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Abstract

We study random band matrices within the framework of traffic probability. As a
starting point, we revisit the familiar case of permutation invariant Wigner matrices
and compare the situation to the general case in the absence of this invariance.
Here, we find a departure from the usual free probabilistic universality of the joint
distribution of independent Wigner matrices. We further prove general Markov-
type concentration inequalities for the joint traffic distribution. We then extend our
analysis to random band matrices and investigate the extent to which the joint traffic
distribution of independent copies of these matrices deviates from the Wigner case.
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1 Introduction and main results

For a self-adjoint N x N matrix Ay € Maty(C), let (A\x(An))1<k<n denote the
eigenvalues of Ay, counting multiplicity, arranged in a non-increasing order. We write
(A ) for the empirical spectral distribution (or ESD for short) of Ay, i.e.,

N
1
n(An) = N Z%k(AN), AM(AN) > > AN (AN).
k=1

For a random matrix Ay, the ESD u(A ) then becomes a random probability measure
on the real line (R, B(R)). Wigner initiated the modern study of random matrices by
proving the weak convergence of the ESD in expectation as the dimension N — oo for a
general class of random real symmetric matrices [28, 29]. We recall the so-called Wigner
matrices, formulated deliberately in such a way below in order to suit our purposes later.
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Traffic distributions of random band matrices

Definition 1.1 (Wigner matrix). Let (X, ;)1<i<j<co and (X;;)i<i<co be independent fam-
ilies of i.i.d. random variables: the former, real-valued (resp., complex-valued), centered,
and of unit variance; the latter, real-valued and of finite variance. Taken together, the
two families define a random real symmetric (resp., complex Hermitian) N x N matrix
X with entries given by

X,,; ifi<y,

Xn(h:d) = {Xu ifi=j

We call Xy an unnormalized real (resp., complex) Wigner matrix.

We introduce the standard normalization via a Hadamard-Schur product. Let Jy
denote the N x N all-ones matrix, and define Ny = N~1/2J . We call the random real
symmetric (resp., complex Hermitian) N x N matrix Wy defined by

Wy =NyoXy

a normalized real (resp., complex) Wigner matrix. We simply refer to Wigner matrices
when the context is clear, or when considering the definition altogether.

We define the parameter 3 of a Wigner matrix as the pseudo-variance of its unnor-
malized strictly upper triangular entries, i.e.,

8=EXn(,5)°] =EX2], Vi<

Note that a Wigner matrix is a real Wigner matrix iff its parameter § = 1. We further
note that the distribution of a Wigner matrix is invariant under conjugation by the
permutation matrices iff its parameter 8 € [-1,1] C R (in general, § € D C C). This in
turn is equivalent to the real and imaginary parts of X (i, j) being uncorrelated.

Wigner identified the standard semicircle distribution u. as the universal limiting
spectral distribution (or LSD for short) of the Wigner matrices, where

1
tse(dx) = %(4 — $2)1+/2d33.
Much work has since been done on Wigner matrices and other classical random matrix
ensembles. The recent monographs [4, 1, 24, 5, 12] provide excellent introductions to
this end.

Free probability, introduced by Voiculescu [26], explains the distinguished role of
the semicircle distribution. Motivated by the study of free group factors, Voiculescu
discovered a remarkable analogue of classical independence for non-commuting random
variables, the so-called free independence. Free analogues of classical constructions
from (commutative) probability theory abound: for example, the free central limit
theorem (CLT), free convolution, free cumulants, free entropy, and a free stochastic
calculus. In particular, the semicircle distribution is the attractor in the free CLT.

In the landmark paper [27], Voiculescu showed that free independence describes
the asymptotic behavior of the ESD for a large class of random matrices, such as those
invariant in distribution under conjugation by the orthogonal group (in the real symmetric
case) or the unitary group (in the complex Hermitian case). Wigner’s semicircle law can
thus be seen as a consequence of the free CLT. We refer the reader to [25, 13, 20, 23, 18]
for further reading on the various aspects of free probability.

On the other hand, many random matrix models of interest do not possess the
aforementioned invariance. This consideration led Male to introduce an operadic non-
commutative probability theory based on graph operations that describes the asymptotic
behavior of random matrices invariant in distribution under conjugation by the symmetric
group [14], which includes ensembles outside of the domain of free probability [15, 16, 2].
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This additional operad structure admits a corresponding notion of independence, the
so-called traffic independence. At the same time, traffic probability captures certain
aspects of both classical and free probability [14, 9]. An as yet incomplete understanding
of this relationship yields insightful feedback between the different theories.

In a different direction, the universality of non-invariant ensembles constitutes a
major ongoing program of research. We recall one prominent model of interest: random
band matrices.

Definition 1.2 (Band matrix). Let (by) be a sequence of nonnegative integers. We write
By for the corresponding N x N band matrix of ones with band width by, i.e.,

Bn (i, j) = 1{[i — j| < bn}-
Let X be an unnormalized Wigner matrix. We call the random matrix =, defined by
EN = BN o XN
an unnormalized random band matrix. We introduce a normalization based on the
growth rate of the band width by . We say that (by) is of slow growth (resp., proportional
growth) if

N —o0

b
lim by =00 and by = o(N) (resp., lim — =¢e (0, 1]),
N—oo N

in which case we use the normalization
Yy = (2bn)" V2T (resp., Yn = (2¢—c2)"V/2Ny).

We call c the proportionality constant: we say that (by) is of full proportion if ¢ = 1
and proper otherwise. For a fixed band width by = b, we use the normalization Y y =
(2b41)"Y/2J . In any case, we call the random matrix © y defined by

@N:TNOEN

a normalized random band matrix. We simply refer to random band matrices (or RBMs
for short) when the context is clear, or when considering the definition altogether.

A long-standing conjecture proposes a dichotomy for the spectral theory of RBMs:
random matrix theory local statistics and eigenvector delocalization for large band
widths; Poisson local statistics and eigenvector localization for small band widths; and a
sharp transition around the critical value by = VN (see [8] and the references therein).

At the macroscopic level, Bogachev, Molchanov, and Pastur proved that the class of
band widths in Definition 1.2 determine the global universality classes of the RBMs: for
slow growth RBMs, 1(©® ) converges to the semicircle distribution u.; for proportional
growth RBMs of proper proportion ¢ € (0,1), u(®y) converges to a non-semicircular
distribution u. of bounded support; and for fixed band width RBMs having a symmetric
distribution for the entries, ;4 (®y) converges to a non-universal symmetric distribution
up [7]1. The authors further proved a continuity result for these distributions, namely,

lim pe. = lim pe = pse and lim pp = pse. (1.1)
c—0t c—1— b— o0

The work above concerns the distribution of a single RBM: naturally, this invites the
question of the joint distribution of such matrices. Shlyakhtenko showed that freeness
with amalgamation in the context of operator-valued free probability governs what he
called Gaussian RBMs [21]; otherwise, to our knowledge, RBMs have not received much
attention from the non-commutative probabilistic perspective. Nevertheless, we show
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that the framework of traffic probability allows for tractable computations in multiple
RBMs. Our main result identifies the joint limiting traffic distribution (or LTD for short)
of independent RBMs of possibly mixed band width types under a strong uniform control
on the moments.

Theorem 1.3 (Convergence in traffic distribution). Let Xy = (Xg\i,))ig be a family of
independent unnormalized Wigner matrices whose entries have finite moments of all
orders. We assume that the parameters §; € R and write Wy = (wg\?)ie[ for the
corresponding family of normalized Wigner matrices. Consider a family of band widths

BV ier = O)ien U O )ier U 0%)icr, U (0%)icr,

of slow growth, proper proportion, full proportion, and fixed band width respectively,
and form the corresponding family of normalized RBMs Oy = (@g\i,))ie 1. Then the family
Op converges in traffic distribution. In particular, the LTDs of the families (@%))ie LUIs
and (Wg\i,))ie[lu[s are identical, the latter already being known from [14].

Knowledge of the traffic distribution, which is defined in terms of graph observ-
ables, can often be difficult to interpret. Notwithstanding, the equality of the LTD for
(@S\?)ie nul, and (Wg\?)ie r,ul, allows us to transfer results for the joint distribution of

(ng,))ie 1,ur; to the joint distribution of (@g\’,))ie 1,ul, at no additional cost. For example,
we immediately obtain the following corollary.

Corollary 1.4 (A second semicircular system). The mixed family of RBMs (9%)%611&3
converges in distribution to a semicircular system.

0.5
0.4
0.3
0.2

0.1

0.0

-2 -1 0 1 2

u<{-1,-2}/ﬁ)

Figure 1: A histogram of the ESDs of a pair of random matrices constructed from a
single realization of independent GOE matrices Xg\}) and XS\?) for N = 10000. Here, we
consider slow growth RBMs @Sf,) =YyoByo Xg\i,) of band width by = V/N and their
Wigner counterparts Wg\i,) =Nyo X%). We overlay the eigenvalues of the normalized
.0} 4 Wy W)

anticommutators , which we plot in blue and red respectively.
The overlapping region is colored blue + red = purple and dominates the graph, as
predicted by Corollary 1.4. The common LSD is given by the so-called tetilla law [19, 10],

_ V11455 V11455
2 2

which is supported on the interval
in black.

, the density of which we plot
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Remark 1.5 (Coarseness of the traffic distribution). We do not make any assumptions
on the relative rates of growth for the band widths (bg\l,)),»e 1, For example, it could be
that (68,642 5(*) p\+)) are each of slow growth with b, 5 <« VN <« b 5{*) . In
particular, perhaps not surprisingly, we fail to observe any sort of transition around
the conjectured critical value for RBMs at the level of (first-order) freeness. Moreover,
our result shows that the traffic distribution, despite all of its additional structure, falls
short of capturing even other macroscopic features. In particular, Theorem 3 in [7]
implies that A\ (@) 2% o for slow growth RBMs, whereas Bai and Yin showed that
M (Wy) 2% 9 iff the entries of Xy have finite fourth moments [3].

Unfortunately, traffic probability has less to say about proportional growth RBMs
and less still about fixed band width RBMs. We show that independent proportional
growth (resp., fixed band width) RBMs are not asymptotically traffic independent unless
¢ =1 (resp., b = 0). We also prove the traffic analogue of equation (1.1), showing that
the continuity of the LSD in the band width extends to the LTD as well. Here, we find
a subtle difference in how these limits are attained, leading into our analysis of mixed
band width types.

We organize the paper as follows. Section 2 sets about the necessary background
and notation. Section 3 considers Wigner matrices in the generality of [11], where we
also prove general Markov-type concentration inequalities for the traffic distribution
of independent Wigner matrices. Section 4 then treats the case of RBMs, beginning
with a preliminary version of our main result for periodic RBMs. As an application of
Theorem 1.3, we compute the LSD of the degree matrix of a proportional growth RBM in
the appendix, which we find to be almost Gaussian in the sense of its moments.

2 Background and notation

We give an abbreviated account of free probability (resp., traffic probability). The
reader should consult [25, 13, 20, 18] (resp., [14, 9]) for more details.

Definitions 2.1 (Free probability). A non-commutative probability space is a pair (A, )
consisting of a unital algebra A over C equipped with a unital linear functional ¢ : A — C.
We refer to elements a € A as non-commutative random variables (or simply random
variables) with ¢ playing the role of the expectation.

The distribution of a family of random variables a = (a;);cs in a non-commutative
probability space (A, ) is the linear functional u, : C(x) — C defined by taking the
expectation of a non-commutative polynomial in x = (z;);e; evaluated in the random
variables a, i.e.,

ta : P— o(P(a)), VP eCx).

We say that a sequence of families (a,) = ((an))iGI), each living in a non-commutative
probability space (A, ¢y), converges in distribution to a if the corresponding sequence
of distributions (u,, ) converges pointwise to (i,, i.e.,

lim jia, (P) = pa(P), VP € C(x).

n— oo

We say that unital subalgebras (A;);c; of A are classically independent if the (A;)icr
commute (i.e., [A;, A;] = 0 for i # j) and y is multiplicative across the (A;);cs in the
following sense: for any k > 1 and distinct indices i(1),...,i(k) € I,

k k
90( II ai(j)) =[] elaiy),  Vaig) € Ai).-
j=1 j=1
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We say that unital subalgebras (A;);cr of A are freely independent (or simply free) if
for any k > 1 and consecutively distinct indices i(1) # i(2) # --- #i(k) € I,

k
<P< 11 az‘(j)) =0,  Va) € Aigj),
j=1

where fii(]—) C A;(;) denotes the subspace of centered elements w(ai(j)) = 0.

Example 2.2 (Random matrices). Naturally, we will focus on the non-commutative
probability space (Maty (L~ (22, F,P)), E+ tr) of random N x N matrices whose entries
have finite moments of all orders. Free probability describes the large /N limit behavior
of such matrices in many generic situations [18].

At the combinatorial level, classical independence and free independence simply
amount to rules for calculating mixed moments in independent random variables from
the pure moments. Of course, such a rule should satisfy certain natural properties to
warrant consideration as a probabilistic notion. In the setting of Definitions 2.1, Speicher
showed that if one requires the rule to be suitably universal in an algebraic sense, then
in fact classical independence and free independence are the only candidates [22] (see
also [6] for a categorical axiomatization).

Traffic probability is a recent extension of the framework in Definitions 2.1. To make
this precise, we will need the language of graph theory.

Definitions 2.3 (Graphs). A multidigraph G = (V, E, src, tar) consists of a non-empty
set of vertices V, a set of edges F, and a pair of maps src,tar : E — V specifying the
source src(e) and target tar(e) of each edge e € E. Such a graph G is said to be bi-rooted
if it has a pair of distinguished (not necessarily distinct) vertices (vin, Vout) € V2, the
coordinates of which we call the input and the output respectively. For a bi-rooted
multidigraph g = (G, vin, Vout), we define A(g) (resp., A(g)) as the bi-rooted multidigraph
(resp., multidigraph) obtained from g by identifying the input and the output vy, ~ Vous
(resp., and further forgetting the information of the roots).

A graph operation is a finite, connected, bi-rooted multidigraph g = (G, vin, Vout, 0)
together with an ordering of its edges o : E = [#(FE)]. We interpret g = g(-1,..., k) as a
function of K = #(F) arguments, one for each edge e € E, with coordinates specified by
the ordering o. In particular, we call such a graph g a K-graph operation. We write G
for the set of all K-graph operations and G = |-, G for the graded set of all graph
operations. a

A test graph T = (G, ) in I is a finite, connected multidigraph G with edge labels
~v: E — I. We write T(I) for the set of all test graphs in I and C7 (I) for the complex
vector space generated by T(I). Suppose that I = |_|j6J I; is a disjoint union, where
we think of each j € J as a different “color”. The graph of colored components
GCC(T) = (V,€) is the simple bipartite graph obtained from T as follows. For each
JjedJ, let (Tjk)i(i)l denote the connected components of the subgraph T; of T’ spanned
by the color j. In particular, each T, is a test graph in I;. Let V; denote the subset of
vertices of T' that belong to more than one of the components V, = (Tm)jeme[@(j)]. Then
YV = V1 UV, with edges determined by inclusion, i.e.,

vre Ty = veTyy.

For the sake of brevity, we restrict ourselves to a minimal working definition of the
traffic probability framework.

Definitions 2.4 (Traffic probability). A G-algebra is a complex vector space A together
with an action (Z,)4cg of the operad of graph operations. In particular, each graph
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operation g € Gx C G defines a linear map
Z,: A®K A

satisfying certain natural compatibility conditions. Note that a G-algebra structure on A
defines a unital C-algebra structure on A via the product

An algebraic traffic space is a pair (A, 7) consisting of a G-algebra A equipped with a
G-compatible linear functional 7 : CT(A) — C called the traffic state. The traffic state
induces a tracial unital linear functional p, =70 A : A — C, or, graphically,

%(a):%<o{n<ii;l> :T[é}

In particular, (A, ;) is a non-commutative probability space. We define a transform
of the traffic state called the injective traffic state 70 : CT(A) — C by the Mébius
convolution

O[T = > w0y, m)T[T7], VT € T(A), (2.1)

TeP(V)

where (P(V), <) is the poset of partitions of V with the reversed refinement order <,
u is the corresponding Mébius function, and T™ is the test graph obtained from T by
identifying the vertices within each block B € w. One recovers the traffic state via the
inversion

T[T = Y 7, VT eT(A). (2.2)

TeP(V)

For example,

@T(ab)g07.< ~t@ . &; ) T|:é:| TO|:'<%':| +T0[8:|.
ou mn b b b
The traffic distribution of a family of random variables a = (a;);c; in an algebraic

traffic space (A, T) is the linear functional v, : CT (x) — C defined by evaluating the
traffic state on test graphs in x = (x;);c; under the substitution x; — a;, i.e.,

Va: T 7(T(a)), VT € CT (x).

We say that a sequence of families (a,,) = ((aﬁf))iel), each living in an algebraic traffic
space (A,,T,), converges in traffic distribution to a if the corresponding sequence of
traffic distributions (v,, ) converges pointwise to v,, i.e.,

lim v,, (T) = va(T), VT € CT (x).

n—oo
We define the injective traffic distribution in the obvious way. Note that convergence in
traffic distribution is equivalent to convergence in injective traffic distribution.

We say that sub-G-algebras (A;);c; of A are traffic independent if

VT € T | Ai),

k(i . .
o) = {Hiel 150 7°[T:;] ifGCC(T) is a tree,
el

0 otherwise,

where the graph of colored components is constructed with respect to the colorsi € I.
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Example 2.5 (Graph polynomials). A graph monomial t = (G,~) in x = (x;)cs iS a
bi-rooted multidigraph G = (V, E, src, tar, vin, Uoyut) With edge labels v : E — I. We write
G(x) for the set of all graph monomials in x and CG(x) for the complex vector space
generated by G(x), the so-called graph polynomials in x.

The graph polynomials CG(x) form a G-algebra under the action of composition:
for a K-tuple of graph monomials (¢y,...,tx) with ¢; = (V;, E;, src;, tar;, vi(r’;), v((fu)t, Vi), we
define Z,(t; ® - -- ® tx) as the graph monomial obtained by substitution. Formally, one
removes each edge e € EF and installs a copy of ¢, in its place by identifying the vertices

~ Ui(r?(e)) (o(e))

src(e) and tar(e) ~ vg; ’- The graph polynomials generalize the usual non-

commutative polynomials. In particular, one obtains an embedding of unital C-algebras
n : C(x) < CG(x) via the mapping
i - &4 . and 1o - (2.3)
out in in/out
Example 2.6 (Graphs of matrices [17]). Returning to Example 2.2, we define an action
of the operad of graph operations on Maty (L>*~ (92, F,P)) by the coordinate formula

1 K .. o(e
Zy(AY @ @ AR, ) = 3 [T AV (o(tar(e)), o(src(e))).
¢:V—[N]s.t. ecE
¢(Uout):i7 ¢('Uin):j
For notational convenience, we often write ¢(e) := (¢(tar(e)), ¢(src(e))). The reader can
easily verify that the G-algebra structure recovers the usual matrix multiplication. At the
same time, the action of the graph operations also produces matrices of additional linear
algebraic structure. For example, one can obtain the diagonal matrix of row sums as

: N
bav - (ZANW')) 7
in/out =1 1<i<N
which we call the degree matrix deg(A ) of A .

Note that the trace tr of a graph of matrices Zg(Ag\}) Q@ A%()) only depends on
the graph operation g = (V, E, src, tar, viy, Uout, 0) Up to the unrooted graph T' = ﬁ(g) =
(V, E, src, tar, 0). Indeed,

tr[Z, AV @ @ AN =" 2,AV @ @ AL, 4)

-

ﬁ
Il
-

I
] =

S JTAY (e

1 ¢:V—[N]st. e€E
d’(vout):‘b(vin):i

= > AV @)

$:V—[N]eEE

.
Il

In particular, the traffic state 7y : CT (Maty (L~ (Q, F,P))) — C defined by

I~ T — E[]lv S 10 AE{,Y(E))(qS(e))}, VT € T (Maty (L™ (Q, F,P)))
$:V—[N]e€E

recovers the normalized trace ¢,, = E tr. The injective traffic state 73 admits an
explicit formula without reference to the Mobius function in the matricial setting, namely,

1 e _
0T E[N S IIAY ))(gb(e))], VT € T(Maty (L~ (Q, F,P))),
$:V—[N] e€E
s.t. ¢ is injective
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whence the name. In the sequel, we use the notation ¢ : V< [N] to indicate an injective
labeling of the vertices.

The setting of Definitions 2.4 allows us to circumvent Speicher’s dichotomy. Notably,
permutation invariant random matrices provide a canonical example of asymptotically
traffic independent random variables [14]. Of course, one can still define the usual
notions of independence in an algebraic traffic space (A, 7) by virtue of the induced
expectation ¢,. This subsumption allows for an interplay between the different notions
of independence in the traffic framework. Indeed, one finds many striking relationships
between them: for example, general criteria for when traffic independence implies
free independence or classical independence [14, 9]. In particular, we note that the
information of the traffic distribution v, contains the information of the distribution .

3 Wigner matrices

We restrict ourselves to Wigner matrices Xy = (Xg\i,))ie 7 with a strong uniform control
on the moments in a slight generalization of Definition 1.1, namely,

Sup sup  sup E[|X%)(j,k)|q < méjo) < 00, VIp C I :#(Iy) < oo, (3.1)
NeENiely 1<j<k<N

where the entries (Xg\z,) (4, k))1<j<k<n,er are independent with parameter
EXY (k) =6, Vi<h

In particular, compared to our original definition, we now allow the random variables
within our matrices to vary with the dimension /NV; moreover, we no longer assume that
they are identically distributed. For technical reasons, we assume that the real and
imaginary parts of an off-diagonal entry XS\Z,) (j, k) are uncorrelated so that

EXY G, k) =8 =B =BXW (k)Y  Vi<k (3.2)

For example, this includes the class of all real Wigner matrices (5, = 1), but also
circularly-symmetric ensembles such as the GUE (5; = 0). We comment on the general
case of 8; € D when possible, though the situation becomes much different and often
intractable (especially for RBMs). Thus, unless stated otherwise, we assume that

Bi = Bi € [-1,1].

3.1 Limiting traffic distribution

Our first result extends the traffic convergence of the Wigner matrices in [14] to
the generality of Equation (3.1). In order to formulate the LTD, we will need some
definitions.

Definition 3.1 (Colored double tree). Let T = (V, E,v) be a test graph in x = (z;)c;.
We say that T is a fat tree if when disregarding the orientation and multiplicity of the
edges, T becomes a tree. We further say that T is a double tree if there are exactly two
edges between adjacent vertices. We call the pair of edges connecting adjacent vertices
in a double tree twin edges: congruent if they have the same orientation, opposing
otherwise. Finally, we say that T is a colored double tree if T' is a double tree such that
each pair of twin edges {e, e’} shares a common label y(e) = v(¢’) € 1. We record the
number ¢;(T) of pairs of congruent twin edges with the common label i in a colored
double tree T'.
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Figure 2: Examples of a fat tree, a double tree, and a colored double tree respectively.

We introduce some notation to emphasize the relevant features of our test graphs.
This notation will greatly simplify our analysis and features prominently in the remainder
of the article. We start with a finite (not necessarily connected) multidigraph G = (V, E).
We partition the set of edges £ = L UN to distinguish between the loops L and the
non-loop edges N' = L¢. As suggested by Definition 3.1, we define G = (v, E) as the
undirected graph obtained from G by disregarding the orientation and multiplicity of
the edges. Formally, E=E /~ consists of equivalence classes in E, where

e~e < {src(e),tar(e)} = {src(e’), tar(e')}.

In this case, our partition £ = L U N projects down to a partition E = LUN between
equivalence classes of loops and equivalence classes of non-loops respectively. We may
then write the underlying simple graph G of G = (V, E) as G = (V, N).

-

~

/

G

-

N

~

/

G

-

N

~

G

Figure 3: Examples of the projections G and G starting from a multidigraph G.

Now suppose that our graph G comes with edge labels v : £ — I. We count the
(undirected) multiplicity of a label ¢ in a class of edges [e] = {¢/ € E: e ~ €'} € E with

mi e = #(v ({i}) N le]) > 0.
Of course, summing this over the labels in I, we obtain the multiplicity of the class [e],
mpg =Y my g = #([e])
icl
In particular, if T = (G, ) is a colored double tree, then

mi €{0,2} and my =2, VY(ile]) €I xE. (3.3)

EJP 23 (2018), paper 77. http://www.imstat.org/ejp/
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In this case, we write
v([e]) = v(e) (3.4)

for the common label (e) = 7(e’) of twin edges [e] = {e,¢’}. Conversely, if (3.3) and (3.4)
hold for a test graph T' whose projection 7' is a tree, then 7T is a colored double tree.

Proposition 3.2 (8-semicircular traffics). For any test graph T in x = (z;)icy,

[Tics B if T is a colored double tree,

(3.5)
0 otherwise.

hm Y [TOWN)] = {

Proof. Suppose that T'= (V, E,~) € T (x). By definition,

TN [ Z HW e)) )}

$:V<s[N] e€CE

——mm 2 B IIXE 0] @6)

1
N 2 $:V[N] ‘ecE

We analyze the asymptotics of (3.6) by working piecemeal in order to count the number
of contributing maps ¢ (i.e., maps such that the s‘ummand is nonzero). First, we note
that the independence of the random variables ng,) (4, k) and the injectivity of the maps
¢ allow us to factor the product over the expectation provided that we take into account
multi-edges. The relevant information is contained precisely in the projected graph
T = (V, E), which allows us to recast (3.6) as

e > (0| I X0 0| ) (11 E| IT X8V 6e)]). @

1
N2 v SN Ngel el eleN  “erelel

‘For non-loop edges ¢ € N, the independence of the centered random variables
ng,)(¢(e’ )) implies that the second expectation in (3.7) vanishes if there exists a lone
edge e € [e] with the label y(eg) = 49. Thus, in order for a summand to be non-zero, each
label i present in a class [e] € N must occur with multiplicity

My [e] 2 2. (3.8)
This in turn implies that B
#(N) > 2#WN). (3.9)

The underlying simple graph T = (V, N ) is of course still connected, and so we further
have that

#(N) > #(V) — 1. (3.10)
Finally, we make use of our strong moment assumption (3.1) to bound the summands in
(3.7) uniformly in ¢ and N. In particular, our bound only depends on 7, i.e.,

(g sl sore on

Putting everything together, we arrive at the asymptotic

2T (Wy)] = Op (N~ 57 N#()) = Op (N (757~ =, (3.12)

The inequalities (3.8)-(3.10) then imply that TI(\)/ [T(Wy)] vanishes in the limit unless T is
a colored double tree. For such a test graph 7', (3.7) becomes

NEV)
NED) H 1{[e] are opposing} + 3¢ 1{[e] are congruent}> (3.13)
[e]eE
EJP 23 (2018), paper 77. http://www.imstat.org/ejp/
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where N#) denotes the falling factorial N(N — 1) --- (N — (#(V) — 1)). The limit (3.5)
now follows. 0

Equation (3.13) explains the apparent asymmetry in the LTD of the Wigner matrices:
if we record the number o;(7T") of pairs of opposing twin edges with the common label i
in a colored double tree T', then we can rewrite the nontrivial part of Equation (3.5) as

HBZCz (T) _ H 101(T)6;’1(T)
el i€l

Working directly with this LTD, one can easily prove the asymptotic traffic independence
of the Wigner matrices Wy.

The careful reader will notice that we have made use of (3.2) in formulating (3.13).
Indeed, by assuming that 3, = f3;, we were able to disregard the ordering on the
vertices induced by the maps ¢ and conclude that congruent twin edges [e] always give a
contribution of 3, ). In general, for a colored double tree 7', a summand Sy(T") of (3.7)
will depend on ¢, namely,

Se(T) = H <Il{[e] are opposing} + 3 1{[e] are congruent and ¢(tar([e])) < @(src([e]))}
[e]eE

+ By(le)) 1{[e] are congruent and ¢(tar([e])) > ng(src([e]))}).
To compute the limit, we must then keep track of the ordering 14 on the vertices, where

Yo V) 2V, d(s(1)) > - > ¢ (#(V)))-

Note that if ¢; : V — [N1] and ¢, : V < [N3] induce the same ordering ¢y, = 1,, then
the corresponding summands are equal, i.e.,

S, (T) = E[ 11 X%er”wl(e»} - E[ 11 XS&”)(@@))} = 84 (T).

ecl ecekl
Thus, for an ordering ¢ : [#(V)] = V, we write S, (T for the common value of
{S4(T) : by = ¥}
In this case, (3.13) becomes

Z¢:V‘—>[N] I{thg = 1}
Z N#V)

Sy(T). (3.14)
VISV

One can easily verify that

I D pvesin) g = ¥} 1
N e N#V) THWV)

VY 1 [#(V)] = Vs

however, in anticipation of Section 4, we give a natural integral representation of this
limit instead. To this end, we introduce a set of indeterminates xy = (z,),cy indexed by
the vertices of our graph. A straightforward weak convergence argument then shows
that

Lgveon Hs =¥} !
I : _ 1 >.0> dxy = ——. 3.15
N NAEW) /[o,w {ey) 2 2 Ty b dxy TR
EJP 23 (2018), paper 77. http://www.imstat.org/ejp/

Page 12/48


http://dx.doi.org/10.1214/18-EJP205
http://www.imstat.org/ejp/

Traffic distributions of random band matrices

Indeed, for each N € N, we can scale a labeling ¢ : V < [N] by N to associate the image
#(V) = (¢(v))vev with a point p, of the latticed hypercube [0, 1]V, namely,

- (®)..

We imagine integrating the indicator 1{xy) > -+ > wy(v))} against the atomic
measure

1
HN = @ Z §P¢
$:V—[N]
to obtain the expression inside of the limit on the left-hand side of (3.15) (up to an
asymptotically negligible correction factor). The limit N — oo then converts this
discretization into the uniform measure on [0, 1]V.
Finally, we arrive at the analogue of (3.5) for general 3; € D,

1
Z WS’MT) if T is a colored double tree,
Jim R [TOWVN)] = oz 7 (3.16)

0 otherwise.

In contrast to Proposition 3.2, the LTD (3.16) does not necessarily describe asymptotically
traffic independent random matrices. In fact, if we divide our index set I into two camps
I=IgUlc={iel: B e[-11}u{iel:p €D)\][-1,1]}, then the two families
WR = (Wg\i,))ie r, and WS = (Wg\?)ie 1, are asymptotically traffic independent, but the
matrices WY, are not.

For the first statement, we need only to note that the representative value Sy (7")
does not depend on the ordering of the vertices that are only adjacent to edges with
labels i € Iy, for which 3; = 3;. We can formalize this by considering the subgraphs
Tr = (Vr, Er) and T¢ = (Vg, E¢) of T with edge labels in Iy and I¢ respectively. We
write Tg = C{J U---u C,‘E for the connected components of T, each of which is a colored
double tree C, = (V,F, EY), and similarly for T = CRU--- U C}f‘?. We call such a graph a
forest of colored double trees.

4 N 4 N 4 N

Figure 4: An example of the forest subgraph construction starting from a colored double
tree T'. For simplicity, we label twin edges [e] with a single common indeterminate ([e]).

It follows that a summand S, (7") only depends on the orderings

W RO S VE e k]
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on each component CE. In particular,

(fiseen) (i o)

(=11ielr
In this case, for a concatenation of orderings
k?l k'l
k o C
P = XeI:ﬂ/JZ : X[#(VZ )] — XV
=1 =1

with the restrictions
b VO] S VE,
we write Sy, for the common value of

{So(T) : 4 = vy for all € € [ky]}.

We may then write

e T 1 {p =4
T]Q/‘[T(WN)} = Z Z¢~V - 1};#(1\/){ 2 Z}Sw(T)y

YL [H (VO] S3xEL, vE

where

_ even] T, H%ﬁ = the} u
N3 NFET) /[0 v [Tz = = 2y vy} dxv

k1
= H/ o Hop,0) 2 2 2y vy} dxye
=1 /00.1]"e
1

e — (3.17)
I8, #(VO)!

We conclude that

Jim TR [T(Wy)] = > i (H 0 (CF )(ﬁlg 551(0%>

YL [#(VENSIXEL, VE

(I, % s C«)(HHBC@)

=1y #(VO) = Ve (=1i€lg
1 k2
- (;_I Jim RCEOVE)]) (g Jim RICEOVE]).

as was to be shown.

Intuitively, we imagine each pair of twin edges [e] imposing a constraint coming from
the ordering of its adjacent vertices {src([e]), tar([e])}. We gather these constraints in
the ordering 14 to carry out the calculation of Sy = S,(4); however, if y([e]) € Ir, the
constraint becomes vacuous and we can disregard it, which corresponds to discarding
the edge [e] (but keeping the adjacent vertices). In this way, we arrive at the integrals in
Equation (3.17) (and, after discarding the isolated vertices, the forest of colored double
trees T¢). We return to this notion of a “free” edge [e] in a slightly different context in
Section 4.

EJP 23 (2018), paper 77. http://www.imstat.org/ejp/
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For the second statement (about the lack of asymptotic traffic independence for Wj‘\j,),
we give a simple counterexample, namely, for 8¥, 3Y € D\ [-1,1],
iC iC
Wi Wx L sege | ge5e o Logeze L FE4C
: 5:@ : :?C = 5(5152 +ﬁ1ﬁ2)+6(5152 + 67 83)
Wy Wy

lim 79
N—oo N

# (365 +50) (G5 +70)

wi wi

(et 2 ) o 2]

N—oo C N—oo C
Wy W

where the equalities follow from Equation (3.16).

Yet, we know that free independence describes the asymptotic behavior of the Wigner
matrices regardless of the parameters (3;);cy [11]. Naturally, we would like to know how
to extract this information from the LTD (in particular, how this is consistent with the
distinct LTDs (3.5) and (3.16)). To see this, note that the joint distribution puy, factors
through the traffic distribution vy, via

HwWy :I/WNOKO??,
where 7 is the embedding (2.3) of the non-commutative polynomials C(x) into the

graph polynomials CG(x). This amounts to computing 75 [C(Wy)] for directed cycles
C = (V,E,~) € T(x). We use the injective traffic state to rewrite this as

NICOVN) = D mRICT(WN)I.
TeP(V)
In the limit, the only contributions come from (colored) double trees C™. We claim that
if C™ is a double tree, then it can only have opposing twin edges (an opposing double
tree). Indeed, assume that 7 € P(V') identifies the sources src(e;) ~ src(es) and targets
tar(e;) ~ tar(ey) of two distinct edges e;, e; € E. We write C for the graph intermediate
to C' and C'™ obtained from C' by only making these two identifications. If ¢; and e, are
consecutive edges in the cycle C, then C” consists of a directed cycle with two loops
coming out of a particular vertex (“rabbit ears”). Otherwise, C'* consists of two almost
disjoint directed cycles overlapping in the twin edge [e] = {e1,e2} (a “butterfly”). In
both cases, we see that no further identifications can possibly result in a double tree
C7™. Thus, from the perspective of the joint distribution, we need only to consider the
behavior of the LTD on opposing colored double trees T'. In this case, we see that the
LTDs (3.5) and (3.16) agree on the value of
lim 7% [T(Wn)] = 1.

N —o0

4 ) 4 ) 4 )

-
Ts
1

N ) N ) N J

Figure 5: An example of a butterfly C” starting from a directed cycle C.
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Remark 3.3 (A traffic probability characterization of semicircular systems). An important
application of traffic probability lies in the relationship between traffic independence
and free independence. In certain situations, one can actually deduce free independence
from traffic independence [14, 9], the advantage being that the traffic framework might
be more tractable. Of course, the two notions do not perfectly align, as seen even in the
case of Wigner matrices (Lemma 3.4 in [14] gives yet another example). In this case,
we see that the traffic distribution specifies the behavior of our matrices in situations
that are not relevant to their joint distribution: in a certain sense, traffic independence
asks for too much. Nevertheless, we can still use the traffic framework to make free
probabilistic statements, even when a LTD might not exist! In particular, from our work
above, we see that if a family of random variables a,, = (aﬁf ))ie 7 in an algebraic traffic
space (A, 7,) satisfies

1 if T'is an opposing colored double tree,
lim 79[T(a,)] = { 0 if T is an opposing double tree that is not colored, (3.18)

n—oo
0 if T is not a double tree,

then a,, converges in distribution to a semicircular system a = (a;);c;. Note that we do
not specify the behavior of 72[T'(a,,)] on general double trees T (in particular, we do not
assume that lim,, ., 7°[T'(a,,)] even exists). We will use this criteria in Section 4 to treat
the case of RBMs of a general parameter 3; € D.

3.2 Concentration of the traffic distribution

For a test graph 7' = (V, E,~) € T (x), we define the random variable

tr[T( = > TTWR) @)

¢:V—[N] e€E

For natural reasons, we are interested in bounding the deviation of tr[T'(Wy )] from its
mean. In particular, we would like to emulate the usual approach for Wigner matrices to
show that Var(+ tr[T(Wy)]) = O7(N~2), which would allow us to upgrade the conver-
gence in Proposition 3.2 to the almost sure sense. It turns out that this approach will not
work in general, but it will be instructive to see just how it falls short.

For notational convenience, we will consider the deviation of tr[T'(Xy)] instead, where
Xy = VN W,y are the unnormalized Wigner matrices. To begin,

]

k| (anfr ] - Bulren) ) ((aireo)] - Balrio)) |

Var(tr[T(Xy)]) = IE)[ tr[T(Xn)] — B tr[T(Xy)]

2

= > E{H ( [T XV (¢ee) - E{ I1 XEJ,(;”(aSe(e))m, (3.19)

¢1,$2:V—[N] {=1 “e€E ecE

where

, XOi k) ife=1,
X, (5. k) = (%(J’ ) (3.20)
: X9 (k) ife=2.

We again make use of our strong moment assumption (3.1), this time to bound our
summands uniformly in ¢1, ¢5, and N. In particular, our bound only depends on 7, i.e.,

BT XTE (de(e)) —E| TT XYY (0e(e))| )| < Or < o0 (3.21)
(I I )

{=1 “ecE ecE
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We are then interested in the number of pairs (¢;, ¢2) that actually contribute in
(3.19) (i.e., sugh that the summand (3.21) is nonzero). To this end, note that the maps ¢,
induce maps ¢, : E — {{a, b} : a,b € [N]}, where

e = {¢e(sre(e)), ge(tar(e))}-

In particular, if ¢1 (E)N¢2(E) = 0, then the independence of the Xg\i,) (4, k) implies that the
outermost product of (3.21) factors over the expectation, resulting in a zero summand.
Thus, we need only to consider so-called edge-matched pairs (¢1, ¢2). For our purposes,
it will be convenient to incorporate the data of such a pair into the graph T itself.

For a pair (¢1,¢2), we construct a new graph Ty, 4, by considering two disjoint
copies T7 and T, of T (associated to ¢; and ¢- respectively), reversing the direction of
the edges of T5, and then identifying the vertices according to their images under the
maps ¢ and ¢9; formally, the vertices of Ty, ,4, are given by

Vorus, = (61 (m) Uy ' (m) : m € [N]).

An edge match between ¢; and ¢, then corresponds to an overlay of edges, though not
necessarily in the same direction. Note that

(¢1,¢2) is edge-matched = T}, 1,4, is connected.

LY (L Y (G 2

<+—0
3
y
50
\ ey, N > U 5
(Th, ¢1) (Ty, ¢2) (Tg,0¢55 D1 U P2)

Figure 6: An example of Ty, 4, for an edge-matched pair (¢1, ¢2). Here, we omit the
edge labels to emphasize the vertex labels ¢,(v). Recall that we reverse the direction of
the edges of the second copy 75 before identifying the vertices.

The sum over the set of edge-matched pairs (¢, ¢2) can then be decomposed into a
double sum: the first, over the set St of connected graphs T}, = (V, E.;,y,) obtained
by gluing the vertices of two disjoint copies of T with at least one edge overlay (we
reverse the direction of the edges of the second copy beforehand, and we keep track of
the origin of the edges F, = E&l) U E&z)) ; the second, over the set of injective labelings
oL : Vi, <= [N] of the vertices of T;,. We may then recast (3.19) as

2

> Z[ME[H< 11 X%u(e))(m(e))—E[ 11 XEJ”(Q))(m(e))D]. (3.22)

TLEST $u:Vu— (=1 " cg® ccB®

We defined Sy by reversing the direction of the edges of the second copy of T before
gluing in order to write (3.22) without reference to the transposes (3.20). Moreover, by
keeping track of the origin of the edges, we ensure that Sy does not conflate otherwise
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isomorphic graphs, and so guaranteeing a faithful reconstruction of (3.19) from (3.22).
The set St is of course a finite set whose size only depends on T'.

We consider a generic 7, € Sy, iterating the proof of Proposition 3.2. We decompose
the set of edges E, = L, UM, as before, and the same for Eu = Zu U /\Nfu (recall that
Eu denotes the set of equivalence classes in F|;). Suppose that there exists a lone edge
eo € [¢] € N, with the label y(eg) = ig € I so that

v(e) #v(eo), Ve’ € [e]\ {eo}-

Without loss of generality, we may assume that ey € E&l). We write

Po= I X0*P@u(e) and PO = T XG0,
ecEY e B \{eo}
The independence of the centered random variables X%) (4, k) and the injectivity of the
maps ¢, imply that
E[(P, — EP)(P; — EP)] = BIX () (41, (e |E[(P{” — EP{”)(P, — EP,)] = 0.

Thus, for T,, € St to contribute, each label i € I present in a class [e] € /\~/'u must occur
with multiplicity
mme] > 2. (323)

This in turn implies that

#(M) > 2#(/\7u)~ (3.24)
As before, the underlying simple graph T, = (VL,,J\~/|_,) is still connected, whence
#NL) +1 > #(V). (3.25)

Of course, we also have the inherent bound

#(Nu) < #(BL) = 24(E). (3.26)
Applying the uniform bound (3.21), we arrive at the asymptotic
Var(tr[T(Xy)]) = Op (N™{#VLITLESTH) < O (N#E) LY (3.27)
or, equivalently,
Var (;ftr[T(WN)D =Orp(N7Y), (3.28)

falling short of our goal.
One might hope that we were overly generous in our bounds and that equality in

max{# (V) : Tu € St} < #(E) + 1 (3.29)
is not attainable in practice. In fact, in the usual situation of traces of powers
(T (W) = (W) (W), (3.30)

this is indeed the case; however, in general, (3.27) is tight. In particular, note that if
we start with a tree T, we can overlay two disjoint copies 77 and 75 of T, the second
with reversed edges, to obtain an opposing colored double tree T},. In this case, we have
equality in (3.23)-(3.26). Proposition 3.2 then shows that the contribution of 7}, in (3.22)
is O(N#(E)+1),
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T

e

\

. €
Z1
7 T ° z3 IX - xr1
To “ {,CQ\ J ',' Xro
o
N J N J
T T T,

Figure 7: An example of an overlay of trees. Here, we consider two copies 77 and 75 of
the tree T. We depict the second copy 7> with the direction of its edges already reversed.

Working backwards, we identify the worst case scenario: for (3.23)-(3.26) to hold
with equality, we need to glue (not necessarily overlay) disjoint copies 7} and 75 of T’
with at least one edge overlay to obtain a colored double tree T, (though T itself need
not be a tree in general). In the classical case (3.30), T corresponds to a cycle of length
ly +---+ 4, and such a gluing does not exist: starting with an edge overlay between
two copies of the cycle, we obtain a butterfly as in Figure 5 (though the twin edges in
the butterfly may now be opposing), leading to a strict inequality in (3.29) and hence the
usual asymptotic O(N ~?) in place of (3.28).

The careful reader will notice that we have actually proven a stronger result in the
presence of loops L # (): in place of (3.26), we can instead use the tighter bound

F#NL) < 24#WN).
We summarize our findings thus far.
Lemma 3.4 (Preliminary concentration for Wigner matrices). For a family of Wigner

matrices Xy = (Xs\lf))iej, we have the asymptotic

Var(tr[T(Xy)]) = Op(N#MNHY) vy e T(x).

The bound is tight in the sense that there exist test graphs T' € T (x) such that
Var(tr[T(Xy)]) = O (N#NIH),

The colored double tree obstruction in Lemma 3.4 ramifies into a forest of colored
double trees for higher powers, but this construction remains the lone outlier. We exploit
this feature to prove concentration for higher powers.

Theorem. 3.5 (Concentration for Wigner matrices). For a family of Wigner matrices
Xy = (th/))iel, we have the asymptotic

E {tr[T(xN)] — Etr[T(Xy)) QM} = Op(N™F#EWNF)Y - yT e T(x).

The bound is tight in the sense that there exist test graphs T' € T (x) such that
i
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Proof. The concrete case of m = 2 contains all of the essential ideas; we encourage the
reader to follow through the proof with this simpler case in mind.
To begin, we expand the absolute value as in (3.19) to obtain

> Eﬁﬁ[ ( T X5 (@re)) — E[ 11 XSJ’%”(m(e))} )] (3.31)

G150y p2m:V—[N] (=1 Ne€E oeE
where .
X9 (G, k) = Xy (k) if £is odd,
N,e\Js x@ ) o
N (k,j) if £is even.

Our strong moment assumption (3.1) again ensures that we can bound the summands in
(3.31) uniformly in (@1, ..., ¢2,) and N with a dependence only on 7T, i.e.,

E ﬁ [T XG5 @) =B TT XG5 (0e(e)) | )| < Cr < 0. (3.32)
{=1 “e€cE ecE

We proceed to an analysis of contributing 2m-tuples ® = (¢1,..., da2,,). Using the
same notation as before, we say that a coordinate ¢, in a 2m-tuple ® is unmatched if

Se(E) N (E) =0, VI £1.
Similarly, we say that distinct coordinates ¢, and ¢, (i.e., £ # {') are matched if
6e(E) N o (E) # 0.

We further say that a 2m-tuple ® is unmatched if it has an unmatched coordinate ¢y;
otherwise, we say that ® is matched.
We define an equivalence relation ~ on the coordinates of ® by matchings; thus,

b¢ ~ ¢ <= 3ly,... Ly €[2m] : ¢y, and ¢y, , are matched for j =0, ..., k,

where £(0) = ¢ and ((k + 1) = ¢'. We write  for the set of equivalence classes in ®, in
which case (3.32) becomes

11 E[ 11 ( T X550 (@) - E{ I xgg;(;g)@(e))m < Cr < .

[led ~g¢clp] € e€k

For an unmatched &, this product includes a zero term; henceforth, we only consider
matched 2m-tuples. We incorporate the data of such a tuple into the graph T as before.

For a 2m-tuple ®, we construct a new graph 7}, by considering 2m disjoint copies
(Th,...,Toy) of T (associated to ® = (¢1, . .., da2.m) respectively), reversing the direction
of the edges of (1, Ty, ..., oy, ), and then identifying the vertices according their images
under the maps ®; formally, the vertices of 7,4 are given by

Vie = (U726, H(m) : m € [N]).

Note that
® is matched = 7T, has < m connected components.

The sum over the set of matched 2m-tuples ® can then be decomposed into a double
sum: the first, over the set Sy of (not necessarily connected) graphs 7,, = (V,, E, )
obtained by gluing the vertices of 2m disjoint copies of T' such that each copy has at
least one edge overlay with at least one other copy (we reverse the direction of the
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edges of the even copies beforehand, and we again keep track of the origin of the edges
E, = ES) .- E,(fm)); the second, over the set of injective labelings ¢, : V{; < [IN] of
the vertices of T,,. We write C(T.,) = {C1, ..., Cq,, } for the set of connected components
of T},. We emphasize that

dr, <m. (3.33)

Note that the edges I, of each connected component C), consists of a union
Ep — E(]p(l)) Ll--- L Elgjp(kp))'

We may then recast (3.31) as

dr,

> > HE{H< II X?@”@)(qﬁu(e))—E{ I Xﬁ”(e))(¢u(e))])}.(3.34)

TueST pu:Vu—[N]p=1 =1 eeE(qu(@U eeE\(_’fp(@))

We consider a generic T}, € Sy. Note that our analysis from before applies to each of
the connected components C, = (V,, E,,7,). In particular, using the same notation as
before, we know that the components of a contributing 7}, must satisfy

Mifg =0 or mig>2,  V(i,[e]) € I xN,, (3.35)
#N) > 2#(N,), (3.36)
#ND) + 1> #(Vp). (3.37)
Of course, we also have the inherent (in)equalities
dry, dry,
Z# #(Vo) and Y #(N,) = #(N0) < 2m#WN). (3.38)
p=1

Putting everything together, we arrive at the asymptotic
E[ tr

The tightness of our bound follows much as before. If we start with a tree T, we can
overlay pairs of the 2m-disjoint copies (71, ...,T5,,) of T to obtain a forest of di;, = m
opposing colored double trees. In this case, we have equality in (3.33) and (3.35)-(3.38).
Once again, Proposition 3.2 shows that the contribution of 7}, in (3.34) is G(N"‘(#(N)“)).
As was the case for m = 1, a forest of m colored double trees 7, corresponds to the
worst case scenario. O

[T(XN)] — Etr[T(Xn)] Zm} = Op(N™{#(VL)TueST ]

< OT(NW#(N)+dTu) < OT(Nm(#(N)JFl)).

Reintroducing the standard normalization Wy = N~1/2Xy, we obtain the asymptotic

2m
" H%tr[T(WN)} - E% tr[T'(Wn)] } = Op(N~"#FOH) - yT e Tix), (3.39)
which bounds the deviation
IP( %tr[T(WN)] - E% tr[T(WN)]' > e) = O (N~™#EFDY T e T(x). (3.40)

We chose to work with the random variable tr[T(Xy)], but virtually the same proof
applies to the injective version

to Z H X(ve)) (e)).

$:Vs[N] e€E
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In particular, Theorem 3.5 holds with tr[T(Xy)] in place of tr[T'(Xy)], and so too do its
implications (3.39) and (3.40). Of course, one could also deduce this from the relations
(2.1) and (2.2) between tr[T(Xy)] and tr°[T'(Xy)], which still hold at the level of random
variables (i.e., before taking the expectation). This shows that the two results are in
fact equivalent. We may then apply the usual Borel-Cantelli machinery to prove the
almost sure version of Proposition 3.2. The results in this section apply just as well to
Wigner matrices of a general parameter 3; € D. In this case, we do not need a separate
statement for the general situation.

4 Random band matrices

Our analysis of the Wigner matrices in Section 3 crucially relies on two important
features of our ensemble, namely, the homogeneity of the vertices in our graphs 7" and
the divergence of our normalization v/N. By the first property, we mean that the label
¢(v) € [N] of a vertex v € V does not constrain our choice of a contributing label ¢(w)
for an adjacent vertex w ~, v (or, in the case of an injective labeling ¢, does so uniformly
in the choice of ¢(v)). At the level of the matrices Xy, this corresponds to the fact that
any given row (resp., column) of a Wigner matrix looks much the same as any other row
(resp., column). For example, if we consider a real Wigner matrix as in Definition 1.1,
then the rows (resp, columns) each have the same distribution up to a cyclic permutation
of the entries. More generally, there exists a permutation invariant realization of our
ensemble Xy iff 5; € [—1,1]. This property of course does not hold for random band
matrices En = By o X: rows (resp, columns) near the top or the bottom (resp., the far
left or the far right) of our matrix will in general have fewer nonzero entries. This in turn
owes to the asymmetry of the band condition B . We can recover the homogeneity of our
ensemble by reflecting the band width across the perimeter of the matrix to obtain the
so-called periodic random band matrices, providing an intermediate model between the
Wigner matrices and the random band matrices. We start with this technically simpler
model and work our way up to the RBMs. We summarize the main results at the end of
the section on proportional growth RBMs.

Remark 4.1. The so-called homogeneity property mentioned above and the correspond-
ing periodization technique first appeared in the work [7] of Bogachev, Molchanov, and
Pastur. The authors used this intermediate model to transfer Wigner’s semicircle law to
random band matrices of slow growth. We employ the same periodization technique to
identify the limiting traffic distribution of independent random band matrices.

4.1 Periodic random band matrices
To begin, we formalize

Definition 4.2 (Periodic RBM). Let (by) be a sequence of nonnegative integers. We write
Py for the corresponding N x N periodic band matrix of ones with band width by, i.e.,

Py (i,j) = 1{]i — jlv < bn},
where
i = jln = min{[i — j|, N — |i — j[}.
Let X be an unnormalized Wigner matrix. We call the random matrix I' y defined by

FN:PNOXN

an unnormalized periodic RBM. Using the normalization X y = (2bN)*1/2JN, we call the
random matrix Ay defined by
AN = TN o FN
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a normalized periodic RBM. We simply refer to periodic RBMs when the context is clear,
or when considering the definition altogether.

R

|
(En,OnN) (T'n,An)

Figure 8: An example of the periodization of a random band matrix. Here, we scale the
matrix to the unit square [0, 1]2. The (4, j)-th entry then corresponds to the subsquare
[, N} X [NN i, N=itl) which we fill in provided that the band width condition |i—j| < by
(resp., < by) is satisfied.

Let Xy = (Xg\i,))ie 1 be a family of unnormalized Wigner matrices as before. We
consider a family of divergent band widths (bgf,)),-e 7 such that
lim b =00, Viel, 4.1)
N —o00

for which we form the corresponding family of periodic RBMs, unnormalized Ry =
(I‘S\l,)),»e 7 and otherwise Py = (A%))ie 1. We identify the LTD of the family P, with that of
the familiar Wigner matrices Wy from Proposition 3.2.

Lemma 4.3 (Traffic convergence for periodic RBMs). For any test graph T in x = (x;)c7,

lim 7% [T(Py)] =

N—oc0

{Hiel Bf"(T) if T is a colored double tree, 4.2)

0 otherwise.

Proof. The proof follows much along the same lines as Proposition 3.2 except that we
must take care to account for the differing rates of growth in the band widths (b ))16 I.
To begin, suppose that T = (V, E, 7). By definition, we have that

TJ%[T@N)}EH 2. HA&J“%(@))}

$:V—[N]e€E

= 1 > E[ II F%‘f”(aﬁ@))} (4.3)

NHeeE ng\}y(e)) ¢:V—[N] ecE

Using our earlier notation, we can recast the sum in (4.3) as

Z H E H I\("/(f/))(qs(g/)) H E H F(’Y(el))((b( /)) (4.4)
N N e . .

$:V—[N] vele] leleN e'€le]

Whereas before the label ¢(v) of a vertex v did not constrain our choice of label ¢(w)
for an adjacent vertex w ~. v (beyond the injectivity requirement), we note that in this
case a summand of (4.4) equals zero if

Jeg € [e] : [¢(sre(en)) — d(tar(eo))|n > bg\?(e")).
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In fact, we see that such a summand equals zero as soon as

Jeo € [e] : [9(sre(eo)) — d(tar(eo))ly > min by b

To keep track of these constraints, we define

[p(e)|v = [@(src(e)) — d(tar(e))|n-

Note that |¢(-)|y is constant on equivalence classes [¢] € N, and so we further write
|¢([e])| v for the common value of

{lo(e)lv e € [e]}.

We use the function |¢(-)|n to define the band width condition

C[e] = ]l{ld)([ ])‘N < T/Ill[n] b('Y(e ))}

which allows us to rewrite (4.4) as

2 (H E| 11 Xy D( H cuE| [T X0 6e]) @

$:V—[N] “geL ~t€ld e’€le]

in terms of the usual Wigner matrices X'y = (X%))ie 1 (cf. Equation (3.7)). We may then
apply our analysis from Proposition 3.2 to conclude that a contributing graph 7" satisfies

M =0 or m>2,  Y(i[e]) €I xN. (4.6)
The band width condition

[¢([e])|n < min 67", Ve e A 4.7

e’ €le]

bounds the number Ay (T) of contributing maps ¢ : V — [N | by

AN(T)< N min 2b( i
e’€le]
[e}GN
Indeed, fixing an arbitrary vertex vy € V, we have N choices for ¢(vg) € [N]; but, having
made this choice, we must take into account the band widths in traversing the remaining
edges of the simple graph T' = (V,N). In fact, we can apply the same reasoning to any

spanning tree Ty = (V, No) of T since any edge [ex] € NV in a cycle ([e1],.. ., [ex]) will have
already had the admissible range of labels for its incident vertices determined by the
band width conditions coming from the other edges ([e1], ..., [ex—1]). This leads to the
refinement
)< N [[ min 2657, (4.8)
[e] G./\/o <'elel
where N N B
#(No) < #WN) < #(E). (4.9)

Recycling the bound (3.11) for the summands of (4.5), we arrive at the asymptotic

N H[e]e/\% mine/e[e] QbE\}Y(e )

N e (/23 )

i (v(e")
= Or ( H[e]ENo M gle] 2bN ) .

e 4
Hee/\/ /2b§\7( ) HéeL /2b§\7( )
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For the sake of comparison, we draw the reader’s attention to (3.12) for the analogous
asymptotic in the case of the Wigner matrices (note that #(Np) = #(V) — 1). The
divergence (4.1) of the band widths bs\i,) and the inequalities (4.6) and (4.9) then imply
that 7% [T'(Py)] vanishes in the limit unless 7 is a colored double tree, in which case one
clearly obtains the prescribed limit (4.2). O

Here, the situation for general 5; € D becomes much different. For a single periodic
RBM Ay of divergent band width by — oo, the LTD follows (3.16) as in the Wigner
case; however, the joint LTD of Py might not exist depending on the fluctuations of the
band widths (bgf,))ie 7. In this case, we need to make additional assumptions on the band
widths (e.g., proportional growth) to ensure the existence of an asymptotic proportion
for an ordering 1 of the vertices (i.e., the analogue of (3.15)). We comment more on
this situation later. On the other hand, the orderings play no role in the calculation of
T[T (Pn)] for an opposing colored double tree T'. Thus, we can apply the criteria (3.18)
in Remark 3.3 to conclude that Py = (A%))ie ; converges in distribution to a semicircular
system a = (a;);es regardless of the parameters (5;)iec;-

Note that a periodic RBM Ay with band width by = N/2 corresponds to a standard
Wigner matrix W y. As such, we can view Lemma 4.3 as a generalization of Proposition
3.2. We extend the result to include RBMs of slow growth in the next section.

4.2 Slow growth

To begin, we partition the index set I of our matrices Xy = (X%))ie 7 into two camps
I = I, UI,. We consider a class of divergent band widths (b%))ie 7 as in (4.1) with the
added condition of slow growth for (b%))ielw ie.,

b(i)
Jim % =0, Vi€l (4.10)
—00

We form the corresponding family of periodic RBMs as before,

Ry =RY URY = (O)icr, UM )ier,,  Px=PYUPY = (AQ)ier, UMD icr,.

For i € Is, we also form the corresponding family of slow growth RBMs (Definition 1.2),
Sy = EV)ien = BY o X)ier,,  OF = (OF)ier, = (YR 0 B er-

Lemma 4.4 (Traffic convergence for slow growth RBMs). Let My = 7?](\}) U Oﬁ). For any
test graph T in x = (x;)ic1,

ci(T) . .
lim 79 [T(My)] = [Lic: B; if T is a colored double tree, 4.11)
N—oo 0 otherwise.
Proof. In view of Lemma 4.3, it suffices to show that
Jim T (PN)] — TR [T(MN)]‘ =0, VTeTX). (4.12)

Of course, the only difference between the families P and M y comes from the periodiza-

tion of the slow growth RBMs S](\?). Equation (4.12) then asserts that the contribution of

the additional entries arising from this periodization becomes negligible in the limit.
For convenience, we write Uy = (U%))ie 1 for the unnormalized version of My so

that 4
@ TV ifiern,
Uy = (1) g -
Ey ifiel.
EJP 23 (2018), paper 77. http://www.imstat.org/ejp/
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Expanding 7%[T(My)], we obtain the analogue of (4.3),

[T R @)

: [ }
NTI 26 4.
ccE N V[N leeE

Our notation works just as well in this case to produce the analogue of (4.4) for our sum,
> (e[ T o] ) ( 11 | T1 ovwe]).
¢:V=[N] “gel UEl] [e]leN  ~eElel

Naturally, we then look for the analogue of (4.5). Note that the corresponding version of
the band width condition (4.7) must now take into account the index ~v(e") € Iy UIs of
e’ € [e]. We partition the equivalence classes [¢] = [¢]; U [e]o in N accordingly, where

[e]; = [ Ny~ H(T).
For an edge e € N, we define
[o(e)| = |o(sre(e)) — g(tar(e))].

()] is constant on equivalence classes [¢] € A/, and so we write |¢([e])| for
the common value of

{lo(e")] : €’ € [e]}.
More specifically, we write |¢([e]2)| for the common value of
{lo(e")] : e" € [el2}-

Note that [e]; may be empty, in which case we define |¢(f))|] = 0. We use the same
convention for |¢([e]1)|n to define the band width condition

Cloy = HI6(leln)ln < min 0§V }{lo((el2)] < yuin 0§V} Vi € A

We may then write the analogue of (4.5) for our family My as

ZN]( I E{ H X0 (4 D( I] cLE [ T X5 )D (2.13)

¢V el leleN e’€le]

Of course, the inherent inequality | - |y = min{| - |, N — | - |} < |- | implies that
Cloy < Hig(lel)lv < min B0} =Cly, Ve N,

which bounds the number By (7T') of maps ¢ : V' — [N] satisfying the band width condition

[9(0el)lv < min b7 aM|an<nﬁwW”% Vle] € N (4.14)
e'e e’ €le]2
by

Bn(T) < An(T). (4.15)

Recall that Ay (T) is the number of maps ¢ : V — [N] satisfying the weaker condition

l6(e)ly < min b7, Ve] € N (4.16)

e’ €le]
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present in Lemma 4.3. In view of (4.15), our work in this previous case implies that

lim [T (My)] =

N— 00

unless 7' is a colored double tree. Thus, it remains to prove (4.12) for such a graph 7'.
Comparing the two equations (4.5) and (4.13), we arrive at the asymptotic

T%[T(PNM—TJ%[T(MN)]‘:OT( Dn(T) ) (4.17)
VLo 27

where Dy (T) = An(T) — By(T) is the number of maps ¢ : V — [N] that satisfy the
band width condition (4.16) but not the stronger condition (4.14). This formalizes the
observation that we made at the beginning of the proof about the only difference between

the families Py and M y. In particular, for ¢ € I, note that the periodic version I‘S\i,) of

a slow growth RBM Eg\i,) only differs in the entries within band width’s distance of the

perimeter; otherwise, the two matrices are identical. For a map ¢ : V < [N], this means
that if ¢ stays sufficiently far away from the endpoints of the interval [V], then the two
conditions (4.14) and (4.16) are actually equivalent. In particular, this holds if

$(V) C [+ maxdQ@, N — max b)),

ec By ecEs

where Ey = v~ !(I,) is of course a finite set. In this case, we have the bound
Dy(T) = An(T) — By(T) < AN(T),
where A%, (T) is the number of maps ¢ : V < [N] satisfying (4.16) with range

¢(V)¢[1+maxb<’” N N maExb”(‘”))] (4.18)
eclbo

We give a simple bound on A} (T) as follows: set aside a vertex vy € V (for which
there are #(V') choices) to satisfy (4.18) (for which there are 2 m%x bg\?(e)) choices) and
echs

pick the labels ¢(v) of the remaining vertices according to (4.16) (for which there are at
most H[e]eE ming e[ 2b§\7(e ) choices) to see that

AN(T) = OT(maxb(V( °) H min 2b(7( ))> (4.19)

e€ by eEe]

[e]

We may then recast (4.17) as

L C) o (H[e]e smingep 267

N e
Meen V205

RIT(Px)) - TR (M) = ) @20

T being a colored double tree, we know that

H[e]eE mings e[ QbE\?(e )
Mor 25

Moreover, since #(Es) < oo, the slow growth condition (4.10) still holds for the maximum
over Fo,

=1.

max bY@ = o(N). (4.21)
ecEs
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Equations (4.19)-(4.21) formalize our intuition from before: the periodic version of a
RBM only differs within band width’s distance of the perimeter; for a slow growth RBM,
one then needs to be very close to the perimeter to realize this difference; as such, the
corresponding interior region accounts for the bulk of the calculations. The result now
follows. O

ok

(ENv ®N)

=5

h

(T'n,AN)

=

Figure 9: An illustration of the “interior” region of a random band matrix (resp., periodic
random band matrix) at band width’s distance bWN = o(1) from the perimeter. Here, we
cut off the boundary to see that the two interior regions are indeed identical.

Remark 4.5. If we think of choosing a map ¢ : V < [N] satisfying (4.14) as starting at
an arbitrary vertex v, making a choice ¢(vg) € [N], and then choosing the labels of the
remaining vertices in a manner compatible with the band width conditions, then each

choice of ¢(v) after ¢(vy) can be thought of as an incremental walk of distance at most

ming ¢ bg\';(e/)) for some [e] € N.If I = I, then starting from a “deep” vertex

$(v0) € [1+ #(E) max DIV N — #(E) max b)),
ee ec
the walk never has a chance to loop across the perimeter of the matrix. This line of
reasoning can be used to give a more intuitive geometric proof of Lemma 4.4 in the
simpler case of I = I,. This notion of a deep vertex originates in the work [7].
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If I # I, then we need to account for the possibility of the band widths of the periodic
RBMs being large enough to bring us close to the perimeter so that the walk crosses
over with a step from a periodized version of a slow growth RBM. Taking inspiration
from the simpler case of I = I, our analysis shows that a generic walk stays within a
region in which the slow growth RBMs and their periodized versions are identical.

We encounter the same problem from before when considering general 3; € D:
without further assumptions on the band widths (bg\l,) )ic1, their fluctuations could possibly
preclude the existence of a joint LTD. In general, we must again settle for the convergence
of My = (Agf,))iell U (@5\’,)),;612 in distribution to a semicircular system a = (a;)ic;-

Recall that the Wigner matrices Wy are asymptotically traffic independent iff g; € R,
and that a permutation invariant realization of our ensemble Wy exists iff 8, € R. One
might then ask if permutation invariance is a necessary condition for matricial asymptotic
traffic independence; however, we see that this is not the case. In particular, one cannot
find a permutation invariant realization of the periodic RBMs (except in the trivial case
of by ~ N/2), nor of the slow growth RBMs. Instead, we relied on the aforementioned
homogeneity property and the divergence of our normalization. Taken alone, neither of
these two properties suffices, as we shall see in the proportional growth regime (which
lacks homogeneity) and the fixed band width regime (which has a fixed normalization).

4.3 Proportional growth

Not surprisingly, the periodization trick from the previous section fails for propor-
tional growth RBMs unless ¢ = 1 (recall that ¢ = limy_, bWN € (0,1)). In the case of
proper proportion ¢ € (0, 1), the entries in the matrix introduced by reflecting the band
width across the perimeter now account for an asymptotically nontrivial region in the
unit square and so no longer represent a negligible contribution to the calculations.
Nevertheless, we can adapt our work from before to prove the existence of a joint LTD
supported on colored double trees 7', though in general the value of this limit will depend
on the particular degree structure of the graph 7'.

by
N C

i

Figure 10: An illustration of the limit shape of our scaled matrix in the unit square
[0,1]2. Here, we distinguish the periodized version of our matrix with the additional gray
area. In the limit, the shape corresponds to the banded region |z — (1 — y)| < ¢ (resp.,
the periodic banded region min(|z — (1 — y)|,1 — | — (1 — y)|) < ¢). In contrast to the
slow growth regime, we see a nontrivial contribution from the periodization due to the
nonvanishing scale of the band width limy_, - bWN =ce (0,1).

To formalize our result, we now split the index set I = I; U I, U I3 U I, into four
camps. We consider a class of divergent band widths (bg\zr))iej as in (4.1) with the added
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conditions of slow growth for b(2) (b( ))2612, full proportion for b(3) (b( ))1613, and
proper proportion for b%) = (bgf,))ze 1, So that

b(i)

]th % = 0’ Vl 6 .[2,
—00
b
th No— =1, Vi € I3,
—00
b
th %:ci € (0,1), Vi € 1.
—00

For i € I; U I5, we form the corresponding families of periodic RBMs and slow growth
RBMs as before,

Ry =Ry URY = OW)iern UM )ier,,  Px =Py UPY = (A )ien, U (AR )ien;
8¢ = (EV)ier, = BY 0 XV)icn, 0 = (OW)icr = (YN 0BV )icrs-

For: € I3 U I, we form the corresponding families of proportional growth RBMs,

3 —(7 7 7 3 7 —

FV = EWier, = BY o XWicr,,  OF = (©W)ier, = (Y 0 8V)ier:
4 —(7 7 7 4 7 1 -

ey = EW)ier. = BY o XWVier,  OF = (ON)ier, = (XN 0B e

We start with the simpler case of the single family (’)(4) of (proper) proportional

growth RBMs. In this case, the LTD of O( only depends on the band widths b( ) up to
the limiting proportions

¢4 = (Ci)ier,-
Lemma 4.6 (Traffic convergence for proportional growth RBMs). For any test graph T in

X4 = (Ii)ieLu

lim 7[T(O)] =

N—o00

(4.22)
0 otherwise,

{pT(C4) [Lics Bf"'(T) if T is a colored double tree,
where pr(c4) > 0 only depends on the test graph T' and the proportions ¢4 = (¢;)icy, -

Proof. As usual, we begin by expanding

O] = ! 3 E[HES@<5)><¢<e>>]

X0}
N5 [eer /264(e) — Ci(e) $V[N] LecE

and rewriting the summands as
( I1 ]E{ H x () D( [T tlede)l < min b ))}E{ T x5 (@(e ))D.
(el le]leN e’€le]

At this point, we can already conclude the bottom half of (4.22). Hereafter, 7" denotes a
colored double tree. In this case, we have the equality

Cn (T .
ROV = ) i
N iges Ceven — o) i€t

CVN( ) 1 i
pr— ﬁ 7
N#Y) ] e 2eq(e) — o)) g
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where Cn(T) is the number of maps ¢ : V — [N] satisfying the band width condition
l6([e])] < bQUD) e € E. (4.23)
We may think of the ratio

Cn(T)  Cn(T)
NEV) ~ NED)

as the proportion of admissible maps ¢ : V < [N]. Unfortunately, the vertices of our
graph 7T lack the homogeneity property from before due to the asymmetry of the band
condition (4.23). This makes the task of computing Cn(T') extremely tedious (and highly
dependent on T'). Nevertheless, we can give an integral representation of the limit of
this ratio much as in [7]. In particular, a straightforward weak convergence argument
shows that

. On(T)
]\}gnoo N#WV) = ‘/[0 v H ]l{‘xsrc([e]) - xtar([e])| < C'y([e])}dxv~ (4.24)
U leleE

The remaining term in (4.22) follows as

Jo.v e HZsre(e)) — Trar(en| < ey(en } dxv -
H[e]eE (2¢y(e)) — C?y([e]))

pr(cs) =

O

Remark 4.7 (5; € D). For general 3; € D, we must again keep track of the orderings
of the vertices. In this case, we combine the integrands of (3.15) and (4.24) to define

Joav Hapay = 2 2y e s Wz — Trar(len] < ey(ep } dxv
H[e]eE (2¢5(1ep) — Ci([e]))

pr(ca, ) =

3

which replaces the W term in (3.16). In particular, we can write the LTD of (9](\‘,1) as

Z pr(ca,¥)Sy(T) if T is a colored double tree,
lim T]%[T(OJ(\?))] = P[#(V)SV

N—o0
0 otherwise.

Naturally, we are interested in the behavior of pr(cys) as the proportions c4 ap-
proach the boundary values {0,1}. To this end, we fix some notation. Recall that

T = (V,E,~,src, tar) is a colored double tree. We record the labels L([") appearing in
any subset F' C E of twin edges so that

L(F) = {1([e]) : [e] € F} C L.

We write {src([e]), tar([e])} for the pair of vertices adjacent to twin edges [e] = {e,¢'},
which allows us to further record the vertices V(F') appearing in F as

V(F) = {src([e]), tar([e]) : [e] € F}.

For any collection of real numbers r = (r;);cs in [0,1] with L(F) C J, we define the

function N
Cutz . : [0, 11V 5 00,1]

by the product

Cutp,(xy (7)) = ] Hl@sreel) = Traren| < myie }-
le]eF
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We note that Cut  is simply the indicator on the banded region cut out of the hypercube

[0, l]V(ﬁ ) by the constraints |Zsre(fe]) — Trar(je])] < T4(e))- For example, our notation allows
us to succinctly write the integral

Cn(T)

Similarly, we group the normalizations coming from the twin edges F C E with
2
Normz(e) = [] Cesen — S papy)- (4.25)
[e]eF
If I = E, we write Cutrr = Cutg . (resp., Normr(cs) = Normg(cy)). In this case,

Intp (C4)

pr(cs) = m-

We will need some simple bounds on the integral Intr(cy). We start with an easy
upper bound. Consider a leaf vertex vy of our colored double tree T. Let v1 ~[,, vo
denote the unique vertex v, adjacent to vo. We compute the diameter f(x,,) of a cross
section in the banded strip of the unit square [0, 1] defined by |zv, — v, | < ¢y(jeq))

1
f(ay,) = /o T{|Zsre(jeo]) — Trar(feo))] < Cy(leo]) } Ao

1
B /0 L{[@uy — Ty | < ey (eo)) } dTg

Ty F Coy([eo]) if 2y, € [0, Cy(feo)) A (1= Cy(feo)))]s
=9 2¢([eq) N1 if 2y, € [ey(teo)) AN (1= Cy((eo)))s Crleo)) V (1 = Cy(lea))]-

L+ Cylee)) = Tvy @0, € [y ((eg]) V (1 = Cy(leo]))s 1]
(4.26)

Ey([eo])

Cy([eo))

Loy
In particular,

Cyleo]) < F(@uy) < 205 (feg)) A L
It follows that

IntT(C4) = / CutT,% (Xv) dxy
[0,1]vV

1
= /[OW\{UO} CUt 2 (o]} cs (XV\{vo})( /0 |y, — 20, | < C’Y([eo])}dx%)dxv\{vo}

= Cutg 2 Al)d
B /[0,1]V\{vo} b E\{[€0]}7C4(xv\{vo})( Cy(leo)) ) XV\{vo}

= (2¢y([eo)) N 1) Inty ¢ (€4),
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where T\ [eg] is the colored double tree obtained from 7' by removing the leaf vy and its
adjacent twin edges [eg]. Iterating this construction, we obtain the upper bound

IntT(C4) < H (26,7([61) A 1)
le]eE

The same reasoning of course shows that

Intr(€q) 2 ¢y (jeo)) Ibr\[eo}(€4) 2 - 2 ||y
le]leE

but we can do much better for small proportions c4. In particular, assume that

. 1
C = Imax C < —.
max (i) < 5
Then
IntT(C4) = / CutT,c4 (Xv)dXV > / CutT,c4 (Xv)dXV
[0,1]V [e,1—¢lV

1—¢
= /[ g\ Gvo? CUtE\{[eoJ},C4(XV\{vo})</ I{|wv, — 2o, | < Cw([eol)}d%o>dx\/\{vo}

= /[ v CUtE\{[eo]},c4(XV\{vo})((1 - 26)2C’Y([50]))de\{vo}

(B
== (120" T 2¢y(pep-
le]eE

Thus, for ¢ < % we have the bounds

(120" Tlep260e) _ Intr(es) _  lges 26
iges @esqeny = )~ Normr(ea) = [liges 2y — o)’

which imply that

I
lim pr(cyq) = lim ntr(ca)

—— =1 4.27
e—0+ é—0+ Normy(cy) ( )

We view the limit ¢ — 07 as approaching the slow growth regime. In view of (4.27),
we see that the LTD (4.22) of the proportional growth RBMs behaves accordingly (in
particular, we have convergence to the LTD (4.11) of the slow growth RBMs).

In an easier direction, we can also consider the limit

¢ = min Cy(le]) — 1.
le]leE
One then clearly has
lim Cutre,(xy) =1, Vxy €][0,1]V. (4.28)

c—1—

We can push this limit through the integral by dominated convergence to obtain

lim Intr(cy) = / lim Cutpe,(xy)dxy = 1. (4.29)
[

c—1- 0’1]\/ c—1-
Of course, the same convergence also holds for the normalizations (4.25),

lim Normp(cy) =1, VF CE, (4.30)

c—1-
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and so

I
lim pr(cy) = lim ntr(Ce)

—=1. 4.31
el c¢—1- Normp(cy) ( )

We view the limit ¢ — 1~ as approaching the usual Wigner matrices, or, more generally,
the full proportion RBMs. Again, our limit (4.31) shows that the LTD (4.22) behaves
accordingly (in particular, we have convergence to the LTD (3.5) of the Wigner matrices).

Up to now, our analysis of the integral Int7(c4) essentially follows [7]. We take care
to account for possibly different band widths by grouping them in the min ¢ or the max ¢,
but in both cases we indiscriminately send the proportions to a single boundary value
{0,1}. From this point of view, we fail to perceive any differences in the limits

lim pr(cy) =1= lim pr(cq); (4.32)
é—0t c—1-
yet, the two cases actually differ quite considerably. To see this, we will need to refine
our analysis of pr(c4) to consider sending only a subset of the proportions c, to possibly
different boundary values. The results will greatly inform our treatment of the joint LTD
of the combined families ’PI(\}) U Oﬁ) U (95\:;’) U (95\?).

We start with the simpler case of sending the band width c;, of a single label iy € I4
in our colored double tree T to 1~. We write T;, = (V;,, E;,) for the subgraph of T" with
edge labels in ig. In general, T}, is a forest of colored double trees (in the single “color”
i0). We define T = (Vi Ei,) as before. We remove the twin edges E from T to obtain
a forest of colored double trees T \ Eio (say, with connected components T, ..., T).
We emphasize that we only remove the edges EZ-O ; in particular, we keep any resulting
isolated vertices. We then have the analogues of (4.28)-(4.30):

lim Cutpe,(xv) = CutE\E XV) = H Cuty, ¢, (xv,), Vxy € [0, 1]V, (4.33)

Cig—17 =1
lim Intp(cy) = / lim Cutype,(xv)dxy
c.;0~>1* [0 1]V cm*)l
(4.34)
= H/ CutTé cy XV[ dXV[ HIntTp C4
¢—1 7/ [0,1]"
and
k
C.h_>mr Normr(cy) = NormE\Ei0 (cq) h_)rnr NormE H Normg, (cy4). (4.35)
‘0 =1
It follows that
Int Int
lim pr(cy) = lim ntr(cs) _ H[ 1 Itz (c4) HpT,_; c4). (4.36)
(/’1,0—>17 cio—>1’ NOrmT(C4) H[ 1 NOI'IHT[ C4)

In particular, if T; consists of an isolated vertex, then pr,(c4) = 1. One can then effectively
discard the isolated vertices of T"\ Eio and just consider the resulting forest of nontrivial
colored double trees. We choose to keep these vertices in writing a simple, consistent
formula for our limit.

Of course, there is nothing special about only sending one of the band widths ¢;, — 1~.
In fact, the same argument clearly applies to any collection of labels 4, ..., %; in a colored
double tree T'. We state the full result later once we have also considered the behavior
of pr(cy) in the limit ¢;, — 0T, but first we must introduce some more notation.
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For any pair of subsets W C V and F C E, we define the conditional expectation
Int 7 (cq|W) : [0,1]" — [0, 1]

by

Intﬁ(C4|W)(Xw) = / Cutﬁ,04 (Xv) dXV\W-
[0»1]V\W

For example, the reader can easily verify that
/ IntT(C4|W) (Xw) dXW = IntT(C4).
[0,1]"

As before, we start with a single label iy € I, in T, for which we now consider the
limit ¢;, — 07. To simplify the argument, we first assume that there is a unique pair of
twin edges [e;,] with the label v([e;,]) = i9. For notational convenience, we write

{a, b} = {sre([eio]), tar([ei ) }-

We condition on the vertices {a, b} to obtain

pT(C4)_ IntT(C4) :/ CutT7c4(xv)
[0,1

= d
Normr(cy) v Normr(cq) xv

/ Itz e, 13 (Cal{as Tp}) (€a, 71) (ﬂ{xa —ml Sty dm)
[0,1]2 NOrmE\{[eio]}(C4) o =

= / f(ma,l‘b) :ucio (d.l?a,d.%'b), (437)
[0,1]2

where

IntE\{[eio]} (cal{za, zp}) (@0, xp)

Normé\{[eio]} (cq)

f(xav xb) =
is a bounded continuous function that does not depend on ¢;, and

fhes, (dTq, dxp)

is the uniform (probability) measure on the banded strip in unit square [0, 1]? defined by
|xa — xp| < ¢;y. In the limit, we have the weak convergence

fi;, =k a@s ¢, — 07,

where pa is the uniform measure on the diagonal {(z,z) : z € [0,1]} C [0,1]%. In
particular, this implies that

lim pr(cy) = lim / f(xa,xp) pe, (dzq,dxy)
—0+ [0)1]2 0

Cig ciy—0F

1
/[ ] f(wa,xb)uA(dxa,d:rb)Z/ f(z,z) dz = prype, ) (ca),
0,1]2 0

where T'/[e;,] is the colored double tree obtained from T by contracting the twin edges
[e;,] (i.e., we remove the edges [e;,] and merge the vertices {a,b}). We note the contrast
to the situation in (4.36) in the limit ¢;, — 17, where we remove the edges but do not
otherwise modify the vertices.

We must take care if the label 7y appears in more than one set of twin edges. In any
case, we can always identify the subgraph T;, of T' with edge labels in 7. In general,
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= (Viy, Ei,) is a forest Ty U - - - U T}, of colored double trees Ty = (Vp, E;) in the single

10
color 19. Conditioning on the vertices V;, = V; U--- UV}, of T;,, we obtain

CutTl ci XVZ)
pr(cs) = f(xvy,...x — 0% T ik, (4.38)
wies) /><§1[0,1]Ve (v Vi H Normr, (¢;,) Ve
where
IntE\E' (C4|%0)(XV1 PR 7XVk)
f(XV17 ces Xy

NormE\EiO (c4)

is again a bounded continuous function that does not depend on c¢;,. In this case, we
cannot immediately write (4.38) in terms of probability measures

CU-th ,Cig (XVz)

d
Normr, (¢;,) xVe

) (dxy,) =
as we did in (4.37) since, in general,

Inth (cio) = / CutTe,Cio (XW) de 7é (2ci0 - 0120)#(@2) = NormTe (Cio);
[0,1]Ve

however, our work (4.27) from before shows that

lim M -1
cip—0+ Normy, (¢;,)
Thus, we can instead write
pr(cy) = bles,) | F v xvy) By 1 (), (4.39)
XE_,[0,1]Ve

where d(c;,) is a real number depending on ¢;, such that

lim d(c;,) =1
ol 0(ci)
and u% is the uniform measure on the banded region R, C [0,1]"* defined by the
constraints B
|Zore(le)) — Trar(le)| < Cio» Vel € By

As before, we note that

im0 = )

where p( ) is the uniform measure on the diagonal {(z,...,z) : 2 €[0,1]} C [0,1]"
follows that

Cutr, ., (x
lim pr(cs) = lim Fxvs. .. xy, H SULTy e (XVe) V)

dXV
£
cig—0F cig—=0F S5k [0,1]Ve Normr, (¢;,)

=/ Fxvi s x) @ il (dxv,)

Xg=1[0,1]"¢

:/ fl@, .., o, ag) doy - - dog = pry, (Ca),
(0,1

where T'/T;, is the colored double tree obtained from T by contracting the edges of T;,
(i.e., for each ¢ € [k], we remove the edges E;, and merge the vertices V; into a single
vertex).
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We can easily adapt our argument to accommodate multiple band widths ¢;, ..., ¢;,
in the limit max(c;,, ..., ci;) — 0. In this case, we replace T}, with T}, the subgraph of
T with edge labels in i = {io, ..., %;}; otherwise, the same argument goes through just as
well.

SN [ A

0

(@) |

Figure 11: A comparison of the resulting graphs in the limit ¢;, — 1~ (resp., ¢;, — 07).
Here, we start with a colored double tree T' and remove (resp., contract) the edges with
label z;, to obtain the limit graph 7"\ EZ-O (resp., T/T;,). Note that the two operations
can produce very different graphs.

At this point, we see how the limits (4.32) come about in different ways: in the limit
c — 0T, we contract all of the edges, leaving a single isolated vertex; in the limit ¢ — 17,
we remove all of the edges, leaving #(V') isolated vertices.

Finally, the result for a collection of band widths sent to possibly different boundary
values should come as no surprise. We combine our work in the two previous cases,
taking care to account for parts moving simultaneously in different directions. To begin,
let Jy (resp., J1) denote the collection of labels in our colored double tree T' whose band
widths are to be sent to 01 (resp., 17). We define

co = (¢i)ieso, c1 = (¢i)ien
Cp = Mmaxc;, c1 = minc;,
i€Jo 1€J1

and write ¢z = ¢4 \ (co U ¢1) for the remaining band widths. We are then interested in
the limit

(Co,Cl)Ln(loJrvl*)pT(C‘l).

We decompose our graph as before. We write T+ for the subgraph of 7' with edge
labels in Jy. In general, Ty+ = (Vg+, Eo+) is a forest Tp+ = 137 U --- U T} of colored
double trees T, = (V,", E/) except now possibly with multiple colors. Similarly, we write
T,- = (Vi-, E,-) for the subgraph of T with edge labels in J;. Finally, we write Ey =
E\ (Ey U E;) for the remaining edges. Conditioning on the vertices Vy:+ = V;" U --- L Vi
of T+, we obtain the analogue of (4.39),

pr(es) = 6(co) / Fe Gy xy) @y u0 (dxy ),
X];:1[071]V2 1 k ¥

where d(cp) is a real number depending on ¢y such that

lim d(cp) =1

C()*)O+
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and p&? is the uniform measure on the banded region Ry in [0, 1]‘/2+ defined by the

constraints B
|Tsre(el) — Trar(e)] < ey €0, V]e] € B

Despite considering multiple band widths cg, we still have the weak convergence

: © _
ey =0
As before,
Intz =  (calVo+)(Xy+, .-y Xyt )
E\E Vit Xy
fm(xvl*a---axvzr): L ; .

NormE\E0+ (cq)

= / CutEl_ €1 (XV) CUtEZ;CZ (XV)
0.1]" Vot NormEt (c1) Normg, (c2)

dXV\Vo+

is a bounded continuous function that does not depend on cy; however, f., does depend
on c;. In particular, the function

Cutg ., ¢ 0,11V = [0,1]

is monotonic in ¢; with
lim Cutz xy) =1, vxy € [0,1]V.
c1—1— El_’cl( V) v [ ]
Since
li N = (c1)=1

Jm Normg,_(er) =1,

it follows that
Cutz _ (xv)
= i = —_Dmet g
f(XVfr’ ’XVJ) 011_1511_ fer (va’ ’XVJ) /[0,1]V\vo+ Normg, (co) KVAVor

The monotonicity of Cut | in the proportions c; then allows us to conclude that
-

,C

K Cutﬁj <o (xvj )

lim pr(cs) = lim / for(XptyeyXt) — £ dx,+
(core1)—(0F,17) (cosen)>(0717) Sk opvet T Ve T Normgi(eo) Ve

- k()
= /><§71[07”V2+ FGyts e Xyt ) @iz pp’ (dxy )

:/ f(ml,...,xl,...,xk,.“,xk)dﬂrl---dxk ZpF(C2) = HpT,,,(Cz),
[0’1]k r=1

where F' is the forest of colored double trees F' = T U --- LU T, obtained from T by
removing the edges F;- and contracting the edges Ey+.

Our treatment of pr(c4) suggests the following form for the joint LTD of the matrices
OE\?) u OE{;’) u ng,l). We leave the by-now familiar details of the proof to the diligent reader.
Theorem 4.8 (Traffic convergence for RBMs). For any test graph T in x5 Ux3 Uxy4 =
(Ii)ielzu13u14,

lim 3 [T(OF UOY UOY)] =

N— oo

(4.40)

pr(ca) [Licr Bfi(T) if T is a colored double tree,
0 otherwise,

where F' = T - - -UT is the forest of colored double trees obtained from T" by contracting
the edges with labels in I» and removing the edges with labels in I3 and

pr(cs) = HPTT(C4)~ (4.41)
r=1

EJP 23 (2018), paper 77. http://www.imstat.org/ejp/
Page 38/48


http://dx.doi.org/10.1214/18-EJP205
http://www.imstat.org/ejp/

Traffic distributions of random band matrices

Corollary 4.9 (Traffic independence for RBMs). The full proportion RBMs (’)5\‘;’) and the
proper proportion RBMs (’)E(,l) are asymptotically traffic independent, as are the full
proportion RBMs (’)5\‘?) and the slow growth RBMs (953). The slow growth RBMs (’)J(\%) and
the proper proportion RBMs Og\?) are not asymptotically traffic independent, nor are
independent proper proportion RBMs (’)53) = (9%))1'614-

Proof. The statements about asymptotic traffic independence follow from the calculation
of the forest F' from our colored double tree T' (we simply remove the edges with labels
in I3) and the multiplicativity of (4.41). For the statements about non-asymptotic traffic
independence, we give a simple counterexample, namely, for iy € I and iy, j4 € I4 with
0<Ci4 SCj4 <1,

o @5\'}4) (_)5\1/2) 9%4) . @5\'34) @%4)
lim 7| - & - S - S | = lim 7y s -5 .
N—oo e el ey N—oo 9%@ ey
= 1 0 [5(9(14) @(14) @(j4) @(j4) ] _ { , ) }
= m Ty N ONT,OFY, O3] =ps({ciys ¢ b)),
N—o0
where
1.3 2 . 9. .2 o
T30 T GiuCis — 2€ia GG, T 460 ife, <o <
2 2 14 = Cya = 5
(2Ci4 - ci4)(26j4 - Cj4) 2
13 _ . 2 _ .2 _ .2 o ) o1
3% ~ Gl " G TGy T2 T G Ty ey ]
. 2 P 2 Ja = Y14 = ’
(2014 ci )(26]4 C; ) 2
_ 4 J4
pS({Ci4,Cj4}) - 1.3 2 2 2 4
—3C, ~ C¢4Cj4 — 263, Cj, + 4G, Cjy o <1 <1
(2¢;, — )(26 —c2) = =9’
14 Ja Ja
1.3 2 2 o . o1
3C5, — CiyCj, — Ci, —|—2c14c]4 +ciy, +¢j, — 3 ifl e <o
2 — "4 = 74
(2Ci4 - )(26]4 - CJ4) 2
In particular,
@5\7}4) @%4)
ps({ci,, ¢ }) #1 =1 lim A= lim 7% - S -
N—oo (i4) N—oo (i)
®N €-)N
(ia) (i2) (ia)
0 ®N4 0 ®N2 . 0 o
= lim 7y = lim 7y = . lim 7%| - S - ,
N—o0 9%4) N—oo 9%2) N—o00 9%4)
which covers both statements. O

The careful reader will notice that the periodic RBMs PJ(\}) are conspicuously absent in
Theorem 4.8. Again, we have the familiar obstruction: without any further assumptions
on the band widths bg\}) = (bg\,))ze 1,, their fluctuations could preclude the existence of a
joint LTD. For example, if a periodic band width b%) has a subsequence of slow growth
and another subsequence of proportional growth, then the LTDs along these two subse-
quences will be different. If we assume that the band widths b(l) (b(z)) (b(z))zep/
fall into one of these two regimes, slow growth or proportlonal growth respectlvely, then
we can prove the extension of Theorem 4.8 to 7? Ju (9 U C’) Ju (’) . In this case, the
LTD essentially follows (4.40) except that we must now also contract the edges with
labels in I] and remove the edges with labels in I}’ (regardless of the limiting proportions
limy oo % fori e Iy

The contraction of the edges with labels in I should come as no surprise given
Lemma 4.4, where we saw that periodizing a slow growth RBM does little to affect the
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calculations. Just as we contract the labels in I, we should then also expect to contract
the labels in I{. On the other hand, as we noted before, periodizing a proportional
growth RBM changes the situation entirely. Formally, we need to work with the periodic
absolute value

|z, = min(z,1 — z), Vz € [0,1]

in our integral to account for the edges with labels in I}’; however, the analogue of (4.26)
does not depend on where we measure the diameter of our cross section

1
olee) = /0 |z = Zoilp < ey(teo } oy = 203(eo), Vawy € (0,1,
This balances out perfectly with the normalization of the periodic RBMs

A(v([eo])) T('y([f‘o] o I\S\"’v([eob) — 1 r(r(fe]))
ng\’}/([eo]))

and so we can integrate out the vertices that are only adjacent to edges with labels

in I} without changing the value of the integral. This of course corresponds to simply

removing the edges with labels in 7} when calculatmg pr(cy). Iterating the proof of

Corollary 4.9, we see that the periodic RBMs 73(1 )= (Agv))zel” and the proportional

growth RBMs (’)( ) are asymptotically traffic mdependent whereas the periodic RBMs

7?](\}') = (AE\Z,))Ze r; and the proportional growth RBMs (’) ) are not.
For general 5; € D, we must again settle for convergence in distribution.

Theorem 4.10 (Convergence for RBMs). Assume that the band widths (b%))iefl of the
periodic RBMs fall into one of two categories I = I{ U I{ as before. For general 5; € D,
the joint family 791(\}) U (’)ﬁ) U (’)S’) U (95(,1) converges in distribution to a family

a = (a;)ier = (ai)icr; U (ai)iery U (ai)ier, U (ai)ier; U (ai)ier, = ar Uarr Uag Uag U ay.

The family a;- U a;» U ag U ag is a semicircular system; the families a,, as, and a4 are
free; the families a; and a4 are not free, nor are the families a;, and ay4; finally, the family
ay = (a;);er, is not free.

Proof. The convergence in distribution follows from a modified version of the criteria
(3.18) in Remark 3.3. In particular, we do not actually need to know the value of

lim APV U0P UOY UOW)

N—oo
for an opposing colored double tree T, just that it exists. In this case, we know that the
value of this limit is equal to pr(c4), which in turn is equal to 1 if there are no edges with
labels in I,. This proves the first statement about a; U a;» Uas U ag.

For the second statement, about a;» U ag U ay4, it suffices to prove that a3 and a4 are
free. Indeed, this follows from the calculation of pr(c4): edges with labels in either Iy
or I3 are both treated just the same and simply removed. In particular, this implies that
the joint distributions fia,,,uasua, @and uas,,uaduz“ = Ubsua, are identical, where az/ is the
limit of the full proportion RBMs 0(3 ) = ((9( ))ie ry and by = ag» U ag is simply the limit
of a larger family of independent full proportion RBMs. Now, since the joint distribution
Hasua, 1S universal independent of the parameters §;, we can calculate pa,ua, via a
unitarily invariant realization of (’)53). The standard techniques then apply to show that
a3 and ay are free [27].
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Similarly, the joint distributions f1a,ua, and jia,,ua, are also identical, and so we need
only to consider the families a; and a4. Let a;, € a3 and a;, € a4. If a;, and a;, were free,

then

p(az,ai,0,ai,) = p(af,)*p(af,) = 1;

however, one can easily calculate

N—oo

. 1 ia io ia ia
im B| 5t (@40 @0l )| = prci)

Sh(hme)+ B 1
(2¢i, — ¢;,)? R
2 3
(2¢i, — cZ,)? 2
£1
for ¢;, € (0,1), where

) ) . ) el glia)

T, el e el = 5 . 5

ol glis)

N N

Finally, suppose that a;, # a;, € a4 with 0 < ¢;, < ¢;, < 1. If a;, and a;, were free,

then

o(ai,a3,) = o(a? )e(a3,) = 1;

however, one can again show that

N —oc0

: 1 i j
i | 1 (@404 )| = ps(lenea)) £ 1.
where ps({ci,,c;,}) is as in the proof of Corollary 4.3. O

Remark 4.11. We need the assumption on the band widths (by);cs, of the periodic
RBMs to handle the interaction with the proper proportional growth RBMs O%). The
families P](Vl) U Og\?) U OE\?) converge in distribution to a semicircular system regardless,
even without this assumption.

Finally, the same considerations that allowed us to translate Proposition 3.2 to
Theorem 4.8 also work to prove the RBM version of the concentration inequalities in
Theorem 3.5. Here, we do not make any assumptions on the band widths (b%))ie 1, beyond
their divergence (4.1), nor on the parameters 3; € D.

Theorem 4.12 (Concentration for RBMs). Let Oy = 73](\}) U (’)53) U OE\‘?) U (95\?). For any
test graph T in x = (x;)e1,

E|| 7 oir(@w] - By ulren)| | =ore ),

The bound is tight in the sense that there exist test graphs T € T (x) such that

B[| 1 ulr(ox)] - By ulr(@y)] } —or (N,

As before, we can use Theorem 4.12 to upgrade the convergence in Theorems 4.8
and 4.10 to the almost sure sense.
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Remark 4.13 (Dependent RBMs). In the case of a diverging band width b — oo, the
bottleneck condition in Equation (4.14) can even compensate for a lack of independence.
For example, let bg\}) be a band width of slow growth or proportional growth, and suppose
that bs\?) — oo satisfies bg\?) = o(bg\l,)). For independent Wigner matrices Xg\}) and Xg\?) of
the same parameter § € [—1, 1], we form the normalized RBMs

ey =1y oBYox{, R =10 oBYoxy, and Y =1{ oBY o X§.

In particular, note that G)S\p and @%’2) are not independent: we use the same Wigner
matrix Xg\l,), but with different band widths b%) and bg\z,). Since bs\f) = o(bg\})), the band
width constraints in Equation (4.14) show that a twin edge with mixed labels in @g\}) and
@5\}’2) does not contribute in the limit. Indeed, the minimum of the band widths will be
b%) = o(b%)), but we will have carried the cost of the normalization of the larger band
width bg\l,) in @5\1,). In this case, we cannot have twin edges with mixed labels in @S\l,)
and @5\1,’2), but this is precisely the limiting condition for the independent RBMs @5\1,)
and 95\2,). It follows that (@%), @5&’2)) and (@%), @53)) have the same LTD. The heuristic
is that most of the entries of (-)5\1,) are independent from the entries of (-)5\1,’2), so the
calculation goes through as usual (the nonzero entries of @5\1/,2) form a vanishingly small
proportion of the entries of @g\l,) since bg\z,) = o(b%))).

4.4 Fixed band width

We have much less to say in the fixed band width regime. For starters, we cannot
work in the generality of the Wigner matrices of Section 3. Instead, we must further
assume that the off-diagonal entries (resp., the diagonal entries) of X are identically
distributed and independent of N; otherwise, in general, the LSD of even a single fixed
band width RBM Oy = Yy oEx = Y n o (By o X ) might not exist, never mind the LTD.
We assume hereafter that any fixed band width RBM arises from this restricted setting.

Assuming a symmetric distribution for the entries of X, Section 6 in [7] proves the
existence of a symmetric non-universal LSD p; for a real symmetric RBM © y of fixed
band width by = b. The authors further prove that the distribution p;, converges weakly
to the standard semicircle distribution ps. in the limit b — co. We consider the joint
LTD of independent fixed band width RBMs (real and complex) without this symmetry
assumption and prove the analogous convergence to the semicircular traffic distribution
in the large band width limit. _

To formalize our result, we consider a class of fixed band widths b = (bg\l,))iel = (b;)ier-
We form the corresponding family of fixed band width RBMs

In = EWDier = BY o XW)ier,  On = (©W)icr = (X 0 &Y )ier.
We write pu; (resp., v;) for the distribution of the strictly upper triangular entries Xg\i,) (4, k)
(resp., the diagonal entries XS\’,) (4,7)) so that
pi=LXY (. k) and v = LX), Vi<hk
In contrast to the previous sections, our fixed normalizations T%) = (2b; + 1)—1/ 2N

force us to also consider non-tree-like test graphs 7' in the large N limit.

Theorem 4.14 (Traffic convergence for fixed band width RBMs). The family of fixed
band width RBMs Oy converges in traffic distribution; moreover, for any test graph
T=(V,E,v) inx = (x;);c1, we have the bound

(H[e]eﬂo minesefe] 20y (er) )

[eer vV2by(e) +1
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where p = (u;)ier, v = (vi)ier, and (V, J\70) is any spanning tree of(V,./\7).

Proof. We have the familiar expansion

7'1(3[ [T(On)] =

1 =(7(e)) ]
S E[ T[], (4.43)
NIIEEN V Qb’Y(E) +1 ® |:e€E N

Ve [N]

where the sum can be written as

> ( I1 E[ [T X5V @) D( [T t{io(eDl < min by(eq}E{ I1 XE@‘E'”@(J))D_

$VSIN] Ngel  “eeld (]eN e€le]

Note that an injective map ¢ : V' — [N] satisfying the band width condition

|p([e])| < min by ery, Vel e N
e’€le]
might not exist (e.g., if Oy consists of a single RBM O y of fixed band width b and T is a
star graph S, with k£ > 2b); however, we can certainly bound the number of such maps by

N min 2b (1),

e’€le]

[e]eNo

where (V, ./\70) is any spanning tree of (V, N ). Here, we are simply recycling the bound
from Equation (4.8). The bound (4.42) then follows from our moment assumption (3.1).
As before, we see that 74[T(Oy)] vanishes unless

Mig =0 or mig >2,  V(i,[e]) € IxN.

Unfortunately, our fixed normalizations 1/2b; + 1 allow 7%[T(Oy)] to survive in the limit
for test graphs 7" with m; [.) > 2. In this case, the assumption that 3; € [~1, 1] no longer

suffices to spare us the consideration of the ordering v : [#(V)] = V on the vertices.
Nevertheless, our i.i.d. assumption ensures that if ¢; : V < [Ny] and ¢3 : V < [Ng]
satisfy the band width condition and induce the same ordering ¢4, = v4,, then the
corresponding summands of (4.43) are equal, i.e.,

50,(1) = B| TL 20 0n(6)| = | T] =0 0n(e))| = (1),

ecE ecE

For an ordering 1 : [#(V)] = V, we write Sy, for the common value of

{S4 : 1y = ¢ and |¢([e])| < min by for all ] € N}

This allows us to rewrite (4.43) as
(%)

I(ON)) = Z T @M= X WSO,

#(V)]5V :[#(V)SV

where
W) Z¢:V<—>[N] <ﬂ{w¢ = w} H[e]eﬁ ]1{‘¢([€])| < mine’e[e] b'y(e’)}>
PNy = N .
We note the contrast to the situation in (3.14). In particular, we cannot use the same
weak convergence argument to give an integral representation of limy_.o p%’) as in
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(3.15) due to the vanishing scales limy_, bﬁ = 0. Instead, we must opt for a discrete
approach.
Let (agv )) denote the sequence defined by the numerator of pg\,) so that

ol = 3 (]1{%—1/1} IT 1{e(e)] < min bv(e)})

$:V—[N] [eleN <'elel

By considering a map ¢; : V < [N] (resp., ¢2 : V — [M]) asamap &, : V — [N + M|
(resp., 2 : V — [N + M]) of the form

®1(v) = ¢1(v)  (resp., Pa(v) = d2(v) + N),

we see that the sequence (a (w)) is superadditive:
ag\v}blM > a(w) + a(?).
Fekete’s lemma then implies that
(¥) g\(/[)) :
py = lim py = SUp — < - min 2b+ (e,
[e]eN

which proves the convergence

lim 79[T(On)] =

N—oo Z HeeE‘/Qb e)-i- Z

Qw5¢ (T) (444)

Y:[#WZV Y:[#W)ZV
O
Note that our bound (4.42) implies the convergence
) I1. ﬂ.ci(T) if T is a colored double tree,
lim Sy(T) = HHiel ™ (4.45)
b—oo Z N 4w Su(T) {O otherwise,
PF V)=V
where
b = min bv( )

ecl

Theorem 4.14 still holds for general 5; € D: in fact, since we already kept track of
the orderings 1, the same proof goes through just as well (except with different values
for S, (T)). In this case, the limit (4.45) might not exist depending on the relative rates
of growth in the band widths (b;);c;. If we assume that the band widths grow at the
same rate in the limit b — oo, then the proportions q](\,) will tend to (V) as in (3.16), but
one can skew these proportions along different subsequences to create an obstruction.
One can also periodize the fixed band width RBMs without affecting the calculations (a
fixed band width is in some sense the slowest growth possible, and so we can adapt the
techniques from the slow growth case).

At this point, we can combine everything into a result for the joint (traffic) distribution
of periodic RBMs, slow growth RBMs, proportional growth RBMs, and fixed band width
RBMs; however, the result is not much more interesting than what is already known
from the previous section due to the form of the LTD (4.44). In particular, we do not
have any interesting asymptotic independences arising between the fixed band width
RBMs and those of the previously considered regimes, nor amongst the fixed band width
RBMs themselves (except in the trivial case b; = 0 of the diagonal matrices).
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A An almost Gaussian degree matrix

As an application of Theorem 4.8, we compute the LSD of the degree matrix deg(®y)
of a proportional growth RBM O 5. For simplicity, we restrict our attention to real Wigner
matrices X . We find that the LSD is almost Gaussian in the sense of its moments.

As before, we form the corresponding proportional growth RBMs, unnormalized Ey
and otherwise Opy. Let ¢ = limy_, o N € (0,1] denote the limiting proportion of the
band width by. The entries of the degree matrix Dy = deg(®y) can then be written as

N
Dy (i,j) = 1{i = j} Y _ On(i,k)

k=1

En(i k) Mi=j) <~ .
_1{2_3}2\/»\/267 \/N\/mkzz:lﬂﬂl lebN}XN(Z7k)

One can use the asymptotics of partial sums of falling factorials to compute the limits

lim E|— tr(D% N
i {N tr( )} vYm € NN,
for example, by choosing a convenient realization of the random variables Xy (i, k) and
then appealing to the universality of (4.40); however, one can avoid such a tedious
calculation and obtain the answer from (4.40) directly. In particular, note that we can
factor the distribution up, through the traffic distribution vg, via

N

where C,, is the directed cycle with m edges and S,, = (V, E) is the inward facing
directed m-star graph, i.e.,

]E[l tr(Dgg)] — 7y [Cn Dy D) = T[S (O -, O],

Dy N

Dy
Cn(Dyn,...,Dy) =

Dy

- Dv

and

Here, we have made the substitution

Dy = ‘Ov.

in/out
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We can rewrite this in terms of the injective traffic state to obtain

™N[Sm(On,....ON)] = > TR[SE(On,...,Op)].
TEP(V)

In the limit, (4.40) tells us that the only contributions come from double trees. If m is
odd, then there are no such contributions since a double tree has an even number of
edges, whereas S,,, has m edges. This implies that

. 1 my| . .
A}gnoo E [N tr(DN)} =0 ifmis odd. (A1)
Henceforth, we assume that m = 2¢. Let vy, ..., v9, denote the leaf vertices of Sy, with

the internal node vy. We see that
S3, is a double tree < 7 = {{vg}} Up,
where p is a pair partition of {v1,...,ve,}. In particular, each such 7 produces the same

double tree Ty(On,...,On) = ST,(Op,...,Oy), where T is the inward facing double
{-star graph. It follows that

. 1 : =
lim E{Ntr(D%)} = lim_ > RS5O, ..., On)]

N—o00
TeP(V)
Int,(c)
= = (20 — )N—Le\")
#(P2(20))pr, (c) = (2¢ 1)”NormT2(c)
_ (2€ . 1)”f[0,1]2+1 Hi:l ]1{|$0 - :L‘]c‘ < C} dxy -+ - dxg
B (2c — 2)t
¢
fol (fol I{|zo — 21| < ¢} dxl) dxg
= (20 — 1)
B (2¢ — c2)t
2 AN AN ’
2 (26 A1) — o) 4 (20— 1](2¢ A 1)
= (20— 1) e | %)

where we have made use of (4.26) in the last equality.

We recognize the double factorial (2¢ — 1)!! as the 2/-th moment of the standard
normal distribution. In view of Theorem 4.12, the limits (A.1) and (A.2) show that yup,
converges weakly almost surely to a symmetric distribution v, of unit variance with
almost Gaussian moments (if ¢ = 1, then these moments are precisely Gaussian). In
particular, we can compute the limits

7 (e A — ) 4 2¢ — 1] (2¢ A1)

li =1 Ve N
C_1>151+ (2¢c — c2)¢ ) € IN,
and
2 41 0+1 ’
clgfi_ e = ) =1, VWl eN,

both of which are special cases of (4.32). The moments (A.2) further imply that the LSD
v. has unbounded support. It would be interesting to see if the distributions (VC)CE(O,I)
arise in any other contexts.
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a4 )

Oy
N J

Ty(On,...,0On)

Figure 12: An example of a pair partition p of the leaf vertices of Sy, giving rise to an
inward facing double ¢-star graph 7 for ¢ = 3. Here, we use different colors for the
different blocks of the pair partition. Note that any pair partition of the leaf vertices
gives rise to the same double tree T}.
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