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Convergence in distribution norms in the CLT for non
identical distributed random variables
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Abstract

We study the convergence in distribution norms in the Central Limit Theorem for non
identical distributed random variables that is

εn(f) := E
(
f
( 1√

n

n∑
i=1

Zi

))
−E

(
f(G)

)
→ 0

where Zi, i ∈ N, are centred independent random variables and G is a Gaussian
random variable. We also consider local developments (Edgeworth expansion). This
kind of results is well understood in the case of smooth test functions f . If one deals
with measurable and bounded test functions (convergence in total variation distance),
a well known theorem due to Prohorov shows that some regularity condition for the
law of the random variables Zi, i ∈ N, on hand is needed. Essentially, one needs that
the law of Zi is locally lower bounded by the Lebesgue measure (Doeblin’s condition).
This topic is also widely discussed in the literature. Our main contribution is to discuss
convergence in distribution norms, that is to replace the test function f by some
derivative ∂αf and to obtain upper bounds for εn(∂αf) in terms of the infinite norm of
f . Some applications are also discussed: an invariance principle for the occupation
time for random walks, small balls estimates and expected value of the number of
roots of trigonometric polynomials with random coefficients.
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CLT in distribution norms

1 Introduction

The framework. We consider n independent (but not necessarily identically dis-
tributed) random variables Yk, k = 1, . . . , n, taking values in Rm, which are centered and
with identity covariance matrix. Moreover, we consider n matrices Cn,k ∈ Mat(d ×m)

and we look to

Sn(Y ) =
1√
n

n∑
k=1

Cn,kYk. (1.1)

Our aim is to obtain a Central Limit Theorem (CLT) as well as Edgeworth developments
in this framework. The basic hypotheses are the following. We assume the normalization
condition

1

n

n∑
k=1

Cn,kC
∗
n,k = Idd, (1.2)

where ∗ denotes transposition and Idd ∈ Mat(d× d) is the identity matrix. Moreover we
assume that for each p ∈ N there exists a constant Cp(Y ) ≥ 1 such that

max
1≤k≤n

E(|Cn,kYk|p) ≤ Cp(Y ). (1.3)

The case of smooth test functions. Let ‖f‖k,∞ denote the norm in W k,∞, that is
the uniform norm of f and of all its derivatives of order less or equal to k. First, we want
to prove that ∣∣∣E(f(Sn(Y ))−

∫
Rd

f(x)γd(x)dx
∣∣∣ ≤ C0

n
1
2

‖f‖3,∞ (1.4)

where γd(x) = (2π)−d/2 exp(− 1
2 |x|

2
) is the density of the standard normal law. This

corresponds to the Central Limit Theorem (hereafter CLT). Moreover we look for some
polynomials ψn,k : Rd → R such that for N ∈ N and for every f ∈ CN̂

b (Rd), with

N̂ = N(2bN/2c+N + 5),∣∣∣E(f(Sn(Z))−
∫
Rd

f(x)
(
1 +

N∑
k=1

1

nk/2
ψn,k(x)

)
γd(x)dx

∣∣∣ ≤ CN

n
1
2 (N+1)

‖f‖N̂,∞ . (1.5)

This is Theorem 4.1, giving the Edgeworth development of order N . In the case of
smooth test functions f (as it is the case in (1.5)), this topic has been widely discussed
and well understood. One should mention the seminal paper by Essen [23] the books of
Gnedenko and Kolmogorov [25], Petrov [32], Battacharaya and Rao [15] and Zolotarev
[36]. Such development has been obtained by Sirazhdinov and Mamatov [35] in the
case of identically distributed random variables and then by Götze and Hipp [26] in the
non identically distributed case. A complete presentation of this topic may be found
in the recent review paper by Bobkov [17]. The coefficients ψn,k in the development
(1.5) are linear combinations of Hermite polynomials. An explicit expression, in the
one dimensional case, is given in [17]. Ourselves we give the explicit formula of these
coefficients in the multi-dimensional case. This is important because, in the working
paper [10], the development of order three, in the 2-dimensional case, is used in order
to study invariance principles for the variance of trigonometric polynomials.

It is worth to mention that the classical approach is based on Fourier analysis. In
our paper we use a different approach based on the Lindeberg method for Markov
semigroups (this is inspired from works concerning the parametrix method for Markov
semigroups in [13], see also Chatterjee [21]). This alternative approach is convenient
for the proof of our main result concerning “distribution norms”(see below).

The case of general test functions. A second problem is to obtain the estimate
(1.5) for test functions f which are not regular, in particular to replace ‖f‖N̂,∞ by ‖f‖∞ .
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CLT in distribution norms

This amounts to estimate the error in total variation distance. In the case of identically
distributed random variables, and for N = 0 (so at the level of the standard CLT),
this problem has been widely studied. First of all, one may prove the convergence in
Kolmogorov distance, that is for f = 1D where D is a rectangle. Many refinements of
this type of result have been obtained by Battacharaya and Rao and they are presented
in [15]. But it turns out that one may not prove such a result for a general measurable
set D without assuming more regularity on the law of Yk, k ∈ N.

Indeed, consider the standard CLT, so take m = d, Cn,k = Idd and Yk, k = 1, . . . , n,
i.i.d. In his seminal paper [33] Prohorov proved that the convergence in total variation
distance is equivalent to the fact that there exists r such that the law of Y1 + · · ·+ Yr has
an absolutely continuous component. This is “essentially” equivalent to the Doeblin’s
condition that we present now (see Remark 2.1): we assume that there exists r, ε > 0

and there exists yk ∈ Rm such that for every measurable set A ⊂ Br(yk)

P(Yk ∈ A) ≥ ελ(A) (1.6)

where λ is the Lebesgue measure. Under (1.6) we are able to obtain (1.5) in total
variation distance.

Let us finally mention another line of research which has been strongly developed in
the last years: it consists in estimating the convergence in the CLT in entropy distance.
This starts with the papers of Barron [14] and Johnson and Barron [28]. In these papers
the case of identically distributed random variables is considered, but recently, Bobkov,
Chistyakov and Götze [19] have obtained the estimate in entropy distance for the case
of random variables which are no more identically distributed as well. We recall that
the convergence in entropy distance implies the convergence in total variation distance,
so such results are stronger. However, in order to work in entropy distance one has
to assume that the law of Zn,k = Cn,kYk is absolutely continuous with respect to the
Lebesgue measure and have finite entropy and this is more limiting than (1.6). So
the hypotheses and the results are slightly different. Finally, other types of distances
(Wp-transport distances) have been recently studied in [18, 20, 34].

Convergence in distribution norms. Consider first the particular case when
Zn,k = Cn,kYk are identically distributed and have a density which is one time differen-
tiable with derivative belonging to L1. Then the law of Sn(Y ) is absolutely continuous
with Cn density and then, in Proposition 2.12, we prove that for every k ∈ N and every
multiindex α

sup
x
(1 + |x|2)k |∂αpSn(x)− ∂αγd(x)| ≤

C√
n

which is the standard convergence in distribution norms. Notice also that here we are at
the level of the CLT and we are not able to deal with Edgeworth expansions.

Unfortunately we fail to obtain such a result in the general framework (which is
the interesting case): this is moral because we do not assume that the laws of Cn,kYk,
k = 1, ..., n are absolutely continuous, and then the law of Sn(Y ) may have atoms.
However we obtain a similar result, but we have to keep a “small error”. Let us give a
precise statement of our result. For a function f ∈ Cq

p(R
d) (q times differentiable with

polynomial growth) we define Lq(f) and lq(f) to be two constants such that∑
0≤|α|≤q

|∂αf(x)| ≤ Lq(f)(1 + |x|)lq(f).. (1.7)

Our main result is given in Theorem 2.3 and says the following: for a fixed q ∈ N, there
exist some constants CN ≥ 1 ≥ cN > 0 (depending on r, ε from (1.6) and on Cp(Y ) from
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CLT in distribution norms

(1.3)) such that for every multiindex γ with |γ| = q and for every f ∈ Cq
p(R

d)

∣∣∣E(∂γf(Sn(Z))
)
−
∫
Rd

∂γf(x)
(
1 +

N∑
k=1

1

nk/2
ψn,k(x)

)
γd(x)dx

∣∣∣
≤ CN

(
Lq(f)e

−cN×n +
1

n
1
2 (N+1)

L0(f)
)
.

(1.8)

However we fail to get convergence in distribution norms because Lq(f)e
−cN×n appears

in the upper bound of the error and Lq(f) depends on the derivatives of f . But we are
close to such a result: notice first that if fn = f ∗ φδn is a regularization by convolution
with δn = exp(− cN

2q × n) then (1.8) gives

∣∣∣E(∂γfn(Sn(Z))
)
−
∫
Rd

∂γfn(x)
(
1 +

N∑
k=1

1

nk/2
ψn,k(x)

)
γd(x)dx

∣∣∣ ≤ CN

n
1
2 (N+1)

L0(f). (1.9)

We discuss now three applications.

Application 1: an invariance principle related to the local time. Let

Sn(k, Y ) =
1√
n

k∑
i=1

Yi,

where Y1, . . . , Yn are independent and identically distributed random variables. We set
εn = n−

1
2 (1−ρ) with ρ ∈ (0, 1) and in Theorem 3.1 we prove that, for every ρ′ < ρ,∣∣∣ 1

n

n∑
k=1

E
( 1

2εn
1{|Sn(k,Y )|≤εn}

)
− E

(∫ 1

0

1

2εn
1{|Ws|≤εn}ds

)∣∣∣ ≤ C

n
1+ρ′

2

.

with Ws a Brownian motion (we recall that
∫ 1

0
1

2εn
1{|Ws|≤εn}ds converges to the local

time of W ). Here the test function is fn(x) =
1

2εn
1|x|<εn and this converges to the Dirac

function. This example shows that (1.8) is an appropriate estimate in order to deal with
some singular problems.

Application 2: small ball probabilities. We consider the case in which the matri-
ces Cn,k can depend on a parameter u ∈ R`, that is,

Sn(u, Y ) =
1√
n

n∑
k=1

Cn,k(u)Yk, u ∈ R`.

We assume that u 7→ Cn,k(u) ∈ Mat(d×d) is twice differentiable with bounded derivatives
up to order two and that the covariance matrix field of Sn(u, Y ) is the identity matrix, that
is, Σn(u) =

1
n

∑n
k=1 Cn,k(u)C

∗
n,k(u) = Idd. Then in Theorem 3.2 we prove the following

estimate: if d > `, a ≥ 0 and θ > a`
d−` then, for every ε > 0,

P
(

inf
|u|≤na

|Sn(u, Y )| ≤ 1

nθ

)
≤ C

nθ(d−`)−a`−ε
. (1.10)

This is done by applying (1.9) to the multiindex γ = (1, . . . , d) and the function f = fn,
with

fn(x) = n−θd

∫ x1

−∞
dx2...

∫ xd−1

−∞
dxd1{|x|<n−θ}(x).

Then (1.9) allows one to replace Sn(u, Y ) with a Gaussian random variable, and in this
case we have a nice estimate of the error. We emphasize that, contrarily to the case of
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CLT in distribution norms

supremas of random processes, much less is known regarding infimas. As such, the last
result can be seen as a preliminary step enabling one to switch to the Gaussian case for
which more accurate tools are available.

Application 3: an invariance principle for the expected roots of trigonomet-
ric polynomials. Let Nn(Y ) be the number of roots in (0, π) of the polynomial

Pn(t, Y ) =

n∑
k=1

(
Y 1
k cos(kt) + Y 2

k sin(kt)
)
.

It is known, see e.g. [22], that if the Yk’s are replaced by independent and identically
distributed standard normal random variables Gk’s then

lim
n

1

n
E(Nn(G)) =

1√
3
.

Note that the aforementioned asymptotic still holds when the Gaussian coefficients
display some strong form of dependence [1]. In the recent paper [24], the above result
has been proved for general independent and identically distributed random variables
Yk, k ∈ N, which are centered and with variance one. In Theorem 3.4 we drop the
assumption of being identically distributed: we prove that the same limit holds for Nn(Y )

when the Yk’s are independent and fulfill the Doeblin’s condition. We stress that it is
not completely clear whether the strategy used in [24] can be adapted to the setting of
non-identically distributed coefficients since it is explicitly used at several moments in
the proof that the characteristic function of each coefficients behaves in a same way
near the origin, which is more restrictive that our normalization condition (1.2). Our
main result enters in the following way: thanks to the Kac-Rice formula, we have

Nn(Y ) = lim
δ→0

∫ b

a

|∂tPn(t, Y )| 1{|Pn(t,Y )|≤δ}
dt

2δ
,

so we apply (1.8) to the pair (∂tPn(t, Y ), Pn(t, Y )). Although the article only focuses on
the expectation, we stress that this methods paves the way to an investigation of higher
moments (and hence variance or CLT’s) by using Kac-Rice formulas of higher order. This
is actually the main content of the forthcoming article [10] which follows the series
[27, 3, 2] of articles dedicated to this task in the Gaussian case.

2 Notation and main results

We fix n ∈ N and we consider n independent random variables {Yk}1≤k≤n, with
Yk = (Y 1

k , . . . , Y
m
k ) ∈ Rm, which are centered and whose covariance matrix is the identity.

Let {Cn,k}1≤k≤n denote n matrices in Mat(d×m) and set

σn,k = Cn,kC
∗
n,k ∈ Mat(d× d),

∗ denoting transposition, so σn,k is the covariance matrix of the random variable Cn,kYk.
We define

Sn(Y ) =
1√
n

n∑
k=1

Cn,kYk. (2.1)

Sometimes, but not everywhere, we consider the normalizing condition

1

n

n∑
k=1

σn,k = Idd, (2.2)
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CLT in distribution norms

Idd denoting the d× d identity matrix. Our aim is to compare the law of Sn(Y ) with the
law of Sn(G) where G = (Gk)1≤k≤n denote n standard independent Gaussian random
variables. This is a CLT result (but we stress that it is not asymptotic) and we will obtain
an Edgeworth development as well.

We assume that Yk has finite moments of any order and more precisely,

max
1≤k≤n

E(|Cn,kYk|p) ≤ Cp(Y ), ∀ p. (2.3)

Notice that by (2.2) |σi,j
n,k| ≤ 1 so we may assume without loss of generality that

E(|Cn,kGk|p) ≤ Cp(Y ) for the standard normal random variables as well.

2.1 Doeblin’s condition and Nummelin’s splitting

We say that the law of the random variable Y ∈ Rm is locally lower bounded by the
Lebesgue measure if there exists yY ∈ Rd and ε, r > 0 such that for every non negative
and measurable function f : Rd → R+

E(f(Y )) ≥ ε
∫
f(y − yY )1B(0,2r)(y − yY )dy. (2.4)

(2.4) is known as the Doeblin’s condition. We denote by D(r, ε) the class of the random
variables which verify (2.4). Given r > 0 we consider the functions ar, ψr : R → R+

defined by

ar(t) = 1− 1

1− ( tr − 1)2
and ψr(t) = 1{|t|≤r} + 1{r<|t|≤2r}e

ar(|t|). (2.5)

If Y ∈ D(r, ε) then

E(f(Y )) ≥ ε

∫
f(y − yY )ψr(|y − yY |2)dy.

The advantage of ψr(|y − yY |2) is that it is a smooth function (which replaces the indicator
function of the ball) and (it is easy to check) that for each l ∈ N, p ≥ 1 there exists a
universal constant Cl,p ≥ 1 such that

ψr(t)|a(l)r (|t|)|p ≤ Cl,p

rlp
(2.6)

where a(l)r denotes the derivative of order l of ar. Moreover one can check (see [8]) that
if Y ∈ D(r, ε) then it admits the following decomposition (the equality is understood as
identity of laws):

Y = χV + (1− χ)U (2.7)

where χ, V, U are independent random variables with the following laws:

P(χ = 1) = εmr and P(χ = 0) = 1− εmr,

P(V ∈ dy) =
1

mr
ψr(|y − yY )|2)dy

P(U ∈ dy) =
1

1− εmr
(P(Z ∈ dy)− εψr(|y − yY |2)dy)

(2.8)

with

mr =

∫
ψr(|y − yY |2)dy. (2.9)

The decomposition (2.7) is also known as the Nummelin’s splitting. We will see later on,
specifically in next Section 5.1, that the noise coming from the Nummelin’s decomposition
allows one to set-up a Malliavin type calculus, which in turn will be our main tool in
order to get our CLT result in distribution norms.
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CLT in distribution norms

Remark 2.1. In his seminal paper [33] Prohorov considers a sequence of i.i.d. random
variables Xn and proves that the convergence in the CLT holds in total variation distance
if and only if the following hypothesis holds: there exists n∗ such that the law of
X1+...+Xn∗ has an absolute continuous component, that isX1+...+Xn∗ ∼ µ(dx)+p(x)dx.

Of course this is much weaker than Doeblin’s condition, but, as long as we want to
prove the CLT in total variation distance, we may proceed as follows: we denote Yk =

Xkn∗+1 + ...+X(k+1)n∗ and take Zk = Y2k +Y2k+1. Since the convolution of two functions
from L1 is a continuous function, p ∗ p is continuous and consequently locally lower
bonded by the Lebesgue measure. So Zk verifies Doeblin’s condition. We prove the CLT
in total variation for Zk and then it easily follows for Xn (see Corollary 2.11 below). So,
as long as one is concerned with the CLT the two conditions are (in the above sense)
equivalent.

Remark 2.2. We stress that in [8] Proposition 2.4 there is fault: it is asserted that, if
X ∼ µ(dx) + p(x)dx then X satisfies the Doeblin’s condition – and of course this is false
if we do not ask p to be lower semicontinous. However, in Lemma A.1 from the appendix
in the same paper, the lower continuity hypothesis is mentioned.

2.2 Main results

In order to give the expression of the terms which appear in the Edgeworth develop-
ment we need to introduce some notation.

We say that α is a multiindex if α ∈ {1, . . . , d}k for some k ≥ 1, and we set |α| = k its
length. We allow the case k = 0, giving the void multiindex α = ∅.

Let α be a multiindex and set k = |α|. For for x ∈ Rd and f : Rd → R, we denote
xα = xα1

· · ·xαk
and ∂αf(x) = ∂xα1

· · · ∂xαk
f(x), the case k = 0 giving x∅ = 1 and ∂∅f = f .

In the following, we denote with Ck(Rd) the set of the functions f such that ∂αf exists
and is continuous for any α with |α| ≤ k. The set Ck

p (R
d), resp. Ck

b (R
d), is the subset of

Ck(Rd) such that ∂αf has polynomial growth, resp. is bounded, for any α with |α| ≤ k.
C∞(Rd), resp. C∞

p (Rd) and C∞
b (Rd), denotes the intersection of Ck(Rd), resp. of Ck

p (R
d)

and of Ck
b (R

d), for every k. For f ∈ Ck
p (R

d) we define Lk(f) and lk(f) to be some
constants such that ∑

0≤|α|≤k

|∂αf(x)| ≤ Lk(f)(1 + |x|)lk(f). (2.10)

Notice that if f ∈ C∞
b (Rd) then lk(f) = 0 and Lk(f) =

∑
0≤|α|≤k ‖∂αf‖∞ .

Moreover, for a non negative definite matrix σ ∈ Mat(d × d) we denote by Lσ the
Laplace operator associated to σ, i.e.

Lσ =

d∑
i,j=1

σi,j∂zi∂zj . (2.11)

For r ≥ 1 and l ≥ 0 we set

∆n,r(α) = E((Cn,rYr)
α)− E((Cn,rGr)

α) and D(l)
n,r =

∑
|α|=l

∆n,r(α)∂α. (2.12)

Notice that D(l)
n,r ≡ 0 for l = 0, 1, 2 and, by (2.3), for l ≥ 3 and |α| = l then

|∆n,r(α)| ≤ 2Cl(Y ), r = 1, . . . , n. (2.13)

We construct now the coefficients of our development. Let N be fixed: this is the order
of the development that we will obtain. Given 1 ≤ m ≤ k ≤ N we define
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Λm = {((l1, l′1), ..., (lm, l′m)) : N + 2 ≥ li ≥ 3, bN/2c ≥ l′i ≥ 0, i = 1, ...,m},

Λm,k = {((l1, l′1), ..., (lm, l′m)) ∈ Λm :

m∑
i=1

li + 2

m∑
i=1

l′i = k + 2m}.
(2.14)

Then, for 1 ≤ k ≤ N, we define the differential operator

Γn,k =

k∑
m=1

∑
((l1,l′1),...,(lm,l′m))∈Λm,k

1

nm

∑
1≤r1<...<rm≤n

m∏
i=1

1

li!
D(li)

n,ri

m∏
j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σn,rj

. (2.15)

By using (2.3) and (2.13), one easily gets the following estimates:

|Γn,kf(x)| ≤ C × C3k(Y )L3k(f)(1 + |x|)l3k(f), f ∈ C3k
p (Rd), (2.16)

where L3k(f) and l3k(f) are given in (2.10) and C > 0 is a suitable constant which does
not depend on n.

We introduce now the Hermite polynomials, we refer to Nualart [31] for definitions
and properties. The Hermite polynomial Hm of order m on R is defined as

Hm(x) = (−1)me
1
2x

2 dm

xm
e−

1
2x

2

. (2.17)

For a multiindex α ∈ {1, . . . , d}l we denote βi(α) = card{j : αj = i} and we define the
Hermite polynomial on Rd corresponding to the multiindex α by

Hα(x) =

l∏
i=1

Hβi(α)(xi) for x = (x1, ..., xd). (2.18)

Equivalently, the Hermite polynomial Hα on Rd associated to the multiindex α is defined
by

E(∂αf(W )) = E(f(W )Hα(W )) ∀f ∈ C∞
p (Rd) (2.19)

where W is a standard normal random variable in Rd. Moreover for a differential
operator Γ =

∑
|α|≤k a(α)∂α, with a(α) ∈ R, we denote HΓ =

∑
|α|≤k a(α)Hα so that

E(Γf(W )) = E(f(W )HΓ(W )). (2.20)

Finally we define

Φn,N (x) = 1 +

N∑
k=1

1

nk/2
HΓn,k

(x) with Γn,k defined in (2.15). (2.21)

The polynomial Φn,N gives the Edgeworth expansion of order N in the CLT, as stated in
the following result, which represents the main result of this paper.

Theorem 2.3. Assume that Yk ∈ D(r, ε),∀k ∈ N for some ε > 0, r > 0. Let the normaliz-
ing condition (2.2) and the moment bounds condition (2.3) both hold. Let N, q ∈ N be
fixed. We assume that n is sufficiently large in order to have

n
1
2 (N+1)e−

m2
rn

256 ≤ 1 and n ≥ 4(N + 1)C2(Y ).

There exists C ≥ 1, depending on N and q only, such that for every multiindex γ with
|γ| = q and every f ∈ Cq

p(R
d)

|E(∂γf(Sn(Y )))− E(∂γf(W )Φn,N (W ))| ≤ C × C∗(Y )
( L0(f)

n
1
2 (N+1)

+ Lq(f)e
−m2

r
32 ×n

)
(2.22)

where C∗(Y ) is a constant which depends on q, lq(f), N and Cp(Y ) for p = 2(N + 3) ∨
2l0(f)..
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Remark 2.4. The precise value of C∗(Y ) is given by

C∗(Y ) =
(
1 ∨ 8

mr

)2dp2

2(N+3)l0(f)+lq(f) ĉp1,l0(f)clq(f)∨(l0(f)+p1)

×
C

(4d+1)p2

16dp2
(Y )

rp2(p2+1)
C

(bN/2c+2)(N+1)
2(N+3) (Y )

(
1 + C

l0(f)∨(N+1)
2l0(f)

(Y )
) (2.23)

with p1 = q + (N + 1)(N + 3), p2 = q + p1,

cρ =

∫
|φ(z)| (1 + |z|)ρdz, ĉp,l = 1 ∨ max

0≤|α|≤p

∫
(1 + |x|)l|∂αφ(x)|dx

(2.24)

in which φ denotes a super kernel (see next (5.15) and (5.16)).

Actually the coefficients HΓn,k
(x) of the polynomial Φn,N (x) are cumbersome. The

following corollary, whose proof is postponed in Section 5.3.2, gives a plain expansion of
order three:

Corollary 2.5. Let the set-up of Theorem 2.3 holds. For a multiindex α and i, j ∈
{1, . . . , d}, set

cn(α) =
1

n

n∑
r=1

∆n,r(α) and cn(α, i, j) =
1

n

n∑
r=1

∆n,r(α)σ
ij
n,r. (2.25)

Then there exists C ≥ 1, depending on N and q only, such that for every multiindex γ
with |γ| = q and every f ∈ Cq

p(R
d)∣∣∣E(∂γf(Sn(Y ))

)
−E

(
∂γf(W )

(
1+

3∑
k=1

1

nk/2
Hn,k(W )

))∣∣∣ ≤ CC∗(Y )
(L0(f)

n2
+Lq(f)e

−m2
r

32 ×n
)

(2.26)
where C∗(Y ) is given in (2.24) and

Hn,1(x) =
1

6

∑
|α|=3

cn(α)Hα(x), (2.27)

Hn,2(x) =
1

24

∑
|α|=4

cn(α)Hα(x) +
1

72

∑
|α|=3

∑
|β|=3

cn(α)cn(β)H(α,β)(x), (2.28)

Hn,3(x) = − 1

12

∑
|α|=3

2∑
i,j=1

cn(α, i, j)H(α,β)(x) +
1

120

∑
|α|=5

cn(α)Hα(x)

+
1

144

∑
|α|=3

∑
|β|=4

cn(α)cn(β)H(α,β) +
1

1296

∑
|α|=3

∑
|β|=3

∑
|γ|=3

cn(α)cn(β)cn(γ)H(α,β,γ)(x).

(2.29)

Remark 2.6. We stress that the coefficients of the Hermite polynomials appearing in
Hn,1(x)–Hn,3(x) depend on n (this is because we work with Cn,kYk, k = 1, . . . , n, whose
law depends on n) but in a bounded way. In fact, by the formula (2.25) and by (2.13), for
|α| = l and i, j ∈ {1, . . . , d},

|cn(α)| ≤ 2Cl(Y ) and |cn(α, i, j)| ≤ 4Cl(Y )C2(Y ), for every n.

Remark 2.7. In the one dimensional case Bobkov obtained in [17] (see Proposition 14.1
therein) the following development using Hermite polynomials:

Φn,N (x) = 1 +
∑ 1

k1!...kN !

(γn,3
3!

)k1

...

(
γn,N+2

(N + 2)!

)kN

×Hk(x)

where k = 3k1+ ...+(N+2)kN and the summation is made over the non negative integers
k1, ...kN such that 0 < k1+2k2+ ...+NkN ≤ N. And γn,p is the p-cumulant of Sn(Y ). This
is an alternative way to write the correctors which is ordered according to the powers of
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the Hermite polynomials (and of course, the two expressions are equivalent and one may
pass from one to another).

The proof of Theorem 2.3 is done by using a Malliavin type calculus based on the
random variables Vk’s coming from the Nummelin’s splitting associated to the Yk’s.
This differential calculus is developed in next Section 5.1. The proof of Theorem 2.3
represents the main effort in this paper, so we postpone it to Section 5.3.1. As for
Corollary 2.5, the proof consists in heavy but straightforward computations, so we
postpone in Section 5.3.2.

We give now two slight variants of Theorem 2.3 which will be used in the following.
First:

Proposition 2.8. Let (2.2) and (2.3) hold. Assume that for some n∗ < n one has
Yk ∈ D(r, ε) for k ≤ n− n∗ and

1
n

∑n−n∗
k=1 σn,k ≥ 1

2 Idd. Then (2.22) holds true.

The proof of Proposition 2.8 mimics the one of Theorem 2.3 so we postpone it as well,
in next Section 5.3.3. This result will be used in the proof of Corollary 2.11 below.

Let us now show how to get the estimate in Theorem 2.3 without assuming the
normalization condition (2.2). We assume that Σn := 1

n

∑n
k=1 σn,k, is invertible and

we denote Cn,k = Σ
−1/2
n Cn,k. Then we construct ΦΣn

n,N as in (2.15) by using ∆n,k(α) =

E((Cn,kYk)
α)− E((Cn,kGk)

α).

Proposition 2.9. Assume that Yk ∈ D(r, ε),∀k ∈ N for some ε > 0, r > 0 and Σn =
1
n

∑n
k=1 σn,k is invertible and condition (2.3) hold. Let N, q ∈ N be fixed. Then Theorem

2.3 holds as well and (2.22) reads: for a multiindex α with |α| = q,∣∣∣E(∂αf(Sn(Y )))− E(∂αf(Σ1/2
n W )ΦΣn

n,N (W ))
∣∣∣

≤ Cλ−q
n × C∗(Y )

( 1

n
1
2 (N+1)

L0(f) + Lq(f)e
−

m2
rn
16 ×n

) (2.30)

where W is a standard Gaussian random variable,C∗(Y ) is given in (2.23) and λn is the
lower eigenvalue of Σn.

Proof. For an invertible matrix σ ∈ Mat(d× d) and for f : Rd → R, let fσ(x) = f(σx). A
simple computation shows that

(∂αf)(σx) =
∑

|β|=|α|

(σ−1)α,β∂βfσ(x),

where, for any two multiindexes α and β with |α| = q = |β|,

(σ−1)α,β =

q∏
i=1

(σ−1)αi,βi .

We denote now Sn(Y ) = 1√
n

∑n
k=1 Cn,kYk = Σ

−1/2
n Sn(Y ) verifies the normalization

condition (2.2). So using (2.22) for Sn(Y ) we obtain

E(∂αf(Sn(Y ))) = E(∂αf(Σ
1/2
n Sn(Y ))) =

∑
|β|=q

(Σ−1/2
n )α,βE(∂βfΣ1/2

n
(Sn(Y )))

=
∑
|β|=q

(Σ−1/2
n )α,β

(
E(∂βfΣ1/2

n
(W )ΦΣn

N (W )) +Rβ
N (n)

)
= E(∂αf(Σ

1/2
n W )ΦΣn

N (W )) +
∑
|β|=q

(Σ−1/2
n )α,βRβ

N (n).

The estimate ofRN (n) follows from Lq(fΣ1/2
n

)≤λ
q

nLq(f) and
∑

|β|=q(Σ
−1/2
n )α,β ≤ Cλ−q

n λ
dq

n .
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Another immediate consequence of Theorem 2.3 is given by the following estimate
for an “approximative density” of the law of Sn(Y ):

Proposition 2.10. Assume that Yk ∈ D(r, ε) for some ε > 0, r > 0 and let (2.2) and (2.3)

hold. Suppose that n
1
2 (N+1)e−

m2
rn

256 ≤ 1 and n ≥ 4(N + 1)C2(Y ). Let δn be such that

n(N+1)/2de−
m2

r
32d×n ≤ δn ≤ 1

n
1
2 (N+1)

.

Then ∣∣∣∣E( 1

δdn
1{|Sn(Y )−a|≤δn}

)
− γd(a)Φn,N (a)

∣∣∣∣ ≤ C

n
1
2 (N+1)

, (2.31)

where γd denotes the density of the standard normal law in Rd.

Proof. Let h(x) =
∫ x1

−∞ dx1...
∫ xd−1

−∞
1
δdn
1{|x−a|≤δn}dxd so that 1

δdn
1{|x−a|≤δn} = ∂x1

...∂xdh(x).

Using Theorem 2.3

E
( 1

δdn
1{|Sn(Y )−a|≤δn}

)
= E(∂x1

...∂xdh(Sn(Y ))) = E(∂x1
...∂xdh(W )Φn,N (W )) +RN (n)

= E
( 1

δdn
1{|W−a|≤δn}Φn,N (W )

)
+RN (n)

with

|RN (n)| ≤ C
( 1

n
1
2 (N+1)

+
1

δdn
e−

m2
r

32 ×n
)
≤ C

n
1
2 (N+1)

the last inequality being true by our choice of δn. Moreover

E
( 1

δdn
1{|W−a|≤δn}Φn,N (W )

)
=

∫
Rd

1

δdn
1{|y−a|≤δn})Φn,N (y)γd(y)dy

= Φn,N (a)γd(a) +R′(n)

with |R′(n)| ≤ C

n
1
2
(N+1)

, as a further consequence of the choice of δn.

We now prove a stronger version of Prohorov’s theorem. We consider a sequence of
identical distributed, centered random variables Xk ∈ Rd which have finite moments of
any order and we look to

Sn(X) =
1√
n

n∑
k=1

Xk.

Following Prohorov we assume that there exist n∗ ∈ N such that

P(X1 + · · ·+Xn∗ ∈ dx) = µ(dx) + ψ(x)dx (2.32)

for some measurable non negative function ψ.

Corollary 2.11. We assume that (2.32) holds. We fix q,N ∈ N. There exist two constants
0 < c∗ ≤ 1 ≤ C∗, depending on N and q, such that the following holds: if

n
1
2 (N+1)e−c∗n ≤ 1

then, for every multiindex γ with |γ| ≤ q and for every f ∈ Cq
p(R

d) one has

|E(∂γf(Sn(X)))− E(∂γf(W )Φn,N (W ))| ≤ C∗

( 1

n
1
2 (N+1)

L0(f) + Lq(f)e
−c∗×n

)
. (2.33)
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Proof. . We denote

Yk =

2(k+1)n∗∑
i=2kn∗+1

Xi and Zk =
1√
n
Yk.

Notice that we may take ψ in (2.32) to be bounded with compact support. Then ψ ∗ ψ is
continuous and so we may find some r > 0, ε > 0 and y ∈ Rd such that ψ ∗ ψ ≥ ε1B2r(y).

It follows that Yk ∈ D(r, ε) and we may use Theorem 2.3 in order to obtain (2.33) for
n = 2n∗ × n′ with n′ ∈ N. But this is not satisfactory because we claim that (2.33) holds
for every n ∈ N. This does not follow directly but needs to come back to the proof of
Theorem 2.3 and to adapt it in the following way. Suppose that 2n∗n′ ≤ n < 2n∗(n

′ + 1).

Then

Sn(X) = S2n∗n′(X) +
1√
n

n∑
k=2n∗n′+1

Xk =
1√
n

n′∑
k=1

Yk +
1√
n

n∑
k=2n∗n′+1

Xk.

Since Xk, 2n∗n′ + 1 ≤ k ≤ n, have no regularity property, we may not use them in the
regularization arguments employed in the proof of Theorem 2.3. But Yk, 1 ≤ k ≤ n′

contain sufficient noise in order to achieve the proof (see the proof of Proposition 2.8 in
next Section 5.3.3).

2.3 Convergence in distribution norms

In this section we prove that, under some supplementary regularity assumptions on
the laws of Yk, k ∈ N, Theorem 2.3 implies that the density of the law of Sn(Y ) converges
in distribution norms to the Gaussian density. We consider the case Cn,k ≡ Ck, that is,

Sn(Y ) =
1√
n

n∑
k=1

CkYk,

and we denote σk = CkC
∗
k . We assume that

0 < σ ≤ inf
k
σk ≤ sup

k
σk ≤ σ <∞ and sup

k
‖Yk‖pp <∞. (2.34)

In particular each σk is invertible. We denote γk = σ−1
k . For a function f ∈ C1(Rd) and

for k ∈ N we denote

m1,k(f) =

∫
Rd

(1 + |x|)k |∇f(x)| dx.

Proposition 2.12. We fix q ∈ N and we also fix a polynomial P. Suppose that Yk ∈ D(r, ε),
k ∈ N, and (2.34) holds. Suppose moreover that

P(Yk ∈ dy) = pYk
(y)dy with pYk

∈ C1(Rd) for every for i = 1, ..., q. (2.35)

A. There exist some constants c ∈ (0, 1) (depending on r and on ε) and Dq(P ) ≥ 1

(depending on q, σ, σ and on P ) such that, if n(q+1)/2e−cn ≤ 1, then for every f ∈ Cq
p(R

d)

and every multiindex α with |α| ≤ q,

|E(P (Sn(Y ))∂αf(Sn(Z))−E(P (Sn(G))∂αf(Sn(G))| ≤
Dq(P )√

n

q∏
i=1

m1,l0(f)+l0(P )(pYi)×L0(f).

(2.36)
B. Moreover, if pSn

is the density of the law of Sn(Y ) then, if n(d+q+1)/2e−cn ≤ 1, we
have

sup
x∈Rd

|P (x)(∂αpSn
(x)− ∂αγd(x))| ≤

Dq+d(P )√
n

q+d∏
i=1

m1,l0(f)+l0(P )(pYi
) (2.37)

where γd is the density of the standard normal law in Rd.
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Proof. A. We proceed by recurrence on the degree i of the polynomial P . First we
assume that i = 0 (so that P is a constant) and we prove (2.36) for every q ∈ N. We write

Sn(Y ) =
1√
n

n∑
k=1

CkYk =
1√
n

q∑
k=1

CkYk + S(q)
n (Y ).

with

S(q)
n (Z) =

1√
n

n∑
k=q+1

CkYk.

Then we define

g(x) = E
(
f
( 1√

n

q∑
k=1

CkYk + x
))

and we have
E(∂αf(Sn(Y ))) = E(∂αg(S

(q)
n (Y ))).

Now using (2.30) with N = 0 for S(q)
n (Y ) we get

E(∂αg(S
(q)
n (Y ))) = E(∂αg(S

(q)
n (G)))+Rn = E

(
∂αf

( 1√
n

q∑
k=1

CkYk+S
(q)
n (G)

))
+Rn (2.38)

with

|Rn| ≤ C
( 1√

n
L0(g) + e−cnLq(g)

)
. (2.39)

Let us estimate Lq(g). We set γk = σ−1
k . For α = (α1, ..., αq) we have

(∂αf)
( 1√

n

n∑
k=1

Ckyk+x
)
=

d∑
β1,...,βq=1

nq/2
( q∏

k=1

(γkCk)
αk,βk

)
×∂

y
β1
1
....∂

y
βq
q

(
f
( 1√

n

n∑
k=1

Ckyk+x
))
,

(2.40)
in which we have assumed that the Yk’s take values in Rm. So

∂αg(x) = E
(
(∂αf)

( 1√
n

q∑
k=1

CkYk + x
))

= nq/2
m∑

β1,...,βq=1

( q∏
k=1

(γkCk)
αk,βk

)∫
Rqm

∂
y
β1
1
....∂

y
βq
q

(
f
( 1√

n

n∑
k=1

Ckyk +x
)) q∏

k=1

pYk
(yk)dy1...dyq

= (−1)qnq/2
m∑

β1,...,βq=1

( q∏
k=1

(γkCk)
αk,βk

)∫
Rqm

f
( 1√

n

n∑
k=1

Ckyk +x
) q∏
k=1

∂
y
βk
k

pYk
(yk)dy1...dyq.

It follows that

|∂αg(x)| ≤ Cnq/2L0(f)

∫
Rq

(1 + |x|+
q∑

k=1

|yk|)l0(f)
q∏

k=1

|∇pYk
(yk)| dy1...dyq

≤ Cnq/2L0(f)(1 + |x|)l0(f)
q∏

k=1

m1,l0(f)(pYk
).

We conclude that lq(g) = l0(f) and Lq(g) ≤ Cnq/2L0(f)
∏q

k=1m1,l0(f)(pYk
). The same is

true for q = 0 and so (2.39) gives

|Rn| ≤ CL0(f)

q∏
k=1

m1,l0(f)(pYk
)
( 1√

n
+ nq/2e−cn

)
≤ CL0(f)

q∏
k=1

m1,l0(f)(pYk
)× 1√

n

the last inequality being true if nq/2e−cn ≤ n−1/2.

So (2.38) says that we succeed to replace Yk, q + 1 ≤ k ≤ n by Gk, q + 1 ≤ k ≤ n and
the price to be paid is CL0(f)

∏q
k=1m1,l0(f)(pYk

) × 1√
n
. Now we can do the same thing
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and replace Yk, 1 ≤ k ≤ q by Gk, 1 ≤ k ≤ q and the price will be the same (here we use
CkGk, k = q + 1, ..., 2q instead of CkYk, k = 1, ..., q). So (2.36) is proved for polynomials P
of degree i = 0.

We assume now that (2.36) holds for every polynomials of degree less or equal to
i− 1 and we prove it for a polynomial P of order i. We have

∂α(P × f) =
∑

(β,γ)=α

∂βP × ∂γf

so that
P × ∂αf = ∂α(P × f)−

∑
(β,γ)=α
|β|≥1

∂βPi × ∂γf.

Since |β| ≥ 1 the polynomial ∂βP has degree at most i−1. Then the recurrence hypothesis
ensures that (2.36) holds for ∂βP × ∂γf. Moreover, using again (2.36) for g = P × f we
obtain (2.36) in which L0(g) ≤ L0(P )L0(f) and l0(g) ≤ l0(P ) + l0(f) appear. So A. is
proved.

Let us prove B. We denote fx(y) =
∏d

k=1 1(x,∞)(y) and, for a multiindex α = (α1, ..., αq)

we denote α = (α1, ..., αq, 1, ..., d). Then, using a formal computation (which may de done
rigorously by means of a regularization procedure) we obtain

P (x)∂αpSn(x) =

∫
δ0(y − x)P (y)∂αpSn(y)dy

= (−1)q
∑

(β,γ)=α

∫
∂βδ0(y − x)∂γP (y)pSn

(y)dy

= (−1)q
∑

(β,γ)=α

∫
∂βfx(y)∂γP (y)pSn(y)dy

= (−1)q
∑

(β,γ)=α

E(∂βfx(Sn(Y ))∂γP (Sn(Y ))).

A similar computation holds with Sn(Y ) replaced by Sn(G). So we have

|P (x)(∂αpSn
(x)− ∂αγ(x)|

≤
∑

(β,γ)=α

∣∣∣E(∂βfx(Sn(Y ))∂γP (Sn(Z)))− E(∂βfx(Sn(G))∂γP (Sn(G)))
∣∣∣

≤ Cq+d(P )√
n

q+d∏
k=1

m1,l0(f)+l0(P )(pYk
)

the last inequality being a consequence of (2.36).

Remark 2.13. We would like to obtain Edgeworth’s expansions as well – but there
is a difficulty: when we use the expansion for S(q)

n (Z) we are in the situation when

the covariance matrix of S(q)
n (Z) is not the identity matrix. So the coefficients of the

expansion are computed using a correction (see the definition of ∆k in Proposition 2.9).
And this correction produces an error of order n−1/2. This means that we are not able to
go beyond this level (at least without supplementary technical effort).

3 Examples

3.1 An invariance principle related to the local time

In this section we consider a sequence of independent identically distributed, cen-
tered random variables Yk, k ∈ N, with finite moments of any order and we denote
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Sn(k, Y ) =
1√
n

k∑
i=1

Yi.

Our aim is to study the asymptotic behavior of the expectation of

Ln(Y ) =
1

n

n∑
k=1

ψεn(Sn(k, Y )) with ψεn(x) =
1

2εn
1{|x|≤εn}.

So Ln(Y ) appears as the occupation time of the random walk Sn(k, Y ), k = 1, ..., n,

and consequently, as εn → 0, one expects that it has to be close to the local time in
zero at time 1, denoted by l1, of the Brownian motion. In fact, we prove now that
E(Ln(Y )) → E(l1) as n→ ∞.

Theorem 3.1. Let εn = n−
1
2 (1−ρ) with ρ ∈ (0, 1).We consider a centered random variable

Y ∈ D(r, ε) which has finite moments of any order and we take a sequence Yi, i ∈ N of
independent copies of Y. We define

N(Y ) = max{2k : E(Y 2k) = E(G2k)} − 1 ≥ 1

and we denote pN(Y ) = 8(1 + (N(Y ) + 1)(N(Y ) + 3))(4 + (N(Y ) + 1)(N(Y ) + 3)). For
every η < 1 there exists a constant C depending on r, ε, ρ, η and on ‖Y ‖pN(Y )

such that

∣∣E(Ln(Y ))− E(Ln(G))
∣∣ ≤ C

n
1
2+

ηρN(Y )
2

. (3.1)

The above inequality holds for n which is sufficiently large in order to have

n
1
2 exp

(
− m2

r

32
× nρη

)
≤ 1

n
1
2 (N(Y )+1)ηρ

(3.2)

As a consequence, we have

lim
n→∞

E(Ln(Y )) = E(l1), (3.3)

l1 denoting the local time in the point 0 at time 1 of a Brownian motion.

Proof. All over this proof we denote by C a constant which depends on r, ε, ρ, η and
on ‖Y ‖pN(Y )

(as in the statement of the lemma) and which may change from a line to
another.

Step 1. We take kn = nηρ. Suppose first that k ≤ kn. We write

E(ψεn(Sn(k, Y ))) =
1

εn

(
1− P(|Sn(k, Y )| ≥ εn)

)
so that

|E(ψεn(Sn(k, Y )))− E(ψεn(Sn(k,G)))| ≤
1

εn

(
P(|Sn(k, Y )| ≥ εn) + P(|Sn(k,G)| ≥ εn)

)
.

Using Chebyshev’s inequality and Burkholder’s inequality we obtain for every p ≥ 2

P(|Sn(k, Y )| ≥ εn) = P
(∣∣∣ k∑

i=1

Yi

∣∣∣ ≥ εn
√
n
)
≤ 1

(εn
√
n)p

E
(∣∣∣ k∑

i=1

Yi

∣∣∣p)
≤ C

(εn
√
n)p

( k∑
i=1

‖Yi‖2p
)p/2

≤ Ckp/2

(εn
√
n)p

=
C

εpn
×

(k
n

)p/2

.
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And the same estimate holds with Yi replaced by Gi. We conclude that∣∣∣E( 1

n

kn∑
k=1

ψεn(Sn(k, Y ))
)
− E

( 1

n

kn∑
k=1

ψεn(Sn(k,G))
)∣∣∣ ≤ C

εp+1
n

× 1

n

kn∑
k=1

(k
n

)p/2

≤ C

εp+1
n

×
∫ kn/n

0

xp/2dx =
C

εp+1
n

×
(kn
n

) p
2+1

=
C

n
pρ
2 (1−η)+ 1

2−(η− 1
2 )ρ

≤ C

n
pρ
2 (1−η)

.

We take p = 1+ρηN(Y )
ρ(1−η) and we obtain

∣∣∣E( 1

n

kn∑
k=1

ψεn(Sn(k, Y ))
)
− E

( 1

n

kn∑
k=1

ψεn(Sn(k,G))
)∣∣∣ ≤ C

n
1
2+

N(Y )
2 ηρ

.

Step 2. We fix now k ≥ kn and we apply our Edgeworth development (2.22) to

1√
k

k∑
i=1

Yi.

In particular the constants Cp(Y ) defined in (2.3) are given by Cp(Y ) = ‖Y ‖pp. We denote

hα,n(x) =

∫ αx

−∞
ψεn(y)dy = h1,n(αx). (3.4)

This gives ψεn(x) = h′1,n(x) and h′α,n(x) = αh′1,n(αx). Moreover, ‖hα,n‖∞ ≤ 1 and
‖h′α,n‖∞ ≤ |α|/εn, so that

L0(hα,n) = 1 and L1(hα,n) = |α| × 1

εn
.

We now write

E(ψεn(Sn(k, Y ))) = E(h′1,n(Sn(k, Y ))) = E
(
h′1,n

(√k

n

1√
k

k∑
i=1

Yi

))
=

√
n

k
E
(
h′√

k
n ,n

( 1√
k

k∑
i=1

Yi

))
.

We use now (2.22) with f = h√
k
n ,n

and here ∂γ is the first order derivative. Then, by

(2.22) with N = N(Y )

E(ψεn(Sn(k, Y )) =

√
n

k

(
E
(
h′√

k
n ,n

(W1)Φk,N(Y )(W1)
)
+RN(Y )(k)

)
where W denotes a Brownian motion and with∣∣RN(Y )(k)

∣∣ ≤ C

k(N(Y )+1)/2
L0(h√ k

n ,n
) + CL1(h

′√
k
n ,n

) exp
(
− m2

r

32
× k

)
≤ C

k(N(Y )+1)/2
+C

√
k

n
× 1

εn
exp

(
− m2

r

32
× k

)
.

Here C is the constant from (2.22) defined in (2.23). Notice that by (3.2), for k ≥ kn = nηρ

one has√
k

n
× 1

εn
exp

(
− m2

r

32
× k

)
≤ n

1
2 exp

(
− m2

r

32
× nρη

)
≤ 1

n
1
2 (N(Y )+1)ηρ

=
1

k
(N(Y )+1)/2
n

≤ C

k(N(Y )+1)/2
,
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so that
∣∣RN(Y )(k)

∣∣ ≤ Ck−(N(Y )+1)/2. Then∣∣∣ n∑
k=kn

√
n

k
RN(Y )(k)

1

n

∣∣∣ ≤ C

n(N(Y )+1)/2

n∑
k=kn

1

(k/n)1+
N(Y )

2

× 1

n

≤ C

n(N(Y )+1)/2

∫ 1

kn/n

ds

s1+
N(Y )

2

=
C

n(N(Y )+1)/2
(n/kn)

N(Y )
2 =

C

n
1
2+

N(Y )ρη
2

.

We recall now that (see (2.21))

Φk,N(Y )(x) = 1 +

N(Y )∑
l=1

1

nl/2
HΓk,l

(x)

with HΓk,l
(x) linear combination of Hermite polynomials (see (2.15) and (2.20)). Notice

that if l is odd then Γk,l is a linear combination of differential operators of odd order (see
the definition of Λm,l in (2.14)). So HΓk,l

is an odd function (as a linear combination of
Hermite polynomials of odd order) so that ψεn ×HΓk,l

is also an odd function. Since W1

and −W1 have the same law, it follows that

E
(
ψεn

(√k

n
×W1

)
Hk,Γl

(W1)
)

= E
(
ψεn

(√k

n
× (−W1)

)
HΓk,l

(−W1)
)

= −E
(
ψεn

(√k

n
×W1

)
HΓk,l

(W1)
)

and consequently√
n

k
× E

(
h′√

k
n ,n

(W1)HΓk,l
(W1)

)
= E

(
ψεn

(√k

n
×W1

)
HΓk,l

(W1)
)
= 0.

Moreover, by the definition of N(Y ), for 2l ≤ N(Y ) we have E(Y 2l) = E(G2l) so that
HΓk,2l

= 0. We conclude that√
n

k
E
(
h′√

k
n ,n

(W1)Φk,N(Y )(W1)
)
=

√
n

k
E
(
h′√

k
n ,n

(W1)
)
= E

(
ψεn

(√k

n
×W1

))
= E(ψεn(Sn(k,G))).

We put now together the results from the first and the second step and we obtain (3.1).

Step 3. We prove (3.3). Recall first the representation formula

E
(∫ 1

0

ψεn(Ws)ds
)
= E

(∫
ψεn(a)l

a
1da

)
,

where la1 denotes the local time in a ∈ R at time 1, so that l1 = l01. Since a 7→ la1 is Hölder

continuous of order ρ′

2 for every ρ′ < 1, we obtain∣∣∣E(∫ 1

0

ψεn(Ws)ds
)
− E(l01)

∣∣∣ ≤ ερ
′/2

n =
1

n
ρ′(1−ρ)

4

. (3.5)

We prove now that, for every ρ′ < 1 and n large enough,∣∣∣E(∫ 1

0

ψεn(Ws)ds
)
− E(Ln(G))

∣∣∣ ≤ C

n
1+ηρ

2

. (3.6)

To begin we notice that Sn(k,G) has the same law as Wk/n, so that we write

E
(∫ 1

0

ψεn(Ws)ds
)
−E(Ln(G))=E

( n∑
k=1

δk

)
, with δk =

∫ (k+1)/n

k/n

(ψεn(Ws)−ψεn(Wk/n))ds.
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As above, we take kn = nρη and for k ≤ kn, we have

E(δk) = − 1

2εn

∫ (k+1)/n

k/n

(
P(|Ws| ≥ εn)− P(|Wk/n| ≥ εn)

)
ds.

Since P(|Ws| ≥ εn) ≤ C exp(− ε2

2s ), this immediately gives

|E(δk)| ≤
C

nεn
exp

(
− 1

2
ε2n×

n

k + 1

)
≤ C

nεn
exp

(
− 1

2
ε2n×

n

kn + 1

)
=

C

nεn
exp

(
− 1

2
nρ(1−η)

)
so that

kn∑
k=1

|E(δk)| ≤
C

εn
exp(−1

8
nρ(1−η)) ≤ C

n
1+ηρ

2

,

for n large enough.
We consider now the case k ≥ kn. Using a formal computation, by applying the

standard Gaussian integration by parts formula, we write

E(ψεn(Ws)− ψεn(Wk/n)) =
1

2

∫ s

k/n

E(ψ′′
εn(Wv))dv =

1

2

∫ s

k/n

E(ψ′′
εn(

√
vW1))dv

=

∫ s

k/n

E(h′′′1,n(
√
vW1)H3(W1))dv =

∫ s

k/n

1

2v3/2
E(h1,n(

√
vW1)H3(W1))dv,

in which we have used (3.4) and where H3 denotes the third Hermite polynomial. The
above computation is formal because ψεn is not differentiable. But, since the first and
the last term in the chain of equalities depends on ψεn only (and not on the derivatives)
we may use regularization by convolution in order to do it rigorously. Notice also that the
first equality is obtained using Ito’s formula and the last one is obtained using integration
by parts. It follows that

|E(δk)| ≤
∫ (k+1)/n

k/n

ds

∫ s

k/n

1

2v3/2
E(h1,εn(

√
vW1) |H3(W1)|)dv ≤ C

n

∫ (k+1)/n

k/n

1

v3/2
dv

and consequently
n∑

k=kn

|E(δk)| ≤
C

n

∫ 1

kn/n

1

v3/2
dv ≤ C

n
1+ηρ

2

.

So (3.6) is proved, and this together with (3.5) and (3.1), give (3.3).

3.2 Small ball estimates

We look to

Sn(u, Y ) =
1√
n

n∑
k=1

Cn,k(u)Yk, u ∈ R`, (3.7)

where Yk ∈ Rd, k ∈ N, and Cn,k(u) ∈ Mat(d× d) (so, here m = d).

Theorem 3.2. Suppose that {Yk}k∈N ⊂ D(ε, r), with Mp(Y ) = supk ‖Yk‖p <∞, and that
u 7→ Ci,j

n,k(u) is twice differentiable. We assume that for every n ∈ N, k ≤ n and u ∈ R`

‖Cn,k‖2,∞ :=

d∑
i,j=1

∑
|α|≤2

‖∂αuC
i,j
n,k‖2,∞ ≤ Q∗,2 <∞, (3.8)

1

n

n∑
k=1

Cn,k(u)C
∗
n,k(u) ≥ λ∗ > 0, (3.9)

A. There exist C ≥ 1 and c > 0 such that for every η > 0

sup
u∈R`

P(|Sn(u, Y )| ≤ η) ≤ C(ηd + e−cn). (3.10)
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B. Suppose that d > `. Let a ≥ 0 and θ > a`
d−` . Then, for every ε > 0

P
(

inf
|u|≤na

|Sn(u, Y )| ≤ 1

nθ

)
≤ C

nθ(d−`)−a`−ε
(3.11)

The constant C depends on mr (from Doeblin’s condition), on Q∗,2, λ∗, `, d and on Mp(Y )

for sufficiently large p.

We first prove the following lemma.

Lemma 3.3. Under the hypotheses of Theorem 3.2, for every q > `, i ∈ {1, . . . , d} and
R > 0 one has

E
(

sup
|u|≤R

|∂iSn(u, Y )|q
)
≤ CR`Qq

∗,2M
q
q(Y ). (3.12)

where C is a constant which depends on q.

Proof. As an immediate consequence of Morrey’s inequality one may find a universal
constant C (independent of R) such that

sup
|u|≤R

|∂iSn(u, Y )| ≤ C
(∫

|u|≤R+1

|∂iSn(u, Y )|q +
∑̀
j=1

|∂j∂iSn(u, Y )|q du
)1/q

so that

E( sup
|u|≤R

|∂iSn(u, Y )|q) ≤ C

∫
|u|≤R+1

(
E |∂iSn(u, Y )|q +

∑̀
j=1

E |∂j∂iSn(u, Y )|q
)
du.

Since

∂j∂iSn(u, Y ) =
1√
n

n∑
k=1

∂j∂iCn,k(u)Yk,

we can use the Burkholder’s inequality for martingales and we obtain

E |∂j∂iSn(u, Y )|q ≤ CE
([ 1
n

n∑
k=1

‖∂j∂iCn,k(u)(∂i∂αCn,k(u))
∗‖2 |Yk|2

]q/2)
≤ CQq

∗,2E
([ 1
n

n∑
k=1

|Yk|2
]q/2)

≤ CQq
∗,2M

q
q (Y ).

A similar estimate holds for E |∂iSn(u, Y )|q , so that (3.12) is proved.

Proof of Theorem 3.2. A. Let us prove (3.10). We take η > 0 and we consider the
functions

θd,η(x) =
1

(cdη)d
1|x|≤η, Θd,η(x) =

∫ x1

−∞
dx2...

∫ xd−1

−∞
dxdθd,η(x) (3.13)

with cd such that
∫
Rd θd,η(x)dx = 1. Then ∂1....∂dΘd,η = θd,η so that

P(|Sn(u, Y )| ≤ η) = (cdη)
dE(θd,η(Sn(u, Y )) = (cdη)

dE(∂1....∂dΘd,η(Sn(u, Y )).

We denote Sn(t, G) the sum from (3.7) in which Yk, k ∈ N, are replaced by standard
normal random variables and we use Theorem 2.3, specifically (2.22), in order to obtain

E(∂1....∂dΘd,η(Sn(u, Y )) = E(∂1....∂dΘd,η(S(u,G)) + εn(η)

where

|εn(η)| ≤ C
( 1

n1/2
+ η−de−cn

)
.
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Here C is a constant which depends on mr (from Doeblin’s condition) on Q∗,0 and on
Mp(Y ) for a sufficiently large p. We conclude that

P(|Sn(u, Y )| ≤ η) = (cdη)
dE(∂1....∂dΘd,η(Sn(u, Y )))

≤ (cdη)
d
(
E(∂1....∂dΘd,η(S(u,G))) + |εn(η)|

)
= CP(|S(u,G)| ≤ η) + Cηd |εn(η)| .

Since Sn(u,G) is a non degenerate Gaussian random variable we have P(|Sn(u,G)| ≤
η) ≤ Cηdλ

−d/2
∗ and finally we get

P(|Sn(tα, Y )| ≤ η) ≤ Cηd(λ
−d/2
∗ + |εn(η)|) ≤ C(ηd + e−cn).

B. We denote Rn = na, δn = n−θ and we take h > 0 (to be chosen later on). For α ∈ Z`

we denote tα = (tα1
, ..., tα`

) = (hα1, . . . , hα`) and Iα = [tα1
, tα1+1) × · · · × [tα`

, tα`+1), so,
if |u| ≤ Rn then u ∈ ∪|tα|≤Rn

Iα. Moreover we denote

ωn = inf
|u|≤Rn

|Sn(u, Y )| , ωn,α = inf
u∈Iα

|Sn(u, Y )|

and we have
ωn ≥ min

|tα|≤Rn

ωn,α.

If ωn,α < δn then there is some uα ∈ Iα such that |Sn(uα)| ≤ δn. So, with Un =

sup|u|≤Rn
|∇Sn(u, Y )| , we have

|Sn(tα)| ≤ |Sn(uα)|+ Unh ≤ δn + Unh.

Now we take λ > 0 (to be chosen later on) and we write, with q > `,

P(ωn ≤ δn) ≤ P(ωn ≤ δn, Un ≤ λ) + P(Un ≥ λ)

≤
∑

|tα|≤Rn

P(ωn,α ≤ δn, Un ≤ λ) + λ−qE(Uq
n)

≤ (Rn/h)
` max
|tα|≤Rn

P(|Sn(tα, Y )| ≤ δn + λh) + Cλ−qR`
nQ

q
∗,2M

q
q (Y )

≤ C(Rn/h)
`((δn + λh)d + e−cn) + Cλ−qR`

nQ
q
∗,2M

q
q (Y ),

in which we have used (3.12) and (3.10). We recall that Rn = na and δn = n−θ. We take
λ = nε for a sufficiently small ε > 0 and h = n−(θ+ε). Then, for large enough q, we get

P(ωn ≤ δn) ≤ Cn(a+θ+ε)` × n−θd + Cn−εq × n`a ≤ Cn−(θd−(a+θ+ε)`).

3.3 Expected number of roots for trigonometric polynomials: an invariance
principle

In this section we look to trigonometric polynomials with random coefficients of the
form

Qn(t, Y ) =

n∑
k=1

(
Y 1
k cos(kt) + Y 2

k sin(kt)
)

where Yk = (Y 1
k , Y

2
k ), k ∈ N, are independent centered random variables such that

Yk ∈ D(ε, r) for each k. Our aim is to estimate the asymptotic behavior, as n → ∞, of
the expected number of zeros in the interval (0, π) of these polynomials. This clearly
coincide with the number of zeros in (0, nπ) of the renormalized polynomials

Pn(t, Y ) =
1√
n

n∑
k=1

(
Y 1
k cos

(kt
n

)
+ Y 2

k sin
(kt
n

))
. (3.14)
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So we denote by Nn(Y ) the number of zeros of Pn(t, Y ) in (0, nπ). It is known that if we
replace Yk by Gk, independent standard normal random variables then (see [22, 24])

lim
n

1

n
E(Nn(G)) =

1√
3
.

Our aim is to prove that this remains true for any sequence Yk, k ∈ N of independent but
non necessarily identically distributed random variables. So we will prove:

Theorem 3.4. Suppose that Y = (Yk)k∈N is a sequence of independent random variables
in ⊂ D(ε, r), having finite moments of any order. Then∣∣∣ 1

n
E(Nn(Y ))− 1

n
E(Nn(G))

∣∣∣ ≤ C√
n
. (3.15)

Proof. . The first ingredient in the proof is Kac-Rice lemma that we recall now. Let
f : [a, b] → R be a differentiable function and set

ωa,b(f) = infx∈[a,b](|f(x)|+ |f ′(x)|) and δa,b(f) = min{|f(a)| , |f(b)| , ωa,b(f)}.

We denote by Na,b(f) the number of solutions of f(t) = 0 for t ∈ [a, b] and

Ia,b(f, δ) =

∫ b

a

|f ′(t)| 1{|f(t)|≤δ}
dt

2δ
, δ > 0.

The Kac-Rice lemma says that if δa,b(f) > 0 then

Na,b(f) = Ia,b(f, δ) for δ ≤ δa,b(f). (3.16)

Notice that we also have, for every δ > 0,

Ia,b(δ, f) ≤ 1 +Na,b(f
′). (3.17)

Indeed, we may assume that Na,b(f
′) = p < ∞ and then we take a = a0 ≤ a1 < .... <

ap ≤ ap+1 = b to be the roots of f ′. Since f is monotonic on each (ai, ai+1) one has
Iai,ai+1(δ, f) ≤ 1 so (3.17) holds.

We will use this result for f(t) = Pn(t, Y ) so we have Nn(Y ) = N0,nπ(Pn(t, Y )). We
denote δn(Y ) = δ0,nπ(Pn(t, Y ))), we take θ = 3 and we write

1

n
E(Nn(Y )) =

1

n
E(Nn(Y )1{δn(Y )≤n−θ})−

1

n
E(I0,nπ(δ, Pn(·, Y ))1{δn(Y )≤n−θ})

+
1

n
E(I0,nπ(δ, Pn(·, Y )))

=:An(Y )−A′
n(Y ) +Bn(Y ).

A trigonometric polynomial of order n has at most 2n roots on (0, π). So the number of
roots of Pn(t, Y ) on (0, π) is upper bonded by 2n, so that consequently Nn(Y ) ≤ 2n. It
follows that An(Y ) ≤ 2P(δn(Y ) ≤ n−θ). Since P ′

n is also a trigonometric polynomial of
order n, by (3.17) we also have I0,nπ(δ, Pn(., Y )) ≤ 1+N0,nπ(P

′
n(t, Y )) ≤ 2n+1. It follows

that |A′
n(Y )| ≤ 3P(δn(Y ) ≤ n−θ).

We will use Theorem 3.2 and Theorem 2.3 for Sn(t, Y ) = (Pn(t, Y ), P ′
n(t, Y )), so we

have to check the hypotheses there. Notice that in this case we have ` = 1, d = 2 and

Cn,k(t) =

(
cos(ktn ) sin(ktn )

− k
n sin(ktn ) k

n cos(ktn )

)
.
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First, (3.8) trivially holds. Moreover, for every ξ ∈ R2 one has |Cn,k(t)ξ|2 = k2

n2 so that

1

n

n∑
k=1

|Cn,k(t)ξ|2 =
1

n

n∑
k=1

k2

n2
|ξ|2 ≥

∫ 1

0

x2dx× |ξ|2 =
1

3
|ξ|2 .

This means that (3.9) holds with λ∗ = 1
3 and we are able to use (3.11) in order to get

An(Y ) ≤ C/n and |A′
n(Y )| ≤ C/n. Moreover, by (3.16)

Bn(Y ) =
1

n
E
(∫ nπ

0

|P ′
n(t, Y )| 1{|Pn(t,Y )|≤δn}

dt

δn

)
with δn =

1

nθ
.

We now use the Theorem 2.3 applied to Ψδn(x1, x2) = |x2|Θ1,δn(x1) with Θ1,δn defined in
(3.13). Then

Bn(Y ) =
1

n
E
(∫ nπ

0

∂1Ψδn(Sn(t, Y ))dt
)

with δn =
1

nθ
.

We have ‖Ψδn‖1,∞ ≤ δ−1
n so, using (2.22) we get

∣∣E(∂1Ψδn(Sn(t, Y ))
)
− E

(
∂1Ψδn(Sn(t, G))

)∣∣ ≤ C
( 1√

n
+ n3e−cn

)
and this gives |Bn(Y )−Bn(G)| ≤ Cn−1/2. As above we have An(G) ≤ Cn−1 and
|A′

n(G)| ≤ Cn−1 so we finally obtain (3.15).

4 The case of smooth test functions

We first study a variant of our main Theorem 2.3, namely, we assume that q = 1

therein and we ask for a smooth function f . In this case, thanks to the regularity
assumption for f , we do not need any Doeblin’s condition. This will be used in a second
step, where we will be able to relax the smoothness assumption for f by means of a
regularization result from Malliavin calculus.

We come back to the notation introduced in Section 2. We just recall here the
corrector polynomial Φn,N defined in (2.21):

Φn,N (x) = 1 +

N∑
k=1

1

nk/2
HΓn,k

(x),

where HΓn,k
is the Hermite polynomial associated with the differential operator Γn,k

defined in (2.15).
The result we prove in this section is the following:

Theorem 4.1. Let N ∈ N be given. Suppose that the normalization property (2.2) and
the moment bounds (2.3) both hold (the latter being sufficient for p ≤ N + 3). Then for
every f ∈ C

2N(bN/2c+N+5)
p (Rd)

|E(f(Sn(Y ))− E(f(W )Φn,N (W ))|

≤ HNC
2N(N+2bN/2c)
2(N+3) (Y )(1 + C2l

N̂
(f)(Y ))2N+32(N+2)(l

N̂
(f)+1)LN̂ (f)× 1

n
N+1

2

(4.1)

in which N̂ = N(2bN/2c + N + 5), HN is a positive constant depending on N and W
denotes a standard normal random variable in Rd. As a consequence, taking f(x) = xβ

with |β| = k, one gets

|E(Sn(Y )β)−E(W βΦN (W ))| ≤ HNC
2N(N+2bN/2c)
2(N+3) (Y )(1+C2k(Y ))2N+32(N+2)(k+1)× 1

n
N+1

2

.

(4.2)
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In order to give the proof of Theorem 4.1, we introduce a decomposition allowing us
to work with suitable semigroups. But first, in order to simplify the forthcoming notation,
we set

Zn,k =
1√
n
Cn,kYk and Gn,k =

1√
n
Cn,kGk,

so that

Sn(Y ) =

n∑
k=1

Zn,k =: Sn(Z) and Sn(G) =

n∑
k=1

Gn,k =: Sn(G). (4.3)

Notice that the covariance matrices of Zn,k and Gn,k are both given by

Cov(Zn,k) = Cov(Gn,k) = σn,k =
1

n
σn,k,

so the normalization condition (2.2) reads

n∑
k=1

σn,k = Idd.

Sketch of the proof. The proof of the above theorem is rather long and technical,
so, in order to orient the reader, we give first a sketch of it. The strategy is based on
the classical Lindeberg method but it turns out that it is convenient to do it in terms of
semigroups (the so called Trotter’s method). We define the Markov semigroup

PZ,n
k,p f(x) = E

(
f
(
x+

p−1∑
i=k

Zn,i

))
(4.4)

with the convention PZ,n
k,k f = f. Then Lindberg’s decomposition gives

PZ,n
k,n+1 − PG,n

k,n+1 =

n∑
r=k

PZ,n
r+1,n+1(P

Z,n
r,r+1 − PG,n

r,r+1)P
G,n
k,r . (4.5)

We use now Taylor expansion of order three. The terms of order one and two cancel
(because the moments of order one and two of Yr and Gr coincide) and we obtain

δn,rf(x) := (PZ,n
r,r+1 − PG,n

r,r+1)f(x) = E(f(x+ Zn,r))− E(f(x+Gn,r)) (4.6)

=
1

6

∑
|α|=3

∫ 1

0

E(∂αf(λZn,k + (1− λ)Gn,k)(Z
α
n,k −Gα

n,k))dλ (4.7)

so one obtains ‖δn,rf(x)‖∞ ≤ C ‖f‖3,∞
1

n3/2 .We insert this in (4.5) and we obtain PZ,n
k,n+1−

PG,n
k,n+1 ∼ n× 1

n3/2 = 1
n1/2 . This is the proof of the classical CLT. Now, if we want to obtain

Edgeworth development of order N , we have to go further. First we iterate (4.5) and we
obtain

PZ,n
k,n+1f = PG,n

k,n+1f +

N∑
l=1

n∑
1<r1<...<rl<n

Tr1,...,rlf +RN
n f

with

Tr1,...,rlf = PG,n
rl+1,n+1

l−1∏
ı̂=1

(
δn,riP

G,n
ri−1,ri

)
f and

RN
n f =

n∑
1<r1<...<rN+1<n

PZ,n
rN+1+1,n+1

N∏
ı̂=1

(
δn,riP

G,n
ri−1,rif

)
.

Since each of δn,rf is of order n−3/2 it follows that RN
n f is of order nN+1 × n−

3
2 (N+1) =

n−(N+1)/2.
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We look now to Tr1,...,rlf. We expect this term to be of order n−
3
2 l, and indeed, it

is. But we notice that δn,ri contains information on the whole law of Y, and not only
on its moments (see (4.6)). So, if we want to obtain the real coefficient of order n−l/2

in the Edgeworth development, we have to replace δn,r by some δ̂n,r which depends
on the moments only - and this is done by using Taylor expansion as in (4.6). But, as
we want to obtain a final error of order n−(N+1)/2, the development of order three is
no more sufficient and we need now a development of order N + 2. This will involve
differential operators of order less or equal to N + 2 with coefficients computed by
using the difference of moments given in (2.12). Here is that the Hermite polynomials
come on, due to the following integration by parts formula: if G is a standard normal
random variable then E(∂αf(G)) = E(f(G)Hα(G)) where ∂α is the differential operator
associated to the multi-index α and Hα is the Hermite polynomial corresponding to α.
Collecting the terms of order n−l/2 from all the T ′

r1,...,rl
’s we get the corrector of order

l in the Edgeworth expansion. These are the main ideas of the proof. However, the
precise description of the coefficients of the Edgeworth expansion, turns out to be a very
technical matter. We do all this through the following lemmas in this section.

We go no on and give the complete proofs. Let N ∈ {0, 1, . . .}. For Dn,r given in (2.12),
we define

T 0
n,N,rf(x) =

N+2∑
l=1

1

nl/2 l!
D(l)

n,rf(x). (4.8)

Since D(l)
n,r ≡ 0 for l = 0, 1, 2, the above sum actually begins with l = 3 and of course this

is the basic fact. Then, with the convention
∑2

l=3 = 0, we have

T 0
n,N,rf(x) =

N+2∑
l=3

1

nl/2 l!
D(l)

n,rf(x).

We also define

T 1,Z
n,N,rf(x) =

1

(N + 2)!

∑
|α|=N+3

∫ 1

0

(1− λ)N+2E(∂αf(x+ λZn,r)Z
α
n,r)dλ and

T 1
n,N,rf(x) = T 1,Z

n,N,rf(x)− T 1,G
n,N,rf(x).

(4.9)

For a matrix σ ∈ Mat(d× d) we recall the Laplace operator Lσ associated to σ (see
(2.11)) and we define

h0N,σf(x) = f(x) +

bN/2c∑
l=1

(−1)l

nl 2ll!
Ll
σf(x), (4.10)

h1N,σf(x) =
(−1)bN/2c+1

nbN/2c+1 2bN/2c+1bN/2c!

∫ 1

0

sbN/2cE(LbN/2c+1
σ f(x+ σ1/2

√
sW ))ds. (4.11)

In (4.11), W stands for a standard Gaussian random variable. Then we define

U0
n,N,rf(x) = E(h

0
N,σn,r

f(x+Gn,r)) and U1
n,N,rf(x) = h1N,σn,r

f(x). (4.12)

We now put our problem in a semigroup framework. For a sequence Xk, k ≥ 1, of
independent r.v.’s, for 1 ≤ k ≤ p we define

PX
k,kf(x) = f and for p > k ≥ 1 then PX

k,pf(x) = E
(
f
(
x+

∑p−1
i=k Xi

))
. (4.13)

By using independence, we have the semigroup and the commutative property:

PX
k,p = PX

r,pP
X
k,r = PX

k,rP
X
r,p k ≤ r ≤ p. (4.14)
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We use PX
k,p with Xk = Zn,k and Xk = Gn,k, that we call PZ,n

k,p and PG,n
k,p because each

local random variables depend on n.
Moreover, for m = 1, . . . , N we denote

Q
(m)
n,N,r1,...,rm

=
∑

∑m
i=1 qi +

∑m
i=1 q′i > 0

qi, q
′
i ∈ {0, 1}

m∏
i=1

U
q′i
n,N,ri

m∏
j=1

T
qj
n,N,rj

and

R
(m)
n,N,k =

∑
k≤r1<···<rm≤n

PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
k,r1

Q
(m)
n,N,r1,...,rm

.

(4.15)
Notice that in the first sum above the conditions qi, q′i ∈ {0, 1} and q1 + · · · + qm + q′1 +

· · ·+ q′m > 0 say that at least one of qi, q′i, i = 1, ...,m is equal to one. We notice that the
operators T 1

n,N,ri
and U1

n,N,σri
represent “remainders” and they are supposed to give

small quantities of order n−
1
2 (N+1). So the fact that at least one qi or q′i is non null means

that the product (
∏m

i=1 U
q′i
n,N,ri

)(
∏m

i=1 T
qi
n,N,ri

) has at least one term which is a remainder

(so is small), and consequently R(m)
n,N,k is a remainder also.

Finally we define

Q
(N+1)
n,N,r1,...,rN+1

=

N+1∏
i=1

(T 0
N,ri + T 1

N,ri) and

R
(N+1)
n,N,k =

∑
k≤r1<···<rN+1≤n

PZ,n
rN+1+1,nP

G,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
k,r1

Q
(N+1)
n,N,r1,...,rN+1

(4.16)
As a preliminary result for Theorem 4.1, we study the following “backward Taylor

formula”:

Lemma 4.2. Let Nk, k ∈ N, denote independent centered Gaussian random variables
in Rd with covariance matrix σk, k ∈ N, and set Sp =

∑p
k=1 Nk. For σ ∈ Mat(d× d), we

define

H0
N,σφ(x) = φ(x) +

N∑
l=1

(−1)l

2ll!
Ll
σφ(x),

H1
N,σφ(x) =

(−1)N+1

2N+1N !

∫ 1

0

sNE(LN+1
σ φ(x+ σ1/2Ws))ds,

where W is a d−dimensional Brownian motion independent of Sp. Then for every φ ∈
C2N+2(Rd) one has

E(φ(Sp)) = E(H
0
N,σp+1

φ(Sp+1)) + E(H
1
N,σp+1

φ(Sp)) (4.17)

Proof. We use the following property: for every N ∈ N, N ≥ 0, and g ∈ C2N+2
b (Rd) one

has

g(0) = E(σ1/2W1)) +

N∑
l=1

(−1)l

2`l!
E(Ll

σg(σ
1/2W1)) +

(−1)N+1

2N+1N !

∫ 1

0

sNE(LN+1
σ g(σ1/2Ws))ds,

(4.18)
in which W denotes a standard Brownian motion in Rd and Lσ is given in (2.11). The
decomposition (4.18) is proved in [8] (see Appendix C therein) in the case σ = Id and
(4.18) represents a straightforward generalization to any covariance matrix σ.

We notice that Np+1 has the same law as σ1/2
p+1W1. We denote ψω(x) = φ(Sp(ω) + x).

Then, using the independence property and (4.18) we obtain
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E(ψω(0)) = E(ψω(σ
1/2
p+1W1)) +

N∑
l=1

(−1)l

2ll!
E(Ll

σp+1
ψω(σ

1/2
p+1W1))

+
(−1)N+1

2N+1N !

∫ 1

0

sNE(LN+1
σp+1

ψω(σ
1/2
p+1Ws)))ds.

Since E(Ll
σp+1

ψω(σ
1/2
p+1W1)) = E(L

l
σp+1

φ(Sp+1)) and E(LN
σp+1

ψω(σ
1/2
p+1W1))=E(L

N+1
σp+1

φ(Sp+

σ
1/2
p+1Ws)) the above formula is exactly (4.17).

We are now able to give our first result:

Proposition 4.3. Let N ≥ 1 and let T 0
n,N,r, h

0
n,N,σr

and R
(m)
n,N,k, m = 1, . . . , N + 1, be

given through (4.8), (4.10) and (4.15)–(4.16). Then for every 1 ≤ k ≤ n + 1 and
f ∈ C

N(2bN/2c+N+5)
p (Rd) one has

PZ,n
k,n+1f = PG,n

k,n+1f +

n∑
m=1

∑
k≤r1<···<rm≤n

PG,n
k,n+1

( m∏
i=1

T 0
n,N,ri

)( m∏
j=1

h0N,σn,rj

)
f +

N+1∑
m=1

R
(m)
n,N,kf.

(4.19)

Proof. Step 1 (Lindeberg method). We use the Lindeberg method in terms of semi-
groups: for 1 ≤ k ≤ n+ 1

PZ,n
k,n+1 − PG,n

k,n+1 =

n∑
r=k

PZ,n
r+1,n+1(P

Z,n
r,r+1 − PG,n

r,r+1)P
G,n
k,r .

Then we define
Ak,p = 11≤k≤p−1≤n (P

Z,n
p−1,p − PG,n

p−1,p)P
G,n
k,p−1 (4.20)

(here n is fixed so we do not stress the dependence of Ak,p on n) and the above relation
reads

PZ,n
k,n+1 = PG,n

k,n+1 +
n∑

r=k

PZ,n
r+1,n+1Ak,r+1. (4.21)

We will write (4.21) as a discrete time Volterra type equation (this is inspired from the
approach to the parametrix method given in [13]: see equation (3.1) there). For a family
of operators Fk,p, k ≤ p we define AF by

(AF )k,p =

p−1∑
r=k

Fr+1,pAk,r+1

and we write (4.21) in functional form:

PZ,n = PG,n +APZ,n. (4.22)

By iteration,
PZ,n = PG,n +APG,n + · · ·+ANPG,n +AN+1PZ,n. (4.23)

By the commutative property in (4.14), straightforward computations give

(AmPG,n)k,p = 1k≤p−m

∑
k≤r1<···<rm≤p−2

PG,n
rm+1,p−1P

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
k,r1

(PZ,n
p−1,p − PG,n

p−1,p)×

×(PZ,n
rm,rm+1 − PG,n

rm,rm+1)(P
Z,n
rm−1,rm−1+1 − PG,n

rm−1,rm−1+1) · · · (P
Z,n
r1,r1+1 − PG,n

r1,r1+1).
(4.24)

Step 2 (Taylor formula). The drawback of (4.23) is that A depends on PZ,n also,
see (4.20), so we use the Taylor’s formula in order to eliminate this dependence We take
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into account (2.3) and we consider a Taylor approximation at the level of an error of
order n−

N+2
2 . We use the following expression for the Taylor’s formula: for f ∈ C∞

p (Rd),

f(x+ y) = f(x)+

N+2∑
p=1

1

p!

∑
|α|=p

∂αf(x)y
α+

1

(N + 2)!

∑
|α|=N+3

yα
∫ 1

0

(1−λ)N+2∂αf(x+λy)dλ

Then we have, with D(l)
n,r defined in (2.12),

(PZ,n
r,r+1 − PG,n

r,r+1)f(x) = E(f(x+ Zn,r))− E(f(x+Gn,r)) =

N+2∑
l=1

1

l!
D(l)

r f(x)+

+
1

(N + 2)!

∑
|α|=N+3

∫ 1

0

(1− λ)N+2
[
E(∂αf(x+ λZn,r)Z

α
n,r)

− E(∂αf(x+ λGn,r)G
α
n,r)

]
dλ

= T 0
n,N,rf(x) + T 1

n,N,rf(x).

By using the independence property, one can apply commutativity and by using (4.24)
we have

(AmF )k,r+1

= 1k≤r+1−m

∑
k≤r1<···<rm≤r

Frm+1,r+1P
G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
k,r1

m∏
j=1

(T 0
n,N,rj + T 1

n,N,rj ).

(4.25)

Notice that the operator in (4.25) acts on f ∈ Cm(N+3).

Step 3 (Backward Taylor formula). Since

PG,n
rm+1,n+1P

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
k,r1

f(x) = E
(
f
(
x+

n∑
i=k

Gn,k −
m∑
j=1

Gn,rj

))
,

the chain PG,n
rm+1,n · · ·P

G,n
r1+1,r2

PG,n
k,r1

contains all the steps, except for the steps correspond-

ing to ri, i = 1, ...,m (remark that for each i, PG,n
ri,ri+1 is replaced with T 0

n,N,ri
+ T 1

n,N,ri
).

In order to “insert” such steps we use the backward Taylor formula (4.17) up to or-
der N = bN/2c. With σn,k = 1

nσn,r = Cov(Gn,r), one has H0
N,σn,r

= h0N,σn,r
and

H1
N,σn,r

= h1N,σn,r
, h0N,σn,r

and h1N,σn,r
being given in (4.10) and (4.11) respectively.

So, we have

PG,n
r1+1,r2

PG,n
k,r1

f(x) = E
(
f
(
x+

r2−1∑
i=k

Gn,i −Gn,r1

))
= E

(
h0N,σn,r1

f
(
x+

r2−1∑
i=k

Gn,i

))
+ E

(
h1N,σn,r1

f
(
x+

r2−1∑
i=k

Gn,i −Gn,r1

))
= PG,n

r1+1,r2
PG,n
k,r1

(PG,n
r1,r1+1h

0
N,σn,r1

+ h1N,σn,r1
)f(x)

= PG,n
r1+1,r2

PG,n
k,r1

(U0
n,N,r1 + U1

n,N,r1)f(x),

U0
n,N,r1

and U1
n,N,r1

being given in (4.12). For every i = 1, 2, ...,m, we use this formula in
(4.25) evaluated in r = n and we get

(AmPG,n)k,n+1 =
∑

k≤r1<···<rm≤n

PG,n
rm+1,n+1 · · ·P

G,n
r1+1,r2

PG,n
k,r1

×
( m∏

i=1

(U0
n,N,ri + U1

n,N,ri)
)( m∏

j=1

(T 0
n,N,rj + T 1

n,N,rj )
)
. (4.26)
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Notice that the above operator acts on Cm(2bN/2c+N+5)
p (Rd). Our aim now is to isolate

the principal term, that is the sum of the terms where only U0
n,N,ri

and T 0
n,N,ri

appear.

So, we use Q(m)
n,N,r1,...,rm

defined in (4.15) and we write

(AmPG,n)k,n+1 =
∑

k≤r1<···<rm≤n

PG,n
rm+1,n+1 · · ·P

G,n
r1+1,r2

PG,n
k,r1

( m∏
i=1

U0
n,N,ri

)( m∏
j=1

T 0
n,N,rj

)
+

∑
k≤r1<···<rm≤n

PG,n
rm+1,n+1 · · ·P

G,n
r1+1,r2

PG,n
k,r1

Q
(m)
n,N,r1,...,rm

.

The second term is just R(m)
n,N,k in (4.15). In order to compute the first one we notice that

for every r′ < r < r′′ we have

PG,n
r+1,r′′P

G,n
r′,r P

G,n
r,r+1 = PG,n

r′,r′′

so that

PG,n
rm+1,n+1 · · ·P

G,n
r1+1,r2

PG,n
k,r1

(
m∏
i=1

U0
n,N,ri) = PG,n

k,n+1(
m∏
i=1

h0N,σn,ri
).

Then, for m = 1, ..., N

(AmPG,n)k,n+1 =
∑

k≤r1<···<rm≤n

PG,n
k,n+1

( m∏
i=1

h0N,σn,ri

)( m∏
i=1

T 0
n,N,ri

)
+R

(m)
n,N,k.

We treat now AN+1PZ,n. Using (4.25) we get

(AN+1PZ,n)k,n+1

=
∑

k≤r1<...<rN+1≤n

PZ,n
rN+1+1,n+1P

G,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
k,r1

N∏
i=1

(T 0
n,N,ri + T 1

n,N,ri) = R
(N+1)
n,N,k ,

which acts on CN(N+3)
p .

We give now some useful representations of the remainders.

Lemma 4.4. Let m ∈ {1, ..., N + 1} and r1 < · · · < rm ≤ n be fixed. Set Nm :=

m(2bN/2c+N + 5) for m ≤ N and Nm = (N + 1)(N + 3) otherwise. Then, the operators

Q
(m)
n,N,r1,...,rm

defined in (4.15) for m = 1, . . . , N and in (4.16) for m = N + 1, can be
written as

Q
(m)
n,N,r1,...,rm

f(x) =
1

n
N+3m

2

∑
3≤|α|≤Nm

an,r1,...,rm(α)θαn,r1,...,rm∂αf(x), f ∈ CNm
p (Rd),

(4.27)
where an,r1,...,rm(α) ∈ R are suitable coefficients with the property

|an,r1,...,rm(α)| ≤ (CC
bN/2c+1
2 (Y ))m, (4.28)

and θαn,r1,...,rm : C∞
p (Rd) → C∞

p (Rd) is an operator which verifies

|θαn,n,r1,...,rm∂αf(x)| ≤
(
2lNm (f)+1C

1/2
2(N+3)(Z)(1 + C2lNm (f)(Z))

2
)m
LNm(f)(1 + |x|)lNm (f)

(4.29)
C > 0 being a suitable constant. Moreover, θαr1,...,rm can be represented as

θαn,r1,...,rmf(x) =

∫
(Rd)2m

f(x+ y1 + · · ·+ y2m)µα
n,r1,...,rm(dy1, . . . , dy2m) (4.30)

where µα
n,r1,...,rm is a finite signed measure such that |µα

n,r1,...,rm |(R2md) ≤ Cm
∗ , for a

suitable constant C∗ independent of n and depending just on N and on the moment
bounds Cp(Y ) for p large enough.
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Proof. In a first step we construct the measures µα
n,r1,...,rm and the operators θαn,r1,...,rm

and in a second step we prove that the coefficients an,r1,...,rm(α) verify (4.28). We start
by representing T 0

n,N,r defined in (4.8). Set

ν0,αn,r (dy) = ∆n,r(α)δ0(dy), |α| = l ≥ 3.

Notice that if |α| = l ≥ 3 then |∆n,r(α)| ≤ 2Cl(Y ). So, we have

T 0
n,N,rf(x) =

N+2∑
l=3

1

n
l
2

∑
|α|=l

1

l!

∫
Rd

∂αf(x+ y)ν0,αn,r (dy) with∫
Rd

(1 + |y|)γ |ν0,αn,r |(dy) ≤ 2Cl(Y ), |α| = l ≤ N + 2, γ ≥ 0.

(4.31)

Concerning T 1
n,N,r in (4.9), for |α| = N + 3 set ν1,αn,N,r(dy) = n

N+3
2

∫ 1

0
(1 − λ)N+2( yλ )

α ×[
µλZn,r

(dy)− µλGn,r
(dy)

]
dλ, µλZn,r

, resp. µλGn,r
, denoting the law of λZn,r, resp. λGn,r.

In other words,

ν1,αn,N,r(A) = n
N+3

2

∫ 1

0

(1− λ)N+2
[
E(Zα

n,r1λZn,r∈A)− E(Gα
n,r1λGn,r∈A)

]
dλ, |α| = N + 3,

for every Borel set A ⊂ Rd. Then we have

T 1
n,N,rf(x) =

1

n
1
2 (N+3)

∑
|α|=N+3

1

(N + 2)!

∫
Rd

∂αf(x+ y)ν1,αn,N,r(dy) with

∫
Rd

(1 + |y|)γ |ν1,αn,N,r|(dy) ≤
2γ+1

N + 3
C

1/2
2(N+3)(Y )(1 + C2γ(Y ))1/2, |α| = N + 3, γ ≥ 0.

(4.32)
We represent now the operator U0

n,N,rf(x) = E(h
0
N,σn,r

f(x+Gn,r)) with h0N,σn,r
f defined

in (4.10). Notice that

h0N,σn,r
= Id+

bN/2c∑
l=1

1

nl

∑
|α|=2l

cσn,r
(α)∂α with cσ(α) =

(−1)l

2ll!

l∏
k=1

σα2k−1,α2k , |α| = 2l > 0.

So, by denoting ρ0σn,r
the law of Gn,r, we have

U0
n,N,rf(x) = E(h

0
N,σn,r

f(x+Gn,r))

=

bN/2c∑
l=0

1

nl

∑
|α|=2l

cσn,r
(α)

∫
Rd

∂αf(x+ y)ρ0σn,r
(dy) with

|cσn,r
(α)| ≤ C2(Y )l

2ll!
and

∫
Rd

(1 + |y|)γ |ρ0σn,r
|(dy) ≤ 2γ(1 + Cγ(Y )), γ ≥ 0. (4.33)

We now obtain a similar representation for h1N,σf(x) defined in (4.11). Set

ρ1σ(dy) =
(∫ 1

0

sbN/2cφσ1/2
√
sW (y)ds

)
dy,

in which φσ1/2
√
sW denotes the density of a centered Gaussian r.v. with covariance matrix

sσ. Then we write

h1N,σf(x) =
1

nbN/2c+1

∑
|α|=2(bN/2c+1)

bN,σ(α)

∫
Rd

∂αf(x+ y)ρ1σ(dy) with

bN,σ(α) =
(−1)bN/2c+1

2bN/2c+1bN/2c!

bN/2c+1∏
k=1

σα2k−1,α2k .
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So, we have

U1
n,N,rf(x) = h1N,σn,r

f(x)

=
1

nbN/2c+1

∑
|α|=2(bN/2c+1)

bN,σn,r (α)

∫
∂αf(x+ y)ρ1σn,r

(dy) with

|bN,σn,r
(α)| ≤ 1

2bN/2c+1bN/2c!
C2(Y )bN/2c+1

and

∫
Rd

(1 + |y|)γ |ρ1σn,r
|(dy) ≤ 2γ

bN/2c+ 1
(1 + Cγ(Y )), γ ≥ 0. (4.34)

Using (4.31), (4.32), (4.33) and (4.34) we obtain (4.27) with the measure µα
n,r1,...,rm from

(4.30) constructed in the following way:∫
Rd×2m

f(y1, . . . , ym, ȳ1, . . . , ȳm)µα
n,r1,...,rm(dy1, . . . , dym, dȳ1, . . . , dȳm)

=

∫
Rd×2m

f(y1, . . . , ym, ȳ1, . . . , ȳm)η1(dy1) · · · ηm(dym)η̄1(dȳ1) · · · η̄m(dȳm)

where ηi is one of the measures νq,βn,ri , q = 0, 1, and η̄i is one of the measures ρqσn,ri
,

q = 0, 1.

Let us check that the coefficients an,r1,...,rm(α) which will appear in (4.27) ver-

ify the bounds in (4.28). Take first m ∈ {1, ..., N}. Then Q
(m)
n,r1,...,rm is the sum of

(
∏m

i=1 U
q′i
n,N,ri

)(
∏m

j=1 T
qj
n,N,rj

) where qi, q′i ∈ {0, 1} and at least one of them is equal to
one. And ar1,...,rmn (α) is the product of coefficients which appear in the representation

of U
q′i
n,N,ri

and T
qj
n,N,rj

. Recall that the coefficients of T 0
n,N,rj

are all bounded by Cn−3/2

and the coefficients of T 1
n,N,rj

are bounded by Cn− 1
2 (N+3). Moreover the coefficients

of U0
n,N,ri

are bounded by CCbN/2c
2 (Y ) and the coefficients of U1

n,N,ri
are bounded by

CC
bN/2c+1
2 (Y )n−(bN/2c+1). Therefore, (

∏m
i=1 U

q′i
n,N,ri

)(
∏m

j=1 T
qj
n,N,rj

) is upper bounded by

( C

n
1
2 (N+3)

)∑m
i=1 qi

×
( C

n3/2

)∑m
i=1(1−qi)

×
(CCbN/2c+1

2 (Y )

nbN/2c+1

)∑m
i=1 q′i

×
(
CC

bN/2c
2 (Y )

)∑m
i=1(1−q′i)

≤
( 1

n
1
2N

)∑m
i=1 qi

× Cm

n
3m
2

×
( 1

nbN/2c+1

)∑m
i=1 q′i

× (CC
bN/2c+1
2 (Y ))m

≤ (CC
bN/2c+1
2 (Y ))m

n
N
2

∑m
i=1 qi+(bN/2c+1)

∑m
i=1 q′i+

3m
2

≤ (CC
bN/2c+1
2 (Y ))m

n
N
2 (

∑m
i=1 qi+

∑m
i=1 q′i)+

3m
2

≤ (CC
bN/2c+1
2 (Y ))m

n
N+3m

2

.

We finally prove (4.29). We have

|θαn,r1,...,rm∂αf(x)|

≤
∫
Rd×2m

|∂αf |
(
x+

m∑
i=1

yi +

m∑
j=1

ȳj

)
|η|1(dy1) · · · |ηm|(dym)|η̄|1(dȳ1) · · · |η̄m|(dȳm)

≤ LNm(f)(1 + |x|)lNm (f)
( m∏

i=1

∫
Rd

(1 + |y|)lNm (f)|ηi|(dy)
)( m∏

i=1

∫
Rd

(1 + |y|)lNm (f)|η̄i|(dy)
)

≤ LNm
(f)(1 + |x|)lNm (f)

(
(2CN+2(Y )) ∨ (2lNm (f)+1C

1/2
2(N+3)(Y )(1 + C2lNm (f)(Y )

)m

×
(
2lNm (f)(1 + ClNm (f)(Y ))

)m

≤
(
2lNm (f)+1C

1/2
2(N+3)(Y )(1 + C2lNm (f)(Y ))2

)m
LNm

(f)(1 + |x|)lNm (f)
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because CN+2(Y ) ≤ C2(N+3)(Y )
N+2

2(N+3) ≤ C2(N+3)(Y )
1
2 . So the proof concerning

Q
(m)
n,N,r1,...,rm

, m = 1, ..., N , is completed. The proof for Q(N+1)
n,N,r1,...,rN+1

is clearly the
same.

We give now the representation of the “principal term”:

Lemma 4.5. Let the set-up of Proposition 4.3 hold. Then,

N∑
m=1

∑
1≤r1<...<rm≤n

( m∏
i=1

T 0
n,N,ri

)( m∏
j=1

h0N,σn,rj

)
=

N∑
k=1

1

nk/2
Γn,k +Q0

n,N (4.35)

with Γn,k defined in (2.15) and

Q0
n,N =

1

n(N+1)/2

∑
N+1≤|α|≤N(N+2bN/2c)

cn,N (α)∂α

with |cn,N (α)| ≤ (CCN+1(Y )C2(Y ))N(N+2bN/2c)
(4.36)

Proof. Let Λm and Λm,k be the sets in (2.14). Notice that, for fixed m, the Λm,k’s are
disjoint as k varies. Suppose that m ∈ {1, ..., N}. Then Λm,k = ∅ if k /∈ {m, . . . , N(N +

2bN/2c)} so that Λm = ∪2N(N+2)
k=m Λm,k and consequently

∪N
m=1Λm = ∪N

m=1 ∪
N(N+2bN/2c)
k=m Λm,k = ∪N(N+2bN/2c)

k=1 ∪k
m=1 Λm,k.

It follows that
N∑

m=1

∑
1≤r1<...<rm≤n

( m∏
i=1

T 0
n,N,ri

)( m∏
j=1

h0N,σn,rj

)

=

N∑
m=1

N+2∑
l1,..,lm=3

bN/2c∑
l′1,..,l

′
m=0

∑
1≤r1<...<rm≤n

( m∏
i=1

1

nli/2 li!
D(li)

n,ri

)( m∏
j=1

(−1)l
′
j

nl
′
j 2l

′
j l′j !

L
l′j
σn,rj

)

=

N(N+2bN/2c)∑
k=1

k∑
m=1

∑
(l1,l′1),...,(lm,l′m))∈Λm,k

∑
1≤r1<...<rm≤n

1

n(k+2m)/2

( m∏
i=1

1

li!
D(li)

n,ri

)

×
( m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σn,rj

)

=

N∑
k=1

1

nk/2
Γn,k +Q0

n,N

with

Q0
n,N =

1

nN+1/2

×
N(N+2bN/2c)∑

k=N+1

k∑
m=1

∑
(l1,l′1),...,(lm,l′m))∈Λm,k

∑
1≤r1<...<rm≤n

n(N+1)/2

n(k+2m)/2

( m∏
i=1

1

li!
Dli

n,ri

)

×
( m∏

j=1

(−1)l
′
j

2l
′
j l′j !

L
l′j
σn,rj

)
,

which is a differential operator of the form (4.36). Moreover,

|cn,N (α)| ≤ nm × 1

nm
×

m∏
i=1

(2CN+1(Y )

li!

)
×

m∏
i=1

(Cl′i
2 (Y )

2l
′
i l′i!

)
≤ (CCN+1(Y )C2(Y ))m

≤ (CCN+1(Y )C2(Y ))m

and the estimate in (4.36) follows.
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We are now ready for the

Proof of Theorem 4.1. We denote PZ,n
n = PZ,n

1,n+1 and PG,n
n = PG,n

1,n+1, so that, since

Sn(Y ) = Sn(Z),

E(f(Sn(Y ))− E(f(W )ΦN (W )) = PZ,n
n f(0)− PG,n

n

(
Id +

N∑
k=1

1

nk/2
Γn,k

)
f(0).

Putting together (4.19) and (4.35), we can write

PZ,n
n f(x) = PG,n

n

(
Id +

N∑
k=1

1

nk/2
Γk

)
f(x) + I1f(x) + I2f(x) + I3f(x) (4.37)

with

I1f(x) =
1

n(N+1)/2
PG,n
n Q0

n,Nf(x),

I2f(x) =
∑

1≤r1<...<rN+1≤n

PZ,n
rN+1+1,nP

G,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
k,r1

Q
(N+1)
n,N,r1,...,rN+1

f(x)

I3f(x) =
N∑

m=1

∑
1≤r1<...<rm≤n

PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
k,r1

Q
(m)
n,N,r1,...,rm

f(x),

(4.38)
so it is sufficient to study the remaining terms I1, I2 and I3 above. In such study, we will
use the following easy consequence of Burkholder’s inequality for discrete martingales:
ifMn =

∑n
k=1 ∆k with ∆k, k = 1, ..., n independent centered random variables, then

‖Mn‖p ≤ CE
(( n∑

k=1

|∆k|2
)p/2)1/p

= C
∥∥∥ n∑

k=1

|∆k|2
∥∥∥1/2
p/2

≤ C
( n∑

k=1

‖∆k‖2p
)1/2

. (4.39)

We first estimate I1f . Let us set N∗ = N(N + 2bN/2c). So, (4.36) gives

|I1f(x)| ≤
1

n(N+1)/2

∑
N+1≤|α|≤N∗

|cn(α)| |PG,n
n ∂αf(x)|

≤ 1

n(N+1)/2

∑
N+1≤|α|≤N∗

|cn(α)|LN∗(f)(1 + |x|)lNN∗ (f)E
((

1 +
∣∣∣ n∑
k=1

Gn,k

∣∣∣)lNN∗ (f)
)

≤ 1

n
N+1

2

(CCN+1(Y )C2(Y ))NN∗LNN∗(f)(1 + |x|)lNN∗ (f) × 2lNN∗ (f)(1 + C2lNN∗ (f)
(Y )),

in which we have used the Burkholder inequality (4.39).
The study of I2 and I3 is similar, so we consider I3. Take m ∈ {1, ..., N}. We use

Lemma 4.4 (recall Nm given therein) and in particular (4.27):

PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

Q
(m)
n,N,r1,...,rm

f

=
1

n
N+3m

2

∑
3≤|α|≤Nm

an,r1,...,rm(α)PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

θαn,r1,...,rm∂αf.

Notice that if |g(x)| ≤ L(1 + |x|)l then

|PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

g(x)| ≤ E
(
L
(
1 +

∣∣∣x+

n∑
k=1

Gn,k1k/∈{r1,...,rm}

∣∣∣)l)
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≤ L(1 + |x|)lE
((

1 +
∣∣∣ n∑
k=1

Gn,k1k/∈{r1,...,rm}

∣∣∣)l)
≤ L(1 + |x|)l

(
1 +

∥∥∥ n∑
k=1

Gn,k1k/∈{r1,...,rm}

∥∥∥
l

)l

.

Since the Gn,k1k/∈{r1,...,rm}’s are centered and independent, with ‖Gn,k1k/∈{r1,...,rm}‖l ≤
Cl(Y )/nl/2, we can use the Burkholder inequality (4.39), we get

|PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

g(x)| ≤ L(1 + |x|)l(1 + C
1/l
l (Y ))l

≤ 2l(1 + Cl(Y ))L(1 + |x|)l. (4.40)

We use now this inequality with g = θαn,r1,...,rm∂αf : by applying (4.29) we get

|PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

Q
(m)
N,r1,...,rm

f(x)| ≤ KN,m(f)(1 + |x|)lNm (f)

with

KN,m(f) = 2lNm (f)(1 + ClNm (f)(Y ))
(
2lNm (f)+1C

1/2
2(N+3)(Y )(1 + C2lNm (f)(Y ))2

)m
LNm(f).

Moreover, using (4.28)

|PG,n
rm+1,nP

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

Q
(m)
n,N,r1,...,rm

f(x)|

≤ KN,m(f)(1 + |x|)lNm (f) 1

n
1
2 (N+3m)

∑
0≤|α|≤N+1

|an,r1,...,rm(α)|

≤ HNKN,m(f)(1 + |x|)lNm (f) 1

n
1
2 (N+3m)

(CC
bN/2c+1
2 (Y ))m,

HN denoting a constant depending on N only. Since the set {1 ≤ r1 < ... < rm ≤ n} has
less than nm elements, we get

|I3f(x)| ≤ N × nm × 1

n
1
2 (N+3m)

×HNKN,m(f)(1 + |x|)lNm (f)(CC
bN/2c+1
2 (Y ))m

≤ NHNKN,m(f)(1 + |x|)lNm (f)(CC
bN/2c+1
2 (Y ))m × 1

n
1
2 (N+1)

The estimate for I2(f) is analogous. So, we get

3∑
i=1

|Iif(x)|

≤ HNC
2N(N+2bN/2c)
2(N+3) (Y )(1+C2l

N̂
(f)(Y ))2N+32(N+2)(l

N̂
(f)+1)LN̂ (f)(1 + |x|)lN̂ (f) × 1

n
N+1

2

with N̂ = N(2bN/2c+N + 5), and statement (4.1) follows. Concerning (4.2), it suffices
to notice that for f(x) = xβ with |β| = k then LN̂ (f) = 1 and lN̂ (f) = k.

5 The case of general test functions

5.1 Differential calculus based on the Nummelin’s splitting

In this section we use the variational calculus settled in [6, 5, 11, 12] in order to treat
general test functions. Let us give the definitions and the notation.

We fix r, ε > 0 and we consider a sequence of independent random variables Yk ∈
D(r, ε), k ∈ N. Then, using the Nummelin’s splitting (2.7) we write

Yk = χkVk + (1− χk)Uk, (5.1)

EJP 23 (2018), paper 45.
Page 33/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/


CLT in distribution norms

the law of χk, Vk and Uk being given in (2.8). We assume that χk, Vk, Uk, k ∈ N, are
independent. We define G = σ(χk, Uk, k ∈ N). A random variable F = f(ω, V1, ..., Vn)

is called a simple functional if f is G × B(Rd×n) measurable and for each ω, f(ω, ·) ∈
C∞

b (Rd×n). We denote S the space of the simple functionals. Moreover we define the
differential operator D : S → l2 := l2(R

d) by D(k,i)F = χk∂vi
k
f(ω, V1, ..., Vn). Then the

Malliavin covariance matrix of F ∈ (F 1, ..., Fm) ∈ Sm is defined as

σi,j
F =

〈
DF i, DF j

〉
l2
=

∞∑
k=1

d∑
p=1

D(k,p)F
i ×D(k,p)F

j , i, j = 1, ...,m. (5.2)

If σF is invertible we denote γF = σ−1
F .

Moreover, we define the iterated derivatives Dm : S → l⊗m
2 by D(m)

(k1,i1),...,(km,im) =

D(k1,i1) · · ·D(km,im) and on S we consider the norms

|F |2q = |F |2 +
q∑

m=1

|DmF |2l⊗m
2

= |F |2 +
q∑

m=1

∞∑
k1,...,km=1

d∑
i1,...,im=1

∣∣D(k1,i1)....D(km,im)F
∣∣2

and
‖F‖q,p = (E(|F |pq))

1/p. (5.3)

We introduce now the Ornstein-Uhlenbeck operator L. We denote θk,i = ∂i ln pVk
(Vk) =

2(Vk − yY )
i1r<|Vk−yY |2<2ra

′
r(|Vk − yYk

|2), pVk
being the density of Vk (see (2.8)) and ar is

given in (2.5). So, we define

LF = −
∞∑
k=1

d∑
i=1

(
D(k,i)D(k,i)F +D(k,i)F × θk,i

)
. (5.4)

Using elementary integration by parts on Rd one easily proves the following duality
formula: for F,G ∈ S

E(〈DF,DG〉l2) = E(FLG) = E(GLF ). (5.5)

Finally, for q ≥ 2, we define

‖|F |‖q,p = ‖F‖q,p + ‖LF‖q−2,p . (5.6)

We recall now the basic computational rules and the integration by parts formulas.
For φ ∈ C1(Rd) and F = (F 1, ..., F d) ∈ Sd we have

Dφ(F ) =

d∑
j=1

∂jφ(F )DF
j , (5.7)

and for F,G ∈ S
L(FG) = FLG+GLF − 2 〈DF,DG〉 . (5.8)

The formula (5.7) is just the chain rule in the standard differential calculus and (5.8) is
obtained using duality. Let H ∈ S. We use the duality relation and (5.5) we obtain

E(HFLG) = E(〈D(HF ), DG〉l2) = E(H 〈DF,DG〉l2) + E(F 〈DH,DG〉l2).

A similar formula holds with GLF instead of FLG. We sum them and we obtain

E(H(FLG+GLF )) = 2E(H 〈DF,DG〉l2) + E(〈DH,D(FG)〉l2)
= 2E(H 〈DF,DG〉l2) + E(HL(FG)).

We give now the integration by parts formula (this is a localized version of the
standard integration by parts formula from Malliavin calculus).
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Theorem 5.1. Let η > 0 be fixed and let Ψη ∈ C∞(R) be such that 1[η/2,∞) ≤ Ψη ≤ 1[η,∞)

and for every k ∈ N one has ‖Ψ(k)
η ‖∞ ≤ Cη−k. Let F ∈ Sd and G ∈ S. For every

φ ∈ C∞
p (Rd), η > 0 and i = 1, ..., d

E(∂iφ(F )GΨη(detσF )) = E(φ(F )Hi(F,GΨη(detσF ))) (5.9)

with

Hi(F,GΨη(detσF )) =

d∑
j=1

(
GΨη(detσF )

)
γi,jF LF j +

〈
D(GΨη(detσF )γ

i,j
F ), DF j

〉
l2
. (5.10)

Let m ∈ N,m ≥ 2 and α = (α1, ..., αm) ∈ {1, ..., d}m. Then

E(∂αφ(F )GΨη(detσF )) = E(φ(F )Hα(F,GΨη(detσF ))) (5.11)

with Hα(F,GΨη(detσF )) defined by recurrence

H(α1,...,αm)(F,GΨη(detσF )) := Hαm
(F,H(α1,...,αm−1)(F,GΨη(detσF ))).

The proof is standard, for details see e.g. [7, 11].
We give now useful estimates for the weights which appear in (5.11):

Lemma 5.2. Let q,m ∈ N and F ∈ Sd and G ∈ S. There exists a universal constant
C ≥ 1 (depending on d, q,m only) such that for every multiindex α with |α| = q and every
η > 0 one has ∣∣Hα(F,Ψη(detσF )G)

∣∣
m

≤ C

η2q+m
×Kq,m(F )× |G|m+q , (5.12)

with
Kq,m(F ) = (|F |1,m+q+1 + |LF |m+q)

q(1 + |F |1,m+q+1)
2d(2q+m). (5.13)

In particular, taking m = 0 and G = 1 we have

‖Hα(F,Ψη(detσF ))‖p ≤ C

η2q
× ‖Kq,0(F )‖p (5.14)

The proof is straightforward but technical so we leave it for Appendix A.
We go now on and we give the regularization lemma. We recall that a super kernel

φ : Rd → R is a function which belongs to the Schwartz space S (infinitely differentiable
functions which rapidly decrease at infinity),

∫
φ(x)dx = 1, and such that for every

multiindexes α and β, one has ∫
yαφ(y)dy = 0, |α| ≥ 1, (5.15)∫

|y|m |∂βφ(y)| dy <∞. (5.16)

As usual, for |α| = m then yα =
∏m

i=1 yαi
. Since super kernels play a crucial role in our

approach we give here the construction of such an object (we follow [29] Section 3,
Remark 1). We do it in dimension d = 1 and then we take tensor products. So, if d = 1

we take ψ ∈ S which is symmetric and equal to one in a neighborhood of zero and we
define φ = F−1ψ, the inverse of the Fourier transform of ψ. Since F−1 sends S into S

the property (5.16) is verified. And we also have 0 = ψ(m)(0) = i−m
∫
xmφ(x)dx so (5.15)

holds as well. We finally normalize in order to obtain
∫
φ = 1.

We fix a super kernel φ. For δ ∈ (0, 1) and for a function f we define

φδ(y) =
1

δd
φ
(y
δ

)
and fδ = f ∗ φδ,

the symbol ∗ denoting convolution. For f ∈ Ck
p (R

d), we recall the constants Lk(f) and
lk(f) in (2.10).
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Lemma 5.3. Let F ∈ Sd and q,m ∈ N. There exists some constant C ≥ 1, depending on
d,m and q only, such that for every f ∈ Cq+m

pol (Rd), every multiindex γ with |γ| = m and
every η, δ > 0

|E(Ψη(detσF )∂γf(x+ F ))− E(Ψη(detσF )∂γfδ(x+ F ))|

≤ C 2l0(f)cl0(f)+qL0(f) ‖F‖l0(f)2l0(f)
Cq+m(F )

δq

η2(q+m)
(1 + |x|)l0(f)

(5.17)

with

cp =

∫
|φ(z)| (1 + |z|)pdz and Cp(F ) = ‖Kp,0(F )‖2 , (5.18)

Kp,0(F ) being defined in (5.13). Moreover, for every p > 1

|E(∂γf(x+ F ))− E(∂γfδ(x+ F ))| ≤ C(1 + ‖F‖pl0(f))
l0(f)(1 + |x|)lm(f)

×
(
Lm(f)clm(f)2

lm(f)P(p−1)/p(detσF ≤ η) + 2l0(f)cl0(f)+q L0(f)
δq

η2(q+m)
Cq+m(F )

)
.

(5.19)

Proof. A. Using Taylor expansion of order q

∂γf(x)− ∂γfδ(x) =

∫
(∂γf(x)− ∂γf(y))φδ(x− y)dy

=

∫
Iγ,q(x, y)φδ(x− y)dy +

∫
Rγ,q(x, y)φδ(x− y)dy

with

Iγ,q(x, y) =

q−1∑
i=1

1

i!

∑
|α|=i

∂α∂γf(x)(x− y)α,

Rγ,q(x, y) =
1

q!

∑
|α|=q

∫ 1

0

∂α∂γf(x+ λ(y − x))(x− y)α(1− λ)qdλ.

Using (5.15) we obtain
∫
I(x, y)φδ(x− y)dy = 0 and by a change of variable we get∫

Rγ,q(x, y)φδ(x− y)dy =
1

q!

∑
|α|=q

∫ 1

0

∫
dzφδ(z)∂α∂γf(x+ λz)zα(1− λ)qdλ.

So, we have

E(Ψη(detσF )∂γf(x+ F ))− E(Ψη(detσF )∂γfδ(x+ F ))

= E
(∫

Ψη(detσF )Rγ,q(x+ F, y)φδ(x+ F − y)dy
)

=
1

q!

∑
|α|=q

∫ 1

0

∫
dzφδ(z)E

(
Ψη(detσF )∂α∂γf(x+ F + λz)

)
zα(1− λ)qdλ.

Using integration by parts formula (5.11) (with G = 1)

|E(Ψη(detσF )∂α∂γf(x+ F + λz))|
=

∣∣E(f(F + λz)H(γ,α)(F,Ψη(detσF ))
∣∣

≤ L0(f)E((1 + |x|+ |z|+ |F |)l0(f)
∣∣H(γ,α)(F,Ψη(detσF ))

∣∣)
≤ C(1 + |x|)l0(f)(1 + |z|)l0(f)L0(f) ‖F‖l0(f)2l0(f)

‖H(γ,α)(F,Ψη(detσF ))‖2.

The upper bound from (5.14) (with p = 2) gives

‖Hα(F,Ψη(detσF ))‖2 ≤ C

η2(q+m)
× ‖Kq+m,0(F )‖2
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And since
∫
dz |φδ(z)zα| (1 + |z|)l0(f) ≤ δq

∫
|φ(z)| (1 + |z|)|α|+l0(f)dz we conclude that

|E(Ψη(detσF ))∂γf(x+ F ))− E(Ψη(detσF ))∂γfδ(x+ F ))|

≤ C(1 + |x|)l0(f)cl0(f)+qL0(f) ‖F‖l0(f)2l0(f)
‖Kq+m,0(F )‖2

Cδq

η2(q+m)

and (5.17) holds. Concerning (5.19), we set Lγ,δ = L0(∂γfδ) ∨ L0(∂γf) and lγ,δ =

l0(∂γfδ) ∨ l0(∂γf). So, for every p > 1, we have∣∣E((1−Ψη(detσF ))∂γf(x+ F )
)
− E

(
(1−Ψη(detσF ))∂γfδ(x+ F )

)∣∣
≤ 2Lγ,δE

(
(1−Ψη(detσF ))(1 + |x|+ |F |)lγ,δ

)
≤ 2Lγ,δ2

lγ,δ(1 + |x|)lγ,δ(1 + ‖F‖pl0(fδ)∨l0(f)
)l0(fδ)∨l0(f)P(p−1)/p(detσF ≤ η).

So the proof of (5.19) will be completed as soon as we check that l0(∂γfδ) ≤ lm(f) and
L0(∂γfδ) ≤ Lm(f)

∫
(1 + |y|)lm(f) |φ(y)| dy = Lm(f)clm(f):

|∂γfδ(x)| =
∣∣∣∣∫ ∂γf(x− y)φδ(y)dy

∣∣∣∣ ≤ Lm(f)

∫
(1 + |x− y|)lm(f) |φδ(y)| dy

≤ Lm(f)(1 + |x|)lm(f)

∫
(1 + |y|)lm(f) |φ(y)| dy.

5.2 CLT and Edgeworth’s development

In this section we take F = Sn(Y ) = 1√
n

∑n
k=1 Cn,kYk defined in (2.1), and we recall

that σn,k = Cn,kC
∗
n,k = Cov(Cn,kYk). From now on, we assume that Yk ∈ D(r, ε) so we

have the decomposition (5.1). Consequently

F = Sn(Y ) =
1√
n

n∑
k=1

Cn,kYk =
1√
n

n∑
k=1

Cn,k(χkVk + (1− χk)Uk).

We will use Lemma 5.3, so we estimate the quantities which appear in the right hand
side of (5.17).

Lemma 5.4. Let Yk ∈ D(2ε, r) and let the moment bounds condition (2.3) hold. For
every k ∈ N and p ≥ 2 there exists a constant C depending on k, p only, such that

sup
n

‖Sn(Y )‖k,p ≤ 2× Cp(Y ) and sup
n

‖|Sn(Y )|‖k,p ≤ C × Cp(Y )

rk
. (5.20)

Proof. Using the Burkholder inequality (4.39) and (2.3) we obtain ‖Sn(Y )‖p ≤ C×Cp(Y ).

We look now to the Sobolev norms. It is easy to see that, Sn(Y )i denoting the ith
component of Sn(Y ),

D(k,j)Sn(Y )i =
1√
n
χkC

i,j
n,k and D(l)Sn(Y ) = 0 for l ≥ 2.

Since 1
n

∑n
k=1 |σn,k| ≤ C2(Y ) it follows that

‖Sn(Y )‖k,p ≤ 2Cp(Y ) ∀k ∈ N, p ≥ 2.

Moreover

LSn(Y ) = − 1√
n

n∑
k=1

Cn,kLYk = − 1√
n

n∑
k=1

χkCn,kAr(Vk),

with Ar(Vk) = 1r<|Vk−yY |2<2r × 2a′r(|Vk − yYk
|2)(Vk − yYk

).
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We prove that

‖LSn(Y )‖k,p ≤ C

rk
× Cp(Y ), (5.21)

C depending on k, p but being independent of n.
Let k = 0. The duality relation gives E(LYk) = E(〈D1, DYk〉l2) = 0. Since the LYk’s

are independent, we can apply (4.39) first and then (2.3), so that

‖LSn(Y )‖p ≤ C
( 1

n

n∑
k=1

‖Cn,kAr(Vk)‖2p
)1/2

≤ C
(
C2(Y )

1

n

n∑
k=1

‖Ar(Vk)‖2p
)1/2

By (2.6) E(|Ar(Vk)|p) ≤ Cr−p so ‖LSn(Y )‖p ≤ Cr−1 × C2(Y ) and (5.21) follows for k = 0.
We take now k = 1. We have

D(q,j)LSn(Y )i =
1√
n
D(q,j)

(
χkCn,qAr(Vq)

)
=

1√
n
χkCn,qD(q,j)Ar(Vq)

so that, using again (2.3),

|DLSn(Y )|2l2 =
1

n

n∑
q=1

d∑
j=1

∣∣χkCn,qD(q,j)Ar(Vq)
∣∣2 ≤ C × C2(Y )

n

n∑
q=1

d∑
j=1

∣∣D(q,j)Ar(Vq)
∣∣2 .

We notice thatD(q,j)Ar(Vq) is not null for r < |Vq−yYq |2 < 2r and contains the derivatives
of ar up to order 2, possibly multiplied by polynomials in the components of Vq − yYq

of order up to 2. Since |Vq − yYq
|2 ≤ 2r, by using (2.6) one obtains E(|DLSn(Y )|pl2) ≤

Cr−2p × C
p/2
2 (Y ), so (5.21) holds for k = 1 also. And for higher order derivatives the

proof is similar.

Remark 5.5. For further use, we give here an upper estimate of the quantity ‖Kq,0(F )‖p,
with Kq,0(F ) defined in (5.13), in the case F = Sn(Y ) (recall that Sn(Y ) takes values in
Rd). From (5.13), it follows that

‖Kq,0(F )‖p ≤ ‖|F |‖qq,2qp(1 + ‖F‖q+1,8dqp)
4dq.

So, for F = Sn(Y ) we use (5.20) and for a suitable constant C depending on d, q and p
only, we obtain

‖Kq,0(Sn(Y ))‖p ≤ C ×
C

(4d+1)q
8dqp (Y )

rq(q+1)
. (5.22)

We give now estimates of the Malliavin covariance matrix. We have

σSn(Y ) =
1

n

n∑
k=1

χkσn,k.

We denote

Σn =
1

n

n∑
i=1

σn,i, λn = inf
|ξ|=1

〈Σnξ, ξ〉 , λn = sup
|ξ|=1

〈Σnξ, ξ〉 . (5.23)

For reasons which will be clear later on, we do not consider here the normalization
condition Σn = Idd. We have the following result.

Lemma 5.6. Let η = (
λnmr

2(1+2λn)
)d, λn and λn being given in (5.23). Then

P(detσSn(Y ) ≤ η) ≤ e3cd
9

(2(1 + 2λn)

λnmr

)d

exp
(
− λ2nm

2
r

16λn
× n

)
, (5.24)

cd denoting a positive constant depending on the dimension d only.
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Proof. Since σn,k = Cn,kC
∗
n,k we have

〈σSn(Y )ξ, ξ〉 =
1

n

n∑
k=1

χk 〈σn,kξ, ξ〉 =
1

n

n∑
k=1

χk |Cn,kξ|2 .

Take ξ1, ..., ξN ∈ Sd−1 =: {ξ ∈ Rd : |ξ| = 1} such that the balls of centers ξi and radius
η1/d cover Sn−1. One needs N ≤ c̄dη

−1 points, where c̄d is a constant depending on
the dimension. It is easy to check that ξ 7→ 〈σSn(Z)ξ, ξ〉 is Lipschitz continuous with
Lipschitz constant 2λn so that inf |ξ|=1〈σSn(Z)ξ, ξ〉 ≥ infi=1,...,N 〈σSn(Z)ξi, ξi〉 − 2λnη

1/d.
Consequently,

P(detσSn(Z) ≤ η) ≤ P( inf
|ξ|=1

〈
σSn(Z)ξ, ξ

〉
≤ η1/d) ≤

N∑
i=1

P(
〈
σSn(Z)ξi, ξi

〉
≤ η1/d + 2λnη

1/d)

≤ c̄d
η

max
i=1,...,N

P
(
〈σSn(Z)ξi, ξi〉 ≤ η1/d(1 + 2λn)

)
.

So, it remains to prove that for every ξ ∈ Sd−1 and for the choice η = (
λnmr

2(1+2λn)
)d,

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d) ≤ 2e3

9
exp

(
− λ2nm

2
r

16λn
× n

)
.

We recall that E(χk) = mr and we write

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d)

= P
( 1

n

n∑
k=1

(χk −mr) |Cn,kξ|2 ≤ (1 + 2λn)η
1/d −mr

1

n

n∑
k=1

|Cn,kξ|2
)

≤ P
(
− 1

n

n∑
k=1

(χk −mr) |Cn,kξ|2 ≥ λnmr − (1 + 2λn)η
1/d

)
the last equality being true because, from (5.23),

1

n

n∑
k=1

|Ckξ|2 =
1

n

n∑
k=1

〈σn,kξ, ξ〉 = 〈Σnξ, ξ〉 ≥ λn |ξ|
2
= λn.

So, we take η = (
λnmr

2(1+2λn)
)d and we get

P
(
〈σSn(Z)ξ, ξ〉 ≤ (1 + 2λn)η

1/d) ≤ P
(
−

n∑
k=1

(χk −mr) |Cn,kξ|2 ≥ λnmr

2
× n

)
We now use the following Hoeffding’s inequality (in the slightly more general form
given in [16] Corollary 1.4): if the differences Xk of a martingale Mn are such that
P(|Xk| ≤ bk) = 1 then P(Mn ≥ x) ≤ (2e3/9) exp(−|x|2 × n/(2(b21 + · · · + b2n))). Here,
we choose Xk = −(χk − mr) |Cn,kξ|2. These are independent random variables and
|Xk| ≤ 2 |Cn,kξ|2 . Then

P
(
−

n∑
k=1

(χk −mr) |Cn,kξ|2 ≥ λnmr

2
× n

)
≤ 2e3

9
exp

(
− λ2nm

2
r

4
× n

4
∑n

k=1 |Cn,kξ|2
)

≤ 2e3

9
exp

(
− λ2nm

2
r

16λn
× n

)
.

We are now able to give the regularization lemma in our specific framework.
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Lemma 5.7. Let h, q ∈ N. There exists a constant C ≥ 1, depending just on h, q, such
that for every δ > 0, every multiindex γ with |γ| = q and every f ∈ Cq

p(R
d) one has

|E(∂γf(x+ Sn(Y )))− E(∂γfδ(x+ Sn(Y )))|

≤ CC
1/2
2l0(f)

(Y )Qh,q(Y )
(
Lq(f) exp

(
− λ2nm

2
r

32λn
× n

)
+ L0(f)δ

h
)
(1 + |x|)lq(f)

(5.25)

with

Qh,q(Y ) = 2lq(f)clq(f)∨(l0(f)+h)

C
(4d+1)(h+q)
16d(h+q) (Y )

r(h+q)(h+q+1)

(
1 ∨ 2(1 + 2λn)

λnmr

)2d(h+q)

, (5.26)

cp being given in (5.18).

Proof. We will use Lemma 5.3. Since Ch+q(Sn(Y )) = ‖Kh,0(Sn(Y ))‖2, (5.22) gives

Ch+q(Sn(Y )) ≤ C ×
C

(4d+1)(h+q)
16d(h+q) (Y )

r(h+q)(h+q+1)
,

C depending on d and h + q. And by using the Burkholder inequality (4.39), one has
‖Sn(Y )‖l0(f)2l0(f)

≤ C
1/2
2l0(f)

(Y ). So (5.19) (with p = 2) gives

|E(∂γf(x+ Sn(Y )))− E(∂γfδ(x+ Sn(Y )))|

≤ CC
1/2
2l0(f)

(Y ) 2lq(f)clq(f)∨(l0(f)+h)

C
(4d+1)(h+q)
16d(h+q) (Y )

r(h+q)(h+q+1)

×
(
Lq(f)P

1/2(detσSn(Y ) ≤ η) + L0(f)
δh

η2(h+q)

)
(1 + |x|)lq(f).

We take now η = (
λnmr

2(1+λn)
)d and we use (5.24) in order to obtain

|E(∂γf(x+ Sn(Y )))− E(∂γfδ(x+ Sn(Y )))|

≤ CC
1/2
2l0(f)

(Y ) 2lq(f)clq(f)∨(l0(f)+h)

C
(4d+1)(h+q)
16d(h+q) (Y )

r(h+q)(h+q+1)

×
(
1 ∨ 2(1 + 2λn)

λnmr

)2d(h+q)(
Lq(f) exp

(
− λ2nm

2
r

32λn
× n

)
+ L0(f)δ

h
)
(1 + |x|)lq(f).

We are now able to characterize the regularity of the semigroup PZ,n
n :

Proposition 5.8. Let f ∈ Cq
p(R

d). If |γ| = q then∣∣E(∂γf(x+ Sn(Y ))
)∣∣ ≤ C × 2lq(f)Bq(Y )(1 + C

lq(f)

2lq(f)
(Y ))(1 + |x|)lq(f)×

×
[
Lq(f) exp

(
− λ2nm

2
r

32λn
× n

)
+ L0(f)

] (5.27)

where

Bq(Y ) =
(
1 ∨ 2(1 + λn)

λnmr

)2dq C
(4d+1)q
16dq (Y )

rq(q+1)
(5.28)

and C is a constant depending on q only.

Proof. We take η = (
λnmr

2(1+λn)
)d and the truncation function Ψη and we write

E(∂γf(x+ Sn(Y ))) = I + J

EJP 23 (2018), paper 45.
Page 40/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/


CLT in distribution norms

with

I = E(∂γf(x+ Sn(Y ))(1−Ψη(detσSn
))), J = E(∂γf(x+ Sn(Y ))Ψη(detσSn

)).

We estimate first

|I| ≤ Lq(f)E((1 + |x|+ |Sn(Y )|)lq(f)(1−Ψη(detσSn
)))

≤ Lq(f)
(
E
(
(1 + |x|+ |Sn(Y )|2lq(f))

))1/2
P1/2(detσSn

≤ η)

≤ CLq(f)2
lq(f)(1 + |x|)lq(f)(1 + C

lq(f)

2lq(f)
(Y ))

(2(1 + 2λn)

λnmr

)d/2

exp
(
− λ2nm

2
r

32λn
× n

)
,

in which we have used the Burkholder’s inequality (4.39). In order to estimate J we use
integration by parts and we obtain

|J | =
∣∣E(f(x+ Sn(Y ))Hγ(Sn(Y ),Ψη(detσSn

))
)∣∣

≤ L0(f)E
(
(1 + |x|+ |Sn|)l0(f) |Hγ(Sn(Y ),Ψη(detσSn))|

)
≤ CL0(f)2

l0(f)(1 + |x|)l0(f)(1 + C
l0(f)
2l0(f)

(Y ))
(
E(|Hγ(Sn(Y ),Ψη(detσSn))|

2
)
)1/2

.

Then using (5.14) and (5.22)

∥∥Hα(Sn(Y ),Ψη(detσSn(Y )))
∥∥
2
≤ C ×

(2(1 + λn)

λnmr

)2dq

×
C

(4d+1)q
16dq (Y )

rq(q+1)
(1 + |x|)l0(f),

so that

|J | ≤ C×L0(f)2
l0(f)(1+|x|)l0(f)(1+C

l0(f)
2l0(f)

(Y ))×
(2(1 + λn)

λnmr

)2dq

×
C

(4d+1)q
16dq (Y )

rq(q+1)
(1+|x|)l0(f).

(5.27) now follows from the above estimates for I and J .

5.3 Proofs of the results in Section 2

5.3.1 Proof of Theorem 2.3

Step 1. We assume first that f ∈ C
q+(N+1)(N+3)
p (Rd) and we prove that

|E(∂γf(Sn(Y )))− E(∂γf(W )ΦN (W ))|

≤ C

n
N+1

2

× Ĉq+(N+1)+(N+3),N (f, Y )
[
Lq+(N+1)(N+3)(f) e

− n
128 + L0(f)

]
,

(5.29)

where C is a constant depending only on q and N and

Ĉp,N (f, Y ) = C
(bN/2c+1)(N+1)
2 (Y )2(N+3)lp(f)C

(N+1)/2
2(N+3) (Y )

(
1 + C

lp(f)∨(N+1)

2lp(f)
(Y )

)
×

×
(
1 ∨ 8

mr

)2dp C
(4d+1)p
16dp (Y )

rp(p+1)
.

(5.30)
Notice that (5.29) is analogous to (2.22) but here Lq(f) and lq(f) are replaced by
Lq+(N+1)(N+3)(f) and lq+(N+1)(N+3)(f). We will see in Step 2 how to drop the dependence
on q + (N + 1)(N + 3).

We recall (4.37) and (4.38): we have

E
(
∂γf(Sn(Y ))

)
−E

(
∂γf(W )Φn,N (W )

)
=PZ,n

n (∂γf)(0)−PG,n
n

(
Id+

N∑
k=1

1

nk/2
Γn,k

)
(∂γf)(0)

= I1(∂γf)(0) + I2(∂γf)(0) + I3(∂γf)(0)
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with

I1 = PG,n
n Q0

n,N ,

I2 =
∑

1≤r1<···<rN+1≤n

PZ,n
rN+1+1,n+1P

G,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
1,r1

Q
(N+1)
n,N,r1,...,rN+1

I3 =

N∑
m=1

∑
1≤r1<···<rm≤n

PG,n
rm+1,n+1P

G,n
rm−1+1,rm

· · ·PG,n
r1+1,r2

PG,n
1,r1

Q
(m)
n,N,r1,...,rm

(5.31)

and (see (4.27) and (4.36))

Q
(m)
N,r1,...,rm

=
1

n
N+3m

2

∑
3≤|α|≤Nm

an,r1,...,rm(α)θαn,r1,...,rm∂α,

Q0
N,nf(x) =

1

n(N+1)/2

∑
N+1≤|α|≤N(N+2bN/2c)

cn,N (α)∂α,
(5.32)

Nm being given in Lemma 4.4: Nm = m(2bN/2c +N + 5) for m ≤ N and if m = N + 1

then Nm = (N + 1)(N + 3). By (4.28) and (4.36), the coefficient which appear above
satisfy

|an,r1,...,rm(α)| ≤ (CC
bN/2c+1
2 (Y ))m and |cn,N (α)| ≤ (CCN+1(Y )C2(Y ))N(N+2bN/2c).

(5.33)
We first estimate I2(∂γf). Let us prove that for every r1 < · · · < rN+1∣∣∣PZ,n

rN+1+1,nP
G,n
rN+1,rN+1

...PG,n
r1+1,r2

PG,n
k,r1

Q(N+1)
r1,...,rN+1

∂γf(x)
∣∣∣ ≤ C

n
4N+3

2

×

×Ĉq+(N+1)+(N+3),N (f, Y )
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
(1 + |x|)lq+(N+1)(N+3)(f)

(5.34)
where C depends only on q and N and Ĉp,N (f, Y ) is given by (5.30).

Recall that σn,ri ≤ 1
nC2(Y ). We take n ≥ 4(N + 1)C2(Y ) so that

1

n

N+1∑
i=1

σn,ri ≤
1

4
Idd. (5.35)

Recall that 1
n

∑n
r=1 σn,r = Idd. So we distinguish now two cases:

Case 1:
1

n

n∑
r=rN+1+1

σn,r ≥ 1

2
Idd, (5.36)

Case 2:
1

n

rN+1∑
r=1

σn,r ≥ 1

2
Idd. (5.37)

We treat Case 1. Notice that all the operators coming on in (5.31) commute so, using
also (5.32) we obtain

PZ,n
rN+1+1,n+1P

G,n
rN+1,rN+1

...PG,n
r1+1,r2

PG,n
k,r1

Q
(N+1)
N,r1,...,rN+1

∂γf(x)

=
1

n(4N+3)/2

∑
3≤|α|≤(N+1)(N+3)

an,r1,...,rN+1
(α)θαn,r1,...,rN+1

×PG,n
rN−1+1,rN

· · ·PG,n
r1+1,r2

PG,n
1,r1

PZ,n
rN+1,n∂γ∂αf(x).

We use now (5.27) withm = |γ|+ |α| ≤ q+(N+1)(N+3) and Sn(Y ) = 1√
n

∑n
k=1 Cn,kYk ≡∑n

k=1 Zn,k replaced by
∑n

k=rN+1+1 Zn,k, whose covariance matrix is 1
n

∑n
k=rN+1+1 σn,r.
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Under (5.36) we have 1
2 ≤ λn ≤ λn ≤ 1, so (5.27) gives

|PZ,n
rN+1+1,n+1∂γ∂αf(x)|

≤ C × 2lq+(N+1)(N+3)(f)B̂q+(N+1)(N+3)(Y )(1 + C
lq+(N+1)(N+3)(f)

2lq+(N+1)(N+3)(f)
(Y ))×

×
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
(1 + |x|)lq+(N+1)(N+3)(f)

where C is a constant depending only on q and N and B̂p(Y ) is the constant Bp(Y ) given
in (5.28) with λn = 1/2 and λn = 1, that is,

B̂p(Y ) =
(
1 ∨ 8

mr

)2dp C
(4d+1)p
16dp (Y )

rp(p+1)

Therefore, we can write

l0
(
PZ,n
rN+1+1,n∂γ∂αf

)
=lq+(N+1)(N+3)(f),

L0

(
PZ,n
rN+1+1,n∂γ∂αf

)
=C × 2lq+(N+1)(N+3)(f)B̂q+(N+1)(N+3)(Y )(1 + C

lq+(N+1)(N+3)(f)

2lq+(N+1)(N+3)(f)
(Y ))×

×
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
.

Now, in the proof of Theorem 4.1 we have proven that (see (4.40)

|PG,n
rN−1+1,rN

· · ·PG,n
r1+1,r2

PG,n
1,r1

g(x)| ≤ 2l0(g)(1 + Cl0(g)(Y ))L0(g)(1 + |x|)l0(g)

and following the proof of Lemma 4.4 we have

|θαn,r1,...,rmg(x)| ≤
(
2l0(g)C

1/2
2(N+3)(Y )(1 + C2l0(g)(Y ))2

)m
L0(g)(1 + |x|)l0(g).

So, taking all estimates, we obtain

|θαn,r1,...,rN+1
PG,n
rN−1+1,rN

· · ·PG,n
r1+1,r2

PG,n
1,r1

PZ,n
rN+1,n+1∂γ∂αf(x)|

≤ C ×Dq+(N+1)(N+3)(f, Y )
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
(1 + |x|)lq+(N+1)(N+3)(f)

where

Dp(f, Y ) = 2(N+3)lp(f)C
(N+1)/2
2(N+3) (Y )

(
1 + C

lp(f)∨(N+1)

2lp(f)
(Y )

)(
1 ∨ 8

mr

)2dp C
(4d+1)p
16dp (Y )

rp(p+1)

We use now formula (5.32) for Q(N+1)
N,r1,...,rN+1

and the estimate (5.33) for the coefficients
an,r1,...,rN+1

and we get

|PZ,n
rN+1+1,n+1P

G,n
rN+1,rN+1

...PG,n
r1+1,r2

PG,n
1,r1

Q(N+1)
r1,...,rN+1

∂γf(x)|

≤C 1

n
4N+3

2

× Ĉ∗(f, Y )
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
(1 + |x|)lq+(N+1)(N+3)(f)

where C depends only on q and N and Ĉ∗(f, Y ) is given by

Ĉ∗(f, Y ) =
(
C

bN/2c+1
2 (Y )

)N+1
Dq+(N+1)(N+3)(f, Y ).

Since Ĉ∗(f, Y ) = Ĉq+(N+1)(N+3),N (f, Y ), (5.34) is proved in Case 1.
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We deal now with Case 2, that is, we assume (5.37). We write

PZ,n
rN+1+1,n+1P

G,n
rN+1,rN+1

...PG,n
r1+1,r2

PG,n
1,r1

Q
(N+1)
N,r1,...,rN+1

∂γf(x)

=
1

n
4N+3

2

∑
3≤|α|≤(N+1)2

an,r1,...,rN+1
(α)θαn,r1,...,rN+1

PZ,n
rN+1+1,n+1

× PG,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
1,r1

∂γ∂αf(x).

Notice that
PG,n
rN+1,rN+1

· · ·PG,n
r1+1,r2

PG,n
1,r1

∂γ∂αf(x) = E(∂γ∂αf(x+G))

whereG is a centered Gaussian random variable of variance 1
n

∑rN+1

i=1 σn,i− 1
n

∑N+1
i=1 σn,ri ≥

1
4 Idd, as it follows by using also (5.35). So standard integration by parts yields

|PG,n
rN+1,rN+1

...PG,n
r1+1,r2

PG,n
1,r1

∂γ∂αf(x)| ≤ CL0(f)(1 + |x|)l0(f).

Now the proof follows as in the previous case. So (5.34) is proved in Case 2 as well.
Therefore, by summing over r1 < r2 < · · · < rN+1 ≤ n (giving a contribution of order

nN+1), inequality (5.34) gives

|I2(∂γf)(x)| ≤
C

n
N+1

2

× Ĉ∗(f, Y )
[
Lq+(N+1)(N+3)(f) e

− m2
r

128 n + L0(f)
]
(1 + |x|)lq+(N+1)(N+3)(f)

Exactly as in Case 2 presented above (using standard integration by parts with respect
to the law of Gaussian random variables) we obtain

|I1(∂γf)(x)|+ |I3(∂γf)(x)| ≤
C

n
N+1

2

× Ĉ∗(f, Y )L0(f)(1 + |x|)l0(f).

So, recalling that Ĉ∗(f, Y ) = Ĉq+(N+1)(N+3),N (f, Y ), (5.29) is proved.

Step 2. We now come back and we replace Lq+(N+1)(N+3)(f) by Lq(f) in (5.29). We
will use the regularization lemma. So we fix δ > 0 (to be chosen in a moment) and we
write

|E(∂γf(Sn(Y )))− E(∂γf(W )ΦN (W ))| ≤ Aδ(f) +A′
δ(f) +A′′

δ (f)

with

Aδ(f) =
∣∣E(∂γfδ(Sn(Y ))

)
− E

(
∂γfδ(W )ΦN (W )

)∣∣
A′

δ(f) =
∣∣E(∂γf(Sn(Y ))

)
− E

(
∂γfδ(Sn(Y ))

)∣∣ ,
A′′

δ (f) =
∣∣E(∂γf(W )ΦN (W )

)
− E

(
∂γfδ(W )ΦN (W )

)∣∣ .
We will use (5.29) for fδ. Notice that Lp(fδ) ≤ ĉp,l0(f)L0(f)δ

−p, with ĉp,l = 1 ∨
max0≤|α|≤p

∫
(1 + |x|)l|∂αφ(x)|dx, and lp(fδ) = l0(f). So,

Aδ(f) ≤
C

n
N+1

2

×Hq,N (f, Y )L0(f)
[ 1

δq+(N+1)(N+3)
e−

m2
r

128×n + 1
]
,

where

Hq,N (f, Y ) = C
(bN/2c+1)(N+1)
2 (Y )2(N+3)l0(f)C

(N+1)/2
2(N+3) (Y )

(
1 + C

l0(f)∨(N+1)
2l0(f)

(Y )
)
×

×
(
1 ∨ 8

mr

)2d(q+(N+1)(N+3)) C
(4d+1)(q+(N+1)(N+3))
16d(q+(N+1)(N+3)) (Y )

r(q+(N+1)(N+3))(q+(N+1)(N+3)+1)
ĉq+(N+1)(N+3),l0(f).

We use now (5.25) with x = 0 and with some h to be chosen in a moment. We then obtain

A′
δ(f) ≤ CC

1/2
2l0(f)

(Y )Qh,q(Y )
(
Lq(f)e

−m2
r

32 ×n + L0(f)δ
h
)
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with Qh,q(Y ) given in (5.26). And we also have A′′
δ (f) ≤ CL0(f)δ

h (the proof is identical
to the one of (5.19) but one employs usual integration by parts with respect to the
Gaussian law). We put all this together and we obtain

|E(∂γf(Sn(Y )))−E(∂γf(W )ΦN (W ))| ≤ C

n
N+1

2

Hq,N (f, Y )L0(f)
[ 1

δq+(N+1)(N+3)
e−

m2
r n

128 +1
]

+ CC
1/2
2l0(f)

(Y )Qh,q(Y )Lq(f)e
−m2

r n

32 + CL0(f)δ
h

We take now δ such that

δh =
1

δq+(N+1)(N+3)
e−

m2
rn

128

and h = q + (N + 1)(N + 3), so that

δh = e−
m2

rn

128 × h
h+q+(N+1)(N+3) = e−

m2
rn

256 .

With this choice of h and δ we get

|E(∂γf(Sn(Y )))− E(∂γf(W )ΦN (W ))| ≤ C Hq,N (f, Y )L0(f)
( 1

n
N+1

2

+ e−
m2

r n

256

)
+ CC

1/2
2l0(f)

(Y )Qq+(N+1)(N+3),q(Y )Lq(f)e
−m2

r n

32

We take now n sufficiently large in order to have

n
1
2 (N+1)e−

m2
rn

256 ≤ 1.

The statement now follows by observing that, with C∗(Y ) given in (2.23),

C∗(Y ) ≥ Hq,N (f, Y ) and C∗(Y ) ≥ C
1/2
2l0(f)

(Y )Qq+(N+1)(N+3),q(Y ).

5.3.2 Proof of Corollary 2.5

We first explicitly write the expression of the polynomials HΓn,k
(x) for k = 1, 2, 3. Recall

formula (2.15) for the kth operator Γn,k and recall formula (2.14) for the set Λm,k

appearing in (2.15). Recall also formula (2.25) for cn(α) and dn(α, β).

Case k = 1. Then m = 1 and l = 3, l′ = 0. So the first order operator is given by

Γn,1 =
1

n

n∑
r=1

1

6
D(3)

n,r =
1

6n

n∑
r=1

∑
|α|=3

∆n,r(α)∂α,

so that, with cn(α) given in (2.25),

HΓn,1
(x) =

1

6

∑
|α|=3

cn(α)Hα(x) = Hn,1(x)

and formula (2.27) holds.

Case k = 2. Then m = 1 or m = 2, and we call Γ′
n,2 and Γ′′

n,2 the corresponding
operator. Suppose first that m = 1. Then we need that l + 2l′ = k + 2m = 4. This means
that we have l = 4, l′ = 0. Then

Γ′
n,2 =

1

n

n∑
r=1

1

24
D(4)

n,r =
1

24n

n∑
r=1

∑
|α|=4

∆n,r(α)∂α =
1

24

∑
|α|=4

cn(α)∂α.
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Suppose now that m = 2. Then we need that l1 + l2 +2(l′1 + l′2) = k+2m = 6. The only
possibility is l1 = l2 = 3, l′1 = l′2 = 0 and the corresponding term is

Γ′′
n,2 =

1

n2

∑
0≤r1<r2≤n

1

36
D(3)

n,r1D
(3)
n,r2 =

1

36n2

∑
1≤r1<r2≤n

∑
|α|=3

∑
|β|=3

∆n,r1(α)∆n,r2(β)∂α∂β

=
1

72n2

∑
1≤r1 6=r2≤n

∑
|α|=3

∑
|β|=3

∆n,r1(α)∆n,r2(β)∂α∂β .

We notice that, for |α| = |β| = 3,

1

n2

∑
1≤r1 6=r2≤n

∆n,r1(α)∆n,r2(β) = cn(α)cn(β)−
1

n
dn(α, β)

with
sup
n

|dn(α, β)| ≤ 4C2
3(Y ), |α| = |β| = 3. (5.38)

So, by inserting,

Γ′′
n,2 =

1

72

∑
|α|=3

∑
|β|=3

cn(α)cn(β)∂α∂β − 1

72n

∑
|α|=3

∑
|β|=3

dn(α, β)∂α∂β .

We conclude that

HΓn,2(x) = HΓ′
n,2

(x) +HΓ′′
n,2

(x) = Hn,2(x)−
1

72n

∑
|α|=3

∑
|β|=3

dn(α, β)H(α,β)(x),

Hn,2(x) being given in (2.28).

Case k = 3. m = 1. We need that l + 2l′ = k + 2m = 5. So l = 3, l′ = 1 or l = 5, l′ = 0.

The operator term corresponding to l = 3, l′ = 1 is

Γ1
n,3 = − 1

12n

n∑
r=1

D(3)
n,rL

1
σn,r

= − 1

12

∑
|α|=3

d∑
i,j=1

cn(α, i, j)∂α∂i∂j ,

cn(α, i, j) being given in (2.25). The term corresponding to l = 5, l′ = 0 is

Γ2
n,3 =

1

n

n∑
r=1

1

5!
D(5)

n,r =
1

5!n

n∑
r=1

∑
|α|=5

∆n,r(α)∂α =
1

5!

∑
|α|=5

cn(α)∂α.

m = 2. We need l1 + l2 + 2(l′1 + l′2) = k + 2m = 7. The only possibility is l1 = 3, l2 = 4,
l′1 = l′2 = 0 and l1 = 4, l2 = 3, l′1 = l′2 = 0. The corresponding term is

Γ3
n,3 =

2

n2

∑
1≤r1<r2≤n

1

3!
D(3)

n,r1

1

4!
D(4)

n,r2 =
1

3!4!

∑
|α|=3

∑
|β|=4

[
cn(α)cn(β)−

1

n
dn(α, β)

]
∂α∂β ,

with
sup
n

|dn(α, β)| ≤ C C3(Y )C4(Y ) ≤ C C2
4(Y ), |α| = 3, |β| = 4. (5.39)

m = 3. We need l1 + l2 + l3 + 2(l′1 + l′2 + l′3) = k + 2m = 3 + 6 = 9. The only possibility
is l1 = l2 = l3 = 3, l′1 = l′2 = l′3 = 0 and the corresponding term is

Γ4
n,3 =

1

63 n3

∑
1≤r1<r2<r3≤n

D(3)
n,r1D

(3)
n,r2D

(3)
n,r3

=
1

63 n3 3!

∑
1≤r1 6=r2 6=r3≤n

∑
|α|=3

∑
|β|=3

∑
|γ|=3

∆n,r1(α)∆n,r2(β)∆n,r3(γ)∂α∂β∂γ ,

EJP 23 (2018), paper 45.
Page 46/51

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP174
http://www.imstat.org/ejp/


CLT in distribution norms

where the notation r1 6= r2 6= r3 means that r1, r2, r3 are all different. Now, straightfor-
ward computations give

1

n3

∑
1≤r1 6=r2 6=r3≤n

∆n,r1(α)∆n,r2(β)∆n,r2(γ) = cn(α)cn(β)cn(γ)−
1

n
en(α, β, γ),

with
sup
n

|en(α, β, γ)| ≤ C × C3
3(Y ), |α| = |β| = |γ| = 3. (5.40)

So, we obtain

Γ4
n,3 =

1

63 n3 3!

∑
|α|=3

∑
|β|=3

∑
|γ|=3

cn(α)cn(β)cn(γ)∂α∂β∂γ −
1

n

∑
|α|=3

∑
|β|=3

∑
|γ|=3

en(α, β, γ)∂α∂β∂γ .

We conclude that

HΓn,3
(x) =

4∑
i=1

HΓi
n,3

(x) = Hn,3(x) +
1

n

∑
|α|≤9

fn(α)Hα(x),

with Hn,3(x) as in (2.29) and with

sup
n

|fn(α)| ≤ CC3
4(Y ). (5.41)

By resuming, we get

Φn,N (x) = 1 +

3∑
k=1

1

nk/2
Hn,k(x) +

1

n2
Pn(x),

where, taking into account (5.38), (5.39), (5.40) and (5.41),

Pn(x) =
∑
|α|≤9

gn(α)Hα(x) with sup
n

|gn(α)| ≤ C × C3
4(Y ),

where C a universal constant. Therefore∣∣∣E(∂γf(Sn(Y ))
)
− E

(
∂γf(W )

(
1 +

3∑
k=1

1

nk/2
Hn,k(W )

))∣∣∣
≤

∣∣E(∂γf(Sn(Y ))
)
− E

(
∂γf(W )Φn,N (W )

)∣∣+ 1

n2
∣∣E(∂γf(W )Pn(W )

)∣∣
≤ C × C∗(Y )

( L0(f)

n
1
2 (N+1)

+ Lq(f)e
−m2

r
32 ×n

)
+

1

n2
∣∣E(∂γf(W )Pn(W )

)∣∣
in which we have used (2.22). Now, by using the standard integration by parts for the
Gaussian law, we have∣∣E(∂γf(W )Pn(W )

)∣∣ = ∣∣E(f(W )Gγ(W,Pn(W ))
)∣∣ ≤ ‖f(W )‖2‖Gγ(W,Pn(W ))‖2,

where Gγ(W,Pn(W )) denote the weight from the integration by parts formula. Since
Pn is a linear combination of Hermite polynomials with bounded coefficients, we have
‖Gγ(W,Pn(W ))‖2 ≤ C, C depending on q. Moreover, |f(W )| ≤ L0(f)(1 + |W |l0(f)), so∣∣E(∂γf(W )Pn(W )

)∣∣ ≤ C × L0(f)C
l0(f)
2l0(f)

(Y ).

The statement now follows.
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5.3.3 Proof of Proposition 2.8

The idea is that, since
∑n−m

k=1 σk ≥ 1
2I, the random variables Yk, k ≤ n − m contain

sufficient noise in order to give the regularization effect.
We show the main changes in the estimate of I2(f) (for I1(f), I3(f) the proof is ana-

logues). We split PZ,n
rN+1+1,n = PZ,n

rN+1+1,n−mP
Z,n
n−m,n and we need to have sufficient noise

in order that PZ,n
rN+1+1,n−m gives the regularization effect. Then, the two cases described

in (5.36) and (5.37) are replaced now by
∑n−m

i=rN+1+1 σn,i ≥ 1
4I and

∑rN+1+1
i=1 σn,i ≥ 1

4I

respectively. And the condition (5.35) becomes
∑N+1

i=1 σn,ri ≤ 1
8I. Then the proof follows

exactly the same line.

A Norms

The aim of this section is to prove Lemma 5.2. For F = (F1, . . . , Fd) We work with the
norms

|F |1,k =

d∑
j=1

k∑
1=1

∣∣DiFj

∣∣
H⊗i , |F |k = |F |+ |F |1,k

‖F‖1,k,p = ‖ |F |1,k ‖p, ‖F‖k,p = ‖F‖p + ‖F‖1,k,p .

To begin we give several easy computational rules:

|FG|k ≤ C
∑

k1+k2=k

|F |k1
|G|k2

, (A.1)

|〈DF,DG〉|k ≤ C
∑

k1+k2=k

|F |1,k1+1 |G|1,k2+1 , (A.2)

∣∣∣∣ 1G
∣∣∣∣
k

≤ C

|G|

k∑
l=0

|G|lk
|G|l

. (A.3)

Now, for F = (F1, . . . , Fd) we consider the Malliavin covariance matrix σi,j
F =

〈
DF i, DF j

〉
and, if detσF 6= 0, we denote γF = σ−1

F . We write

γi,jF =
σ̂i,j
F

detσF

where σ̂i,j
F is the algebraic complement . Then, using (A.1)

∣∣γi,jF

∣∣
k
≤ C

∑
k1+k2=k

∣∣σ̂i,j
F

∣∣
k1

∣∣∣∣ 1

detσF

∣∣∣∣
k2

.

By (A.1) and (A.2),
∣∣∣σ̂i,j

F

∣∣∣
k1

≤ C |F |2(d−1)
1,k1+1 and |detσF |k2

≤ C |F |2d1,k2+1 . Then, using (A.3)

∣∣∣∣ 1

detσF

∣∣∣∣
k2

≤ C

|detσF |

k2∑
l=0

|detσF |lk2

|detσF |l
≤ C

|detσF |

k2∑
l=0

|F |2ld1,k2+1

|detσF |l

so that ∣∣γi,jF

∣∣
k
≤ C

|F |2(d−1)
1,k+1

|detσF |

k∑
l=0

( |F |2d1,k+1

|detσF |

)l

≤ C
|F |2(d−1)

1,k+1

|detσF |

(
1 +

|F |2d1,k+1

|detσF |

)k

. (A.4)

We denote

αk =
|F |2(d−1)

1,k+1 (|F |1,k+1 + |LF |k)
|detσF |

, βk =
|F |2d1,k+1

|detσF |
(A.5)
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and
Kn,k(F ) = (|F |1,k+n+1 + |LF |k+n)

n(1 + |F |1,k+n+1)
2d(2n+k). (A.6)

We also recall that for η > 0, we consider a function Ψη ∈ C∞(R) such that 1(0,η) ≤ Ψη ≤
1(0,2η) and ‖Ψ(k)

η ‖∞ ≤ Ckη
−k,∀k ∈ N. Then we take Φη = 1−Ψη.

Lemma A.1. A. For every k, n ∈ N there exists a universal constant C (depending on k
and n) such that, for ω such that detσF (ω) > 0,∣∣∣H(n)

ρ (F,G)
∣∣∣
k
≤ Cαn

k+n

∑
p1+p2=k+n

|G|p2
(1 + βk+n)

p1 . (A.7)

B. For every η > 0∣∣∣H(n)
ρ (F,Φη(detσF )G)

∣∣∣
k
≤ C

η2n+k
×Kn,k(F )× |G|k+n . (A.8)

Proof. A. We first prove (A.7) for n = 1. We have

H
(1)
i (F,G) = −

m∑
j=1

Gγi,jF LF j +G〈Dγi,jF , DF j〉+ γi,jF 〈DG,DF j〉.

Using (A.1)∣∣H(1)
i (F,G)

∣∣
k

≤ C
∑

k1+k2+k3=k

(
|γF |k1

|LF |k2
|G|k3

+ |γF |k1+1 |F |1,k2+1 |G|k3
+ |γF |k1

|F |1,k2+1 |G|k3+1

)
≤ C(|F |k+1 + |LF |k)

∑
p1+p2≤k

(
|γF |p1+1 |G|p2

+ |γF |p1
|G|p2+1

)
.

For n > 1, we use recurrence and we obtain∣∣∣H(n)
γ (F,G)

∣∣∣
k
≤ C(|F |k+n+1 + |LF |k+n)

n
∑

p1+...+pn+1≤k+n−1

n∏
i=1

|γF |pi
× |G|pn+1

.

Then, using (A.1) first and (A.4) secondly, (A.7) follows.

B. Let Gη = Φη(detσF )G). For every p ∈ N one has |Gη|p ≤ Cη−p |G|p |F |
d
1,p+1 .

Moreover one has H(n)
ρ (F,Gη) = 1{detσΦ>η/2}H

(n)
ρ (F,Gη). So (A.7) implies (A.8).
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