
i∈Ik

|zi|2(k−1)dµ(zi),

and, for indices in J1, qK where q = |Ik|,

q∏
i=1

|zi|2(k−1)
∏

1≤i<j≤q

|zMi − zMj |2 = det
(
z
M(j−1)+k−1
i

)q
i,j=1

det
(
z̄
M(j−1)+k−1
i

)q
i,j=1

where the exponents yield exactly the elements of Ik. Thus we can index by Ik, and use
Lemma 2.1 with φi(z) = zi−1g(z), ψj(z) = z̄j−1. This yields

E

(∏
i∈Ik

g(λiN
M/2)

)
=

ck!

ck!
∏

j∈Ik
(j − 1)!

det

(∫
zi−1z̄j−1g

(
zM
)
dµ(z)

)
i,j∈Ik

as was claimed.

We can now state and prove our main result. The image of the Ginibre point pro-
cess under any power map is the superposition of independent Power-Ginibre blocks.
Below is a more detailed statement of the theorem than the one that was stated in the
introduction.
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Theorem 2.12 (Power-Ginibre decomposition). We have the equality in distribution

{λM1 , . . . , λMN } d
= {zM1 , . . . , zMN }

where the (zi)Ik are distributed according to R(N,M, k) and independently for different
values of k. In other words, the distribution of theM -th Powers of the Ginibre eigenvalues
is a superposition ofM independent Power-Ginibre point processes:

Gin(N)M
d
=

M⋃
k=1

R(N,M, k)M
d
=

M⋃
k=1

Gin(N,M, k).

Proof. Let P ∈ C[X,X] and use Corollary 2.2 with the function g(z) = P (zM , z̄M ). The
matrix is thenM -striped, with coefficients

fi,j =
1

(j − 1)!

∫
zi−1z̄j−1P (zM , z̄M )dµ(z)

when i and j belong to the same progression. We therefore use the factorization from
Lemma 2.9 and write

E

(
N∏
i=1

g(NM/2λMi , N
M/2λ̄i

M
)

)
= det (fi,j) =

M∏
k=1

det (fi,j)Ik .

These in turn are characterized by Proposition 2.11 as the product statistics of Power-
Ginibre,

E

(
N∏
i=1

g(NM/2λMi , N
M/2λ̄i

M
)

)
=

M∏
k=1

E

(∏
i∈Ik

g(NM/2zMi , NM/2z̄i
M )

)
.

These statistics characterize the distribution of a set of points, as such expressions
with polynomial g generate all mixed symmetric polynomials (see Lemma 2.5), and the
distributions involved are characterized by their moments. The result follows.

Power-Ginibre decomposition encompasses the previously mentioned results about
Ginibre. ForM = 1 it yields the original Ginibre point process, and forM ≥ N it yields
N independent blocks. The joint law of the radii is also coherent with Kostlan’s theorem,
as can be computed directly from Proposition 2.11.

Proposition 2.13 (Kostlan for Power-Ginibre). The set of Power-Ginibre squared radii
{NM |λi|2}Ik is distributed as a set of independent gamma variables, with parameters
matching the indices Ik, to the powerM .

Proof. Let g ∈ C[X] and apply Proposition 2.11 with the radially symmetric function
g(| · |2). The matrix is then diagonal, with coefficients

fi,i =
1

(i− 1)!

∫
|z|2i−2g(|z|2M )dµ(z) =

1

(i− 1)!

∫ ∞

r=0

ri−1g(rM )e−rdr = E
(
g(γMi )

)
where i is indexed by Ik. That is to say,

E

(∏
i∈Ik

g(NM/2|λi|2)

)
=
∏
i∈Ik

E
(
g(γMi )

)
= E

(∏
i∈Ik

g(γMi )

)
.

These statistics characterize the distribution of a set of points, since such expressions
with polynomial g generate all symmetric polynomials by Lemma 2.3, and all distributions
involved are characterized by their moments. This completes the proof.
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2.3 Asymptotic study of the Power-Ginibre Ensembles

We have shown the relevance of the Gin(N,M, k) blocks in the analysis of the powers
of Gin(N). These smaller blocks themselves are determinantal and can be studied using
standard techniques. In the following paragraphs, we explore the coherence of Theorem
2.12 with the convergence to the Circular Law and the Gaussian Free Field. We also
study the Power-Ginibre kernels at microscopic scales.

2.3.1 Twisted circular law

Recall the form of the Ginibre Kernel,

KN (z, ω) =
N

π
e−

N
2 (|z|2+|ω|2)

N∑
k=1

(Nzω)k

k!
.

We will make use of the following fact, the proof of which requires only the Central Limit
Theorem and properties of Poisson distributions.

Fact 2.14 (Poisson asymptotics). For any r > 0,

e−Nr
N∑

k=1

(Nr)k

k!
−−−−→
N→∞

f(r) =


1 if r < 1

1/2 if r = 1

0 if r > 1.

This simple threshold property is one way to establish that the empirical measure
of Complex Ginibre eigenvalues converges weakly to the circular law, the density of
which is discontinuous along the unit circle. That is, for any continuous and bounded
f : C→ R,

1

N

N∑
i=1

f(λj)
a.s.−−−−→

N→∞

1

π

∫
D

f(ω)dm(ω).

Furthermore, using (1.3), for any such f , ifM is fixed and N tends to infinity,

1

N

N∑
j=1

f(zMj )N
a.s.−−−−→

N→∞

1

π

∫
D

f(zM )dm(z) =
1

πM

∫
D

f(ω)|ω|2/M−2dm(ω).

The singular weight 1
πM |ω|2/M−2 behaves like an approximation to the identity; it is

the density on D we refer to as the M -twisted circular law. On the other hand, by the
Power-Ginibre decomposition,

1

N

N∑
j=1

f
(
zMj
)
=

1

N

M∑
k=1

∑
i∈Ik

f(λj)

where the second sum is over independent blocks. The fact that every Power-Ginibre
block is determinantal enables us to compute its exact part in the final limit.

Proposition 2.15 (Explicit kernel). The measure Gin(N,M, k) is a determinantal point
process indexed by Ik with kernel

KN,M,k(z, w) = Γ(k)

ck−1∑
l=0

(NMzw)l

(Ml + k − 1)!
(2.2)

with respect to the measure

dνN,M,k(z) =
1

ZνN,M,k

|z|2
k−M
M e−N |z|2/Mdm(z),

where
ZνN,M,k

= πN−kMΓ(k).
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Proof. The usual methods for determinantal point processes apply (see [19]), and as
the measure is radially symmetric, an orthonormal basis of polynomials is given by the
monomials, scaled by their L2(dνN,M,k) norm. We compute and find∫

C

|z|2ldνN,M,k =
Γ(Ml + k)

NMlΓ(k)
.

Hence, the kernel is given by formula (2.2).

We can now study the convergence of each block to theM -twisted circular law. Recall
that ck = |Ik| is the number of points of Gin(N,M, k) (see (2.1)).

Proposition 2.16 (Mean Twisted Circular Law). The mean density of Gin(N,M, k) con-
verges to theM -twisted circular law, that is for anyM ≥ k and test function f ,

1

ck
E

(∑
i∈Ik

f(λj)

)
−−−−→
N→∞

1

πM

∫
D

f(ω)|ω|2/M−2dm(ω).

Proof. It suffices to compute the asymptotic density, obtained directly from the determi-
nantal kernel,

1

ckZνN,M,k

KN,M,k(z, z)|z|2
k−M
M e−N |z|2/M =

N

πckM
|z|2/M−2

ck−1∑
l=0

(N |z|2/M )Ml+k−1

(Ml + k − 1)!
e−N |z|2/M

=
N

πckM
|z|2/M−2e

(ck)
M,k(N |z|2/M )e−N |z|2/M .

We then use the asymptotics of the partial sums of the exponential, deduced from formula
(1.4) and Proposition 2.14, as well as the fact that ck ∼ N

M , to conclude that

1

ckZνN,M,k

KN,M,k(z, z)|z|2
k−M
M e−N |z|2/M −−−−→

N→∞

1

πM
|z|2/M−21D,

as was claimed.

In other words, each Power-Ginibre block contributes equally to first order asymp-
totics. In fact, one can strengthen this averaged result as follows.

Theorem 2.17 (Twisted Circular Law). For any k, the empirical distribution of the Power-
Ginibre point process Gin(N,M, k) converges weakly to theM -twisted circular law, that
is for any test function f

1

ck

∑
i∈Ik

f(λj)
a.s.−−→ 1

πM

∫
D

f(ω)|ω|2/M−2dm(ω).

A proof of this convergence can be deduced from the Mean Circular Law using
canonical arguments, reviewed for instance by Hwang in [15]. For the sake of brevity
we do not reproduce the argument here.

Remark 2.18. The above results hold for any fixedM , and N going to ∞. As we know
thatM ≥ N gives independent points, one could say the parameterM gives an interface
between random matrix statistics and independent statistics.

2.3.2 Gaussian Free Field

In this section we will consider a smooth function f : C 7→ R with compact support in D.
The following was proved in [22].
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Theorem 2.19 (Rider, Virág). If we denote by Xf the centered linear statistics of the
complex Ginibre ensemble,

X
(N)
f =

N∑
i=1

f(λi)−
N

π

∫
D

f(z)dm(z),

then Xf converges without renormalization to a gaussian variable, namely:

X
(N)
f

d−−−−→
N→∞

N (0, σ2
f ), where σ2

f =
1

4π

∫
D

|∇f(z)|2dm(z).

Applying this theorem to the function fM = f◦πM , which is still smooth and compactly
supported in D, we get

X
(N)
fM

d−−−−→
N→∞

N (0, σ2
M ), where σ2

M =
1

4π

∫
D

|∇fM (z)|2dm(z).

Using the identity |∇fM |2 = |π′
M (z)|2|∇f(zM )|2, the usual change of variable yields

σ2
M =Mσ2

f .

On the other hand, using Power-Ginibre decomposition and Theorem 2.16,

X
(N)
fM

=

N∑
i=1

f(λMi )− N

π

∫
D

f(zM )dm(z) =

M∑
k=1

(∑
i∈Ik

f(zi)−
ck
Mπ

∫
D

f(z)|z|2/M−2dm(z)

)

which is a sum ofM centered independent terms, converging to a gaussian variable with
varianceMσ2

f . This simple fact, together with Theorem 2.16, suggests that every term
converges to a centered gaussian with variance σ2

f , which is indeed the case. In order to
prove this, we first need to evaluate some more precise asymptotics of the Power-Ginibre
Kernel. We consider the following related quantity:

JN,M,k(z, ω) :=
1

Z2
νN,M,k

|KN,M,k(z, ω)|2|z|2
k−M
M |ω|2

k−M
M e−N |z|

2
M −N |ω|

2
M .

For any ε > 0 we will denote

Ωε = {(z, ω) ∈ D2 | |π − arg(zω̄)| > ε}.

And ∠M,ε := {(z, ω) ∈ D | z ∈ ∠M , (z
M , ωM ) ∈ Ωε}.

Lemma 2.20. For any ε > 0, there is a δ1 > 0 such that the following holds on Ωε:

JN,M,k(z, ω) =
N2

π2M4
|zω|2/M−2e−N |z

1
M −ω

1
M |2(1 +O(e−Nδ1)),

where the representatives z
1
M and ω

1
M are chosen so as to minimize their distance; and

there is a δ2 > 0 such that the following holds on Ωc
ε:

JN,M,k(z, ω) = O(e−Nδ2).

Proof. If ζ is a primitive M -th root of unity, then the preimage π−1
M (z) is stable under

multiplication by ζ. We will denote by z
1
M a chosen representative, and state precisely

where this choice matters, and when it does not.
It is clear that the expression

w1−keM,k(w) =
∑
j≥0

wMj

(Mj + k − 1)!
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is stable under multiplication by ζ, and so we can write z
1−k
M eM,k(z

1
M ) without possible

confusion. Replacing eM,k by a linear combination of exponentials according to (1.4),
one gets

z
1−k
M eM,k(z

1
M ) =

1

M

M∑
l=1

(
ζl−1z

1
M

)1−k

eζ
l−1z

1
M =

1

M

∑
ω∈π−1

M (z)

ω1−keω,

which indeed doesn’t depend on the choice of a representative, as it is an average over
all representatives. The same can be written about partial sums up to degree N . The
above expression is then the one we find in the kernel of Gin(N,M, k):

KN,M,k(z, ω) = Γ(k)

N−1∑
l=0

(N(zω̄)
1
M )Ml

(Ml + k − 1)!
=

Γ(k)

M

∑
u∈π−1

M (zω̄)

(Nu)1−keN (Nu)

The dominant term in the asymptotics will be the choice of u ∈ π−1
M (zω̄) with the largest

real part. This is uniquely defined when zω̄ ∈ D−R− and corresponds to z
1
M ω

1
M where

the two representatives are chosen as to minimize the distance |z 1
M − ω

1
M |. Combining

the kernel with the density of the reference measure, it follows that, on Ωε, bounding
by some δ1 > 0 the real part of the difference between (zω̄)1/M and the other possible
choices of theM -th root,

JN,M,k(z, ω) :=
1

Z2
νN,M,k

|KN,M,k(z, ω)|2|z|2
k−M
M |ω|2

k−M
M e−N |z|

2
M −N |ω|

2
M

=
N2

π2M4
|zω|2/M−2eN(zω̄)1/M+N(z̄ω)1/M−N |z|

2
M −N |ω|

2
M (1 +O(e−Nδ1))

=
N2

π2M4
|zω|2/M−2e−N |z

1
M −ω

1
M |2(1 +O(e−Nδ1))

as was claimed. The bound outside Ωε is obtained in the same way.

We can now state a convergence result for the centered linear statistics of the Power-
Ginibre distributions. The gaussian limit is the same as in Theorem 2.19, as was claimed.
We remind that ck is the number of points in Gin(N,M, k) (see (2.1)).

Theorem 2.21 (Gaussian Free Field for Power-Ginibre). For fixedM,k, and any smooth f
with compact support in D, the centered linear statistics defined by

X
(N,M,k)
f =

∑
i∈Ik

f(zi)−
ck
Mπ

∫
D

f(z)|z|2/M−2dm(z)

converge without renormalization to a gaussian variable, namely:

X
(N,M,k)
f

d−−−−→
N→∞

N (0, σ2
f ), where σ2

f =
1

4π

∫
D

|∇f(z)|2dm(z).

Proof. We refer to the general, now well-known, method developped in [8, 2, 22]. Con-
cretely, we adapt the proof of Theorem 4.1 in [5] in the Ginibre case to the Power-Ginibre
case and emphasize what is essentially new. The computation of the variance relies on
the explicit formula of the second cumulant,

cumN (2) =
1

2

∫
D

∫
D

(f(z)− f(ω))2|KN,M,k(z, ω)|2dν(z)dν(ω).
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By z1/M we mean any preimage of z by πM . The important thing as we will see is that
the preimages of z and ω are chosen in the closest possible way.

cumN (2) =
1

2

∫
D2

(f(z)− f(ω))2|KN,M,k(z, ω)|2dν(z)dν(ω)

=
1

2

∫
D2

(f(z)− f(ω))2JN,M,k(z, ω)dm(z)dm(ω)

=
N2

2π2

∫
∠M,ε

(f(zM )− f(ωM ))2e−N |z−ω|2dm(z)dm(ω)
(
1 +O(e−Nδ1)

)
+O(e−Nδ2)

=
N2

2π2M

∫
Ωε

(f(zM )− f(ωM ))2e−N |z−ω|2dm(z)dm(ω)
(
1 +O(e−Nδ1)

)
+O(e−Nδ2)

This integral is the same that appears in the proof of Theorem 4.1 of [5], applied to the
function fM . We can state with δ = min(δ1, δ2):

cumN (2) =
1

4πM

∫
D

|∇fM |2 +O(e−Nδ) =
1

4π

∫
D

|∇f |2 +O(e−Nδ).

It remains to prove that other cumulants vanish. It can be checked, using ex-
pressions from the proof Theorem 2.16 that cumN (1) −−−−→

N→∞
0. For higher cumu-

lants, one could follow the method of [5] in order to bound cumN (l) directly when
l ≥ 3. For the convenience of the reader, we present another way to conclude. The
variables are centered and have bounded variances, so the families of their distribu-
tions are tight. By Theorem 2.19 and Power-Ginibre decomposition, any converging
subsequences of these families are such that their independent limits sum up to a
gaussian variable. By Cramér’s theorem, each of these limits is a gaussian variable.
Therefore, every centered linear statistics do converge to a gaussian variable, as was
claimed.

We have used the determinantal structure of the Power-Ginibre processes to establish
convergence of the linear statistics to the twisted circular law, and convergence of the
centered statistics to the Gaussian Free Field. Note that neither the mean, nor the
variance of the linear statistics depend on the parameter k in the limit. Moreover, the
variance does not depend on the powerM : the limit Gaussian Free Field is the same as
for the usual complex Ginibre ensemble.

2.3.3 Microscopic analysis of the Power-Ginibre kernels

We have seen above that the parameter k did not impact the first and second order
asymptotic properties of the properly scaled Power-Ginibre distributions. However, it
does appear in the microscopic limit.

In the following, we assume that a primitiveM -th root of unity ζ has been chosen, as
well as a determination of theM -th root for z, ω. The result does not depend on these
arbitrary choices.

Proposition 2.22. The unscaled process NM/2Gin(N,M, k) converges to a determinan-
tal point process, whose kernel is given by the average

KM,k(z, w) =
1

M

M−1∑
j=0

ζj(1−k) exp

(
−1

2
|ζjz 1

M − ω̄
1
M |2 + i=(ζjz 1

M ω̄
1
M )

)
(2.3)

with respect to the twisted measure 1
πM |z| 2

M −2dm(z) on C.

EJP 23 (2018), paper 111.
Page 16/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP234
http://www.imstat.org/ejp/


Powers of Ginibre eigenvalues

Proof. Proposition 2.2 tells us that the process NM/2Gin(N,M, k) is a determinantal
point process with kernel

KN,M,k

(
z√
N
,
w√
N

)
= Γ(k)

ck−1∑
l=0

(zw)l

(Ml + k − 1)!

with respect to the measure

dνN,M,k

(
z√
N

)
=

1

πMΓ(k)
|z|2

k−M
M e−|z|2/Mdm(z).

The parameter N is only reflected in ck, that is a deterministic number of order N/M .
For a given choice of theM -th roots z

1
M , ω

1
M , and ζ a primitive root of unity, whenM,k

are fixed and N → ∞, the above converges to a determinantal point process with kernel

K̃M,k(z, w) =
1

πM

∑
l≥0

(zw)l

(Ml + k − 1)!
(zω̄)

k−M
M e

− 1
2

(
|z|2/M+|ω|2/M

)

with respect to the Lebesgue measure on C. We now transform this expression using the
definitions and identities involved in the proof of Lemma 2.20. It becomes

K̃M,k(z, w) =
1

πM2

M−1∑
j=0

ζj(1−k)(zω̄)
1−M
M eζ

j(zω̄)
1
M e

− 1
2

(
|z|2/M+|ω|2/M

)

The difference with the scaled case is that all term of this sum have a non trivial
contribution. We write:

K̃M,k(z, w) =
1

πM2
(zω̄)

1−M
M

M−1∑
j=0

ζj(1−k) exp

(
−1

2

(
|z 1

M |2 + |ω 1
M |2 − 2ζjz

1
M ω̄

1
M )
))

The result follows when the reference measure is the pushforward of the Lebesgue
measure by πM .

3 Generalization and partial results

Our proof technique does not depend on the reference measure, but only relies on
quadratic repulsion, provided that the distributions involved are characterized by their
moments. As we will see, the assumption that all moments are finite is not essential and
can be weakened. We give below a generalization of Theorem 2.11 to the more general
case of two-dimensional radially symmetric beta ensembles with β = 2 and a suitable
potential. We then look specifically at the CUE case. Subsections 3.3 and 3.4 treat the
cases when the potential lacks full radial symmetry (as in the GUE case) and when β is a
higher even integer, respectivelly.

3.1 General Power decomposition

We consider a reference measure given by a radial external potential

dµV (z) =
1

ZV
e−V

(
|z|2

)
dm(z),

where the function V : R+ 7→ R ∪ {∞} is such that∏
1≤i<j≤N

|zi − zj |2e−
∑N

i=1 V (|zi|2) < ∞. (3.1)
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When properly normalized, this is a probability density. Note that, while we sometimes
call V the potential, strictly speaking the potential is given by V (|z|2), such that the
quadratic potential case corresponds to V = IdR+

. Condition (3.1) is enough for all
definitions and results below to hold.

Definition 3.1. We denote by ΓV the analog of the Γ function with potential V ,

ΓV (α) =

∫ ∞

0

tα−1e−V (t)dt.

As long as α is such that the above is finite, we define the ΓV distribution of parameter
α, denoted by γ(V, α), by its density on R+,

1

ΓV (α)
tα−1e−V (t)1R+

. (3.2)

Definition 3.2. We say that the complex random points (λ1, . . . , λN ) are distributed
according to the beta ensemble with parameter β and radial potential V if they have
joint density

1

πNZβ,N

∏
i<j

|zi − zj |β
N∏
i=1

e−V (|zi|2)

with respect to the Lebesgue measure on CN .

We denote by E(N) or E(V )(N) the β-ensemble with potential V and β = 2. Its density
is given by

1

N !
∏N

j=1 ΓV (j)

∏
i<j

|λi − λj |2dµN
V (λ).

Such distributions can be achieved by radially symmetric ensembles of normal matrices,
but, as in the previous sections, we shall not use the underlying matrix structure.

Corollary 3.3 (Product Statistics). Let E = C, g ∈ L2(µ), and {λ1, . . . , λN} be E(N)

points. Then

E

(
N∏

k=1

g(λk)

)
= det[fi,j ]

N
i,j=1 where fi,j =

1

ΓV (j)

∫
zi−1z̄j−1g(z)dµV (z).

Proof. The proof is the same as in the Ginibre case, mutatis mutandis.

Definition 3.4. For any triple (N,M, k) such that 1 ≤ k ≤ M ≤ N we define the Root
distribution RV (N,M, k) as the point process indexed by Ik with joint density

1

ZRV (N,M,k)

∏
i<j

i,j∈Ik

|zMi − zMj |2
∏
i∈Ik

|zi|2(k−1)dµV (zi)

where
ZRV (N,M,k) = ck!

∏
j∈Ik

ΓV (j),

and the Power distribution E(N,M, k) as the image of the root distribution under the
power map z 7→ zM , that is the point process indexed by Ik with joint density

1

ZV (N,M,k)

∏
i<j

i,j∈Ik

|zi − zj |2
∏
i∈Ik

|zi|
k−M
M e−V (|zi|2/M )dm(zi),

where
ZV (N,M,k) = ck! Z

ck
V M ck

∏
j∈Ik

ΓV (j).
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It is clear that E(N,M, k) is again a beta distribution with β = 2 and external potential

WM,k(x) = V (x1/M )− k −M

M
log(x),

so that up to re-indexation we can write E(N,M, k) = E(WM,k)(ck).

Theorem 3.5 (General Power decomposition). We have the equality in distribution

{λM1 , . . . , λMN } d
= {zM1 , . . . , zMN }

where the (zi)Ik are distributed according to RV (N,M, k) and independent for different
values of k. In other words, the distribution of theM -th powers of E(N) is a superposition
ofM independent Power distributions:

E(N)M
d
=

M⋃
k=1

RV (N,M, k)M
d
=

M⋃
k=1

E(N,M, k).

This implies in particular two other analogous results, that were known from the
work of Hough, Krishnapur, Peres and Virág [14], namely, independence whenM ≥ N ,
and a version of Kostlan’s independence of radii with ΓV distributions. The fact that a
version of Kostlan’s Theorem holds for any potential has been used by Chafaï and Péché
in [7] to prove a limit theorem on the edge.

Proof. We first cut-off the potential V , and replace it with the following potential, to
ensure that all moments are finite.

VN,ε(x) = max(VN (x), εx)

The technique we used in the proof of Theorem 2.12 did not rely on the potential,
provided all distributions were characterized by their moments. Thus, the result holds
for E(VN,ε)(N). That means that for any continuous and bounded f , if we denote by λ(ε)i

the eigenvalues of E(VN,ε)(N) and by (µ
(ε)
i )i∈Ik those of E(VN,ε)(N,M, k),

E

(
N∏
i=1

f(λ
(ε)M

i )

)
=

M∏
k=1

E

(∏
i∈Ik

f(µ
(ε)
i )

)
.

Because of the finiteness condition (3.1), dominated convergence holds when ε→ 0. This
yields the result for E(V )(N).

There are several relevant examples of such distributions. Here are some of these.

• Products of complex Ginibre matrices. As shown in [1], the eigenvalue distri-
bution of G1 . . . Gk where G1, . . . , Gk are independent Ginibre matrices is given by
the beta ensemble with β = 2 and potential Vk(|z|2) = − lnwk(z), where

w1(z) = e−|z|2 , wm+1(z) = 2π

∫ ∞

0

wm

(z
r

)
e−r2 dr

r

which gives by induction

wm+1(z) = (2π)m
∫ ∞

r1=0

· · ·
∫ ∞

rm=0

e
|z|2

r1...rm
−r21−...r2m

dr1 . . . drm
r1 . . . rm

.

This fact seems related to the idea that products of independent Ginibre should
behave like Ginibre powers in several respects, for which arguments are provided
in [6].
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• Truncated Unitary Ensembles. N ×N Minors of the Circular Unitary Ensemble
of size N + n have been shown in [23] to have eigenvalue density proportional to

N∏
k=1

(1− |zk|2)n−11|zk|<1

∏
1≤i<j≤N

|zi − zj |2.

In that case, the ΓV variables are usual beta variables. Namely, the set of radii is
distributed as a set of independent variables with distribution β1,n, β2,n . . . , βN,n.

• Spherical ensemble. This ensemble corresponds to the distribution of eigenval-
ues of G−1

1 G2 where G1, G2 are i.i.d. Ginibre matrices of size N . The eigenvalue
density is then proportional to

N∏
k=1

1

(1 + |zk|2)N+1

∏
1≤i<j≤N

|zi − zj |2

as shown in [18]. This is a case where all moments are not defined.

3.2 Circular Unitary Ensemble

3.2.1 Rains’ decomposition for the CUE powers

It is clear that we could have considered more general beta ensembles, replacing e−V by
any suitable measure µ, possibly including atoms, or supported on lower-dimensional
manifolds. A famous example is the CUE case, that was treated by Rains in [21]. The
reference measure µ is then the uniform measure on the unit circle, and β = 2. For the
reader’s convenience, we reformulate this result here with our conventions.

The product statistics now take the following form, following from Lemma 2.1.

Corollary 3.6 (Product Statistics). Let g ∈ L2(µ), and {eiθ1 , . . . , eiθN } be CUE(N) points.
Then

E

(
N∏

k=1

g(eiθk)

)
= det (fj,k)

N
j,k=1 where fj,k =

1

2π

∫
ei(j−k)θg(eiθ)dµ(θ).

From this, one can derive the formula of Heine-Szegő, which yields a Toeplitz matrix.

Corollary 3.7 (Heine-Szegő ). Let g =
∑
ajX

j be a Laurent polynomial, and {eθi} be
CUE(N) points. Then

E

(
N∏

k=1

g(eiθk)

)
= det (ai−j)

N
i,j=1

Kostlan’s theorem now holds in a trivial way. Independence of high powers had been
first proved by Rains in [20]; a more general proof of it is given in [14].

Theorem 3.8 (Rains). For any integerM ≥ N , the set {eiMθ1 , . . . , eiMθN } is distributed
as a set of independent variables with uniform arguments.

The approach developed above yields a new proof of Rains’ decomposition, as the
independent blocks obtained are easily identified as smaller CUE blocks.

Theorem 3.9 (Rains). For anyM , we have the equality in distribution:

CUE(N)M
d
=

M⋃
k=1

CUE(IN,M,k).

EJP 23 (2018), paper 111.
Page 20/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP234
http://www.imstat.org/ejp/


Powers of Ginibre eigenvalues

Proof. The root distributions now have joint density proportional to∏
j<k

j,k∈Ik

|eiMθj − eiMθk |2

as all eigenvalues have radius 1, and therefore the power distribution obtained in the
end is another, smaller, CUE distribution. The size of these blocks are the cardinalities
of the progressions Ik,

ck = |Ik| =
⌈N − k

M

⌉
,

which correspond to the ones given in [21].

3.2.2 The characteristic polynomial of a unitary matrix

Another stunning property of the CUE is the fact that its characteristic polynomial on
the unit circle,

Z = PUN
(1) = det(I − U),

is distributed like a product of independent random variables. This result was first
proved in [4] using an explicit decomposition of the Haar measure. The moments of this
polynomial had been computed before by Keating-Snaith in [16] using Selberg integral.
It turns out that the above methods and identities give a somewhat more straightforward
proof.

Lemma 3.10 (Translation invariance). For any measure µ on C, with g ∈ L2(µ), let us
define:

∀z1, z2 ∈ C fi,j(z1, z2) :=

∫
C

(λ− z1)
i(λ− z2)

jg(λ)µ(dλ).

Then det (fi,j(z1, z2))
N
i,j=1 is a constant function of z1, z2.

Proof. By Lemma 2.1,

det (fi,j(z1, z2)) =

∫
CN

N∏
k=1

g(λk) det
(
(λi − z1)

j−1
)
det ((λi − z2)j−1)µ(dλ1) . . . µ(dλN ).

Since the Vandermonde determinant is invariant by translation, we have

det
(
(z1 − λi)

j−1
)
= det

(
(−z1 + λi)

j−1
)
= det

(
(λi)

j−1
)
,

which proves the claim.

Proposition 3.11. The complex moments of Z = PUN
(1) are given by the following

minor of the symmetric Pascal matrix,

E
(
ZmZ̄n

)
= det

((
i+m+ j + n− 2

i+m− 1

))N

i,j=1

.

Explicit computation of this minor gives:

E
(
ZmZ

n
)
=

N−1∏
k=0

k!(k +m+ n)!

(k +m)!(k + n)!
.
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Proof. The first equality comes from the Corollary 3.6 with g(θ) = (1− eiθ)m(1− e−iθ)n

and translation invariance, Lemma 3.10. Indeed, for all a, b ∈ J1, NK,

fa,b =
1

2π

∫ 2π

0

(1− eiθ)m+a−1(1− e−iθ)n+b−1dθ

=
1

2π

∫ 2π

0

m+a∑
k=1

n+b∑
l=1

(
m+ a− 1

k − 1

)(
n+ b− 1

l − 1

)
(−eiθ)k−ldθ

=

(m+a)∧(n+b)∑
k=1

(
m+ a− 1

k − 1

)(
n+ b− 1

k − 1

)
=

(
m+ a+ n+ b− 2

m+ a

)
,

where the last equality is a common combinatorial identity, that yields a coefficient of
Pascal’s matrix, as was claimed.

To compute this determinant, we first translate the minor by multiplying according
to lines and columns,

det

((
i+m+ j + n− 2

i+m− 1

))N

i,j=1

=

N−1∏
k=0

k!(k +m+ n)!

(k +m)!(k + n)!
det

((
i+ j +m+ n− 2

i− 1

))N

i,j=1

.

Applying Corollary 3.6 with g(θ) = (1− eiθ)m+n, we have

det

((
i+ j +m+ n− 2

i− 1

))N

i,j=1

= det

(
1

2π

∫ 2π

0

ei(a−b)θ(1− eiθ)m+ndθ

)
a,b

.

This last matrix being upper triangular with a diagonal of ones, its determinant is 1,
hence the result.

Thus, we recover the moments computed in [16] and [4] with different techniques.
These moments are known to be related to beta distributions in the following way.

Lemma 3.12. For any k ∈ N, the following formula holds

E
(
(1 +

√
β1,ke

iωk)m(1 +
√
β1,keiωk)n

)
=

Γ(k)Γ(k +m+ n)

Γ(k +m)Γ(k + n)
,

where the variables ωk, β1,k are independent, the omega variables being uniform on
[0, 2π], and the parameters of the beta distributions being given by their indices.

For a proof of this Lemma, see [4]. One deduces from it a proof of the decomposition
of the distribution of the characteristic polynomial as a product of independent variables.

Theorem 3.13 (Bourgade-Hughes-Nikeghbali-Yor). The characteristic polynomial of the
CUE is distributed like a product of independent variables,

Z
d
=

N∏
k=1

(1 +
√
β1,ke

iωk).

3.3 Partial symmetry and the Gaussian Unitary Ensemble

The same technique we have used on Ginibre and the CUE can be applied to processes
with partial symmetry, such as the real line, or any star set – that is, the preimage of R+

under the power map πM . In this case, block decomposition does not hold for all powers,
due to the loss of radial invariance, but only for divisors of the numberM characterizing
the symmetry. On the real line, the symmetry group is Z2. The point of interest is
therefore whenM = 2. It yields a decomposition in two independent blocks, that holds
for any symmetric potential. In [12], Edelman and La Croix mentionned this as a natural
generalization of their result for the GUE. We finally derive from these methods another
result first established in [12], the decomposition of the law of the determinant of the
GUE as a product of independent chi-squared variables.
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3.3.1 Power decomposition for processes on the real line

We consider a symmetric measure on the real line with density

dµV (x) =
1

ZV
e−V

(
x2

)
,

with respect to the Lebesgue measure, where the potential V is chosen so that this
measure has finite moments. These moments define the ΓV function, as in Definition
3.1. We also assume, as before, that all distributions involved are characterized by their
moments. We denote the β-ensemble on R with potential V and β = 2 by ER(N). Its
density is given by

1

N !D
(N)
V

∏
i<j

|xi − xj |2dµ⊗N
V (x)

where

D
(N)
V = det

(
ΓV

(
i+ j − 1

2

))
i,j∈IN,2,1

det

(
ΓV

(
i+ j − 1

2

))
i,j∈IN,2,2

= D
(N,1)
V D

(N,2)
V .

We compute the values of the constants D(N)
V , D

(N,1)
V , D

(N,2)
V in the case of the GUE in

the proof of Proposition 3.17.
The proofs of the following results all mimic Section 2.2, mutatis mutandis. Notably,

there seems to be no analog of Kostlan’s theorem, nor independence of large powers.

Corollary 3.14 (Product Statistics). Let E = C, g ∈ L2(µ), and {λ1, . . . , λN} be ER(N)

points. Then

E

(
N∏

k=1

g(λk)

)
=

1

D
(N)
V

det (fi,j)
N
i,j=1 where fi,j =

∫
R

xi+j−2g(x)dµV (x).

Definition 3.15. For k = 1, 2 we define the root distribution RV,R(N, k) as the point
process on R indexed by IN,2,k with joint density

1

ck!D
(N,k)
V

∏
i<j

i,j∈Ik

|x2i − x2j |2
∏
i∈Ik

x
2(k−1)
i dµV (xi),

and the Power distribution ER(N, k) as the image of the root distribution under the
power map π2. In other words, ER(N, k) is the point process on R+, indexed by Ik, with
joint density

1

ck!D
(N,k)
V

∏
i<j

i,j∈Ik

|xi − xj |2
∏
i∈Ik

x
k−3/2
i e−V (xi)dxi.

Theorem 3.16 (Edelman, La Croix). We have the equality in distribution

{λ21, . . . , λ2N} d
= {x21, . . . , x2N},

where the (xi)Ik are distributed according to RV,R(N, k) and independent for different
values of k. In other words, the distribution of the squares of ER(N) is a superposition
of 2 independent Power distributions:

ER(N)2
d
= RV (N, 1)

2 ∪ RV (N, 1)
2 d
= ER(N, 1) ∪ ER(N, 2).

For the quadratic potential, ER(N) is the distribution of GUE eigenvalues, and the
two Power distributions corresponds to Laguerre-Wishart ensembles with half-integer
parameters. That is, one recovers the decomposition of Edelman and La Croix introduced
in [12] for the singular values of the GUE.
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3.3.2 The determinant of the GUE

Let HN be a GUE matrix, and

PHN
(x) = det (HN − xId) .

One consequence of Edelman and La Croix’s results on the GUE is that the absolute
value of the determinant of a GUE matrix (that is, |PHN

(0)|) is distributed like a product
of independent χ2 variables with explicit parameters. This is a striking similarity with
the CUE case reviewed in Subsection 3.2.2, and as above we give a proof of this result
relying on Pascal matrices. The potential is now the usual quadratic one, V (x) = −x2

2 ,
and we denote the normalization constants simply D(N), D(N,1) and D(N,2). We also
recall the following definition: for k = 1, 2,

Ik = {i ∈ [[1, N ]] | i = k mod 2}, ck = |Ik|.

Proposition 3.17. The moments of Π = PHN
(0) are given by the expressions

E
(
Π2m+1

)
= 0,

and E
(
Π2m

)
= 2mN

c1∏
l1=1

Γ(l1 +m− 1/2)

Γ(l1 − 1/2)

c2∏
l2=1

Γ(l2 +m+ 1/2)

Γ(l2 + 1/2)
.

Proof. The odd moments of Π are zero by symmetry. To compute the even moments, we
apply Corollary 3.14 with g(x) = x2m.

E
(
Π2m

)
= E

(
N∏

k=1

λ2mk

)
=

1

D(N)
det

(∫
R

xi+j−2x2me−x2/2dx

)N

i,j=1

This determinant splits into two blocks, and we use that
∫
R
tαe−

t2

2 dt = 2
α+1
2 Γ(α+1

2 ) to
find

1

D(N,1)
det

(∫
R

xi+j−2x2me−x2/2dx

)
i,j∈I1

1

D(N,2)
det

(∫
R

xi+j−2x2me−x2/2dx

)
i,j∈I2

=
1

D(N,1)
det

(
2

2a+2b+2m−3
2 Γ

(
2a+ 2b+ 2m− 3

2

))c1

a,b=1

× 1

D(N,2)
det

(
2

2a+2b+2m−1
2 Γ

(
2a+ 2b+ 2m− 1

2

))c2

a,b=1

where the elements (i, j) ∈ I1 have been written as (2a − 1, 2b − 1) and those of I2 as
(2a, 2b). We have seen in the proof of Proposition 3.11 that any minor of Pascal’s matrix
of the type ((

i+ j +m− 2

i− 1

))N

i,j=1

,

where m is any non-negative integer, has determinant 1. Therefore,

Q(x) = det

(
Γ(i+ j + x− 1)

Γ(i)Γ(j + x)

)N

i,j=1

is a polynomial in x taking the value 1 infinitely often. As a consequence it is constant
equal to 1, and for any real parameter x,

det (Γ(i+ j + x− 1))
N
i,j=1 =

N∏
i=1

Γ(i)

N∏
j=1

Γ(j + x).
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This gives us the value of the normalization constants

D(N,1) = 2c
2
1−

c1
2

c1∏
k=1

Γ(k)Γ(k − 1

2
)

and D(N,2) = 2c
2
2+

c2
2

c2∏
k=1

Γ(k)Γ(k +
1

2
),

and also yields the expected formula for the moments. Since c1 + c2 = N , we have

E
(
Π2m

)
= 2m(c1+c2)

c1∏
l1=1

Γ(l1 +m− 1/2)

Γ(l1 − 1/2)

c2∏
l2=1

Γ(l2 +m+ 1/2)

Γ(l2 + 1/2)
.

This concludes the proof.

We deduce from these moments a direct proof of the decomposition of the determinant
of the GUE as a product of independent variables.

Theorem 3.18 (Edelman, La Croix). The value of the GUE characteristic polynomial at 0
is distributed like the product of independent variables,

PHN
(0) =

N∏
k=1

λk
d
= (−1)ε

N∏
k=1

χ2(2bk/2c+ 1),

where ε is a Bernoulli random variable of parameter p = 1
2 , and χ

2(m) are chi-squared
variables with m degrees of freedom.

Proof. The chi-squared distribution with k degrees of freedom has density

1

2
k
2 Γ(k2 )

t
k
2−1e−

t
2 .

with respect to the Lebesgue measure on R+. Changing variables shows that

χ2(k) = 2γ k
2
.

Therefore the moments of χ2(k) are given by

E (χs
k) =

2sΓ(k2 + s)

Γ(k2 )
.

This allows one to check that the moments of PHN
(0) match those of a product of

independent such variables. Since the chi-squared distributions are characterized by
their moments, we deduce

PHN
(0)

d
= (−1)ε

c1∏
l1=1

χ2(2l1 − 1)

c2∏
l2=1

χ2(2l2 + 1) = (−1)ε
N∏

k=1

χ2(2bk/2c+ 1),

where all variables are independent.

3.4 Conditional independence for beta ensembles

Kostan’s Theorem 2.4 and Theorem 1.2 have a natural formulation in terms of
conditional independence for radially symmetric beta ensembles, when the inverse
temperature beta is an even integer. We assume from now on that the complex random
points (λ1, . . . , λN ) are distributed according to definition 3.2 with β = 2p.

EJP 23 (2018), paper 111.
Page 25/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP234
http://www.imstat.org/ejp/


Powers of Ginibre eigenvalues

3.4.1 Conditional independence

In this Section, I is a random variable with values in an discrete index space A. We
say that a collection of random variables are conditionally independent if they are
independent, conditionally on I.

Conditional independence is not an unusual property of random variables. De Finetti’s
theorem gives a general setting in which such a feature appears (see [11]). One can
think of I as a random environment, on which the distributions of the variables depend.
This is equivalent to saying that for every continuous and bounded functions,

E

(
N∏

k=1

fk(Xk)

)
=
∑
a∈A

P (I = a)

N∏
k=1

E (fk(Xk) | I = a) .

We denote by u the vector (u1, . . . , uN ) ∈ ZN , and by KN,p(u) the coefficient of the
monomial Tu1

1 . . . TuN

N in the p-th power of the Vandermonde determinant in N variables
T1, . . . , TN ,

∆(T1, . . . , TN )p =
∑

u∈ZN

KN,p(u)

N∏
i=1

Tui
i .

The variable I we consider takes values in A = ZN and depends on N, p and the potential
V . Its distribution is given by the weights

P (I = u) =
1

Z2p,N
K2

N,p(u)

N∏
i=1

ΓV (1 + ui) (3.3)

we will prove later on that this defines a probability measure on ZN .

3.4.2 Two general results of conditional independence

We present a generalization of Theorems 2.4 and 1.2 to the above setting. Both establish
conditional independence with respect to the same latent variable I, described above.
The first result is the analog of Kostlan’s independence theorem for the radii.

Theorem 3.19 (Conditional independence of the radii). The squared Radii of the beta
ensemble with β = 2p and radial potential V are conditionally independent. Conditioning
on the event {I = u}, the following equality in distribution holds:

{|λ1|2, . . . , |λN |2} d
= {X1, . . . , XN},

where the variables X1, . . . , XN have independent ΓV distributions with parameters
1 + u1, . . . , 1 + uN .

Proof. We expand the joint density to compute the product statistics, for any measurable
function g.

E

(
N∏
i=1

g(|λi|2)

)
=

1

πNZ2p,N

∫
CN

∏
i<j

|zi − zj |2p
N∏
i=1

g(|zi|2)e−V (|zi|2)dm(zi)

=
1

πNZ2p,N

∑
u,v∈ZN

∫
CN

KN,p(u)KN,p(v)

N∏
i=1

zui
i zi

vig(|zi|2)e−V (|zi|2)dm(zi).

A polar change of coordinate shows that only the terms for which u = v make a non zero
contribution, so that there remains

1

Z2p,N

∑
u∈ZN

∫
RN

+

KN,p(u)
2

N∏
i=1

rui
i g(ri)e

−V (ri)dri,
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where ri = |zi|2. This in turn can be written using

∑
u∈ZN

KN,p(u)
2

N∏
i=1

∫
R+

g(r)ruie−V (r)dr =
∑

u∈ZN

KN,p(u)
2

N∏
i=1

ΓV (1 + ui)E (g (Xi))

where Xi
d
= γ(V, 1 + ui) for every i, as claimed. For g = 1, this tells us that

Z2p,N =
∑

u∈ZN

KN,p(u)
2

N∏
i=1

ΓV (1 + ui) (3.4)

so that (3.3) defines a probability measure.
As the above holds for any polynomial g, by Lemma 2.3 in the Appendix this character-

izes the distribution of the squared radii, and establishes conditional independence.

The second result is the analog of Rains’ independence theorem for the high powers,
first established in [20]. Note that for p = 1 we recover the optimal boundM ≥ N .

Theorem 3.20 (Conditional independence of high powers). For any integerM ≥ (N −
1)p + 1, the image of the beta ensemble with β = 2p and radial potential V exhibits
conditional independence. Conditioning on the event {I = u}, the following equality in
distribution holds:

{λM1 , . . . , λMN } d
= {XM/2

1 eiθ1 , . . . , X
M/2
N eiθN },

where the variables θk, Xk are all independent, the angles are uniform on [0, 2π], and
the variables X1, . . . , XN have independent ΓV distributions with parameters 1 + u1, . . . ,

1 + uN .

Proof. We expand the joint density to compute the product statistics, for any polyno-
mial g.

E

(
N∏
i=1

g(λMi )

)
=

1

πNZ2p,N

∑
u,v∈ZN

∫
CN

KN,p(u)KN,p(v)

N∏
i=1

zui
i zi

vig(zMi )e−V (|zi|2)dm(zi).

Writing g as a sum of monomials, as in the proof of Theorem 2.6, a polar change of
coordinate shows that any term that makes a non zero contribution has relative degree 0

in every variable. In particular, these are terms for which ui − vi ≡ 0[M ] for every i. On
the other hand, the Vandermonde determinant is a homogeneous polynomial of partial
degree N − 1 in each variable, and its p-th power therefore has degree p(N − 1) in each
variable. It follows that, forM > p(N − 1), congruence is only possible if u = v, so that
there remains

1

πNZ2p,N

∑
u∈ZN

∫
CN

KN,p(u)
2

N∏
i=1

|zi|2uig(zMi )e−V (|zi|2)dm(zi).

This in turn can be written as

1

πNZ2p,N

∑
u∈ZN

KN,p(u)
2

N∏
i=1

∫
C

g(zM )|z|2uie−V (|z|2)dm(z).

It is straightforward to check that the expression

1

πΓV (α)
|z|2α−2e−V (|z|2)
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is the density of a complex variable with squared radius γ(V, α) and independent uniform
argument θ. Thus, one can write

E

(
N∏
i=1

g(λMi )

)
=

1

Z2p,N

∑
u∈ZN

KN,p(u)
2

N∏
j=1

ΓV (1 + uj)E
(
g
(
X

M
2

j eiθj
))

where Xj
d
= γ(V, 1 + uj) for every j, as claimed.

As the above holds for any mixed polynomial g(z, z), by Lemma 2.5 in the Appendix it
characterizes the distribution of the set of powers, which establishes their conditional
independence.

Conditional independence with this specific latent variable I appears naturally when
studying some statistics of beta-ensembles for even β. The structure of intermediate pow-
ers in general, however, requires further study and proper understanding, as there seem
to be no analog of Corollary 2.2 that would enable to generalize the block-decomposition
that holds when β = 2.

3.4.3 Distribution of the latent variable I

It is a hard problem in general to study the distribution of the latent variable I. Indeed,
there is no tractable formula for the coefficients KN,p except in a few very specific cases,
and to generate them has exponential algorithmic complexity for large values of N .

For p = 1, the above results are coherent with those of Section 3.1. Indeed, the latent
variable I then gives weight only to sequences u1, . . . , uN such that 1 + u1, . . . , 1+uN
corresponds to a permutation of J1, NK, every permutation σ having the same weight.
We can therefore give the following description of I,

I = (σ(1)− 1, . . . , σ(N)− 1) where σ
d
= Unif(SN ).

The choice of σ, however, does not change the distribution of the set of variables, as the
order of the variables is not taken into account. In this way, we recover independent
variables of parameters 1, 2, . . . , N .

For N = 2 and quadratic potential, we have the following remarkable identity.

Theorem 3.21. For N = 2, V (x) = x, and any integer p, the distribution of I is given by

I = (B, p−B) where B
d
= Bin(p,

1

2
)

Proof. For N = 2 the Vandermonde determinant is T1 − T2, therefore the coefficients
KN,p are given by

KN,p(k, l) = (−1)k
(
p

k

)
δp−k,l,

which yields the following weights

KN,p(k, l)
2 k! l! =

(
p

k

)2

k! l! δp−k,l = p!

(
p

k

)
δp−k,l

We deduce the value of the constant Z2p,2 from (3.4), and the distribution of I from (3.3),

Z2p,2 = 2pp! , P (I = (k, l)) = 2−p

(
p

k

)
δp−k,l,

which is the claimed Bin(p, 12 ) distribution.
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Appendix: the problem of moments

At some point in the article we make the assumption that all relevant variables are
characterized by their multivariate moments, which is to say that they are uniquely
determined by the statistics

E (P (X1, . . . , XN )) , P ∈ C[T1, . . . , TN ]

when (X1, . . . , XN ) is an N -tuple of real random variables, and by the statistics

E
(
P (Z1, Z1, . . . , ZN , ZN )

)
, P ∈ C[T1, S1, . . . , TN , SN ]

when (Z1, . . . , ZN ) is an N -tuple of complex random variables – for clarity, we call such
statistics mixed moments.

Our purpose here is not to inquire about the weakest possible assumptions under
which the above is true. The following fact will be sufficient: it is known that a random
variable X on RN is characterized by its multivariate moments if it has exponential
moments for any ε > 0,

E
(
eε‖X‖

)
<∞.

A proof of this result can be found, for instance, in [9]. The same is true for complex
variables with respect to the mixed moments, as these variables can be understood as
taking values in R2N . The linear change of variable

(T, S) 7→ (T + iS, T − iS),

ensures that a polynomial in the former variables is a polynomial in the latter, and vice
versa.

The philosophy of most results contained in this article is that some features of point
processes are somehow hidden if we look at the joint distribution of an N -tuple, but
appear when we characterize the distribution of their set, obtained by taking an average
over all permutations of the variables. Indeed, if ρ is the joint density of an N -tuple of
variables (Z1, . . . , ZN ), the joint density of their set is

ρset(z1, . . . , zN ) =
1

N

∑
σ∈SN

ρ(zσ(1), . . . , zσ(N)),

and the statistics of this set are given by

Eset (f(Z1, . . . , ZN )) =
1

N

∑
σ∈SN

E
(
f(Zσ(1), . . . , Zσ(N))

)
.

If the distribution of an N -tuple of real or complex variables is characterized by its
moments, as we will always assume, then the set of these same variables is characterized
by its symmetric moments. That is, the distribution of the set of variables is uniquely
determined by the statistics

E (P (X1, . . . , XN )) , P ∈ SC(N) := C[T1, . . . , TN ]SN

when (X1, . . . , XN ) is an N -tuple of real random variables, the space of symmetric
polynomials SC(N) being defined by the property

∀σ ∈ SN P (Tσ(1), . . . , Tσ(N)) = P (T1, . . . , TN ). (3.5)

The analog statistics when (Z1, . . . , ZN ) is an N -tuple of complex random variables are
given by

E
(
P (Z1, Z1, . . . , ZN , ZN )

)
, P ∈ MSC(N)
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where MSC(N) is the set of mixed symmetric polynomials, defined by the following
invariance property

∀σ ∈ SN P (Tσ(1), Sσ(1), . . . , Tσ(N), Sσ(N)) = P (T1, S1, . . . , TN , SN ). (3.6)

Lemmas 2.3 and 2.5 establish that we can restrain our study to a specific class of
symmetric polynomials that span SC(N) (respectively MSC(N)) as vector spaces. We
give below a proof of these two essential Lemmas.

Proof of Lemma 2.3. It is enough to see that such expressions span the monomial sym-
metric polynomials, defined for any N -tuple of integers (a1, . . . , aN ) as

m(a1,...,aN )(T1, . . . , TN ) =
∑

σ∈SN

N∏
i=1

T ai

σ(i)

If b1, . . . , bk are the distinct integers appearing in (a1, . . . , aN ), then for any parameter t
and any integerM > N we expand the following element of PSC(N),

Qt(T1, . . . , TN ) :=

N∏
i=1

( k∑
j=1

tM
j

T
bj
i

)
=

∑
α1+···+αk=N

t
∑

αiM
i

mbα(T1, . . . , TN )

where bα denotes the N -tuple where every bi is repeated αi times. Note that
∑
αiM

i is
an integer decomposition in baseM and thus characterizes the partition α. For the sake
of brevity we make use of the notation α ` N to denote partitions of N .

Applying this equality to a number of distinct values of t equal to the number of
integer partitions of N , one expresses the vector (Qtλ)λ`N in terms of (mbα)α`N through
the minor of an invertible Vandermonde determinant. The minor is itself invertible, and
this gives us in turn an expression of m(a1,...,aN )(T1, . . . , TN ) as a linear combination of
elements of PSC(N).

The proof of the second Lemma goes along the very same lines, mutatis mutandis.

Proof of Lemma 2.5. Instead of N -tuples, one considers 2N -tuples of integers (ai, bi) and
monomial symmetric mixed polynomial defined by

m(a1,b1,...,aN ,bN )(Z1, . . . , ZN ) =
∑

σ∈SN

N∏
i=1

Zai

σ(i)Z
bi
σ(i)

If (c1, d1), . . . , (ck, dk) are the distinct pairs of integers appearing in
(
(a1, b1), . . . , (aN , bN )

)
,

then for any parameter t and any integer M > N expanding the following element of
PMSC(N),

Qt(Z1, Z1 . . . , ZN , ZN ) :=

N∏
i=1

( k∑
j=1

tM
j

Z
cj
i Z

dj

i

)
=

∑
α1+···+αk=N

t
∑

αiM
i

m(c,d)α(Z1, . . . , ZN )

where (c, d)α denotes the 2N -tuple where every pair ci, di is repeated αi times. The
same argument as above yields an expression of m(a1,b1,...,aN ,bN )(Z1, . . . , ZN ) as a linear
combination of elements of PMSC(N).
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