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Dynamical freezing in a spin glass system with
logarithmic correlations
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Abstract

We consider a continuous time random walk on the two-dimensional discrete torus,
whose motion is governed by the discrete Gaussian free field on the corresponding
box acting as a potential. More precisely, at any vertex the walk waits an exponentially
distributed time with mean given by the exponential of the field and then jumps to
one of its neighbors, chosen uniformly at random. We prove that throughout the
low-temperature regime and at in-equilibrium timescales, the process admits a scaling
limit as a spatial K-process driven by a random trapping landscape, which is explicitly
related to the limiting extremal process of the field. Alternatively, the limiting process
is a supercritical Liouville Brownian motion with respect to the continuum Gaussian
free field on the box. This demonstrates rigorously and for the first time, as far as
we know, a dynamical freezing in a spin glass system with logarithmically correlated
energy levels.
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1 Introduction

1.1 Setup and main result

Let VN := [0, N)2 ∩Z2 be the discrete box of side length N and consider the random
field hN ≡ (hN,x)x∈VN

having the law of the discrete Gaussian free field (DGFF) on VN

with zero boundary conditions. That is, hN is a centered Gaussian with covariance given
by GVN

, the discrete Green function of a simple random walk on Z2 killed upon exiting
VN .

On the same probability space, define a process XN ≡ (XN (t) : t ≥ 0) taking values
in the two-dimensional discrete torus V ∗

N = Z2/NZ2, whose vertices we identify with
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Dynamical freezing

those of VN . The law of XN is given conditionally on hN to be Markovian with transition
rates:

q
(β)
N (x, y) :=

{
1
4e

−βhN,x if d∗N (x, y) = 1 ,

0 otherwise ,
(1.1)

where d∗N is the metric on V ∗
N , which is naturally induced by the Euclidean norm ‖ · ‖ on

Z2. Evidently, XN is a continuous-time symmetric random walk on V ∗
N with mean holding

time eβhN,x at vertex x. Moreover, it is reversible with respect to its unique stationary
distribution µ̂

(β)
N given by

µ̂
(β)
N :=

µ
(β)
N

µ
(β)
N (VN )

, µ
(β)
N :=

∑
x∈VN

eβhN,xδx . (1.2)

The aim of the present work is to derive a large N distributional limit for the process
XN when time and space are scaled appropriately, and we therefore start by constructing
the limiting object. The first ingredient in this construction is a spatial version of the
K-process, which was introduced by Fontes and Mathieu in [20] (see Subsection 1.2.1
for further historical comments).

To define this process, let τ ≡ (τk)
∞
k=1 be a decreasing sequence of positive values,

thought of as trap depths (the “trapping” terminology will become apparent in the next
subsection). For k ≥ 1, let Ak ≡ (Ak(u) : u ≥ 0) be independent Poisson processes with

rate 1, and let σ(k)
j denote the time of the j-th jump of Ak, with the convention that

σ
(k)
0 := 0. For u ≥ 0, define the clock process T (τ) ≡ (T (τ)(u) : u ≥ 0) associated with τ

by,

T (u) ≡ T (τ)(u) :=

∞∑
k=1

τk

Ak(u)∑
j=1

e
(k)
j , (1.3)

where (e
(k)
j )∞j,k=1 are i.i.d. exponentially distributed random variables with rate 1, which

are independent of the Ak’s.
By taking expectation, one finds that T (τ)(u) <∞ for all u ≥ 0 almost surely, provided

that
∑

k τk <∞. In this case, we may construct a process K(τ) ≡ (K(τ)(t) : t ≥ 0) taking
values in N∗ := N ∪ {∞} via

K(t) ≡ K(τ)(t) :=

{
k if t ∈

[
T (σ

(k)
j −) , T (σ

(k)
j )
)
for some k ≥ 1 and j ≥ 1 ,

∞ otherwise.
(1.4)

We refer to K(τ) as the K-process associated with depths τ .
Given an additional sequence ξ ≡ (ξk)

∞
k=1 of points in V := [0, 1]2, we may also define

the process Y (ξ,τ) ≡ (Y (ξ,τ)(t) : t ≥ 0) taking values in V ∗ := V ∪ {∞} via

Y (t) ≡ Y (ξ,τ)(t) :=

{
ξK(t) if K(t) 6=∞ ,

∞ if K(t) =∞ .
(1.5)

We refer to ξ as a sequence of trap locations and to Y (ξ,τ) as the spatial K-process
associated with trapping landscape (ξ, τ).

Next, we recall some results from the extreme value theory for the DGFF. To this end,
define the structured extremal process of hN as the point process on V ×R× [0,∞)Z

2

given by

ηN,r :=
∑
x∈VN

δx/N ⊗ δhN,x−mN
⊗ δ(hN,x−hN,x+y)y∈Br

1{hN,x≥hN,x+y : y∈Br} , (1.6)
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Dynamical freezing

where mN := 2
√
g logN − 3

4

√
g log logN is an appropriate centering sequence and Br =

Br(0) is the open Euclidean ball of radius r around 0 in Z2. Setting g := 2/π and α =
√
2π,

it was shown in [11, Theorem 2.1] that there is a probability measure ν on [0,∞)Z
2

and
a random measure Z on V , satisfying |Z| := Z(V ) ∈ (0,∞) almost surely, such that with
Ẑ = Z/|Z|, we have

ηN,r =⇒
N→∞
r→∞

η ∼ PPP
(
Ẑ(dx)⊗ |Z|e−αhdh⊗ ν(dφ)

)
. (1.7)

Above PPP stands for Poisson point process, and the law of η should be interpreted as
given conditionally on Z, which is assumed to be defined on the same probability space
as η itself. Also, here and after, whenever we write F (p, q)→ F (p0, q0) in the limit when
p → p0 followed by q → q0, we mean that limq→q0 lim supp→p0

d
(
F (p, q), F (p0, q0)

)
= 0,

where d is an appropriate metric on the range of F .
The second ingredient in the construction of the limiting object is a point process

which we denote, for β > α, by χ ≡ χ(β). It is defined on the same probability space as
the measure Z and its law is given conditionally on Z as

χ(β) ∼ PPP
(
Ẑ(dz)⊗ κβ |Z|t−1−α/βdt

)
, (1.8)

where

κβ :=
1

β

∫ ( ∑
y∈Z2

e−βωy

)α/β
ν(dω) . (1.9)

The integral above, which involves the distribution ν from the law of η, was shown to
be finite in [11, Theorem 2.6]. Together with the stated properties of Z, this ensures
that χ(β) is a well-defined random Radon point measure on V × (0,∞). Furthermore, the
almost-sure integrability of t 7→ (t ∧ 1) under the second component of the conditional
intensity measure assures that we can enumerate the atoms of χ(β) in descending order
of their second coordinate, and that if (ξ(β), τ (β)) ≡

(
(ξ

(β)
k , τ

(β)
k )

)∞
k=1

denotes such an

enumeration, then
∑

k τ
(β)
k <∞ almost surely (see Lemma 2.3). We refer to (ξ(β), τ (β))

as the limiting trapping landscape of the DGFF.
Combining both ingredients, we can now construct the process Y (β) ≡

(
Y (β)(t) : t ≥

0
)
on the same probability space as that of χ(β) by specifying its conditional law as

Y (β) |χ(β) d
= Y (ξ(β),τ(β)) . (1.10)

The process Y (β), henceforth called the χ-driven spatial K-process, is the desired limiting
object.

For what follows, we endow V ∗ with the metric d∗ which agrees with the Euclidean
distance on V and puts ∞ at a distance 1 from all other points (the choice of 1 is
arbitrary and any positive number would yield an equivalent metric). For t > 0, the
space L([0, t], V ∗) consists of all measurable functions from [0, t] to V ∗, and is equipped
with the metric ‖f − g‖L([0,t],V ∗) :=

∫ t

0
d∗(f(s), g(s))ds for f, g ∈ L([0, t], V ∗). Observe that

under ‖ · ‖L([0,t],V ∗) (which is not a norm, despite the notation) this space is complete and
separable, and that this metric generates the topology of convergence in measure on
functions from [0, t] to V ∗. Here, the interval [0, t] is implicitly equipped with Lebesgue
measure. The next theorem is the principle result of this work.

Theorem A. Let β > α. Then with sN := gN2
√
gβ(logN)1−3

√
gβ/4 and for any t > 0,(

1
NXN (sN t) : t ∈ [0, t]

)
=⇒

(
Y (β)(t) : t ∈ [0, t]

)
as N →∞ , (1.11)

where the above weak convergence is that of random functions in L
(
[0, t], V ∗).
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Dynamical freezing

An equivalent formulation of this theorem, which is just an explicit rewrite of (1.11),
is as follows: for any ε > 0 if N is large enough, then there is a coupling between
XN and Y (β) so that with probability at least 1 − ε, the set of times t ∈ [0, t] with
d∗
(

1
NXN (sN t), Y (β)(t)

)
> ε has Lebesgue measure at most ε.

1.2 Interpreting the limiting process

Theorem A states that on timescales of the order sN and when space is scaled by N ,
the process XN tends to be close in law to the process Y (β). Understanding the large
N behavior of XN therefore requires an understanding of the statistics of Y (β) and in
turn the probabilistic features of its two ingredients: the spatial K-process Y (ξ,τ) and the
limiting trapping landscape of the DGFF (ξ(β), τ (β)).

1.2.1 The spatial K-process

The process Y (ξ,τ) is a spatial version of the N ∪ {∞}-valued K-process of Fontes and
Mathieu, which was introduced in [20] to describe scaling limits of dynamics in effective
trap models. It is named after Kolmogorov [25], who considered a process similar to
K(τ), albeit with the clock process T (u) in (1.3) modified by a linear term. Endowing
N ∪ {∞} with any metric which makes it compact, Fontes and Mathieu show that K(τ) is
strongly Markovian on N ∪ {∞} and can be defined to have càdlàg sample paths.

The evolution of K(τ) is as follows. When at state k ∈ N, the process waits an
exponentially distributed time with mean τk and then jumps to ∞. At ∞ it spends 0

time (that is the exit time is almost surely 0), after which it jumps to a new state k′ ∈ N
(possibly k again). Following a visit to∞, the hitting time of any finite subset of states
in N is finite almost surely and the entrance distribution to any such subset is uniform.
Finally, the set of times at which the process is at ∞ has Lebesgue measure 0. In the
terminology of Markov processes,∞ is said to be an unstable and fictitious state.

Thinking of N as indexing countably many traps, with trap k having depth τk, the
process K(τ) represents a dynamics of “uniform” trap hopping. That is, it evolves
by hopping from one trap to another, getting stuck at a trap for a time with mean
corresponding to its depth and then jumping to the next trap, which is chosen (formally)
uniformly at random. Facilitating such a jump is the state ∞, in which the process
spends an infinitesimal amount of time, and which essentially captures this transitional
period.

In analog, if traps are thought of as placed on V , such that trap k is at location ξk,
then the spatial K-process with trapping landscape (ξ, τ), as given in (1.5), describes the
current location (instead of trap index) of a dynamics which is defined exactly as before.
Observe that the process is still Markovian and that∞, which still represents a state of
transition from one trap to another, remains unstable and fictitious.

1.2.2 The limiting trapping landscape of the DGFF

In view of the law of χ(β), the depths of the traps in the trapping landscape are distributed
as the atoms, in descending order, of a Poisson point process on (0,∞) with the Fréchet
intensity measure t−α/β−1dt, all multiplied by the global random factor (κβ |Z|)β/α. The
corresponding trap locations are then i.i.d., and drawn independently of the depths from
distribution Ẑ. Both |Z| and Ẑ are determined from the random measure Z, which is
drawn beforehand.

To explain the appearance of χ(β) in the definition of the trapping landscape governing
Y (β), we appeal to Theorem 2.6 from [11], which states that when β > α, the measures
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Dynamical freezing

µ
(β)
N and µ̂

(β)
N from (1.2) admit the following large N distributional scaling limits:

e−βmNµ
(β)
N (N ·) =⇒ µ(β) :=

∑
(x,t)∈χ(β) tδx , µ̂

(β)
N (N ·) =⇒ µ̂(β) := µ(β)

µ(β)(V )
, (1.12)

where both limiting measures are purely discrete.
Thus, the process χ(β) is encoding the atoms (location and mass) of the limiting

measure µ(β) and, after normalization by the sum of the masses, also the atoms of the
limiting stationary distribution µ̂(β). It follows that in equilibrium N−1XN is typically
found close to one of the locations ξ

(β)
k with probability proportional to τ

(β)
k , and it

is therefore no surprise that when timescales are tuned properly, this static behavior
translates into a hopping dynamics with respect to ξ(β) and τ (β).

We remark that when β ≤ α, the measures µN (β) and µ̂
(β)
N still admit scaling limits

(with a different normalization), but the limiting measures are no longer discrete (see,
for instance, [12, 28]). In the terminology of spin glasses one says that β = α marks the
glassy transition point of the system (see Subsection 1.3.1).

1.2.3 The χ-driven spatial K-process

Altogether, the large N behavior of N−1XN (sN ·) is that of uniform trap hopping dynam-
ics, with an underlying trapping landscape reflecting (up to a global multiplicative factor)
the atoms of the equilibrium distribution of XN . Combining the descriptions above, we
see that XN tends to get stuck in clusters of meta-stable states where its stationary
distribution is exceptionally large. These clusters have diameter o(N) (in fact O(1), see
Subsection 1.4.1), and XN jumps over or tunnels through the remaining vertices in
negligible time (see [3] for a mathematical framework for meta-stability and tunneling,
which is aligned with our use of these terms).

1.3 Motivation and related work

Let us now discuss the motivation for studying the model in this work. A key feature
of the underlying field hN is its logarithmic correlations. Indeed, known asymptotics for
the discrete Green function (see Lemma A.1) yield

E(hN,x − hN,y)
2 = GN (x, x) + GN (y, y)− 2GN (x, y) = 2g log ‖y − x‖+O(1) , (1.13)

for x, y ∈ VN away from the boundary of VN . Such fields have attracted considerable
attention in the past few years, but mainly for their “static” (structural) features. Never-
theless, logarithmic correlations are of considerable interest in the dynamical context as
well, and we proceed to discuss several possible interpretations of the model which lead
to different motivations for considering it.

1.3.1 Low temperature spin glass dynamics and effective trap models

One may view µ̂
(β)
N from (1.12) as a spin glass-type Gibbs distribution for a thermody-

namical system at temperature β−1 with energy states (−hN,x : x ∈ VN ). In this context,
the process XN models the Glauber dynamics by which such a system relaxes to its
equilibrium state. A conjectured universal feature of many spin glass systems, at least of
the mean-field type, is the occurrence of a glassy phase at low temperature. This phase
is characterized by a trapping behavior (also meta-stability or freezing) in the dynamics
which reflects a stationary distribution with few isolated and dominant energy states (or
clusters of these states).

So far this low-temperature dynamical picture has only been verified mathematically
in few instances, with Derrida’s random energy model (REM) and Bouchaud’s trap
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Dynamical freezing

model (BTM) being the principal ones. The REM is defined similarly to our model,
only with V ∗

N usually replaced by the hypercube HN := {0, 1}n, where N = 2n and,
more importantly, where the Gaussian potential hN = (hN,x : x ∈ HN ) is uncorrelated
with variance diverging logarithmically in N . In the BTM, which was introduced as an
effective trapping model, one considers any underlying graph, but replaces hN,x with
log τx, where the τx’s are i.i.d. and in the domain of attraction of a stable law with
index 1.

At short (pre-equilibrium) timescales, both the REM and the BTM on various finite
graphs and with β > 1, have been shown to exhibit aging (see, for example, [4, 5, 7]).
The latter is a trapping phenomenon: the evolving dynamics encounters states with
progressively lower energy levels, around which it gets stuck for increasingly longer
periods of time and thus gradually slows down (or ages). Other cases in which pre-
equilibrium timescales were considered include Glauber dynamics for the SK p-spin
model [13] and the BTM on Zd [6].

Longer (in-equilibrium) timescales were studied in the BTM with β > 1 on various
finite graphs [20, 23] and under fairly general graph-topological conditions [24]. In all
cases, the dynamics were shown to converge, under proper scaling of time and space, to
the trapping dynamics given by the (non-spatial) K-process. As in our case, trap depths
are given by the atoms of a Poisson point process with the Fréchet intensity, albeit
without the random multiplicative factor as in (1.8). In-equilibrium timescales were also
studied in the case of Glauber dynamics for the generalized REM, see [21, 19].

In view of (1.13) and the discussion in Subsection 1.2.2, our work can be seen
as demonstrating dynamical freezing for a spin glass system with a logarithmically
correlated potential, throughout its glassy phase (β > α), and observed at in-equilibrium
timescales. We stress that logarithmic correlations are natural to consider for such
systems, as they reflect the conjectured ultra-metric correlation structure of energy
states in more realistic spin glass models at low temperature.

Although we recover the K-process in the limit, as in the case of the BTM (thereby
strengthening its position as a universal object for in-equilibrium dynamics of spin
glasses in their glassy phase), there are three notable differences compared to the i.i.d.
case. First, traps are not single vertices but rather clusters having, essentially, finite
diameter (although this diameter disappears in the scaling limit). Second, traps are not
scattered uniformly on the underlying domain, but rather according to the non-trivial
distribution Ẑ, which is itself random. Third, there is an overall random multiplicative
factor |Z| governing the depths of all traps, resulting in a global random slow-down or
speed-up factor for the evolution of the process. All of these are consequences of the
correlations in the model, which are absent in the BTM.

1.3.2 Supercritical Liouville Brownian motion

The measure µ
(β)
N (N ·) may also be seen as a discrete version (up to normalization) of

the Liouville quantum gravity measure (LQGM, also known as Gaussian Multiplicative
Chaos - GMC) associated to the continuum Gaussian free field (CGFF) on V . The latter
is formally defined as a random measure whose Radon-Nykodym derivative with respect
to Lebesgue measure is (up to formal normalization) e−βh, where h is the CGFF on V . In
fact, one way of making sense of this formal definition is via a scaling limit similar to
that in (1.12) (see [28] for a general survey on LQGM/GMC and [2] for a construction of
general super-critical GMCs and their duality relation with the sub-critical ones).

In a similar way, XN can be seen as the discrete analog of the Liouville Brownian
motion (LBM) on V , which is formally a Brownian motion B ≡ (B(t) : t ≥ 0) time-
changed by the inverse of the process t 7→

∫ t

s=0
e−βhB(s)ds, where h is again the CGFF on

EJP 23 (2018), paper 59.
Page 6/31

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP181
http://www.imstat.org/ejp/


Dynamical freezing

V . Existence of this object as a continuous strongly Markovian process has been shown
in the subcritical case β < α [8, 22] and in the critical case β = α [29]. Our work may
be seen as the corresponding construction of LBM in the supercritical regime β > α.
It should be stressed that unlike in the case β ≤ α, our object is not constructed as a
measurable function of the field h and the motion B, but rather only as a distributional
limit or, alternatively, by specifying its law directly. Both the LQGM/GMC and the LBM
are fundamental objects in the physical theory of two-dimensional Liouville quantum
gravity, whose mathematical formalization is an ongoing task.

1.3.3 Particle in random media

An alternative point of view is that of a particle whose motion is governed both by
thermal activation and the disordered media in which it diffuses. In this context, it is
perhaps more natural to study the process on an infinite domain (using the pinned DGFF
on Z2 as the underlying media, for instance), where there is no stationary distribution.
It is believed [15, 16] that logarithmic correlations provide precisely the right balance
between the the depth (energy) and number (entropy) of valleys in the environment −hN ,
giving rise to phenomena not present when correlations decay slower, as in Sinai’s walk
on Z [30], or faster, as in the random conductance model [9]. This model was recently
studied in [10], where predictions from [15, 16] were partially confirmed.

1.4 Heuristics and outline

1.4.1 The extremal picture

The emergence of Y (β) as the scaling limit of XN becomes more clear if one looks at the
extremal structure of the field for large N . Thanks to recent progress in this area, this
structure is now well understood, and we proceed to describe the relevant results in this
theory.

The principle extreme value, namely the global maximum of the field, was studied by
Bramson, Ding and Zeitouni [14], who showed the existence of a random variable M∗,
finite almost surely, such that with mN as in (1.6),

max
x∈V ∗N

(hN,x −mN ) =⇒M∗ as N →∞ . (1.14)

(This convergence of the centered maximum is the fruit of a long effort, dating back to a
few decades before, and we invite the reader to consult [14] for an historical overview.)

Other extreme values can be studied by defining for A ⊆ R and N ≥ 1 the set

ΓN (A) :=
{
x ∈ VN : hN,x −mN ∈ A

}
. (1.15)

Writing ΓN (v) as a shorthand for the extreme superlevel set ΓN ([v,∞)), Ding and Zeitouni
showed in [18] that for all v ∈ R,

lim
r→∞

lim sup
N→∞

P
(
∃x, y ∈ ΓN

(
− v
)
: r < ‖x− y‖ < N/r

)
= 0 . (1.16)

Thus, with high probability, the extreme values congregate in clusters of O(1) diameter,
which are N/O(1) apart.

This clustering of extreme values, which is a consequence of the short range corre-
lations of the field, motivates the structured form of the extremal process ηN,r in (1.6).
This process captures all extreme values by recording the location and height of the
local maximum in each extremal cluster (the first two coordinates), and then separately
the relative heights of all extreme values around it (the third coordinate).
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In view of the convergence of ηN,r to η as given by (1.7), we see that the heights
of the cluster maxima (centered by mN ) asymptotically form a Poisson point process
with the exponential intensity |Z|e−αvdv. The locations of these cluster maxima are
asymptotically i.i.d. and chosen, after scaling by N , according to Ẑ. Lastly, relative to
the cluster maximum, the field around each cluster is asymptotically chosen in an i.i.d.
fashion according to the law ν.

This asymptotic picture suggests that the size of the extreme superlevel sets satisfies
log |Γ(−v)| ∼ αv as v →∞ with high probability for large N (see Proposition 3.1). This

indicates that when (and only when) β > α, the measure µ
(β)
N from (1.12) concentrates

on vertices corresponding to the extreme values of hN . In view of the definition of both
µ
(β)
N and ηN,r, it then holds that

e−βmNµ
(β)
N (N ·) ≈

∑
(x,v,ω)∈ηN,r

eβv
( ∑

y∈Br

e−βωyδ(x+y/N)

)
≈

∑
(x,v,ω)∈ηN,r

(
eβv

∑
y∈Br

e−βωy

)
δx .

(1.17)
Recalling that the mean holding time of XN at x is µ

(β)
N (x) we see that each cluster

(x/N, v, ω) ∈ ηN,r traps the walk for a time proportional in mean to eβv
∑

y∈Br
e−βωy .

Since ηN,r converges to η, the right hand side in (1.17) is approximately
∑

(x,t)∈χ̃(β) tδx,

where χ̃(β) is obtained from η via the pointwise transformation:

(x, v, ω) 7−→
(
x , eβv

∑
y∈Z2

e−βωy

)
. (1.18)

But then an elementary calculation (Proposition 3.6) using the finiteness of the integral
in (1.9) shows that χ̃(β) has the law of χ(β) described in (1.8), which is consistent with the
first statement in (1.12). Thus the atoms of χ(β) indeed encode the trapping landscape
for XN in the limit.

As for the K-process, since the traps (or clusters) are N/O(1) apart and O(1) in
diameter, standard random walk theory on the two-dimensional torus can be used to
show that the number of returns to a trap, before exiting a ball of radius O(N/ logN)

around it, scales to an exponentially distributed random variable, and that following this
exit, the next chosen trap is drawn approximately uniformly. This shows that for large N

the process XN exhibits the uniform trap hopping dynamics, which is characteristic of
the spatial K-process.

We remark that such random walk analysis has been done in the case of the BTM on
the two-dimensional torus, both in in-equilibrium [23] and pre-equilibrium timescales [7].
In this case, traps are single vertices (not finite clusters) and are scattered uniformly in
V ∗
N (not according to Ẑ). Nevertheless, this analysis essentially still applies (with small

modifications), and we therefore make use of some of the statements from these works,
notably the uniform selection of traps (Lemma 5.1).

1.4.2 Outline of the paper

Let us describe the structure of the rest of the paper. In Section 2, we construct a spatial
pre K-process from a given spatial K-process by forgetting all but the deepest M traps.
We then show that this process becomes close in law to the original process when M is
large. Section 3 is devoted to characterizing the limiting trapping landscape of the DGFF,
rigorizing the heuristic picture in the previous subsection. In Section 4, we introduce
the trace process. This process “fast-forwards” through vertices of V ∗

N which are not
close to the M deepest traps. As in Section 2, the trace process is shown to be close in
law to XN when M is taken large.

Next, in Section 5, we study the trace process and show that it exhibits the uniform
trap hopping dynamics of the spatial K-process, driven by the limiting trapping landscape
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of the DGFF. The outcome of this subsection is a coupling between the trace process and
the spatial pre K-process, in which they stay close to each other with high probability. In
Section 6, we combine this with the outcomes of Section 2 and 4, and use standard weak
convergence theory to complete the proof. Finally, Appendix A includes bounds on the
discrete Green function in two dimensions both on the torus and in Z2.

2 From the K-process to the pre K-process

It is convenient to introduce a simpler variant of the K-process, in which we keep
only a finite number of the deepest traps. We call such a process a pre K-process (often
called a truncated K-process in the literature). The main result of this section is that the
pre K-process is a good approximation to the full K-process, when the number of traps is
taken to be large enough. We first consider a deterministic sequence of locations and
depths and then treat the χ-driven version of this process.

2.1 Closeness of K-processes and pre K-processes

Let (ξk, τk)k≥1 be a fixed collection of locations and depths, with the depths summable.
Given M ∈ N and using the definitions and notation from the construction of the full
K-process in Subsection 1.1, define the pre clock-process (TM (u) : u ≥ 0) as

TM ≡ T
(τ)
M (u) :=

M∑
k=1

τk

Ak(u)∑
j=1

e
(k)
j , (2.1)

and then the corresponding pre K-process as

KM (t)=K
(τ)
M (t) :=

{
k if t∈

[
TM (σ

(k)
j −), TM (σ

(k)
j )
)
for some j ≥ 1 and one 1≤k ≤M,

∞ otherwise.
(2.2)

Observe that KM (t) 6= ∞ for all t almost surely. In fact, KM is a random walk on the
complete graph with M vertices (self-loops included), with an exponentially distributed
holding time with mean τk at the k-th vertex. From KM and the locations ξ, define the
spatial pre K-process Y

(ξ,τ)
M :

YM (t) = Y
(ξ,τ)
M (t) := ξKM (t). (2.3)

We start with a simple observation:

Lemma 2.1. Let ε, t > 0. There is U0(ε, t, τ) > 0 so that with probability at least 1− ε, for
all M ∈ N, and whenever U ≥ U0 we have TM (U) ≥ t.

Proof. This follows immediately from TM (u) ≥ T1(u)→∞ as u→∞ which holds almost
surely in light of, for instance, the strong law of large numbers.

We now show that M can be taken large enough so that the spatial K-process defined
in (1.5) and the corresponding spatial pre K-process defined in (2.3) agree for most of a
given finite time interval. Below, we write Leb(A) for the Lebesgue measure of a Borel
set A ⊂ R.
Lemma 2.2. Let ε, t > 0. There is M0(ε, t, τ) ∈ N so that with probability at least 1− ε,
whenever M ≥M0, we have Leb(BM (t)) ≤ ε, where

BM (t) :=
{
t ∈ [0, t] : Y (ξ,τ)(t) 6= Y

(ξ,τ)
M (t)

}
(2.4)
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Proof. It suffices to work with pre K-processes in place of spatial pre K-processes, and
we do so throughout the proof. Let M,M ′ ∈ N, to be chosen later with M ′ < M . For
ε, t > 0, use Lemma 2.1 to extract U0 depending on these parameters and the depths τ ,
so that with probability at least 1− ε we have Tm(U0) ≥ t for all m ∈ N. Work with this
U0 and within this high probability event, denoted E , for the remainder of the proof.

For m ∈ N let S(m) be the tail of the full clock process at time U0:

S(m) :=

∞∑
k=m

τk

Ak(U0)∑
j=1

e
(k)
j , (2.5)

and let J(m) be the number of jumps made by the first m Poisson processes Ak at
time U0:

J(m) :=

m∑
k=1

Ak(U0) . (2.6)

For δ > 0, choose M ′ large enough so that E(S(M ′))/U0 ≡
∑∞

k=M ′ τk ≤ δ2 and then
choose M so that E(S(M))/U0 ≡

∑∞
k=M τk ≤ δ3/M ′. Define the event

E ′ :=
{
S(M ′) < δU0

}
∩
{
J(M ′) < δ−1M ′U0

}
∩
{
S(M) < δ2U0/M

′} . (2.7)

By Markov’s inequality, P(E ′) ≥ 1 − 3δ. Work also within E ′ for the remainder of the
proof.

Let {σi}∞i=1 be the jump times of KM , and let ` ∈ N be smallest possible so that σ` > t.
Setting σ0 = 0, the intervals {Ii}`i=1 ≡ {[σi−1, σi)}`i=1 are disjoint and cover of [0, t]. The
process KM is constant on each interval, and we let KM (Ii) denote the value of KM on
the interval Ii. Call an interval Ii extremely deep (ED) if KM (Ii) ∈ {1, . . .M ′}, and call it
moderately deep (MD) otherwise.

If [σi−1, σi) is extremely deep, then K and KM agree on [σi−1, σi)\ [σi−1, σi−1+S(M)],
and thus,

BM (t) ⊂

( ⋃
Ii is ED

[σi−1, σi−1 + S(M)]

)
∪

( ⋃
Ii is MD

Ii

)
. (2.8)

Within E , the number of extremely deep intervals is at most J(M ′), and the total length
of the moderately deep intervals is at most S(M ′). Thus,

Leb(BM (t)) ≤ J(M ′)S(M) + S(M ′) . (2.9)

By (2.7), on E ′ we have Leb(BM (t)) ≤ δU2
0 + δU0. Taking δ = ε/(1 + U0)

2, we obtain
Leb(BM (t)) ≤ 2ε with probability at least 1 − (3δ + ε) ≥ 1 − 4ε. Taking ε/4 for ε in the
first place completes the proof.

2.2 Closeness of χ-driven processes

For M ≥ 1, we now define the χ-driven spatial pre K-process, denoted Y
(β)
M =(

Y
(β)
M (t) : t ≥ 0

)
. This process is defined conditionally on χ(β), just as Y (β) was defined in

Subsection 1.1, using the spatial pre K-process Y (ξ(β),τ(β))
M in place of the full one.

We wish to show that a statement similar to the one in Lemma 2.2 holds also for the
χ-driven processes. We first establish that the χ-driven spatial K-process is well-defined,
a task postponed from Section 1.1.

Lemma 2.3. Let β > α and let χ(β) be defined as in (1.8). Then one may order the atoms
of χ(β) in descending order of their second coordinate. Moreover, if

(
(ξ

(β)
k , τ

(β)
k )

)∞
k=1

denotes such an ordering, then
∑

k τ
(β)
k <∞ almost surely.
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Proof. Suppressing the superscript β, first note that the almost-sure finiteness of Z
and integrability of of t−1−α/β on [t,∞) for all t > 0 implies χ(V ∗ × [t,∞)) < ∞ for all
t > 0, almost surely. This shows an ordering is indeed possible. To show summability,
decompose the sum of the τk as∑

k≥1

τk =
∑
k≥1

τk1(1,∞](τk) +
∑
k≥1

τk1[0,1](τk) , (2.10)

and observe that by the argument above, the first sum has finitely many finite terms
and hence must be finite. To handle the second sum on the right side of (2.10), take
conditional expectation with respect to Z:

E
( ∞∑

k=1

τk1[0,1](τk)
∣∣∣Z) =

(
κβ |Z|

)β/α ∫ 1

0

t−α/βdt . (2.11)

This is finite almost surely since β > α and |Z| <∞ with probability 1.

The next proposition establishes closeness of the χ-driven processes, and is the main
product of this section.

Proposition 2.4. Fix β > α and let ε, t > 0 be given. There is M0(β, ε, t) ∈ N so that with
probability at least 1− ε, whenever M ≥M0,∥∥∥Y (β)(·)− Y

(β)
M (·)

∥∥∥
L([0,t],V ∗)

< ε , (2.12)

Proof. Let B(β)
M be defined conditionally on χ(β) as in (2.4) with (ξ, τ) = (ξ(β), τ (β)). By

Lemma 2.3, we have
∑

k≥1 τ
(β)
k <∞ almost surely, and it follows from Lemma 2.3 and

the bounded convergence theorem that Leb(B(β)
M (t)) tends to zero in probability as

M →∞. It remains to observe that the left hand side of (2.12) is bounded from above
by Leb(B(β)

M (t)) times the diameter of V ∗.

3 The trapping landscape: DGFF extremes

At in-equilibrium timescales, large N and low temperatures, the dynamics are ef-
fectively governed by the extreme values of the underlying Gaussian free field, which
determine the trapping landscape. In this section, we introduce the formal notion of
a trap and collect various results concerning their joint geometry. The proofs of these
results are mostly straightforward adaptations of corresponding statements concerning
the extrema of hN .

3.1 Defining the traps

Let us introduce some notation. For r > 0 define the set of r-local maxima of hN by

ΛN (r) :=

{
x ∈ VN : hN,x = max

y∈Br

hN, x+y

}
, (3.1)

where we recall that Br = Br(0) is the open Euclidean ball of radius r around 0 in Z2. As
XN becomes localized near each x ∈ ΛN (r), we shall refer to x ∈ ΛN (r) (and sometimes
also to Br(x)) as a trap with corresponding depth

τr(x) ≡ τ (β)r (x) :=
∑
y∈Br

eβhN, x+y . (3.2)
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Let xN,k denote the k-th trap in an enumeration of the elements of ΛN (r) in decreasing
order of their depth. For M ∈ N, define the set of deep traps as

ΛN (r,M) ≡ Λ
(β)
N (r,M) :=

{
xN,1, . . . , xN,M

}
. (3.3)

Thus, τr(xN,1) > τr(xN,2) > · · · > τr(xN,M ) > maxy∈ΛN (r)\ΛN (r,M) τr(y). For convenience,
we set ΛN (r,M) := Br(ΛN (r,M)), where in general we write Br(A) for ∪x∈ABr(x). The
remaining vertices are denoted as Λ

c

N (r,M) := VN \ ΛN (r,M).

3.2 Dominance of deep traps

Below, in Proposition 3.1, we show that the Gibbs distribution in (1.2) is asymptotically
“carried” by deep traps when β > α.

Proposition 3.1. Let β > α. Then for any ε > 0, there is M0(ε, β) ∈ N, r0(M, ε, β) and
N0(M, r, ε, β) ∈ N so that for all M ≥ M0, r > r0 and N ≥ N0 with probability at least
1− ε, ∑

x∈Λ
c
N (r,M)

eβ(hN,x−mN ) < ε . (3.4)

We prove two lemmas to deduce Proposition 3.1. Recall the notation ΓN (A) defined
in (1.15), and recall also the shorthand ΓN (v) for ΓN ([v,∞)); let us also abbreviate
VN \ ΓN (v) as Γc

N (v).

Lemma 3.2. For all ε > 0, there is u0(ε) > 0 and N0(ε, u) so that u ≥ u0 and N ≥ N0

imply that with probability at least 1− ε,∑
x∈Γc

N (−u)

eβ(hN,x−mN ) < ε (3.5)

Proof. By Proposition 6.8 in [11], there is β′ ∈ (α, β) and c > 0 so that for all v > 0 and
N ∈ N large enough,

P
(∣∣ΓN (−v)

∣∣ > eβ
′v
)
≤ e−cv . (3.6)

Summing the above probabilities along v = k ∈ N and using the union bound, we see
that for any ε > 0 there exists k0 ∈ N so that for all N large enough, with probability at
least 1− ε, we shall have |ΓN (−k)

∣∣ ≤ eβ
′k for all k ≥ k0. But then, if buc ≥ k0, the sum in

(3.5) is bounded above by∑
k≥buc

∣∣ΓN (−(k + 1)) \ ΓN (−k)
∣∣e−βk ≤

∑
k≥buc

∣∣ΓN (−(k + 1))
∣∣e−βk ≤ Ce−(β−β′)u , (3.7)

which will be smaller than ε for all u large enough.

The next result relates deep traps to the extreme superlevel sets of the field.

Lemma 3.3. Let u > 0 and let ε > 0. There are M0(ε, u), r0(ε,M, u) and N0(ε,M, r, u) so
that M ≥M0, r ≥ r0 and N ≥ N0 imply

P
(
ΓN (−u) ⊆ ΛN (r,M)

)
≥ 1− ε . (3.8)

Proof. Fix u > 0. For M ∈ N, r > 0 and v ≥ u, let A1 be the event that (3.5) holds with v

in place of u and with ε = e−βu, namely:

A1 :=
{∑

x∈Γc
N (−v) e

β(hN,x−mN ) < e−βu
}
, (3.9)
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and define events A2 and A3 as follows:

A2 :=
{∣∣ΓN (−v)

∣∣ ≤M
}
, (3.10)

A3 :=
{
∀x, y ∈ VN , x, y ∈ ΓN (−u) implies ‖x− y‖ /∈ (r,N/r)

}
. (3.11)

Observe that the event in (3.8) contains the intersection A1 ∩ A2 ∩ A3. Hence, by the
union bound it is enough to show that the probability of the complement of each goes to
0 in the limit when N →∞ followed by r →∞ then M →∞ and finally v →∞. Indeed,
this holds for Ac

1 in light of Lemma 3.2, for Ac
2 by Proposition 6.8 in [11] as in (3.6) and

finally for Ac
3 thanks to (1.16).

Combining these lemmas, we can easily present

Proof of Proposition 3.1. Fix β > α and ε > 0 and use Lemma 3.2 to find u > 0 such that
the event in (3.5) occurs with probability is at least 1− ε/2 for all N large enough. Then
using Lemma 3.3 find M0, r0(M) and N0(r,M) such that whenever M ≥M0, r ≥ r0(M)

and N ≥ N0(r,M) the event in (3.8) occurs with probability at least 1− ε/2. But on the
intersection of the last two events, which has probability at least 1 − ε, the inequality
in (3.4) holds.

3.3 Separation of deep traps

Next we address the separation of deep traps. Let ∂VN denote the vertices of Z2

which are neighbors of vertices in VN , but are not in VN , and define rN := N/ logN . We
say the field hN is (r,M)-separated if all deep traps are at least a distance of rN from
one another and from the boundary of VN , that is:

min
x, y ∈ ΛN (r,M)

x 6= y

‖x− y‖ ≥ rN and min
x∈ΛN (r,M), z∈∂VN

‖x− z‖ ≥ rN . (3.12)

Henceforth we denote the event that hN is (r,M)-separated by SN (r,M) ≡ S(β)N (r,M).

Proposition 3.4. Fix β > α and let ε > 0 and M ∈ N be given. There is r0 = r0(M, ε, β)

and N0(r) = N0(r,M, ε, β) so that r ≥ r0 and N ≥ N0 together imply that hN is
(r,M)-separated with probability at least 1− ε.

We first show that when r and M are fixed, we may choose u large enough so that
ΛN (r,M) ⊆ ΓN ([−u, u]) with high probability.

Lemma 3.5. For all M ∈ N and r > 0. There is u0(M, r) > 0 and N0(M, r, u) ∈ N so that
when u ≥ u0 and N ≥ N0,

P(ΛN (r,M) ⊆ ΓN ([−u, u])) ≥ 1− ε (3.13)

Proof. Fix the parameters M and r. Let r′ ≥ r and choose v ∈ [0, u]. Let A1 be the event
from (3.9). Recall the definition of ηN,r from (1.6), and define the following events:

A4 :=
{
ηN,r′

(
[0, 1]2 × [−v, 0]× [0,∞)Z

2)
≥M

}
, (3.14)

A5 :=
{
ΓN (u) = ∅

}
. (3.15)

Observe that for any v ∈ [0, u], the event in (3.13) contains the intersection A1 ∩A4 ∩A5.
As before, it is therefore sufficient to show that the complementary probabilities go to
zero when N →∞, followed by u→∞, then r′ →∞ and finally v →∞.

Indeed, this is true for A1 thanks to Lemma 3.2. For A4 this holds in light of (1.7)
which implies that P(Ac

4) tends, when N → ∞ followed by r′ → ∞, to the probability
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that a Poisson random variable with conditional mean Zα−1(eαv − 1) is smaller than
M . In light of the almost-sure finiteness of Z, this probability will go to 0 when v →∞.
Finally, A5 is handled by (1.14).

It is now a short step to

Proof of Proposition 3.4. Fix β > α and let ε > 0 and M > 0 be given. Use Lemma 3.5
to find u > 0 so that the event in (3.13) holds with probability at least 1− ε/3 for all N
large enough. By (1.16) we may then find r large enough so that for all N ≥ N0(r), any
x, y ∈ ΓN (u) not within Euclidean distance r from each other, must be at least N/r from
one another with probability at least 1 − ε/3. Thus, any distinct x, y ∈ ΛN (r) ∩ ΓN (u)

must be at least rN apart for large N .
At the same time, recalling the law of η from (1.7) and the fact that Z does not charge

the boundary of [0, 1]2 almost surely, we may find δ > 0 so that with with probability
at least 1 − ε/6 there is no mass in

(
[0, 1]2 \ [δ, 1 − δ]2

)
× [−u, u] × [0,∞)Z

2

under η. In
light of the convergence in (1.7), this translates into the assertion that for all r large
enough and then N large enough, ΛN (r) ∩ (VN \ [rN , N − rN ]2) ∩

(
ΓN (u) \ ΓN (−u)

)
= ∅

with probability at least 1− ε/3.
Combining the above, we see that SN (r,M) occurs with probability at least 1 − ε,

once r and then N are chosen sufficiently large.

3.4 Law asymptotics for the structure of deep traps

The last task of this section is to address the convergence of the locations and depths
of deep traps to the atoms of the process χ(β) from (1.8) in the limit of large N .

Proposition 3.6. Fix β > α. Then for all M ≥ 1, as N →∞ followed by r →∞, we have(
xN,j/N, e−βmN τr(xN,j)

)M
j=1

=⇒ (ξj , τj)
M
j=1 , (3.16)

where (ξj , τj)
M
j=1 enumerate the first M atoms of χ(β), ordered in a decreasing manner

according to the second coordinate.

Proof. For any R, r0 ∈ (0,∞), let us define the function fR,r0 from [0, 1]2 × (−∞, R] ×
[0,∞)Br0 to [0, 1]2 × (0,∞) via

fR,r0(x, h, ω) :=
(
x,

∑
y∈Br0

eβ(h−ωy)
)
. (3.17)

Notice that fR,r0 is continuous in the product topology and that preimages of compact
sets under fR,r0 are compact. In particular, fR,r0 induces a continuous function FR,r0

from the space of Radon point measures on [0, 1]2 × (−∞, R]× [0,∞)Br0 to the space of
Radon point measures on [0, 1]2 × (0,∞) via

FR,r0(η) :=
∑

(x,h,ω)∈η

δfR,r0
(x,h,ω) , (3.18)

where continuity is with respect to the vague topology.
Let ηR,r0

N,r and ηR,r0 denote, respectively, the restriction and proper projection of ηN,r

and η from (1.7) onto [0, 1]2 × (−∞, R]× [0,∞)Br0 . It follows from (1.7) and the fact that
[0, 1]2 × (−∞, R]× [0,∞)Z

2

is stochastically continuous under η, that ηR,r0
N,r tends weakly

to ηR,r0 when N →∞ followed by r →∞. But then, continuity of FR,r0 implies that when
N →∞ and then r →∞,

χR,r0
N,r := FR,r0(η

R,r0
N,r ) =⇒ FR,r0(η

R,r0) =: χR,r0 . (3.19)
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Next we wish to take r0 and R to infinity in both χR,r0
N,r and χR,r0 . We begin with the

former object; let ε > 0 and use Lemma 3.2 to find v so that for all large N , and with
probability at least 1− ε, ∑

x∈Γc
N (v)

eβ(hN,x−mN ) < ε . (3.20)

Assuming that this event holds, we have that χr0
N,r does not charge N−1Γc

N (v)× [ε,∞) for
all r0 ≤ r. Furthermore, by (1.16), we may find r0 large enough, such that all x, y ∈ ΓN (v)

are either at most r0 or least N/r0 apart with probability at least 1 − ε, provided N is
large enough. Assuming that this event holds as well, we have for all r ≥ r0,∑

x∈ΛN (r)∩ΓN (v)

∑
y∈Br\Br0

eβ(hN,x+y−mN ) ≤ ε , (3.21)

as all x+ y in the above sum are distinct and included in Γc
N (v).

This implies that if ϕ ∈ C∞
0

(
[0, 1]2 × (ε, R]

)
, then for all r0 and then N large enough,

we shall have∣∣∣ ∫ ϕ(x, τ)χR,r
N,r(dxdτ)−

∫
ϕ(x, τ)χR,r0∧r

N,r (dxdτ)
∣∣∣ ≤ ∥∥∇ϕ∥∥∞ ε , (3.22)

with probability at least 1 − 2ε, where the norm on the right is the usual supremum
norm. But as ε and ϕ were arbitrary, this shows that χR,r0∧r

N,r converges to χR,r
N,r vaguely

in probability as r0 →∞, uniformly in N and r.
For a similar statement when R→∞, first use the almost-sure boundedness of the

support of ηN,r to define

χN,r := lim
R→∞

χR,r
N,r =

∑
x∈ΛN (r)

δ(x/N, exp(−βmN )τr(x)) . (3.23)

Using the tightness of the centered maximum, as implied by (1.14), for any ε > 0 if R is
large then ηN,r

(
[0, 1]2 × (R,∞)× [0,∞)Br

)
= 0 with probability at least 1− ε for all r and

N . On this event we must have χR,r
N,r = χN,r, and it follows that χR,r

N,r converges vaguely
in probability to χN,r as R→∞, with the convergence uniform in N and r. Altogether
we have shown that when r0 →∞ and then R→∞,

χR,r0∧r
N,r −→ χN,r (3.24)

vaguely in probability uniformly in N and r.
Turning to χR,r0 , recall that ηR,r0 is, conditionally on Z, a Poisson point process

on [0, 1]2 × (−∞, R]× [0,∞)Br0 and let IR,r0
Z (dxdhdφ) := Z(dx)⊗ e−αhdh⊗ ν(dφ) be its

(conditional) intensity measure. An elementary “change-of-variable” calculation shows
that (

IR,r0
Z f−1

R,r0

)(
dxdτ

)
= Z(dx)⊗ τ−α/β−1κR,r0

β (τ)dτ , (3.25)

where τ 7→ κR,r0
β (τ) is a positive function on [0,∞) which is pointwise increasing in r0

and R, and which pointwise converges to κβ from (1.9), when r0 and R tend to infinity.
It follows from the monotone convergence theorem that, conditional on Z, that the

measure
(
IR,r0
Z f−1

R,r0

)
(dxdτ) tends vaguely to Z(dx) ⊗ κβτ

−α/β−1dτ when r0 → ∞ and

R→∞. Since these are the conditional intensity measures of χR,r0 and χ(β) respectively,
which are both conditionally Poisson, it follows that when r0 →∞ and R→∞,

χR,r0 =⇒ χ(β) . (3.26)

This is true conditionally on Z almost surely, but then thanks to the bounded convergence
theorem, also without the conditioning.
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Combining (3.19), (3.24) and (3.26) and using standard weak convergence (or metric
space) theory, we see that χN,r =⇒ χ(β) as N → ∞ followed by r → ∞. It remains to
observe that

(
xN,j/N, e−βmN τr(xN,j) : j = 1, . . . ,M

)
as defined in (3.3) are exactly the

top M atoms of χN,r ordered by their second coordinate. The convergence in (3.16)
will therefore follow by standard theory of point processes, provided we show that
e−βmN τr(xN,1) is tight in N and r. But since τr(xN,1) ≤

∑
x∈VN

eβhN,x , this follows from

Theorem 2.6 in [11], which shows that
∑

x∈VN
eβ(hN,x−mN ) admits a proper limit in law

when N →∞.

4 From the random walk to its trace

In this section, we introduce the random walk trace process, or trace process for
short. Conditionally on hN , this process evolves like the original random walk XN ,
except that it spends zero time at vertices not belonging to a deep trap. As with the pre
K-process, the key output of this section is that the trace process can be made to be
arbitrarily close to the original random walk in the ‖ · ‖L([0,t],V ∗)-metric, provided that we
consider enough deep traps.

Let us now define this process explicitly. Fix r > 0 and M ∈ N, and let the time spent
by XN in ΛN (r,M) up to time t be defined via

F
(r,M)
N (t) :=

∫ t

0

1{
XN (s)∈ΛN (r,M)

}ds . (4.1)

The random walk trace process X
(r,M)
N is constructed from XN via the time change:

X
(r,M)
N (t) := XN

(←−
F

(r,M)
N (t)

)
, (4.2)

where
←−
F

(r,M)
N is generalized inverse of F (r,M)

N , namely

←−
F

(r,M)
N (t) := inf

{
s ≥ 0 : F

(r,M)
N (s) ≥ t

}
. (4.3)

Recall that in Theorem A, the process XN is observed for time sN t where,

sN := gN2
√
gβ(logN)1−3

√
gβ/4 ≡ geβmN logN . (4.4)

Proposition 4.1. Let β > α, ε > 0 and t > 0. There are M0(β, ε, t) ∈ N, r0(β, ε,M, t) > 0

and N0(β, ε,M, r, t) ∈ N so that when M ≥M0, r > r0 and N ≥ N0, the event∥∥∥ 1
NXN (sN ·)− 1

NX
(r,M)
N (sN ·)

∥∥∥
L([0,t],V ∗)

< ε (4.5)

occurs with probability at least 1− ε.

The proof of this proposition makes use of two constructions, that we introduce in
Subsections 4.1 and 4.2. These constructions will also be used in other parts of the paper
and we refer to them when necessary. Subsection 4.3 includes the remaining argument
needed to complete the proof of the proposition.

4.1 From time to steps: the random walk clock process

The process XN is a continuous time symmetric random walk with exponentially
distributed holding times having mean eβhN,x at vertex x. As such, we may construct XN

using a discrete time simple random walk XN = (XN (j) : j ≥ 0) on V ∗
N and a collection of

i.i.d. exponential random variables
(
EN,j : j ≥ 1

)
independent of XN and the field. Using
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these we can express XN as XN (s) = XN ((
←
t (s)− 1)+), where

t(n) :=

n−1∑
j=0

exp
(
βhN,XN (j)

)
EN,j , (4.6)

and where
←
t (s) is the generalized inverse of t as in (4.3). The process t(·) is the clock

process associated with XN . It is no coincidence that the same name is also used in the
literature for the process T (τ) from (1.3), as both processes essentially serve the same
purpose. Nevertheless, to avoid confusion, we refer to t(·) as the random walk clock
process.

The corresponding trace clock process, namely the clock process associated with
X

(r,M)
N , is

(
t(r,M)(n) : n ≥ 0

)
where,

t(r,M)(n) :=

n−1∑
j=0

exp
(
βhN,XN (j)

)
EN,j1{

XN (j)∈ΛN (r,M)
} , (4.7)

so that X(r,M)
N (s) = XN ((

←
t (r,M)(s)− 1)+) for s ≥ 0.

The advantage of using XN and t(·) to describe XN is that the motion is decoupled
from elapsed time. As such, “spatial” statements can be proved using simple random
walk theory for XN , provided that we translate the elapsed time for XN to the number of
steps of XN . The next lemma shows the corresponding number of steps of XN is

ϑN (n) := n
⌈
N2 logN

⌉
, (4.8)

with n properly chosen. In fact, we may choose n so that the desired statement holds
also for the (r,M)-trace process, and even uniformly in r and M .

Lemma 4.2. Let β > α, ε > 0 and t > 0. There is n0(β, ε, t) ∈ N so that for all r > 0,
M ∈ N, all N sufficiently large and n ≥ n0,

t(r,M)(ϑN (n)) ≥ sN t (4.9)

occurs with probability at least 1− ε.

Proof. Let x∗
N denote the argmax of hN , and write ϑN (n) as ϑ. Define

`ϑ(x
∗
N ) =

ϑ∑
k=0

1{XN (k)=x∗N} , (4.10)

and for (Ek)k≥1 a collection of i.i.d. mean 1 exponentially distributed random variables
independent of the hN and XN , also define the random variable

t∗(ϑ) := exp(βhN,x∗N
)

`ϑ(x
∗
N )∑

k=1

Ek . (4.11)

Letting GN
n (0, y) be the expected number of visits XN makes to y in n steps starting from

0, by the ergodic theorem for XN and the weak law of large numbers for the sequence
(Ek)k≥1, there is N0 large so that with probability at least 1− ε, we have

`ϑ(x
∗
N )

GN
ϑ (0, x∗

N )
≥ 1/2 ,

1

`ϑ(x∗
N )

`ϑ(x
∗
N )∑

k=1

Ek ≥ 1/2 . (4.12)
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when N ≥ N0. Invoke Lemma A.2, taking N larger if necessary so that

GN
ϑ (0, x∗

N )

logN
≥ cn

2
, (4.13)

and use (4.12), (4.13) to obtain

P
(
s−1
N t∗(ϑ) ≥ exp(β(hN,x∗N

−mN ))
cn

8g

∣∣∣hN

)
≥ 1− ε . (4.14)

Using the tightness of the centered maximum, per (1.14), choose t > 0 according to ε so
that

P
(
s−1
N t∗(ϑ) ≥ cn

8g
e−βt

)
≥ 1− 2ε . (4.15)

As t(r,M)(ϑ) stochastically dominates t∗(ϑ), the proof is complete.

4.2 From steps to trap visits: macroscopic jumps

To understand how XN and its trace X
(r,M)
N move within the landscape, we further

decompose the trajectory of XN according to the visits it pays to deep traps. In light of
Proposition 3.4, we recall that such traps tend to be at least rN apart – thus we think of
a segment of the trajectory of XN starting at the first entrance to Br(xN,k) and ending at
the first exit from BrN (xN,k) as a visit to the deep trap xN,k. Between successive visits
to deep traps, we say XN makes a macroscopic jump.

To formalize the above construction, introduce the following sequence of stopping
times, which are almost surely finite by recurrence of XN :

R1 := inf
{
n ≥ 0 : XN (n) ∈ ΛN (r,M))

}
(4.16)

S1 := inf
{
n ≥ R1 : XN (n) /∈ BrN

(
ΛN (r,M)

)}
(4.17)

and for k ≥ 2,

Rk := inf
{
n ≥ Sk−1 : XN (n) ∈ ΛN (r,M)

}
(4.18)

Sk := inf
{
n ≥ Rk : XN (n) /∈ BrN

(
ΛN (r,M)

)}
. (4.19)

At each time Rk, say XN has made a (r,M)-macroscopic jump. For ϑ ∈ N, define the
number of (r,M)-macroscopic jumps made by XN in ϑ steps as

J(r,M)
N (ϑ) := max

{
k ≥ 0 : Rk ≤ ϑ

}
. (4.20)

Next, we wish to show that within ϑN (n) steps, the number of macroscopic jumps is
bounded from above with high probability uniformly in N . To do this, we need the next
lemma, which is a nearly immediate consequence of (6.18) from [23]. For what follows
let HN (A) be the hitting time of A ⊆ V ∗

N by XN and write HN (x) for HN ({x}). When we
make general statements concerning XN , we will allow it to start from any vertex x, and
use PNx and ENx to denote the underlying probability measure and expectation in this
case.

Lemma 4.3. For all ε > 0 and r > 0, there exists n0 = n0(ε) and N0 = N0(ε, r), such that
for all N ≥ N0,

sup
x,y∈V ∗N

d∗N (x,y)>rN/2

PNx

(
HN (Br(y)) < ϑN (n0)

)
≤ ε . (4.21)
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Proof. It follows from recurrence of the simple random walk on Z2 that for any r > 0

there is m <∞ such that

min
z∈Br

min
N≥1

PNz
(
HN (0) ≤ m

)
≥ 1/2 . (4.22)

Conditioning on XN

(
HN (Br(y))

)
and using the strong Markov property, we have

PNx
(
HN (y) < ϑN (2n0)

)
≥ PNx

(
HN (y) < ϑN (n0) +m

)
≥ 1

2P
N
x

(
HN (Br(y) < ϑN (n0)

)
,

(4.23)

for all N large enough, depending on r and n0, and any x, y as in the supremum in (4.21).
But (6.18) from [23] (which corresponds to the case r = 1) says that the left hand side
above will be smaller than ε/2 for all such x and y, provided we choose n0 > 0 small
enough and N large enough, both depending only on ε. The result follows.

We can now prove:

Lemma 4.4. Let ε > 0, M ∈ N and n ∈ N. There is υ(ε,M, n) > 0, r0(ε,M) > 0 and
N0(ε,M, r) ∈ N so that when r ≥ r0 and N ≥ N0, we have

J(r,M)
N (ϑN (n)) ≤ υ (4.24)

with probability at least 1− ε.

Proof. For ε > 0 and M ∈ N given, use Proposition 3.4 to choose r0 > 0 large so that
when r ≥ r0 and N is sufficiently large, we have P(SN (r,M)) ≥ 1− ε/2. Then, let δ > 0

and use Lemma 4.3 to find n0 > 0 and N0 > 0, so that whenever N ≥ N0 the statement
in (4.21) holds with δ/M in place of ε. Using the strong Markov property and the union
bound we shall have

P
(
Rk+1 − Sk ≥ ϑN (n0)

∣∣SN (r,M)
)
≥ 1− δ , (4.25)

for all k ≥ 1. Now, for m ∈ N, define the event Ek as

Ek :=
{
∃j ∈ {0, . . . ,m− 1} such that Rmk+j+1 − Smk+j ≥ ϑN (n0)

}
, (4.26)

and note that iterating the Markov property and using (4.25) gives, for each k ≥ 1, the
bound P(Eck|SN (r,M)) ≤ (Mδ)m. Thus,

P
(
E1 ∩ · · · ∩ Edn/n0e

∣∣SN (r,M)
)
≥ 1− dn/n0e(Mδ)m . (4.27)

Observing that E1 ∩ · · · ∩ Edn/n0e ⊂
{
J(r,M)
N (ϑN (n)) ≤ 2mdn/n0e

}
, it follows that

P
(
J(r,M)
N (ϑN (n)) ≤ 2mdn/n0e

)
≥ P

(
E1 ∩ · · · ∩ Edn/n0e

∣∣SN (r,M))P(SN (r,M)
)
. (4.28)

It remains to choose m sufficiently large so that the right hand side above is at least
1− ε.

4.3 Closeness of the random walk to its trace

We are finally ready to prove that the trace process and the random walk process
are close. Our strategy is similar to the one employed in Section 2. Setting ∆(r,M)(n) :=

t(n) − t(r,M)(n) to be the size of the “time lag” between XN and X
(r,M)
N after n steps

of XN , the first lemma shows that for M large enough, ∆(r,M)(n) is small in the scale
considered.
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Lemma 4.5. Let β > α, let ε > 0 and let n ∈ N. There isM0(β, ε, n) ∈ N, r0(β, ε,M, n) > 0

and N0(β, ε,M, n, r) so that M ≥M0, r ≥ r0 and N ≥ N0 implies

s−1
N ∆(r,M)(ϑN (n)) ≤ ε (4.29)

occurs with probability at least 1− ε.

Proof. Write ϑN (n) as ϑ throughout the proof, and recall that Λ
c

N (r,M) = V ∗
N \ΛN (r,M).

For any realization of the field hN , it follows from (4.7) that

∆(r,M)(ϑ) =

ϑ−1∑
j=0

exp
(
βhN,XN (j)

)
1{

XN (j)∈Λ
c
N (r,M)

}EN,j , (4.30)

where we recall the EN,j are i.i.d. mean one exponentially distributed random variables
independent of hN and XN . Conditional on hN , we then have:

E
(
∆(r,M)(ϑ)

∣∣∣hN

)
=

∑
x∈Λ

c
N (r,M)

exp(βhN,x)G
N
ϑ (0, x) , (4.31)

where we recall that GN
n (0, x) is the expected number of visits to x in n steps for the

random walk XN stating from 0.
We take N sufficiently large so that the estimate of Lemma A.2 is valid to obtain:

s−1
N E

(
∆(r,M)(ϑ)

∣∣∣hN

)
≤ g−1Cn

∑
x∈Λ

c
N (r,M)

exp(β(hN,x −mN )) , (4.32)

For ε > 0, define the event E which depends only on the field hN :

E :=

 ∑
x∈Λ

c
N (r,M)

exp(β(hN,x −mN )) <
gε2

2Cn

 , (4.33)

where C in (4.33) is as in (4.32). Using Proposition 3.1, take M , then r and then N large
enough depending on n, ε and β so that P(E) ≥ 1− ε/2. We find

P
(
s−1
N ∆(r,M)(ϑ) > ε

)
≤ ε/2 + ε−1E

(
E[s−1

N ∆(r,M)(ϑ)|hN ]1E
)
≤ ε , (4.34)

where we have used (4.32).

In what follows, abbreviate t̃(n) = t(r,M)(n). The next lemma shows that [0,∞)

is partitioned by the intervals
[
t̃(Rk), t̃(Sk)

)
, and that for most of each interval, the

processes XN and X
(r,M)
N are not too far apart.

Lemma 4.6. For each r > 0 and M ∈ N, the intervals {[t̃(Rk), t̃(Sk))}∞k=1 form a partition
of [0,∞). Moreover, for each t in an interval of the form[

t̃(Rk), t̃(Sk)
)
\
[
t̃(Rk), t̃(Rk) + ∆(r,M)(Rk)

]
, (4.35)

we have
∥∥XN (t)−X

(r,M)
N (t)

∥∥ ≤ 2rN .

Proof. By construction, t̃ is constant when XN (n) /∈ ΛN (r,M), from which it follows that
t̃(Sk) = t̃(Rk+1) for each k ≥ 0. This settles the first claim.

Turning to the second claim, observe that XN and X
(r,M)
N are at distance of at most

rN on the intersection [t(Rk), t(Sk)) ∩ [t̃(Rk), t̃(Sk)). We complete the proof by noting
t(Rk)− t̃(Rk) is identically ∆(r,M)(Rk), and that t(Sk) ≥ t̃(Sk).
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The next lemma is the analogue of Lemma 2.2; we show that for r and M chosen well
and N sufficiently large set of times at which X

(r,M)
N and XN are far has small Lebesgue

measure.

Lemma 4.7. Let β > α, ε > 0 and t > 0. There are M0(β, ε, t) ∈ N, r0(β, ε,M, t) > 0 and
N0(β, ε,M, r, t) ∈ N so that whenever M ≥M0, r > r0 and N ≥ N0, the event

Leb
(
t ∈ [0, sN t] :

∥∥XN (t)−X
(r,M)
N (t)

∥∥ > 2rN

)
≤ εsN (4.36)

occurs with probability at least 1− ε.

Proof. Let ε > 0. As t is fixed, use Lemma 4.2 to choose n = n(β, ε, t) ∈ N sufficiently
large so that with probability at least 1− ε, the event E := {t̃(ϑN (n)) > sN t} occurs for all
r > 0 and M ∈ N, provided N is sufficiently large. Treat this n as fixed for the remainder
of the proof and write ϑ for ϑN (n).

Write B
(r,M)
N (t) for the set in (4.36), which plays the same role as the set of times

BM (t) defined in (2.4). Appealing to the strategy used in the proof of Lemma 2.2, let
M,M ′ ∈ N with M > M ′, to be determined later and consider the intervals:

{Ik}J
(r,M)(ϑ)+1
k=0 :=

{ [
t̃(Rk), t̃(Sk)

)}J(r,M)(ϑ)+1

k=0
, (4.37)

which by Lemma 4.6 and the definition (4.20) of J(r,M)(ϑ) are disjoint and cover the
interval [0, t̃(ϑ)]. Call an interval Ik in this collection extremely deep (ED) if XN (Rk) ∈
ΛN (r,M ′), and call the interval moderately deep (MD) otherwise. By Lemma 4.6, and
within the event E , we find

B
(r,M)
N (t) ⊂

( ⋃
Ik is ED

[t̃(Rk), t̃(Rk) + ∆(r,M)(Rk)]

)
∪

( ⋃
Ik is MD

Ik

)
. (4.38)

Observe that on SN (r,M), the number of ED intervals in the collection (4.37) is at most
J(r,M

′)(ϑ) and the total length of all MD intervals in (4.37) is at most ∆(r,M ′)(ϑ). Thus, on
the event E ∩ SN (r,M) we have,

Leb
(
B

(r,M)
N (t)

)
≤ J(r,M

′)(ϑ)∆(r,M)(ϑ) + ∆(r,M ′)(ϑ) . (4.39)

We now calibrate parameters. Use Lemma 4.5 to choose M ′ = M ′(ε, β, n) and
then r = r(ε, β,M, n) sufficiently large so that E1 := {s−1

N ∆(r,M ′)(ϑ) ≤ ε} occurs with
probability at least 1− ε when N is sufficiently large. Next use Lemma 4.4 and choose r

larger if necessary, so that E2 := {J(r,M
′)

N (ϑ) ≤ υ} happens with probability at least 1− ε

for N sufficiently large. Note that υ depends only on the parameters (ε,M ′, n), and recall
that n has been fixed. Finally, apply Lemma 4.5 once more to choose M even larger than
M ′ so that E3 := {s−1

N ∆(r,M)(ϑ) ≤ ε/υ} occurs with probability at least 1 − ε. We may
take r larger if necessary so that P(SN (r,M)) ≥ 1− ε. For all N sufficiently large then,
by using (4.39), we have

Leb
(
B

(r,M)
N (t)

)
≤ 2εsN (4.40)

on the intersection E ∩ E1 ∩ E2 ∩ E3 ∩ SN (r,M), and hence with probability at least 1− 5ε.
This completes the proof.

We are finally ready for:

Proof of Proposition 4.1. Thanks to the bounded diameter of V ∗, the proposition is an
immediate consequence of Lemma 4.7.
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5 Trap hopping dynamics of the trace process

As we have seen from the analysis in the previous section, Subsection 4.2 in par-
ticular, the trace process spends most of its time at deep traps, making macroscopic
jumps between deep traps almost instantaneously. In this section we show that, scaled
properly, the accumulated time in each visit to a deep trap converges to an exponentially
distributed random variable whose mean is the depth of the trap. Moreover, at each of
the macroscopic jumps, the next trap to visit will be chosen approximately uniformly. We
will show that these exponential and uniform random variables are in fact independent,
thus the trace process bears the trap hopping characteristics of a spatial pre K-process,
as constructed in Section 2. The end product of this section, namely Proposition 5.4, will
be a joint asymptotic description of both this trap hopping behavior and the underlying
trapping landscape.

5.1 Simple random walk estimates

We start by providing the needed random walk estimates for XN . Recall the notation
PNx , E

N
x for the probability measure and expectation when XN (0) = x and HN (A) and

HN (x) for the hitting time of the set A and vertex x, as introduced in Subsection 4.2
The first lemma, which we borrow almost verbatim from [23], concerns the hitting

measure of separated balls in V ∗
N . This lemma will be used to show that deep traps are

selected almost uniformly at each macroscopic jump of XN . Specifically, we consider
AN ⊂ V ∗

N such that

(1) |AN | = M ,
(2) minx6=y∈AN

d∗N (x, y) > rN/2 ,

Then,

Lemma 5.1. Let ε > 0, M ∈ N and r > 0. Let AN = {xN,1, . . . , xN,M} satisfy (1) and (2)
directly above. There is N0(r, ε,M) ∈ N so that whenever N ≥ N0,

sup
y∈
(
BrN/2(AN )

)c
∣∣∣∣PNy [HN (Br(xN,1)) < HN (Br(AN,1))]−

1

M

∣∣∣∣ < ε , (5.1)

where we write AN,i for the AN \ {xN,i}.

Proof. We sketch changes that need to be made to the proof of Lemma 6.9 in [23]. Key
inputs to this proof are (6.15), (6.16) and (6.18) in [23]. To prove Lemma 5.1, we use
(6.15) unchanged, but we replace (6.16) and (6.18) with corresponding estimates for
hitting times of Br(xN,i) in place of xN,i. These estimates follow from (6.16) and (6.18)
immediately via a union bound, and it is here that N0 inherits its dependence on r. The
rest of the proof goes through, again replacing instances of xN,i by Br(xN,i).

The next estimate concerns the scaling limit of the time spent by the walk inside a
ball of radius r, before exiting the ball of radius rN . This will be used to show that the
time spent visiting a deep trap scales in law to an exponential random variable. Here,
we lose no generality working with a simple random walk X on Z2, writing law and
expectation as Px and Ex.

Let HrN be the first time X exits the ball BrN ⊂ Z2 and for y ∈ Br, define

LN (y) := #{n ∈ [0,HrN ] : X(n) = y} , (5.2)

to be the the number of visitis of y before step HrN . Let us also define

LN (y) :=

LN (y)∑
k=1

Ej , (5.3)
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where (Ej : j ≥ 1) are i.i.d. mean one exponential random variables, independent of X,
exactly as in Subsection 4.1. The random variable LN (y) can be thought of as the local
time of a continuous version of X with unit mean holding times, and we shall refer to
LN (y) as such.

The following lemma shows that the (LN (y))y∈Br converge weakly under proper
scaling to the same exponential random variable. Below we write 1r for a vector of ones
indexed by Br.

Lemma 5.2. Let r > 0 and x ∈ Br. Then under Px,

LN/ logN ≡
(
LN (y)/ logN : y ∈ Br

)
=⇒
N→∞

e1r (5.4)

where e is an exponential random variable with mean g.

Proof. Suppose first that x = 0. In this case LN (0) is geometrically distributed with
parameter pN := 1/GBrN

(0, 0), where for a set A ⊂ Z2, we recall that GA denotes the
Green function associated with a simple random walk killed upon exit from A. Since
GBrN

(0, 0) ∼ g logN as N → ∞ (see Lemma (A.1)), it is elementary that LN (0)/ logN

converges weakly to an exponential random variable e with mean g.
Next, we use a result by Auer [1]: if ξ(y, n) denotes the number of visits to vertex y

within the first n steps of X, then

lim
n→∞

sup
y∈Br

∣∣∣∣ξ(y, n)ξ(0, n)
− 1

∣∣∣∣ = 0 , (5.5)

almost surely. Observe that as HrN →∞ with N , we also have

lim
N→∞

sup
y∈Br

∣∣∣∣LN (y)

LN (0)
− 1

∣∣∣∣ = 0 , (5.6)

By recurrence, LN (y) → ∞ as N → ∞ almost surely, and the strong law of large
numbers implies LN (y)/LN (y) → 1 for all y ∈ Br almost surely. It follows that (5.6)
holds with LN (y) replaced by LN (y). Dividing then both the numerator and denominator
in (5.6) by logN and using the weak convergence of LN (0)/ logN to e, we obtain (5.4)
when x = 0.

For general x ∈ Br, let H(0) be the hitting time of 0, and write LN (y) as the sum

L(1)N (y) + L(2)N (y), where L(1)N (y) is the number of visits to y before step HrN ∧ H(0), while
L(2)N (y) is the remaining number of visits to y until time HrN . Let L(1)

N (y) and L
(2)
N (y) be

the corresponding local times; recurrence of X and the Markov property show that

sup
y∈Br

L
(1)
N (y)/(logN) ≤ 1

logN

HrN ∧H(0)∑
k=1

Ek −→
N→∞

0 a.s. , L
(2)
N / logN =⇒

N→∞
e1r . (5.7)

This shows (5.4) in the general case and completes the proof.

5.2 Trap hopping dynamics at large N

We now use the estimates from the previous subsection to describe the limiting joint
law of the indices of visited traps and the local time spent near these traps. The end
product of this subsection, namely Proposition 5.4, will be the convergence in law for
these variables together with the trapping landscape of the field.

Recall that SN (r,M) from (3.12) denotes the event that hN is (r,M)-separated and
that the stopping times Rk,Sk from Subsection 4.2 mark the beginning and end of visits
to a deep trap. For each k ≥ 1, when SN (r,M) occurs, XN (Rk) is closest to a unique trap
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in ΛN (r,M) and we let I ′N,k be the index of this trap. Formally, I ′N,k is the unique ordinal
in {1, . . . ,M} such that XN (Rk) ∈ Br(xN,I′N,k

), where we recall that xN,1, . . . , xN,M are
the deep traps listed in descending order of their depth, per (3.1).

If hN is not (r,M)-separated, I ′N,k might not be well-defined, and for this purpose we

take (ŨN,k)k≥1 to be a collection of independent uniform random variables on {1, . . . ,M}
which are also independent of everything else, and set

IN,k := I ′N,k1SN (r,M) + ŨN,k1SN (r,M)c . (5.8)

As for the local time spent during the k-th visit to a trap, we again assume first that
SN (r,M) occurs and, in this case, for all y ∈ Br define:

L′
N,k(y) :=

Sk∑
j=Rk

1{XN (n)=xN,IN,k
+y}Ej , (5.9)

where the Ej are as in the previous subsection. We then take in addition a collection
(ẽk)k≥1 of i.i.d. mean g exponential random variables, independent of everything else
and set:

`N,k(y) :=
(
L′
N,k(y)/ logN

)
1SN (r,M) + ẽk1r1SN (r,M)c . (5.10)

We shall write `N,k for the collection (`N,k(y) : y ∈ Br).
The following lemma shows that the joint law of (IN,k)k≥1 and (`N,k)k≥1 for large N

is approximately that of independent uniform and exponential random variables.

Lemma 5.3. Let (ek)k≥1 be i.i.d. exponential random variables with mean g and let
(Uk)k≥1 be i.i.d. uniform random variables on the set {1, . . . ,M}, with both collections

independent of each other. For K ∈ N, let A =
∏K

k=1

(
Ak × {uk}

)
where u1, . . . , uK ∈

{1, . . . ,M} and A1, . . . , AK ⊆ RBr are Ak measurable and continuous with respect to the
law of ek1r. Then,

P
((

`N,k, IN,k

)K
k=1
∈ A

∣∣∣hN

)
−→ P

((
ek1r, Uk

)K
k=1
∈ A

)
, (5.11)

as N →∞, where convergence takes place in the L∞-norm on the underlying probability
space.

Proof. Treat the parameters (r,M) as fixed in this proof. By the definitions of IN,k and
`N,k, on the event SN (r,M)c that hN is not (r,M)-separated, both probabilities in (5.11)
are equal to each other and hence it suffices to show L∞-convergence on SN (r,M). For
what follows, we shall write FT for the sigma-algebra generated by the stopping time T
with respect to the natural filtration of XN .

The proof goes by induction on K. Recall that Rk and Sk are the entrance and exit
times of the k-th trap visited by XN . For K = 1, condition on FR1

and use the strong
Markov property to write the probability P

(
`N,1 ∈ A1, IN,1 = u1

∣∣hN

)
as

E
(
1{IN,1=u1}PXN (R1)−xN,u1

(
LN/ logN ∈ A1

) ∣∣∣hN

)
, (5.12)

where LN is as in (5.3), and where XN (R1)− xN,u1
is thought of as a vertex in Br ⊂ Z2.

Writing ΛN,uk
for the set ΛN (r,M) \ {xN,uk

}, we have

P
(
IN,1 = u1

∣∣hN

)
= PN0

(
HN (Br(xN,u1

)) < HN (Br(ΛN,u1
))
)
. (5.13)

Since all traps are at least a distance of rN/2 from XN (0) ≡ 0 when SN (r,M) occurs
and N is large enough, Lemma 5.1 shows that the above probability converges to
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P(U1 = u1) = 1/M as N →∞ under the L∞-norm. At the same time, by Lemma 5.2 and
the fact that XN (R1) − xN,u1

∈ Br on {IN,1 = u1}, which is a finite set, the probability
in (5.12) converges to P(e11r ∈ A1) as N →∞ in the L∞-sense on {IN,1 = u1}. It follows
from Hölder’s inequality under the conditional measure P(·|hN ) that (5.12) converges to
P(U1 = u1)P(e11r ∈ A1) in L∞ on SN (r,M). This settles the base case.

Let K ≥ 2 and assume the statement of the lemma holds with K − 1 in place of K.
Write A = A′ ×

(
AK × {uK}

)
with A′ =

∏K−1
k=1

(
Ak × {uk}

)
, and let A′

N be the event{(
`N,k, IN,k

)K−1

k=1
∈ A′}. Conditioning on FSK−1

and FRK
and using the strong Markov

property, the left hand side of (5.11) is equal to

E
(
1A′NE

N
XSK−1

(
1{HN (Br(xN,uK

))<HN (Br(ΛN,uK
))}PXN (RK)−xN,uK

(
LN/ logN ∈ AK

)) ∣∣∣hN

)
.

(5.14)
Since XSK−1

is by definition at least rN/2 away from all traps, it follows as before, that
the middle expectation in (5.14) converges in L∞-sense to P(UK = uK)P(eK1r ∈ AK) as
N →∞ on SN (r,M). On the other hand, the induction hypothesis gives that P(A′

N |hN )

converges to P
(
(ek1r, Uk)

K−1
k=1 ∈ A′) as N →∞ again in L∞. Using these together with

Hölder’s inequality for P(·|hN ) shows that (5.14) converges as N →∞ to the product

P
((

ek1r, Uk

)K−1

k=1
∈ A′

)
P(UK = uK)P(eK1r ∈ AK) (5.15)

under the L∞-norm. This is precisely the limit in (5.11).

Finally, we treat the asymptotic joint law of both the trap hopping dynamics of the
trace process and the trapping landscape of the underlying field.

Proposition 5.4. Fix β > α and let M ∈ N, K ∈ N. The joint law of(
`N,k, IN,k

)K
k=1

,
(
xN,j/N, e−βmN τr(xN,j)

)M
j=1

(5.16)

converges weakly as N →∞ followed by r →∞ to the joint law of(
ek1∞, Uk

)K
k=1

,
(
ξj , τj

)M
j=1

, (5.17)

where
(
(ek, Uk))

K
k=1 are as in Lemma 5.3 and

(
(ξj , τj)

)M
j=1

are as in Proposition 3.6, with

both collections independent of each other, and where 1∞ is a vector of ones indexed by
Z2.

Proof. Let r > 0 and take A and B to be any measurable continuity sets for
(
ek1r, Uk

)K
k=1

and
(
ξj , τj

)M
j=1

respectively, with A having the form in Lemma 5.3. Conditioning on hN

write,

P
((

`N,k, IN,k

)K
k=1
∈ A,

(
xN,j/N, e−βmN τr(xN,j)

)M
j=1
∈ B

)
= E

[
P
((

`N,k, IN,k

)K
k=1
∈ A

∣∣∣hN

)
1B

((
xN,j/N, e−βmN τr(xN,j)

)M
j=1

)]
(5.18)

By Lemma 5.3, the first term in the expectation goes to P
((
ek1r, Uk

)K
k=1
∈ A

)
as N →∞

in the L∞-norm, for any r > 0. At the same time, by Proposition 3.6 the expectation of

the second term goes to P
((
ξj , τj

)M
j=1
∈ B

)
as N →∞ followed by r →∞. It follows by

Hölder’s inequality that the right hand side of (5.18) converges in the stated limits to
the product of the last two probabilities. This product is precisely,

P
((

ek1r, Uk

)K
k=1
∈ A,

(
ξj , τj

)M
j=1
∈ B

)
. (5.19)

The proof is completed by observing that the collection of events of the form appearing
in (5.19) is a convergence determining class for the distributions in question.
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6 Conclusion of the proof

In this section we complete the proof of Theorem A. We first use the results from
the previous section to prove that the trace process can be coupled together with
the χ-driven spatial pre K-process, so that with high probability, they are close in the
‖ · ‖L([0,t],V ∗)-metric. We then use the closeness of random walk to its trace (Section 4)
and the closeness of the K-process to the pre K-process (Section 2) to complete the proof.

6.1 Closeness of the trace process and the pre K-process

Recall that Y (β)
M denotes the χ-driven pre K-process, as introduced in Section 2. The

goal in this subsection is to show that X(r,M)
N and Y

(β)
M can be coupled so that they

are close in the ‖ · ‖L([0,t],V ∗)-metric with high probability, provided we choose N and r

appropriately:

Proposition 6.1. Fix β > α and let ε > 0, M ∈ N, and t > 0. There is r0(ε,M, t) > 0 and
N0(ε,M, r, t) ∈ N so that when r ≥ r0 and N ≥ N0 there is a coupling between XN and

Y
(β)
M so that ∥∥∥ 1

N
X

(r,M)
N (sN ·)− Y

(β)
M (·)

∥∥∥
L([0,t],V ∗)

< ε (6.1)

hold with probability at least 1− ε.

Let CM denote the limiting objects in Proposition 5.4, namely the random variables
in (5.17). To prove Proposition 6.1, we first show that there is a coupling between
(XN , hN ) and CM so that the time spent by the trace process during visit k to trap j is
close to ekτj .

Lemma 6.2. Let ε > 0, K ∈ N and M ∈ N. There is r0(ε,K,M) and N0(ε,K,M, r) so
that whenever r ≥ r0 and N ≥ N0, there is a coupling of (XN , hN ) with CM , so that both

K∑
k=1

∣∣∣s−1
N

∣∣t(r,M)(Sk)− t(r,M)(Rk)
∣∣− ekτUk

∣∣∣ ≤ ε (6.2)

and
sup
k≤K

sup
n∈[Rk,Sk)

∥∥ 1
N XN (n)− ξUk

∥∥ ≤ ε (6.3)

occur with probability at least 1− ε.

Proof. Treat M and K as fixed throughout the proof. For δ > 0 and ε > 0, apply
Proposition 5.4 to find r0(ε,M) > 0 and N0(ε,M, r) ∈ N so that when r ≥ r0 and N ≥ N0,
we may couple (XN , hN ) with CM , such that (1) – (4) below hold with probability at least
1− ε/2:

(1) For k ∈ {1, . . . ,K} and y ∈ Br, |`N,k(y)− ek| < δ.

(2) For k ∈ {1, . . . ,K}, IN,k = Uk.

(3) For j ∈ {1, . . . ,M},
∥∥xN,j/N − ξj

∥∥ < δ.

(4) For j ∈ {1, . . . ,M}, |e−βmN τr(xN,j)− τj | < δ.

Recall from (4.7) that for n ∈ N, t(r,M)(n) denotes the time accumulated by the trace
process in n steps of the embedded discrete time simple random walk. Since, by
definition, during steps [Rk,Sk) the walk is visiting trap IN,k, the total time spent in this
trap is

I
(r,M)
k := t(r,M)(Sk)− t(r,M)(Rk) ≡

Sk−1∑
n=Rk

eβhN,XN (n)EN,n1{XN∈Br(xN,IN,k
)} . (6.4)
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Divide through by sN and decompose the sum defining I
(r,M)
k using the local times in

(5.10):

s−1
N I

(r,M)
k =

∑
y∈Br

`N,k(y)e
−βmN e

βhN,y+xN,IN,k . (6.5)

Note that, for equality to hold directly above, we must work within the high probability
event SN (r,M) from Proposition 3.4 that hN is (r,M)-separated, which we can guarantee
by taking r and then N larger if necessary.

Thus, using (1),(2) and (4) in (6.5), we find

K∑
k=1

|s−1
N I

(r,M)
k − ekτUk

| ≤ Kδ(δ + τ1) + δ

K∑
k=1

ek , (6.6)

where we have used that τ1 ≥ τj for all j ≥ 1. Finiteness of τ1 and e1, . . . , eK almost
surely imply that we may further find L = L(ε,K) > 0 such that with probability at least
1− ε,

K∑
k=1

|s−1
N I

(r,M)
k − ekτUk

| ≤ Lδ . (6.7)

Letting δ = ε/L implies (6.2). At the same time, it follows by definition that on [Rk,Sk) we
have

∥∥XN (n)− xN,IN,k

∥∥ ≤ rN . Thus on the event that (2) and (3) hold, we also have (6.3)
for all N large enough.

We are now ready for:

Proof of Proposition 6.1. Fix M , β, ε and t. Begin by using Lemma 4.2 and Lemma 4.4 to
find K ∈ N so that with probability at least 1− ε/2, we have s−1

N t(r,M)(RK+1) > t for all r
and then N large enough. With this K and our fixed M , increasing r and N if necessary,
invoke Lemma 6.2 to find a coupling of (XN , hN ) and CM , under which, with probability
at least 1− ε, both (6.2) and (6.3) hold with ε replaced by ε/(2K(t+ 1)).

The random variables in CM may be used to build a χ-driven pre K-process. Indeed,
take A = (A(u) : u ≥ 0) to be a Poisson process on R+ independent of CM and having
intensity measure Mdu. For k ∈ {1, . . . ,M} construct Ak = (Ak(u) : u ≥ 0) by setting

Ak(u) =

A(u)∑
j=1

1k(Uj) (6.8)

Standard Poisson thinning shows (Ak)
M
k=1 form independent Poisson processes with

intensity 1du. Setting also e(k)j := e` where ` is the smallest index such that
∑`

i=1 1k(Ui) =

j, it follows that (e(k)j : j, k ≥ 1) are are i.i.d. mean one exponential random variables,
which are also independent of (Ak)

M
k=1. Using (Ak)

M
k=1 together with (ξj , τj)

M
j=1 fromM

we can define TM (·), K(τ)
M (·) and Y

(ξ,τ)
M (·) as in (2.1), (2.2) and (2.3) and use these to

construct Y (β)
M as before.

Let B(t) denote the following set of bad times:

B(t) :=
{
t ∈ [0, t] :

∥∥ 1
NX

(r,M)
N (sN t)− Y

(β)
M (t)

∥∥ > ε/(2t)
}

. (6.9)

It is immediate from the construction and the choice of coupling that Leb(B(t)) ≤ ε/2with
probability at least 1− ε. Recalling that V ∗ has finite diameter, the proof is complete.
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6.2 Proof of Theorem A

Fix β > α, t > 0 and ε > 0. Using Proposition 2.4, we find M0(ε, t) ∈ N so that
M ≥M0 implies that ∥∥∥Y (β)

M (·)− Y (β)(·)
∥∥∥
L([0,t],V ∗)

< ε (6.10)

occurs with probability at least 1− ε. Take M larger still if necessary, and use Proposition
4.1 to deduce that, for r and then N taken sufficiently large, with probability at least
1− ε, ∥∥∥ 1

NXN (sN ·)− 1
NX

(r,M)
N (sN ·)

∥∥∥
L([0,t],V ∗)

< ε . (6.11)

Finally, increasing r even more if needed and taking N large enough, we use Proposi-
tion 6.1 to find a coupling between (XN , hN ) and Y

(β)
M under which∥∥∥ 1

NX
(r,M)
N (sN ·)− Y

(β)
M (·)

∥∥∥
L([0,t],V ∗)

< ε (6.12)

occurs with probability at least 1− ε.
Altogether, there is a coupling between (XN , hN ) and Y (β) so that for all N large

enough, ∥∥∥ 1
NXN (sN ·)− Y (β)(·)

∥∥∥
L([0,t],V ∗)

< 3ε . (6.13)

with probability at least 1− 3ε. Since ε was arbitrary, this shows (1.11) and completes
the proof.

A Discrete potential theory in two dimensions

In this section we include bounds for the Green function associated with the simple
random walks on the torus V ∗

N and on Z2. We denote the latter by XN and X respectively,
and recall that PNx , ENx and Px, Ex respectively denote the underlying probability measure
and expectation, when the starting point is x. The hitting times of a set A and vertex y

are denoted by HN (A), H(A) and HN (y), H(y) respectively. Finally, the associated Green
functions are defined below:

GN
n (x, y) = ENx

n∑
k=0

1y(XN (k)) , GA(x, y) = Ex

H(Ac)−1∑
k=0

1y(X(k)) , (A.1)

for x, y in V ∗
N or Z2, n ≥ 0 and A ⊆ Z2.

We start with standard bounds on GVN
, where we recall that VN = [0, N)2 ∩Z2. They

can be found, for instance, in [17].

Lemma A.1. There is an absolute constant C > 0 such that for all N ≥ 1, x, y ∈ VN ,

GVN
(x, y) ≤ g log

(
N

‖x− y‖ ∨ 1

)
+N (A.2)

Moreover for any ε > 0 there is C = C(ε) > 0 such that

GVN
(x, y) ≥ g log

(
N

‖x− y‖ ∨ 1

)
− C , (A.3)

for all N ≥ 1 and x, y ∈ VN with minz∈V c
N

{
‖x− z‖ ∧ |y − z‖

}
> εN .

Next, we provide bounds on GN
ϑN (n), recalling that ϑN (n) = ndN2 logNe. Although

these bounds are standard, we could not find a reference for them and hence their short
proof is provided.
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Lemma A.2. There are C, c ∈ (0,∞) so that when N is sufficiently large, for all x ∈ V ∗
N

and n ≥ 1 we have

cn ≤
GN
ϑN (n)(0, x)

logN
≤ Cn . (A.4)

To prove this lemma, we need an upper bound on GN
n (0, 0) for n on the order of N2.

Lemma A.3. Let γ ∈ N. There is c(γ) > 0 and N0 ∈ N so that N ≥ N0 implies

GN
γN2(0, 0) ≤ c logN . (A.5)

Proof. Let BLN = [−LN,LN)2 ∩Z2. Consider the simple random walk X on Z2, and first
choose L ∈ N large enough so that the following estimate holds:

p := P0(H(∂BLN ) < γN2) < 1/2 , (A.6)

where the choice of L depends on γ, and is fixed henceforth, and where such a choice is
possible by Proposition 2.1.2 of [26], for instance. Through the natural coupling of X and
XN , and via the fact that the Green function is maximized on the diagonal, the following
bound holds:

GN
γN2(0, 0) ≤ cL(1− p)

∑
k≥1

kpkGBLN
(0, 0) (A.7)

where the constant cL is positive, depending only on L, and results from the finite number
of points mapped to 0 ∈ V ∗

N from BLN ⊂ Z2 by the natural quotient map ϕN : Z2 → V ∗
N .

Via (A.6),

GN
γN2(0, 0) ≤ 4cLGBLN

(0, 0) (A.8)

≤ 4cLg logLN + 4cLc̃ , (A.9)

where (A.9) follows from Lemma A.1. As L depends only on γ, the proof is complete.

Proof of Lemma A.2. Let X̃N be the lazy simple random walk on V ∗
N which waits at each

vertex with probability 1/2. Write P̃x for the law of X̃N started at x ∈ V ∗
N , suppressing

the N in the law for notational convenience. Recall that the ε-uniform mixing time of X̃N

is defined as

τ̃(ε) := min

{
n ≥ 0 :

∣∣∣∣∣ P̃
n
(x, y)− πN (y)

πN (y)

∣∣∣∣∣ ≤ ε for all x, y ∈ V ∗
N

}
, (A.10)

where P̃
n
(x, y) := P̃x(X̃N (n) = y), and where πN is the stationary measure associated to

X̃N , uniform on V ∗
N . The discrete isoperimetric inequality on V ∗

N gives a > 0, uniformly in
N for all N large, such that for each nonempty subgraph S ⊂ V ∗

N , we have |∆S| ≥ a|S|1/2.
Here ∆S denotes the edge-boundary of S in V ∗

N . Using this bound in conjunction with
Theorem 1 of [27], we obtain γ ∈ N so that τ̃(1/2) ≤ γN2.

Let G̃
N

k be the analog of GN
k for the lazy walk, and notice that

G̃
N

ϑN (n) = 2GN
ϑN (n) . (A.11)

Decompose the trajectory of the lazy walk based on its location at time γN2:

G̃
N

ϑN (n)(0, x) = G̃
N

γN2(0, x) +
∑
y∈V ∗N

P̃
γN2

(0, y)G̃
N

ϑN (n)−γN2(y, x) . (A.12)
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By (A.10), the second term on the right side of (A.12) obeys:

1

2
(n logN − γ) ≤

∑
y∈V ∗N

P̃
γN2

(0, y)G̃
N

ϑN (n)−γN2(y, x) ≤
3

2
(ndlogNe) , (A.13)

while by Lemma A.3, the first term on the right side of (A.12) obeys

0 ≤ GN
γN2(0, x) ≤ c logN , (A.14)

where we have used Cauchy-Schwarz to bound GN
γN2(0, x) by GN

4γN2(0, 0), for instance.
Thus the constant c in (A.14) depends only on γ. We combine (A.11), (A.13) and (A.14),
taking N larger if necessary to complete the proof.
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