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Abstract

Non-equilibrium steady states for chains of oscillators (masses) connected by harmonic
and anharmonic springs and interacting with heat baths at different temperatures have
been the subject of several studies. In this paper, we show how some of the results
extend to more complicated networks. We establish the existence and uniqueness
of the non-equilibrium steady state, and show that the system converges to it at an
exponential rate. The arguments are based on controllability and conditions on the
potentials at infinity.
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1 Introduction

The aim of this paper is to state and prove an extension of the results of [11, 31, 1] to
the multidimensional case. We consider a network of masses connected with springs
(interaction potentials), where some of the masses interact with stochastic heat baths
which can have different temperatures. We also let each mass interact with a substrate
through some pinning potential. We will show that under conditions spelled out in
this paper, any such system has a unique non-equilibrium stationary state (invariant
measure). We show, moreover, that the convergence to the steady state is exponential.
The proof follows in principle the ideas of [11, 9], but the controllability argument uses
the more general conditions of [14], and the compactness part relies on a Lyapunov
function argument similar to [31, 1].

The new aspects of this paper are twofold: First, we deal with networks of springs
connecting the masses, and not just with 1-dimensional chains. Second, we correct an
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Non-equilibrium steady states for networks of oscillators

oversight of [31, 1] (see Remark 5.12) by a careful analysis of the interplay between the
coupling potentials, which hold the system together, and the pinning potentials, which
prevent it from “flying away”. This will require decomposing the phase space into two
regions, depending on whether the pinning forces or the interaction forces dominate.
In the process, we also obtain sharper estimates on the rate of energy dissipation (see
Remark 5.7).

The conditions on the system come in the following flavors:

C1 : The masses are sufficiently connected to the heat baths.
C2 : The interaction potentials are non-degenerate.
C3 : The potentials are homogeneous at infinity and coercive.
C4 : The limiting interaction forces are locally injective.
C5 : The interaction potentials grow at least as fast as the pinning potentials.

We will make C1–C5 precise in the next section. C1–C2 will be required to show the
uniqueness of the steady state, and actually C1 will have to be more specific than what
common sense would seem to dictate. C3–C5 will be further required for existence and
exponential convergence.

As was shown in [11, 10], it is useful to assume that all potentials are quadratic
(at least at infinity). These results have been extended in [9, 30, 1] to potentials of
polynomial growth subject to C5.

Without C5, decoupling phenomena (related to “breathers”) may lead to subexpo-
nential convergence to the invariant measure (and much more difficult proofs). In fact,
the existence of the invariant measure when the pinning potentials grow faster than
the interaction potentials has only been obtained for a chain of 3 masses so far (see
the extensive discussion in [17]), and for some closely related chains of rotors, which
correspond to the “infinite pinning” limit in a sense (see [6, 5, 7]).

The paper is organized as follows. In §2 we give the precise definitions of the
conditions C1–C5 above and state the main result about existence and uniqueness of
the invariant measure, and exponential convergence. The proof relies on two main
ingredients: (1) Hörmander’s bracket condition, and (2) a Lyapunov condition on the
energy. In §3 we prove that these two ingredients lead to the desired result, and there we
consider more general thermalized Hamiltonian systems (of which networks of oscillators
are a special case). Finally, we check that under C1–C5, networks of oscillators indeed
satisfy Hörmander’s condition (§4) and the Lyapunov property (§5).

While the discussion in §3 is rather standard, the proofs in §4 and §5 are quite specific
to our setup; the main technical difficulty there is that the heat baths do not act on
all the oscillators directly, so that propagation within the network has to be carefully
studied. This difficulty was already present, to a lesser extent, in the works on chains of
oscillators mentioned above.

Finally, although we restrict ourselves to smooth potentials here, we mention that
systems of particles with singular interactions (but with heat baths acting on all particles)
have attracted significant attention lately (see for example [2, 3, 21, 13]).

2 Setup and results

We consider a finite set G of masses. We denote by qv ∈ Rn and pv ∈ Rn the position
and momentum of each mass v ∈ G (we assume n ≥ 1). The phase space is then
Ω ≡ R2|G|n, and we write z = (p, q) = ((pv)v∈G , (qv)v∈G).

We then introduce a set E ⊂ G × G of edges representing the springs, and consider
Hamiltonians of the form

H(p, q) =
∑
v∈G

(p2v
2

+ Uv(qv)
)
+
∑
e∈E

Ve(δqe) , (2.1)
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where the functions Uv are pinning potentials, the functions Ve are interaction potentials,
and where for e = (v, v′) ∈ E we write δqe = qv′ − qv ∈ Rn.

We view (G, E) as an undirected graph with no loop (i.e., no edge of the kind (v, v)).
Since the edges e = (v, v′) and ē = (v′, v) are identified, we also adopt the convention
that Ve(qv′ − qv) and Vē(qv − qv′) are equal and both express just one interaction, which
appears only once in (2.1).

We now choose a subset B ⊂ G of vertices where thermal baths act, and for every
b ∈ B we assume that some temperature Tb > 0 and some coupling constant γb > 0 are
given. For v /∈ B we set, for convenience, γv = Tv = 0. With this notation, our model is
described by the system of stochastic differential equations (one equation per v ∈ G):

dqv = pv dt , dpv = −∇qvH(p, q) dt− γvpv dt+
√

2Tvγv dWv(t) , (2.2)

where the Wv are mutually independent standard n-dimensional Wiener processes. Note
that for v /∈ B, the last two terms in (2.2) are absent. We denote by zt = (pt, qt) the
solution of (2.2). For each fixed initial condition z ∈ Ω, we denote by Pz the probability
distribution of the solutions to (2.2), and by Ez the corresponding expectation. We also
introduce the transition kernels Pt(z, · ) defined for all z ∈ Ω, t ≥ 0, and all Borel sets
A ⊂ Ω by

Pt(z,A) = Pz{zt ∈ A} . (2.3)

The Langevin heat baths used in (2.2) are slightly simpler than those in [11, 9, 31].
There, the oscillators interact with some classical field theories which are initially Gibbs-
distributed, and the (linear) coupling between the oscillators and the fields is chosen
so that the latter can be integrated out. The resulting dynamics is similar to (2.2), but
instead of directly acting on the momenta as in (2.2), the noise and dissipation act
on some auxiliary variables which in turn interact with the momenta. The choice of
Langevin heat baths (also made in [1]) is only for convenience, and the present analysis
is easily transposed to the setup of [11, 9, 31].

We now make C1–C5 precise. We start with C1 in §2.1, which is in particular satisfied
if the network is a chain with heat baths at both ends. In §2.2 and §2.3, we discuss
C2–C5. An example of potentials satisfying C2–C5 that the reader might want to have in
mind is1 Ve = (1 + ‖ · ‖2)`i/2 and Uv = (1 + ‖ · ‖2)`p/2, where `i, `p ∈ R satisfy `i ≥ `p ≥ 2.
(If `i and `p are even numbers subject to the same condition, then one may also take
Ve = ‖ · ‖`i and Uv = ‖ · ‖`p .)

2.1 Controllability through the springs

The following definition is useful: Let B be a subset of G. We say that B is nicely
connected to v ∈ G \B if there exists a vertex b ∈ B and an edge of the form (b, v) ∈ E ,
and there is no other edge from b to G \B. We define T B as the union of B with its nicely
connected vertices in G \ B (see Figure 1). We denote by T 2B, T 3B, . . . the iterates of
this construction.

Definition 2.1. Let (G, E) be as above. We say that B ⊂ G controls (G, E) if there exists
k ≥ 1 such that T kB = G.

This allows us to make C1 precise as2

Condition C1. The graph is connected and B controls (G, E).
Remark 2.2. Note that connectedness is a trivial restriction, for if the graph is not
connected the results apply to each connected component separately. Chains with heat
baths at both ends (or even at just one end) obviously satisfy C1. So do some finite pieces

1Throughout the paper, ‖ · ‖ denotes the Euclidean norm.
2It was brought to our attention that the same condition appears in [8, Section 2.2].
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Figure 1: In this network, if B = {a,b, c}, then T B = {a,b, c,d, e}.

of regular lattices, see Figure 2. As some examples in Figure 2 illustrate, controllability
is, unfortunately, not a monotone property in E: Adding edges, i.e., more springs, will
sometimes improve controllability, and sometimes destroy it. On the other hand, given
(G, E), controllability is a monotone property in the set B of “initially controlled” nodes.

Remark 2.3. One always has the inequality |T k+1B| ≤ |T kB| + |B|. Indeed, let Bk be
the set of vertices in T kB that are connected to at least one other vertex in G \ T kB. It is
then clear from the definition of T that |T k+1B| ≤ |T kB| + |Bk|. On the other hand, it
follows from the definition of T that, for every “newly added” vertex v in T k+1B \ T kB,
there must be at least one vertex w in Bk such that v is the only element in G \ T kB that
is connected to w. As a consequence, |Bk+1| ≤ |Bk| ≤ |B| for every k, from which the
claim follows at once.

In a way, this remark says that the system is effectively almost 1-dimensional with
respect to the propagation of information. No point in B and no point in T kB will ever
control more than one new point as one iterates from k to k + 1 above.

Another criterion for the controllability of networks of interacting oscillators was
introduced in [4]. While the results in [4] allow in some cases to control networks with
more general topologies, in particular some which do not satisfy Condition C1, they only
apply to strictly anharmonic polynomial potentials in 1D (n = 1).

2.2 Non-degenerate potentials

We now discuss the conditions on the potentials Ve. The attentive reader will note
that, in fact, the non-degeneracy conditions below are not necessary on all the links, but
only on those which are needed for Condition C1 to hold. This means, for example, that
in Figure 2, the potentials associated with the “vertical” springs may be degenerate. We
will not deal with this any further, and make the assumptions on all Ve.

Given a multi-index α = (α1, . . . , αn) of non-negative integers, we set |α| =
∑n

i=1 αi,
and define Dα as the differential operator with αi derivatives in the ith direction of Rn.
Given a potential V : Rn → R, (i.e., any of the Ve) we introduce the following notion of
non-degeneracy [31]. The idea is that the Ve do not have “infinitely flat” pieces.

Definition 2.4. A smooth potential V : Rn → R is non-degenerate if there exists an
` < ∞ such that the set of derivatives

{Dα∇V (x) : 1 ≤ |α| ≤ `}

spans Rn for every x ∈ Rn.

We now have the following precise version of C2:

Condition C2. The interaction potentials Ve are non-degenerate.

Example 2.5. Any potential of the form V (x) = ‖x‖r with r = 2, 4, 6, . . . is non-degenerate.
The same is true of V (x) = (1 + ‖x‖2)r/2 with any real number r > 0. On the contrary, if
‖x‖ is replaced by |x1| here, then the resulting potential is degenerate (unless n = 1).
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Figure 2: The elements of B are labeled by “B”. The numerical label k indicates that the
vertex is in T kB but not in T k−1B (with T 0B = B), and the uncontrollable elements are
labeled by “?”. The arrows indicate the growth of T kB as a function of k. The top five
networks are controlled by B, while the bottom two are not. The example in the lower
left corner was used in [12].

Remark 2.6. The condition in Definition 2.4 allows for controllability in the following
sense: Consider a given continuous trajectory q̄ : [0, 1] → Rn and the problem

ṗf (t) = −∇V
(
q̄(t) + f(t)

)
(2.4)

with pf (0) = p∗. If V is non-degenerate, then the set of solutions pf (1) of (2.4) at time 1,
as f is varied over all smooth functions with supt≤1 |f(t)| ≤ 1, contains an open (and in
particular “full-dimensional”) set.

2.3 Nearly homogeneous potentials

One of the difficulties with models of the type (2.1), (2.2) is to show the existence
of a non-equilibrium steady state. As was demonstrated in [17, 15], this can be highly
non-trivial, and even with “nice” potentials, there are situations where the convergence
to the steady state can be arbitrarily slow.

For the purpose of proving the existence of the steady state, a convenient class of
interactions is given by potentials that behave at infinity like homogeneous functions.
We say that a function Ψ: Rn → R is homogeneous of degree3 r ≥ 2 if Ψ(λx) = λrΨ(x)

3The degree r is not assumed to be an integer. The restriction r ≥ 2 is required for some of the results
below.
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for every λ > 0 and every x ∈ Rn \ {0}. With this notion at hand, we give the following
definition, which is slightly weaker than the one in [30]:

Definition 2.7. A smooth function V : Rn → R is said to be nearly homogeneous of
degree r if there exists a homogeneous (of degree r), differentiable function V∞ : Rn → R

such that ∇V∞ is locally Lipschitz, and such that for all 0 ≤ |α| ≤ 1,

lim
λ→∞

sup
‖x‖=1

∣∣∣∣ (DαV )(λx)

λr−|α| −DαV∞(x)

∣∣∣∣ = 0 .

Example 2.8. If V (x) = ‖x‖r with r = 2, 4, 6, . . . , then V is nearly homogeneous. More-
over, for any real number r ≥ 2, the potential V (x) = (1+‖x‖2)r/2 is nearly homogeneous.
In both cases, V∞(x) = ‖x‖r.
Remark 2.9. It is easy to see that nearly homogeneous functions (of degree r ≥ 2) also
satisfy some derived properties, for 0 ≤ |α| ≤ 1:

(i) lim‖x‖→∞ ‖x‖|α|−r (DαV (x)−DαV∞(x)) = 0.

(ii) |DαV (x)| ≤ CV (1 + ‖x‖r−|α|), for some CV > 0.

(iii) limλ→∞ supx∈K

(
λ|α|−r(DαV )(λx)−DαV∞(x)

)
= 0, for every compact set K.

(iv) If inf‖x‖=1 V∞(x) > 0, then V (x) ≥ C ′
V ‖x‖r, for some C ′

V > 0 when ‖x‖ is large
enough.

We can now define C3–C5 properly as follows.

Condition C3. The potentials Uv are nearly homogeneous of degree `p ≥ 2 with
limiting functions Uv,∞, and the potentials Ve are nearly homogeneous of degree
`i ≥ 2 with limiting functions Ve,∞. Moreover, the limiting potentials are coercive,
i.e., inf‖x‖=1 Ve,∞(x) > 0 and inf‖x‖=1 Uv,∞(x) > 0.

Condition C4. The limiting interaction forces −∇Ve,∞ are locally injective in the sense
that for each e ∈ E and each x ∈ Rn, we have ∇Ve,∞(x′) 6= ∇Ve,∞(x) for all x′ in a
neighborhood of x.

Condition C5. The interaction and pinning powers satisfy `i ≥ `p.

Note that Conditions C2 and C4 are not comparable: the former guarantees that the
forces −∇Ve are locally surjective in a sense, and the latter guarantees that the limiting
forces −∇Ve,∞ are locally injective.

For example, consider a smooth homogeneous function V : R3 → R given by
x4/4 + y2z2/2 on the set M = {(x, y, z) ∈ R3 : z2 + y2 ≤ x2/10}. Then ∇V (x, y, z) =

(x3, yz2, y2z), and obviously {Dα∇V (x) : 1 ≤ |α| ≤ 3} spans R3 for all (x, y, z) ∈ M .
However, ∇V (x, y, 0) = (x3, 0, 0), and thus ∇V is not locally injective.

There are specific systems for which Condition C4 is not actually required, and others
for which it is, as we illustrate in Remarks 5.15 and 5.16.

Remark 2.10. Condition C4 holds for example if the Ve,∞ are strictly convex. In particu-
lar if n = 1, then the Ve,∞ are automatically strictly convex, since they are homogeneous
of degree `i ≥ 2 and coercive.

Remark 2.11. The requirement that all interaction potentials have the same degree `i
is crucial. Indeed, if one of the interactions in the bulk of the network (i.e., involving two
oscillators in G \ B) has a higher degree than the others, the system may find itself in a
regime where the two corresponding oscillators oscillate in phase opposition and with a
frequency much higher than the other natural frequencies of the system, leading to a
decoupling phenomenon comparable to the situation in [17]. This is again expected to
lead to subgeometric convergence to the invariant measure and much more involved
proofs.
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Remark 2.12. As will be clear from the proofs in §5, it is actually not necessary for all
the limiting pinning potentials Uv,∞ to be coercive (or even to be non-zero). In fact, we
only need the quantity defined in (5.41) to be coercive.

Without loss of generality, we also assume that the potentials Uv and Ve are non-
negative (by the coercivity condition above, this is always achievable by adding a
constant).

2.4 Main result

Given the definitions of §2.1–2.3, we can now state the main result. In order to
emphasize the role of each assumption, we introduce the following (very weak) auxiliary
condition.

Condition CA. The Hamiltonian H has compact level sets (i.e., the set {z : H(z) ≤ K} is
compact for each K > 0), and there exists some β > 0 such that the function exp

(
−βH

)
is integrable on Ω.

Condition CA follows immediately from Condition C3 (one can choose any β > 0).

Theorem 2.13. The following holds.

1. Under Conditions C1, C2 and CA, the system (2.2) admits at most one invariant
measure, and if it exists, it has a smooth density with respect to Lebesgue measure.

2. Under Conditions C1, C3, C4 and C5, the system (2.2) admits a least one invariant
measure, and eϑH is integrable with respect to it for all 0 < ϑ < 1/Tmax, with
Tmax = max{Tb : b ∈ B}.

3. Finally, assuming Conditions C1–C5, the system (2.2) admits a unique invariant
measure µ?. Moreover, for all 0 < ϑ < Tmax, there are constants C, c > 0 such that
for every initial condition z = (p, q) ∈ Ω and all t ≥ 0,

sup
f∈C(Ω) : |f |≤eϑH

∣∣∣∣Ezf(zt)−
∫

fdµ?

∣∣∣∣ ≤ CeϑH(z)−ct . (2.5)

This theorem is a special case of Theorem 3.1 below, as we will show.

3 A general result about thermalized Hamiltonian systems

In this section, we prove a version of Theorem 2.13 which applies to more general
thermalized Hamiltonian systems subject to two assumptions H1 and H2 (see below). As
we show in §4 and §5, these assumptions follow from Conditions C1–C5. Although the
material discussed in this section is mostly standard (see for example [25]), we provide
a complete exposition relying on the version of Harris’ ergodic theorem proved in [18].
We hope that by considering more general Hamiltonian systems and conditions in this
section, the proofs will be both easier to read and useful beyond the scope of this paper.

The setup is as in §2, except that we do not assume that the set of masses G has the
structure of a graph and that the Hamiltonian has the form (2.1). More precisely, we
study the SDE

dqv = pv dt , dpv = −∇qvH(p, q) dt− γvpv dt+
√

2Tvγv dWv(t) , (3.1)

where the friction constants γv, the temperatures Tv and the set B ⊂ G are as in §2, and
where the Hamiltonian is given by

H(p, q) =
∑
v∈G

p2v
2

+ U(q) ,
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for some arbitrary smooth, non-negative potential U on Rn|G|.

We also assume throughout this section that Condition CA holds, i.e., that H has
compact level sets and that exp

(
−βH

)
is integrable on Ω for some β > 0.

We define the semigroup (Pt)t≥0 acting on the space of bounded measurable functions
on Ω by Ptf(z) = Ezf(zt) =

∫
Ω
f(z′)Pt(z, dz

′). We also fix 0 < ϑ < 1/Tmax, with Tmax =

max{Tb : b ∈ B} as in Theorem 2.13. We let moreover

V = eϑH .

The solutions to (3.1) form a Markov process whose generator L is

L = X0 +
∑
b∈B

∑
i=1,...,n

X2
b,i , (3.2)

where Xb,i =
√
Tbγb∂pi

b
and

X0 =
∑
v∈G

(
pv · ∇qv −∇qvU(q) · ∇pv − γvpv · ∇pv

)
.

From now on, we will view X0 and the Xb,i interchangeably as first-order differential
operators and as vector fields on Ω.

With C∗ = ϑ
∑

b∈B γbTb, we obtain

LV =
∑
b∈B

ϑγb
(
[ϑTb − 1]p2b + Tb

)
eϑH ≤ C∗V . (3.3)

Since H, and hence V , have compact level sets by assumption, the process admits strong
solutions that are continuous and defined for all t ≥ 0 (almost surely), the strong Markov
property is satisfied, and for all t ≥ 0 we have

PtV ≤ eC∗tV (3.4)

(see for example [20, Theorem 3.5], [29], and [28, Theorem III.3.1] for the strong Markov
claim).

We now introduce Hörmander’s celebrated “Lie bracket condition” [23]. Define a
family of vector fields A0 by A0 = {Xb,i : b ∈ B, i = 1, . . . , n} and then, recursively,

Ak+1 = Ak ∪
{
[X,Y ] : X ∈ Ak , Y ∈ A0 ∪ {X0}

}
,

where [X,Y ] denotes the Lie bracket (commutator) of X and Y . With this notation at
hand, we formulate

Condition H1. The operator L defined in (3.2) satisfies Hörmander’s bracket condition,
i.e., for every z ∈ Ω, there exists an integer k > 0 such that the linear span of {Y (z) :

Y ∈ Ak} is all of Ω.
Condition H1 is sufficient (and “almost necessary”) for ∂t − L to be hypoelliptic, so

that the semigroup associated to (3.1) has a smoothing effect (see Proposition 3.2 below).
We note that the requirement in Condition H1 is made for all z ∈ Ω; see for example [27]
for an argument which only requires Hörmander’s condition to hold at one point, but
which is specific to quasi-harmonic systems whose harmonic part is subject to Kalman’s
controllability condition.

Next, we introduce a Lyapunov condition, which will be crucial in order to obtain the
existence of an invariant measure and the exponential convergence (2.5).
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Condition H2. There exists t∗ > 0 and κ ∈ (0, 1) such that4

Pt∗V ≤ κV + c1K , (3.5)

where c > 0 is a constant and K is a compact set.

In §4, we show that for the original system (2.2), Conditions C1 and C2 imply
Condition H1, and in §5 we show that Conditions C1, C3, C4 and C5 imply Condition H2.
With this in mind, Theorem 2.13 is a special case of

Theorem 3.1. The following holds (recall that Condition CA is assumed throughout this
section).

1. Under Condition H1, the system (3.1) admits at most one invariant measure, and if
it exists, it has a smooth density with respect to Lebesgue measure.

2. Assuming Condition H2, the system (3.1) admits a least one invariant measure, and
V is integrable with respect to it.

3. Finally, assuming Conditions H1 and H2, the system (3.1) admits a unique invariant
measure µ?, and the exponential convergence in (2.5) holds.

Proof. The three parts of the theorem are proved in Propositions 3.3, 3.7 and 3.8
below.

3.1 Controllability and uniqueness

The following consequence of Hörmander’s condition is well known [23] (see [29,
Section 7], [16], and [32, Section 7.4] for introductions).

Proposition 3.2. Assume Condition H1. Then the transition kernel in (2.3) can be
written as Pt(z, dz

′) = pt(z, z
′)dz′, where the map (t, z, z′) 7→ pt(z, z

′) is smooth on
(0,∞)×Ω×Ω. In particular, the process is strong Feller. Finally, every invariant measure
has a smooth density with respect to Lebesgue measure on Ω.

We now prove the following “accessibility” result (see also [6, Section 5.2.1] for
another variant of this argument).

Proposition 3.3. Assume Condition H1. Then the system (3.1) admits at most one
invariant measure, and for every non-empty open set U ⊂ Ω and all z ∈ Ω, we have
supt>0 Pt(z,U) > 0.

Proof. The argument follows the same lines as the reasoning first given in [14], see also
[24]. Take β > 0 as in Condition CA and consider instead of (3.1) the modified equation

dqv = pv dt , dpv = −∇qvH(p, q) dt− γvpv dt+
√

2γvβ−1 dWv(t) . (3.6)

The only difference is that all the temperatures have been replaced by 1/β (we still have
γv = 0 for all v /∈ B). By the same argument as above, the solutions to (3.1) almost surely
exist for all times. It is well known that the measure

dµβ =
1

Z
e−βH(p,q) dp dq

is invariant for (3.6), and by Condition CA, one can choose Z > 0 so that µβ is a
probability measure. (The invariance of µβ can be seen by checking that L∗e−βH = 0,
where L∗ is the formal adjoint of the generator of (3.6).)

We next show that µβ is the only invariant probability measure for (3.6). It is easy
to show that, as a consequence of Proposition 3.2, the map z 7→ P t(z, · ) is continuous

4Here and below, 1K denotes the characteristic function of the set K.
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in the total variation topology, where P t denotes the transition probabilities for (3.6).
Since distinct ergodic invariant probability measures for (3.6) are mutually singular by
Birkhoff’s ergodic theorem, this immediately implies that if ν is an ergodic invariant
measure for (3.6) and z ∈ supp ν, then there exists a neighborhood Uz of z such that
Uz ∩ supp ν̄ = ∅ for every other ergodic invariant measure ν̄.

As a consequence, let us choose some (there exists at least one) ergodic invariant
measure ν of (3.6). Assuming by contradiction that ν is not unique, we have supp ν 6= Ω.
As a consequence, setting V =

⋃
z∈supp ν(Uz \ supp ν), we have constructed a non-empty

open set V such that V ∩ supp ν̄ = ∅ for every ergodic invariant measure ν̄ of (3.6) and
therefore, by the ergodic representation theorem, for every invariant measure ν̄. (We
must have V 6= ∅ for otherwise supp ν would be both open and closed, which cannot be.)
However, suppµβ = Ω, thus yielding a contradiction.

Returning to our main line of argument, since µβ is the unique invariant probability
measure for (3.6), it must be ergodic. Since µβ has full support, it then follows from
Birkhoff’s ergodic theorem that for every open set U and Lebesgue-almost every initial
condition z ∈ Ω, we have supt>0 P t(z,U) > 0. An easy application of the Chapman-
Kolmogorov equation, using the smoothness of the transition probabilities, shows that
this actually holds for every z ∈ Ω.5 The conclusion of the proposition thus holds for
(3.6). We now return to (3.1).

The key is that for each z ∈ Ω and t ≥ 0, the transition probabilities P t(z, · ) for (3.6)
and Pt(z, · ) for (3.1) are equivalent, since the two stochastic differential equations differ
only by the scaling of the Brownian motions. Thus, we indeed have supt>0 Pt(z,U) > 0 for
all z ∈ Ω and every non-empty open set U ⊂ Ω. Assume now by contradiction that (3.1)
admits more than one invariant probability measure. Then by the ergodic decomposition
theorem there exist two distinct ergodic measures, which then have distinct supports S1

and S2. By smoothness, there exists a non-empty open set U ⊂ S2, and by taking z ∈ S1

we find supt>0 Pt(z,U) = 0, which is a contradiction.

Although this will not be needed, we state the following corollary, which follows from
the Stroock–Varadhan support theorem (see [33], and [22, Theorem 5.b] for an extension
to case of unbounded coefficients).

Corollary 3.4. Assume Condition H1. Then, for any starting point z0 ∈ Ω and any
non-empty open set U ⊂ Ω, there exists a time t > 0 and smooth controls ub : [0, t] → Rn

for b ∈ B such that the solution at time t to6

q̇v = pv , ṗv = −∇qvH(p, q)− γvpv + 1B(v)uv(t) , v ∈ G ,

with initial condition z0, lies in U .
Remark 3.5. In the case of chains of oscillators, a stronger controllability argument is
used in [10]. The argument given above is “softer”. As a consequence, it applies to a
larger class of Langevin equations, at the expense of having less explicit control. The
argument in [10] actually implies that, in the statement of Proposition 3.3, the quantity
Pt(z,U) is positive for all t > 0.

3.2 Minorization

The next proposition shows that every compact set is small in the terminology of [26].
In fact, we show that for each given compact set C, the minorization condition holds for
all large enough t. In the proof, pt( · , · ) is as in Proposition 3.2.

5One can also use that the strong Feller property implies that Birkhoff’s ergodic theorem holds for every
initial condition in the support of the invariant measure [19, Theorem 4.10].

6The same is true without the dissipative terms −γvpv , since they can be absorbed into the controls uv

(recall that γv = 0 when v /∈ B).
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Proposition 3.6. Assume Condition H1. Then, for every compact set C, there exists a
time tC such that for all t ≥ tC , there exists a non-negative and non-trivial measure ν

(which may depend on t) such that Pt(z, · ) ≥ ν for all z ∈ C.

Proof. We start by showing that there exists z∗ ∈ Ω such that for all z ∈ Ω, there are
t](z) and δz > 0 satisfying

pt(z
′, z∗) > 0 for all t ≥ t](z) and all z′ ∈ B(z, δz) . (3.7)

First, pick any z0 ∈ Ω. We now fix any z∗ such that p1(z0, z∗) > 0. By continuity, there
exists δ > 0 such that infz∈B(z0,δ) p1(z, z∗) > 0. By Proposition 3.3, there exists for each
z ∈ Ω some t0(z) such that Pt0(z)(z,B(z0, δ)) > 0. It then follows from the semigroup
property that pt1(z)(z, z∗) > 0 with t1(z) = t0(z) + 1. Using continuity again, we can
choose δz > 0 so that

pt1(z)(z
′, z∗) > 0 for all z′ ∈ B(z, δz) . (3.8)

We now show that there exists t2 > 0 such that

pt(z∗, z∗) > 0 for all t ≥ t2 . (3.9)

Since pt1(z∗)(z∗, z∗) > 0, continuity with respect to time implies that for some ∆ > 0

small enough, we have pt(z∗, z∗) > 0 for all t ∈ [t1(z∗), t1(z∗) + ∆]. But then the same
holds for all t ∈ [nt1(z∗), nt1(z∗) + n∆], n ∈ N. Thus (3.9) holds with t2 = n∗t1(z∗) for any
integer n∗ ≥ t1(z∗)/∆. Using (3.8), (3.9) and the semigroup property yields (3.7) with
t](z) = t1(z) + t2.

We now prove the main claim. Let C be a compact set. The balls {B(z, δz) : z ∈ C}
form an open cover of C, and by compactness we can extract a finite subcover, yielding a
maximum time tC such that pt(z, z∗) > 0 for all z ∈ C and all t ≥ tC . For any such t, since
pt( · , · ) is continuous on Ω2 and C is compact, the result follows with dν = ε1B(z∗,r)dz

for small enough ε, r > 0.

3.3 Existence of an invariant measure and exponential convergence

As an elementary consequence of Condition H2, we find that

Pnt∗V ≤ κnV + c

∞∑
i=0

κi for all n ∈ N .

From this and (3.4), we obtain that

PtV ≤ c1 + c2ρ
tV for all t ≥ 0 , (3.10)

with c1, c2 > 0 and ρ = κ1/t∗ ∈ (0, 1). In particular, since V has compact level sets, this
implies that for any z ∈ Ω, the family of probability measures (Pt(z, · ))t≥0 is tight. Since
the process is Feller, the standard Krylov–Bogolyubov construction then implies that
for some sequence tk increasing to infinity, 1

tk

∫ tk
0

Ps(z, · )ds converges weakly to some
measure which is invariant, and with respect to which V is integrable. We thus obtain

Proposition 3.7. Under Condition H2, the process admits an invariant measure µ?, and
V is integrable with respect to µ∗.

Assuming in addition Condition H1 implies that µ? is unique (Proposition 3.3), and
we now prove exponential convergence.

Proposition 3.8. Under Conditions H1 and H2, the exponential convergence in (2.5)
holds.
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Proof. We will apply the main result of [18] to the discrete-time semigroup (Pnt0)n=0,1,2,...,
for some large enough t0 > 0. Let first R = 2c1/(1 − ρ). Here c1, c2 and ρ are as in
(3.10). We then define the compact set C = {z : V (z) ≤ R}. We choose now t0 ≥ tC
with the tC from Proposition 3.6, and large enough so that c2ρt0 < ρ. It follows that
R > 2c1/(1 − c2ρ

t0), so that by (3.10) the main result of [18] applies to (Pnt0)n=0,1,2,....
We obtain7 that for some C0, c0 > 0 and all z ∈ Ω,

sup
f∈C(Ω) : |f |≤V

∣∣∣∣Ezf(znt0)−
∫

fdµ?

∣∣∣∣ ≤ C0V (z)e−c0nt0 for all n ∈ N . (3.11)

For |f | ≤ V , we define g(z, t) = Ezf(zt)−
∫
fdµ?. Decomposing t = nt0 + r with n ∈ N

and r ∈ [0, t0), we obtain from the Markov property that

|g(z, t)| = |Ezg(zr, nt0)| ≤ C0e
−c0nt0EzV (zr) ≤ C0e

C∗t0−c0nt0V (z) ,

where we have also used (3.4). This immediately implies (2.5) for some C, c > 0, and
thus the proof is complete.

4 Hypoellipticity

In this section, we prove

Proposition 4.1. Under Conditions C1 and C2, the system (2.2) satisfies Condition H1.

Proof. For the system (2.2), the vector field X0 in the decomposition (3.2) reads

X0 =
∑
v∈G

(
pv · ∇qv −∇Uv(qv) · ∇pv

− γvpv · ∇pv

)
−

∑
(u,v)∈E

∇V(u,v)(qv − qu) ·
(
∇pv

−∇pu

)
.

We will actually prove the following statement, which implies Condition H1. Let
X̄0 = ∂t − X0 and set M0 = {X̄0} ∪ {Xb,i : b ∈ B, i = 1, . . . , n}, which we view as a
family of smooth vector fields on R1+2n|G|. Denote by M the smallest set of vector fields
containing M0 that is closed under Lie brackets and multiplication by smooth functions.

We will show that ∂t, as well as ∇pv and ∇qv for every v ∈ G, all belong to M. Since
X̄0 ∈ M, it is sufficient to prove the claim about the ∇pv and ∇qv . (Here and below, what
we mean by ∇pv ∈ M is that ∂pi

v
∈ M for all i = 1, . . . , n, and similarly for ∇qv .)

Note first that, by the definition of Xb,i and M0, we have ∇pb
∈ M for all b ∈ B.

Furthermore, since

[∂pi
v
, X̄0] = −∂qiv + γv∂pi

v

for all v ∈ G, it follows that one has the implication

∇pv
∈ M ⇒ ∇qv ∈ M .

By the definition of the notion of B controlling G, the claim now follows if we can show
that, for any set B′ ⊂ G, one has the implication

∇qb ,∇pb
∈ M for all b ∈ B′ ⇒ ∇pv

∈ M for all v ∈ T B′ .

7Another way to obtain (3.11) with t0 = t∗ is to use [26, Theorem 15.0.1]. Indeed, (3.7) implies that the
process is aperiodic, Condition H2 provides the required drift condition, and by Proposition 3.6 the compact
set K in (3.5) is small (and hence petite). An alternative proof of convergence using quasi-compactness of the
semigroup can be found in [29].
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Assume therefore that B′ is such that ∇qb ,∇pb
are in M for all b ∈ B′. Note that, for all

i ∈ {1, . . . , n} and every b ∈ B′,

[∂qib , X̄0] =
(
∂i∇Ub

)
(qb) · ∇pb

−
∑

e=(b,v)∈Eb

(
∂i∇Ve

)
(δqe) ·

(
∇pv

−∇pb

)
, (4.1)

where we denote by Eb the subset of those edges in E that are of the form (b, v) for some
v ∈ G. Fix now v ∈ T B′ \ B′. By the definition of T B′, there exists then b ∈ B′ such that
(b, v) ∈ Eb and, for every other w for which (b, w) is in Eb, one has w ∈ B′. For such a
b ∈ B′, we conclude that in (4.1) all the terms but

(
∂i∇V(b,v)

)
(qv − qb) · ∇pv

are of the
form fu(z) · ∇pu

for some u ∈ B′, so that(
∂i∇V(b,v)

)
(qv − qb) · ∇pv ∈ M . (4.2)

By the definition of T B′, this holds for every v ∈ T B′ \ B′. We now get rid of the potential
term in (4.2). Repeatedly taking Lie brackets with ∂qjb

, (4.2) implies that, for every
non-zero multi-index α, we have(

Dα∇V(b,v)

)
(qv − qb) · ∇pv

∈ M . (4.3)

Let now ` be the value appearing in the non-degeneracy assumption for V(b,v) and let M
be the n× n matrix-valued function whose elements are given by

Mij(x) =
∑

1≤|α|≤`

(
Dα∂iV(b,v)

)
(x)
(
Dα∂jV(b,v)

)
(x) , x ∈ Rn .

It follows from the non-degeneracy assumption that M is invertible for every x ∈ Rn, so
that M−1

ij (x) is a smooth function. An explicit calculation shows, furthermore, that one
has the identity

∂pj
v
=

n∑
i=1

∑
1≤|α|≤`

M−1
ij (qv − qb)

(
Dα∂iV(b,v)

)
(qv − qb)

(
Dα∇V(b,v)

)
(qv − qb) · ∇pv

.

From (4.3) and the fact that M−1
ij (qv − qb)

(
Dα∂iV(b,v)

)
(qv − qb) is a smooth function, we

deduce that we indeed have ∇pv ∈ M, thus completing the proof.

5 Lyapunov condition

In this section, we show that Conditions C1, C3, C4 and C5 imply that the system
(2.2) satisfies Condition H2 above, i.e., that V = eϑH satisfies the Lyapunov property if ϑ
is small enough.

The proof follows the lines of the argument that can be found in [31, 1]. Unfortunately,
these works both contained a gap in the argument, which we presently correct (see
Remark 5.12).

We fix t∗ > 0 and ϑ < 1/Tmax with Tmax = max{Tb : b ∈ B}. The main result of this
section is

Theorem 5.1. Under Conditions C1, C3, C4 and C5, there is a constant C1 > 0 such
that for all z0 such that H(z0) is large enough, we have

Ez0e
ϑH(zt∗ )−ϑH(z0) ≤ e−C1H(z0) . (5.1)

Remark 5.2. By the coercivity ofH, the theorem above implies that there exist constants
κ ∈ (0, 1) and c > 0, and a compact set K such that

Eze
ϑH(zt∗ ) ≤ κeϑH(z) + c1K(z) ,

which is the usual Lyapunov condition used in Condition H2.
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For the remainder of the paper, we assume that Conditions C1, C3, C4 and C5 are
satisfied.

The central role in the proof of Theorem 5.1 will be played by the dissipation integral

Γ(t) =
∑
b∈B

γb

∫ t

0

p2b(s)ds . (5.2)

In a nutshell, we will prove (5.1) by showing that if H(z0) is large enough, then with very
high probability the main contribution to the energy difference H(zt∗) −H(z0) comes
from (minus) the dissipation integral Γ(t∗), which, also with very high probability, scales
like H(z0).

In order to do this, we start by partitioning, for each initial condition z0 ∈ Ω, the
probability space into the following three events:

A1 =

{
H(zs) ∈

[
H(z0)

2
, 2H(z0)

]
∀s ∈ [0, t∗]

}
,

A2 =

{
inf

s∈[0,t∗]
H(zs) <

H(z0)

2

}
,

A3 =

{
sup

s∈[0,t∗]

H(zs) > 2H(z0)

}
.

The event A1 will be the center of most of our analysis. The event A2 will be of no
trouble, since after getting as low as H(z0)/2, it is unlikely that the energy will increase
again to a large value. Finally, the event A3 will be of negligible probability at high
energy.

When the event A1 is realized, we will cut the time interval [0, t∗] into subintervals.
The length of each subinterval will depend on the distribution of energy between the
interaction and center of mass degrees of freedom as follows.

We introduce the center of mass coordinates

Q =
1

|G|
∑
v∈G

qv , P =
∑
v∈G

pv , (5.3)

and split the Hamiltonian according to

H = Hc +Hi , (5.4)

where

Hc =
P 2

2|G|
+
∑
v∈G

Uv(qv) ,

Hi =
1

2

∑
v∈G

(
pv −

P

|G|

)2

+
∑
e∈E

Ve(δqe) .

We then let

τ(z) =

{
λH(z)

1
`i

− 1
2 if Hi(z) ≥ H(z)/2 ,

λH(z)
1
`p

− 1
2 if Hc(z) > H(z)/2 ,

(5.5)

where λ > 0 is arbitrary if `p > 2, and subject to the condition 0 < λ ≤ t∗/2 if `p = 2.
Note that τ(z) is not random when z is fixed.

The rationale behind (5.5) is simple: when the system is dominated by the “internal”
dynamics, the natural time scale is H(z)1/`i−1/2. In the opposite case, the time scale
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H(z)1/`p−1/2 of the pinning potentials is relevant. When `i = `p, this distinction of time
scales obviously vanishes.

The following proposition, which we will prove in §5.1 and §5.2, says that with a very
large probability, the average dissipation rate over the time interval [0, τ(z0)] is at least
some fraction of the initial energy.

Proposition 5.3. Let

Ã = {H(zs) ≤ 4H(z0) ∀s ∈ [0, τ(z0)]} .

Then there exist ε,B > 0 such that for all z0 with H(z0) large enough,

Pz0

(
Ã ∩ {Γ(τ(z0)) < εH(z0)τ(z0)}

)
≤ e−BH(z0) . (5.6)

For the remainder of this section, we assume that ε,B are fixed as in Proposition 5.3.
We start with a corollary of Proposition 5.3, which says that one can basically apply
Proposition 5.3 to successive time intervals in order to obtain estimates on Γ(t∗).

Corollary 5.4. There exists B′ > 0 such that for all z0 with H(z0) large enough,

Pz0

(
A1 ∩

{
Γ(t∗) <

εt∗
4

H(z0)

})
≤ e−B′H(z0) . (5.7)

Proof. Fix z0 and let E = H(z0). Consider the sequence of stopping times

τ0 = 0 , τj+1 = τj + τ(zτj ) , (5.8)

with τ(z) for z ∈ Ω as in (5.5). We now introduce the random variable

J = sup{j : τj ≤ t∗} .

On A1, we have for all t ≤ t∗ that

λ(2E)
1
`i

− 1
2 ≤ τ(zt) ≤ λ(E/2)

1
`p

− 1
2 ,

and hence that

J ≤ Ĵ ≡ bt∗(2E)
1
2−

1
`i λ−1c .

Moreover, if E is large enough (and in the case `p = 2, using that λ ≤ t∗/2), we have on
A1 that J > 0 and that

τJ > t∗ − τ(zτJ ) ≥
t∗
2

.

Consider next the events

Gj = {J > j} ∩

{∑
b∈B

γb

∫ τj+1

τj

p2b(s)ds < ετ(zτj )H(zτj )

}
,

G =
⋃
j≥0

Gj =

{
∃j < J :

∑
b∈B

γb

∫ τj+1

τj

p2b(s)ds < ετ(zτj )H(zτj )

}
.

We observe that the event A1 ∩ {J > j} is a subset of

Ãj ≡
{
H(zτj ) ≥

E

2
and H(zt) ≤ 4H(zτj ) ∀t ∈ [τj , τj+1]

}
.

Thus, if E is large enough, we find by Proposition 5.3 and the strong Markov property
that for all j ≥ 0,

Pz0(A1 ∩Gj) ≤ e−BE/2 ,
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so that

Pz0(A1 ∩G) ≤
Ĵ−1∑
j=0

Pz0(A1 ∩Gj) ≤ Ĵe−BE/2 ≤ e−B′E (5.9)

if B′ > 0 is small enough and E large enough.
We observe next that on A1 ∩Gc and for all E large enough,

Γ(t∗) ≥
J−1∑
j=0

∑
b∈B

γb

∫ τj+1

τj

p2b(s)ds ≥
J−1∑
j=0

ετ(zτj )H(zτj )

≥ εE

2

J−1∑
j=0

τ(zτj ) =
εE

2
τJ ≥ εE

4
t∗ .

(5.10)

Thus, the left-hand side of (5.7) is bounded by Pz0 (A1 ∩G), which by (5.9) completes
the proof.

Lemma 5.5. There are constants ρ, q > 0 such that for every initial condition z0, every
event A, and all t > 0,

Ez0

(
eϑH(zt)−ϑH(z0)1A

)
≤ eC∗t

(
Ez(e

−ρΓ(t)1A)
) 1

q ≤ eC∗t , (5.11)

with again C∗ = ϑ
∑

b∈B γbTb.

Proof. This proof is as in [31, 1]. By applying the Itô formula to H(zt), we find

Ez0

(
eϑH(zt)−ϑH(z0)1A

)
= eC∗tEz0

(
e−ϑΓ(t)+ϑMt1A

)
,

where

Mt =

∫ t

0

∑
b∈B

√
2γbTbpb(s)dWb(s) .

The quadratic variation of Mt satisfies

[M ]t = 2

∫ t

0

∑
b∈B

γbTbp
2
b(s)ds ≤ 2TmaxΓ(t) . (5.12)

Let p > 1 be such that pϑ < 1/Tmax and let q be such that 1
q + 1

p = 1. By Hölder’s
inequality,

Ez0

(
e−ϑΓ(t)+ϑMt1A

)
= Ez0

(
e−ϑΓ(t)+ pϑ2

2 [M ]t1Ae
ϑMt− pϑ2

2 [M ]t

)
≤
(
Ez0e

−ϑqΓ(t)+ qpϑ2

2 [M ]t1A

) 1
q
(
Ez0e

pϑMt− p2ϑ2

2 [M ]t

) 1
p

.

The expectation in the second bracket in the last line is ≤ 1, since the exponential there
is a Doléans–Dade exponential, and thus a supermartingale. Finally, by (5.12) we obtain
(5.11) with ρ = ϑq(1− pϑTmax) > 0.

Lemma 5.6. There exists c > 0 such that for all z0 with H(z0) large enough,

Pz0(A3) ≤ e−cH(z0) . (5.13)
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Non-equilibrium steady states for networks of oscillators

Proof. This is a classical result (see for example [31] or the proof of Theorem 3.5 in [20]).
Observe that by (3.3),

(∂t + L)(eϑH−C∗t) = (L − C∗)e
ϑH−C∗t ≤ 0 .

Consider the stopping time σ = min(t∗, inf{t ≥ 0 : H(zt) > 2H(z0)}) (with the convention
inf ∅ = +∞). Then, σ is a bounded stopping time, and we have by Dynkin’s formula

Ez0e
ϑH(zσ)−C∗t∗ ≤ Ez0e

ϑH(zσ)−C∗σ

= eϑH(z0) +Ez0

∫ σ

0

((∂s + L)(eϑH−C∗s))(zs)ds .

As the expectation in the last line is non-positive, we find Ez0e
ϑH(zσ) ≤ eC∗t∗+ϑH(z0), and

thus

Pz0(A3) = Pz0{σ < t∗} ≤ e−2ϑH(z0)Ez0

(
eϑH(zσ)1σ<t∗

)
≤ eC∗t∗−ϑH(z0) ,

where the last inequality uses (5.11). Thus, choosing c small enough completes the
proof.

We can now give the

Proof of Theorem 5.1. First, we have by Lemma 5.5 and Corollary 5.4 that if H(z0) is
large enough,

Ez0

(
eϑH(zt∗ )−ϑH(z0)1A1

)
≤ eC∗t

(
Ez0(e

−ρΓ(t∗)1A1
)
) 1

q

≤ eC∗t
(
e−B′H(z0) + e−ρεt∗H(z0)/4

) 1
q ≤ e−cH(z0)

(5.14)

for some small enough c > 0. We next work on A2. Consider the stopping time σ =

min(t∗, inf{t ≥ 0 : H(zt) < H(z0)/2}) (again with inf ∅ = +∞). We have A2 = {σ < t∗}
and

Ez0

(
eϑH(zt∗ )1A2

)
≤ eϑH(z0)/2Ez0

(
eϑH(zt∗ )−ϑH(zσ)1A2

)
≤ eϑH(z0)/2+C∗t∗ ,

where we have used the strong Markov property, (5.11), and the fact that t∗ − σ ≤ t∗.
But then,

Ez0

(
eϑH(zt∗ )−ϑH(z0)1A2

)
≤ eC∗t∗−ϑH(z0)/2 ≤ e−cH(z0) , (5.15)

if c > 0 is small enough and H(z0) is large enough.
Finally, by Lemma 5.5 and Lemma 5.6, we have

Ez0

(
eϑH(zt∗ )−ϑH(z0)1A3

)
≤ eC∗t∗ (Pz0(A3))

1
q ≤ e−cH(z0) , (5.16)

which has the desired form again. Summing (5.14), (5.15) and (5.16) completes the
proof.

Remark 5.7. Above, we split the time interval [0, t∗] into many subintervals, and apply
Proposition 5.3 to each of them. This is what allows us to obtain (5.1), which is very
natural from the dimensional point of view. In comparison, [31, 1] use the same Lya-
punov function, but obtain weaker estimates (but still sufficient to obtain exponential
convergence in (2.5)): the bound obtained in [31] is Ez0e

ϑH(zt∗ )−ϑH(z0) ≤ e−C1H
r(z0) with

r ∈ (0, 1), and in [1] it is only shown that lim‖z0‖→∞ Ez0e
ϑH(zt∗ )−ϑH(z0) = 0.

EJP 23 (2018), paper 55.
Page 17/28

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP177
http://www.imstat.org/ejp/


Non-equilibrium steady states for networks of oscillators

It now remains to prove Proposition 5.3. In order to do so, we start with some
technical lemmas.

Lemma 5.8. Let r ≥ 1 and let f : Rr → Rr be a locally Lipschitz function. For T > 0, let
V ∈ C([0, T ],Rr) and consider

dxt = f(xt)dt+ dV (t), dyt = f(yt)dt

with initial conditions x0 = y0 ∈ Rr. Then, provided that both x and y exist up to time T ,

sup
t∈[0,T ]

‖xt − yt‖ ≤ ek∗T sup
t∈[0,T ]

‖V (t)‖ , k∗ = sup
t∈[0,T ]

‖f(xt)− f(yt)‖
‖xt − yt‖

,

with the convention 0/0 = 0.

Proof. Setting ∆s = ‖xs − ys‖, we have ∆t ≤
∫ t

0
k∗∆sds+ ‖V (t)‖ and the result follows

from Gronwall’s inequality.

Remark 5.9. We will later use Lemma 5.8 to show that, after adequate rescaling, (2.2)
(or a component thereof) converges to a deterministic dynamics at high energy.

As a consequence of the definition of H, Condition C3 and Remark 2.9 (iv), we
immediately obtain

Lemma 5.10. There is a constant C > 0 such that for all z ∈ Ω, v ∈ G and e ∈ E ,

‖qv‖ ≤ C(1 +H
1
`p (z)) , ‖δqe‖ ≤ C(1 +H

1
`i (z)) , ‖pv‖ ≤ CH

1
2 (z) . (5.17)

We are now ready to prove Proposition 5.3. We treat the case where Hi(z0) ≥ H(z0)/2

in §5.1 and the case where Hc(z0) > H(z0)/2 in §5.2. When `i = `p, such a distinction is
not necessary and only the analysis in §5.1 is required.

5.1 When the interactions dominate

In this subsection, we make

Assumption 5.11. If `i > `p, we assume that z0 ∈ Ω is such that Hi(z0) ≥ H(z0)/2. (If
`i = `p, we make no such restriction.)

We write E = H(z0). Consider the rescaled time σ = E
1
2−

1
`i t and the variables

p̃v(σ) = E− 1
2 pv(E

1
`i

− 1
2σ) ,

q̃v(σ) = E
− 1

`i qv(E
1
`i

− 1
2σ) .

(5.18)

We write z̃ = (p̃, q̃) and z̃0 for the rescaled initial condition. We consider times
t ∈ [0, τ(z0)] = [0, λE1/`i−1/2], or equivalently σ ∈ [0, λ]. Observe that in terms of the
rescaled time and variables, (5.6) reads

Pz0

(
Ã ∩

{∫ λ

0

∑
b∈B

γbp̃
2
b(σ)dσ < ελ

})
≤ e−BE . (5.19)

In the remainder of this section, we show that (5.19) holds provided E is large enough
and z0 satisfies Assumption 5.11.

Introducing

H̃(p, q) =
∑
v∈G

p2v
2

+
∑
v∈G

E−1Uv(E
1
`i qv) +

∑
e∈E

E−1Ve(E
1
`i δqe) , (5.20)
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Non-equilibrium steady states for networks of oscillators

it is easy to see that

dq̃v = p̃vdσ ,

dp̃v = −(∇qvH̃)(p̃, q̃)dσ − E
1
`i

− 1
2 γvp̃vd+ E

1
2`i

− 3
4

√
2TvγvdW̃v(σ) ,

(5.21)

where W̃v(σ) = E
− 1

2`i
+ 1

4Wv(E
1
`i

− 1
2σ) is again an n-dimensional Brownian motion. Clearly,

in (5.21), the stochastic term vanishes in the limit E → ∞, and so does the dissipative
term, except when `i = 2.

Observe that when E → ∞, the Hamiltonian H̃ converges pointwise to

Ĥ(p, q) =
∑
v∈G

p2v
2

+ δ`i,`p
∑
v∈G

Uv,∞(qv) +
∑
e∈E

Ve,∞(δqe) , (5.22)

where Uv,∞ and Ve,∞ are defined in Condition C3.
Moreover, by construction,

H(z) = EH̃(z̃) ,

and in particular,
H̃(z̃0) = 1 . (5.23)

We introduce the set

K̃E = {z̃ : H̃(z̃) ≤ 4} .

On the event Ã, we have H(zt) ≤ 4E for all t ∈ [0, τ(z0)], and hence also

z̃σ ∈ K̃E , 0 ≤ σ ≤ λ .

By (5.17), there exists C̃ > 0 such that if E is large enough, we have that for all
z̃ ∈ K̃E ,

‖q̃v‖ ≤ C̃E
1
`p

− 1
`i , ‖δq̃e‖ ≤ C̃ , ‖p̃v‖ ≤ C̃ . (5.24)

Remark 5.12. Note that if `i > `p, then q̃v may become arbitrarily large when E is
large, so that the set K̃E is not bounded uniformly in E. In fact, when `i > `p, it is not
true that supz̃∈K̃E

|H̃(z̃) − Ĥ(z̃)| goes to zero when E → ∞. Indeed, for all E one can

find z̃ ∈ K̃E such that all the energy is in the pinning potential, so that Ĥ(z̃) = 0 but
H̃(z̃) = 1. This explains why we have to restrict ourselves to initial conditions such that
Hi(z0) ≥ H(z0)/2 (which will guarantee that Ĥ(z̃0) is not too small), and then treat the
opposite case separately in §5.2. This distinction is missing from the proofs in [31, 1].

Lemma 5.13. For all 0 ≤ |α| ≤ 1 and e ∈ E , we have

lim
E→∞

sup
z̃∈K̃E

∣∣∣Dα
z̃

(
E−1Ve(E

1
`i δq̃e)− Ve,∞(δq̃e)

)∣∣∣ = 0 . (5.25)

Let v ∈ G. If `i = `p and 0 ≤ |α| ≤ 1 (case 1) or if `i > `p and |α| = 1 (case 2), then:

lim
E→∞

sup
z̃∈K̃E

∣∣∣Dα
z̃

(
E−1Uv(E

1
`i q̃v)− δ`i,`pUv,∞(q̃v)

)∣∣∣ = 0 , (5.26)

lim
E→∞

sup
z̃∈K̃E

∣∣∣(DαH̃)(z̃)− (DαĤ)(z̃)
∣∣∣ = 0 . (5.27)

Proof. The first identity follows immediately from Condition C3, Remark 2.9 (iii) and
(5.24). Assume now we are in case 1. By Condition C3 and Remark 2.9 (iii),

lim
E→∞

sup
‖x‖≤C̃

∣∣∣(E |α|
`i

−1
(DαUv)(E

1
`i x)− (DαUv,∞)(x)

)∣∣∣ = 0 .
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This together with (5.24) proves (5.26).
Assume now we are in case 2. By (5.24), in order to prove (5.26), it is enough to show

that when |α| = 1,

lim
E→∞

sup

‖x‖≤C̃E
1
`p

− 1
`i

∣∣∣E |α|
`i

−1
(DαUv)(E

1
`i x)

∣∣∣ = 0 . (5.28)

By Remark 2.9 (ii), we have |(DαUv)(E
1
`i x)| ≤ c(1+E`p/`i−|α|/`i‖x‖`p−|α|) for some c > 0.

From this, we obtain that for some c′ > 0, the supremum in (5.28) is bounded above by

c′(E
|α|
`i

−1
+ E

|α|
`i

− |α|
`p ) .

Clearly, since |α| = 1 < 2 ≤ `p < `i, the above vanishes when E → ∞, which proves
(5.28) and hence (5.26).

Finally, in both cases, combining (5.25) and (5.26) yields (5.27) (recalling that the
kinetic parts in Ĥ and H̃ are identical).

We now observe that for all E large enough,

Ĥ(z̃0) ∈ [1/4, 2] . (5.29)

Indeed, if `i = `p, this follows from (5.23) and (5.27). If `i > `p, then Assumption 5.11
ensures that |

∑
v∈G E−1Uv(E

1/`iqv)| ≤ 1/2, so that (5.23) and (5.25) indeed imply (5.29)
for E large enough.

Next, (5.21) can be rewritten as

dq̃v = p̃vdσ ,

dp̃v = −(∇qvĤ)(p̃, q̃)dσ + R̃v(q̃)dσ

− E
1
`i

− 1
2 γvp̃vdσ + E

1
2`i

− 3
4

√
2TvγvdW̃v(σ) ,

(5.30)

where R̃v(q̃) = −∇q̃v (H̃(z̃)−Ĥ(z̃)), which by Lemma 5.13 satisfies, regardless of whether
`i > `p or `i = `p,

lim
E→∞

sup
z̃∈K̃E

‖R̃v(q̃v)‖ → 0 . (5.31)

Consider now the deterministic limiting system

dq̂v = p̂vdσ ,

dp̂v = −(∇qvĤ)(ẑ)dσ − δ`i,2γvp̂vdσ ,
(5.32)

with initial condition ẑ0 = z̃0.

Proposition 5.14. There is a constant C > 0 such that for every initial condition ẑ0 such
that Ĥ(ẑ0) ∈ [1/4, 2], the solution of (5.32) satisfies∫ λ

0

∑
b∈B

γbp̂
2
b(σ)dσ ≥ C . (5.33)

Proof. We first show that∫ λ

0

∑
b∈B

γbp̂
2
b(σ)dσ > 0 if Ĥ(ẑ0) > 0 . (5.34)

Indeed, assume the left-hand side of (5.34) is zero. Then, for all b ∈ B, we have p̂b(σ) ≡ 0

on [0, λ]. Take now v ∈ T B \ B. There exists then b ∈ B such that b is linked only to v and
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possibly some vertices in B. Now, since the masses in B do not move, all forces among
them are constant (this applies to both the interaction forces −∇Ve,∞ with e ∈ B × B
and, if `i = `p, to the pinning forces −∇Ub′,∞ with b′ ∈ B). Thus, since the total force on
b is identically zero, we must have that ∇V(b,v),∞(q̂b(σ) − q̂v(σ)) is constant. But then,
by Condition C4, this means that actually q̂b(σ)− q̂v(σ) is constant, and hence that so is
q̂v(σ). We have thus shown that p̂v(σ) ≡ 0 for all v ∈ T B. Proceeding in the same way, we
obtain inductively that the same holds for all v in T 2B, T 3B, etc. Thus, by Condition C1,
we eventually obtain that no mass moves during the time interval [0, λ]. But then we
have p̂v(0) = 0 and ∇qvĤ(ẑ0) = 0 for all v ∈ G, which is only possible if Ĥ(ẑ0) = 0, so that
(5.34) holds.

We now complete the proof of the proposition using a compactness argument and the
fact that the solution of (5.32) depends continuously on the initial condition ẑ0. In order
to do so, there are two cases to consider.

• `i = `p. Then, the set {ẑ : Ĥ(ẑ) ∈ [1/4, 2]} is compact, and hence (5.33) holds for
some C > 0.

• `i > `p. Then, the set {ẑ : Ĥ(ẑ) ∈ [1/4, 2]} is not compact, since it is invariant under
global translations qv 7→ qv + ρ, where ρ is any vector in Rn independent of v. But
when `i > `p, both the dynamics (5.32) and the left-hand side of (5.33) are invariant
under such translations. Since the set {ẑ : Ĥ(ẑ) ∈ [1/4, 2]} is compact modulo such
translations, we obtain (5.33) for some C > 0.

This completes the proof.

Remark 5.15. Note that Condition C4 is only used to prove (5.34). In fact, there are
systems for which (5.34), and hence all the results in the present paper, hold without
Condition C4. For example, consider a chain of N oscillators with heat baths at both
ends, i.e., G = {1, . . . , N}, B = {1, N} and E = {(1, 2), (2, 3), . . . , (N − 1, N)}. Let `i > `p,
so that the limiting system only involves the interaction potentials. Assume the left-hand
side of (5.34) is zero. Then, on the time interval [0, λ], we have p̂1(σ) ≡ 0. But then, we
must have ∇V(1,2),∞(q̂2(σ) − q̂1(σ)) ≡ 0 (unlike in the general case, we know here that
the constant is zero, since no other force acts on the first oscillator). As a consequence,
since the only stationary point of V(1,2),∞ is at the origin (this is true of any coercive,
homogeneous function without the need for Condition C4), we must have q̂2(σ) ≡ q̂1(σ).
But then we also have p2(σ) ≡ 0. Continuing like this along the chain, we eventually
obtain that all the masses stand still, and conclude as above that Ĥ(ẑ0) = 0.

Remark 5.16. Condition C4 cannot be waived in general. We give here a counterexam-
ple in three8 dimensions consisting of two oscillators 1 and 2, the first of which is coupled
to a heat bath (see Figure 3). We start with both oscillators at rest at position (0, 1, 0) and

(4, 2, 0) respectively. We assume that V21(x, y, z) = y4

4 + x2z2

2 when (x, y, z) ≈ (4, 1, 0),

and that U1 = U2 = U , where U(x, y, z) = x4+y4+z4

4 when (x, y, z) ≈ (0, 1, 0) and

U(x, y, z) = x4

64 − y4

32 + z4

4 when (x, y, z) ≈ (4, 2, 0). The potentials above can be extended
to non-degenerate, coercive, homogeneous functions of degree 4 (note in particular that
Ĥ = H). Moreover, Condition C4 is not satisfied, as ∇V21(4 + ε, 1, 0) = (0, 1, 0) for all
small enough |ε|. In this setup, the initial energy of the system is non-zero, and there
exists a finite time interval during which the following happens: oscillator 1 does not
move at all (so that (5.34) fails to hold if λ is small enough), and the position of oscillator
2 is (x(t), 2, 0), for some decreasing x(t). The interaction force f21 (see Figure 3) remains
equal to (0, 1, 0), and the pinning force f1 acting on oscillator 1 remains equal to (0,−1, 0).

8Everything in this example happens in the Oxy-plane. The third dimension is necessary only to ensure that
the interaction potential is non-degenerate.
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During the same time, the pinning force f2 acting on oscillator 2 is equal to (−x3(t)
16 , 1, 0),

consistently with the motion described above.

f1

f21
−f21

f2

y

x
(0, 0)

1

2

Figure 3: Illustration of the example in Remark 5.16 in the Oxy-plane (in which the
motion takes place).

Returning to the proof of (5.19), we compare now the systems (p̃, q̃) and (p̂, q̂).

Lemma 5.17. There exist a constant c > 0, a family of constants (GE)E>0 satisfying
limE→∞ GE = 0, and a family of non-negative random variables (ηE)E>0 satisfying

P{ηE ≥ s} ≤ e−
s2

2 , (5.35)

such that if E is large enough,

1Ã sup
σ∈[0,λ]

‖z̃σ − ẑσ‖ ≤ GE + cE
1

2`i
− 3

4 ηE .

Proof. The result immediately follows from Lemma 5.8 and (5.31), provided we can
show that there exists an absolute constant k > 0 such that on the event Ã, we have
‖(∇Ĥ)(z̃σ) − (∇Ĥ)(ẑσ)‖ ≤ k‖z̃σ − ẑσ‖ for all 0 ≤ σ ≤ λ (we need not worry about the
other terms in (5.32), as they are globally Lipschitz). As mentioned above, on the event Ã,
we have z̃σ ∈ K̃E for all 0 ≤ σ ≤ λ. Moreover, since d

dσ Ĥ(ẑσ) = −δ`i,2
∑

b∈B γbp̂
2
b ≤ 0, we

have by (5.29) that Ĥ(ẑσ) ≤ 2 for all 0 ≤ σ ≤ λ. We consider again two cases separately.

• `i = `p. Then, there exists R > 0 such that for all E large enough, ‖z̃σ‖ ≤ R and
‖ẑσ‖ ≤ R for all 0 ≤ σ ≤ λ. Since ∇Ĥ is locally Lipschitz (by Condition C3), the
proof is complete.

• `i > `p. Then, one can find R > 0 such that ‖δq̃e(σ)‖, ‖δq̂e(σ)‖, ‖p̃v(σ)‖ and ‖p̂v(σ)‖
are bounded by R for all 0 ≤ σ ≤ λ. Since ∇Ĥ is locally Lipschitz and depends only
the δqe and pv, the proof is complete.

Note that by Lemma 5.8, the random variable ηE can be chosen as a constant times
supσ∈[0,λ] ‖W̃ (σ)‖, where W̃ = (W̃b)b∈B is an n|B|-dimensional Brownian motion. While

W̃ depends on E pathwise, its distribution does not. Moreover, W̃ does not depend on z0
for a given energy E, and thus the same is true of ηE .

Using Lemma 5.17, Proposition 5.14 and the inequality x2 ≥ y2

2 − (x− y)2, we obtain

that there exist c, c′ > 0 such that on Ã and if E is large enough,∫ λ

0

∑
b∈B

γbp̃
2
b(σ)dσ ≥ c− c′(GE + E

1
2`i

− 3
4 ηE)

2 ≥ c− 2c′G2
E − 2c′E

1
`i

− 3
2 η2E .
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Since GE → 0, we find for E large enough that∫ λ

0

∑
b∈B

γbp̃
2
b(σ)dσ ≥ c

2
− 2c′E

1
`i

− 3
2 η2E ,

so that

Pz0

(
Ã ∩

{∫ λ

0

∑
b∈B

γbp̃
2
b(σ)dσ <

c

4

})
≤ P

{
ηE > E

3
4−

1
2`i

√
c

8c′

}
.

Using now (5.35) and the fact that 1
`i

− 3
2 ≤ −1 completes the proof of (5.19) (for an

adequate choice of ε and B).
Thus, if `i = `p, the proof of Proposition 5.3 is complete. If now `i > `p, then because

of Assumption 5.11, the conclusion of Proposition 5.3 is proved only in the case where
Hi(z0) ≥ H(z0)/2, and the next subsection is required.

5.2 When the pinning dominates

Recalling the decomposition of H introduced in (5.4), we now make the following
assumption.

Assumption 5.18. We assume that `i > `p and that the initial condition z0 ∈ Ω satisfies
Hc(z0) > H(z0)/2.

We start by rescaling the system in much the same way as in §5.1, except that we
now choose the natural scaling of the pinning. More precisely, we introduce the rescaled
time σ = E1/2−1/`pt and the variables

p̃v(σ) = E− 1
2 pv(E

1
`p

− 1
2σ) ,

q̃v(σ) = E
− 1

`p qv(E
1
`p

− 1
2σ) .

We consider times t ∈ [0, τ(z0)] = [0, λE
1
`p

− 1
2 ], or equivalently σ ∈ [0, λ]. As in §5.1, the

analogue of (5.6) in terms of the rescaled variables and time is

Pz0

(
Ã ∩

{∫ λ

0

∑
b∈B

γbp̃
2
b(σ)dσ < ελ

})
≤ e−BE . (5.36)

We let now

H̃(p, q) =
∑
v∈G

p2v
2

+
∑
v∈G

E−1Uv(E
1
`p qv) +

∑
e∈E

E−1Ve(E
1
`p δqe) ,

and obtain

dq̃v = p̃vdσ ,

dp̃v = −(∇qvH̃)(p̃, q̃)dσ − E
1
`p

− 1
2 γvp̃vdσ + E

1
2`p

− 3
4
√

2TvγvdW̃v(σ) ,
(5.37)

where W̃v(σ) = E
− 1

2`p
+ 1

4Wv(E
1
`p

− 1
2σ) is again an n-dimensional Brownian motion. We

define, as in §5.1,

K̃E = {z̃ : H̃(z̃) ≤ 4} ,

and obtain that on the event Ã, we have z̃σ ∈ K̃E for all 0 ≤ σ ≤ λ.
By (5.17), there is some C̃ such that if E is large enough, then for all z̃ ∈ K̃E ,

‖q̃v‖ ≤ C̃ , ‖δq̃e‖ ≤ C̃E
1
`i

− 1
`p , ‖p̃v‖ ≤ C̃ . (5.38)

Note that unlike in §5.1, the collection of sets (K̃E)E>0 is uniformly bounded. In fact,
the maximum allowed value of δq̃e becomes very small at high energy.
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Remark 5.19. The difficulty is that the dynamics (5.37) does not converge to a nice
limit when E is large. Indeed, we have for any edge e = (v, v′) that

∇q̃v (E
−1Ve(E

1
`p δq̃e)) ∼ E

`i
`p

−1‖δ̃qe‖`i−1 ,

which diverges pointwise when E → ∞ if δq̃e 6= 0. The supremum of this quantity over
K̃E diverges like E1/`p−1/`i (as can be seen by the scaling in (5.38)). The interpretation
is that at high energy and under Assumption 5.18, while the rescaled system behaves
like a “tight molecule” with vanishing relative distance δ̃qe between the masses, the
dynamics is still dominated by the fast oscillations of the internal degrees of freedom.
The way around this is to consider the center of mass coordinates.

The center of mass coordinates in (5.3) are expressed, after rescaling, as

P̃ (σ) = E− 1
2P (E

1
`p

− 1
2σ) = E− 1

2

∑
v∈G

pv(E
1
`p

− 1
2σ) ,

Q̃(σ) = E
− 1

`p Q(E
1
`p

− 1
2σ) =

1

|G|
E

− 1
`p

∑
v∈G

qv(E
1
`p

− 1
2σ) .

We denote by (P̃0, Q̃0) the rescaled initial condition. As the interaction forces cancel out,
the dynamics we obtain is

dQ̃ =
1

|G|
P̃ dσ ,

dP̃ = −
∑
v∈G

E
1
`p

−1∇Uv(E
1
`p q̃v)dσ

− E
1
`p

− 1
2

∑
b∈B

γbp̃bdσ + E
1

2`p
− 3

4

∑
b∈B

√
2TbγbdW̃b(σ) .

(5.39)

Moreover, since the graph (G, E) is connected by Condition C1, we have for all z̃ ∈ K̃E

that
max
v∈G

‖Q̃− q̃v‖ ≤ max
(v,v′)∈G2

‖q̃v − q̃v′‖ ≤
∑
e∈E

‖δq̃e‖ ≤ |E|C̃E
1
`i

− 1
`p . (5.40)

Defining now
U∞(Q̃) =

∑
v∈G

Uv,∞(Q̃) , (5.41)

we have

Lemma 5.20. For all 0 ≤ |α| ≤ 1,

lim
E→∞

sup
z̃∈K̃E

∣∣∣∣∣∑
v∈G

E
|α|
`p

−1
(DαUv)(E

1
`p q̃v)− (DαU∞)(Q̃)

∣∣∣∣∣ = 0 .

Proof. By Condition C3, (5.38) and Remark 2.9 (iii) we have, for all v ∈ G,

lim
E→∞

sup
z̃∈K̃E

∣∣∣∣E |α|
`p

−1
(DαUv)(E

1
`p q̃v)− (DαUv,∞)(q̃v)

∣∣∣∣ = 0 . (5.42)

Moreover, by Condition C3, there exists c > 0 such that DαUv,∞ is c-Lipschitz on the ball
B(0, C̃) ⊂ Rn, which by (5.38) contains q̃v and Q̃ for all z̃ ∈ K̃E . Thus,

sup
z̃∈K̃E

∣∣∣(DαUv,∞)(q̃v)− (DαUv,∞)(Q̃)
∣∣∣ ≤ c sup

z̃∈K̃E

‖Q̃− q̃v‖ .
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By (5.40), the right-hand side vanishes when E → ∞. This and (5.42) imply that

lim
E→∞

sup
z̃∈K̃E

∣∣∣∣E |α|
`p

−1
(DαUv)(E

1
`p q̃v)− (DαUv,∞)(Q̃)

∣∣∣∣ = 0 .

By the definition of U∞ and the triangle inequality, the proof is complete.

It is then natural to consider the limiting system

dQ̂ =
1

|G|
P̂ dσ ,

dP̂ = −∇U∞(Q̂)dσ ,

(5.43)

which corresponds to the Hamiltonian

Ĥ(P̂ , Q̂) =
P̂ 2

2|G|
+ U∞(Q̂) .

We can rewrite (5.39) as

dQ̃ =
1

|G|
P̃ dσ ,

dP̃ = −∇U∞(Q̃)dσ + R̃(z̃)dσ − E
1
`p

− 1
2

∑
b∈B

γbp̃bdσ

+ E
1

2`p
− 3

4

∑
b∈B

√
2TbγbdW̃b(σ) ,

(5.44)

where
R̃(z̃) = ∇U∞(Q̃)− E

1
`p

−1
∑
v∈G

(∇Uv)(E
1
`p q̃v) ,

which by Lemma 5.20 satisfies

lim
E→∞

sup
z̃∈K̃E

‖R̃(z̃)‖ → 0 . (5.45)

Note that the dynamics (5.44) does not converge to (5.43) when `p = 2, as the
dissipative terms in (5.44) remain in the limit. This will complicate the argument slightly
(see the proof of Lemma 5.22).

As a consequence of Lemma 5.20, and since Hc(z0) > H(z0)/2, we have when E is
large enough that

Ĥ(P̃0, Q̃0) ∈ [1/4, 2] .

Proposition 5.21. There is a constant C > 0 such that for every initial condition (P̂0, Q̂0)

with Ĥ(P̂0, Q̂0) ∈ [1/4, 2], the solution of (5.43) satisfies

sup
σ∈[0,λ]

‖Q̂(σ)− Q̂(0)‖ ≥ C . (5.46)

Proof. The left-hand side of (5.46) is obviously strictly positive provided that Ĥ(P̂0, Q̂0) >

0. Moreover, the map (P̂0, Q̂0) 7→ supσ∈[0,λ] ‖Q̂(σ) − Q̂(0)‖ is lower semicontinuous (as

the supremum of a family of continuous functions). Thus, since the set {(P̂0, Q̂0) ∈ R2n :

Ĥ(P̂0, Q̂0) ∈ [1/4, 2]} is compact, the proof is complete.

We introduce the random variable

X = sup
b∈B

∫ λ

0

p̃2bdσ .
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Lemma 5.22. There exist constants B, ε > 0 such that if E is large enough,

Pz0

(
Ã ∩ {X < ε}

)
≤ e−BE .

Proof. In this proof, the constant c > 0 may be different each time it appears, and is not
allowed to depend on E, provided E is large enough. First, observe that for all b ∈ B,
Hölder’s inequality implies that ∫ λ

0

‖p̃b‖dσ ≤ c
√
X . (5.47)

Next, by (5.38) and the fact that Ĥ is conserved by (5.43), we have that on the event
Ã, there is some R > 0 such that ‖Q̂(σ)‖, ‖Q̃(σ)‖, ‖P̂ (σ)‖ and ‖P̃ (σ)‖ are bounded by R

for all 0 ≤ σ ≤ λ. As ∇Ĥ is locally Lipschitz by Condition C3, there exists k > 0 such that
on the event Ã, we have for all 0 ≤ σ ≤ λ that

‖(∇Ĥ)(P̂ (σ), Q̂(σ))− (∇Ĥ)(P̃ (σ), Q̃(σ))‖ ≤ k‖(P̂ (σ), Q̂(σ))− (P̃ (σ), Q̃(σ))‖ .

As a consequence, we can apply Lemma 5.8 to (P̂ , Q̂) and (P̃ , Q̃) to obtain that

1Ã sup
σ∈[0,λ]

‖Q̃(σ)− Q̂(σ)‖ ≤ cGE + cE
1
`p

− 1
2
√
X + cE

1
2`p

− 3
4 ηE , (5.48)

where limE→∞ GE = 0 and where ηE is a non-negative random variable satisfying (5.35).
Pick now any b ∈ B. By (5.37) and (5.47), we have

sup
σ∈[0,λ]

‖q̃b(σ)− q̃b(0)‖ ≤ c

∫ λ

0

‖p̃b‖dσ ≤ c
√
X . (5.49)

Moreover, by (5.40), we also find that on Ã,

sup
σ∈[0,λ]

‖q̃b(σ)− Q̃(σ)‖ ≤ cE
1
`i

− 1
`p . (5.50)

From (5.49) and (5.50) we deduce that

sup
σ∈[0,λ]

‖Q̃(σ)− Q̃(0)‖ ≤ cE
1
`i

− 1
`p + c

√
X . (5.51)

This together with (5.48) implies that on Ã,

sup
σ∈[0,λ]

‖Q̂(σ)− Q̂(0)‖ ≤ cE
1
`i

− 1
`p + cGE + c

√
X(1 + E

1
`p

− 1
2 ) + cE

1
2`p

− 3
4 ηE .

But by Proposition 5.21, the left-hand side is bounded below by C > 0. Thus,

cE
1

2`p
− 3

4 ηE ≥ C − cE
1
`i

− 1
`p − cGE − c

√
X(1 + E

1
`p

− 1
2 ) .

We next choose ε > 0 small enough so that for all E large enough,

cE
1
`i

− 1
`p + cGE + c

√
ε(1 + E

1
`p

− 1
2 ) ≤ C

2
.

Then, on Ã and for E large enough, X < ε implies cE
1

2`p
− 3

4 ηE > C/2, so that

Pz0(Ã ∩ {X < ε}) ≤ Pz0

{
cE

1
2`p

− 3
4 ηE > C/2

}
≤ e−cE

3
2
− 1

`p
.

Since 3
2 − 1

`p
≥ 1, the proof is complete.
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By Lemma 5.22, and since

∑
b∈B

∫ λ

0

γbp̃
2
bdσ ≥ X inf

b∈B
γb ,

we obtain (5.36) (for some ε > 0 possibly smaller than that of Lemma 5.22). Thus, the
proof of Proposition 5.3 is complete.
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