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and generalized tree-valued Fleming-Viot processes
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Abstract

We give a de Finetti type representation for exchangeable random coalescent trees
(formally described as semi-ultrametrics) in terms of sampling iid sequences from
marked metric measure spaces. We apply this representation to define versions of
tree-valued Fleming-Viot processes from a =-lookdown model. As state spaces for
these processes, we use, besides the space of isomorphy classes of metric measure
spaces, also the space of isomorphy classes of marked metric measure spaces and a
space of distance matrix distributions. This allows to include the case with dust in
which the genealogical trees have isolated leaves.
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1 Introduction

1.1 Some background on coalescent trees, ultrametrics, and metric measure
spaces

In population genetics, coalescents are common models for the genealogy of a sample
from a population. The Kingman coalescent [34] is a partition-valued process in which
each individual of the sample forms its own block at time 0, and as we look into the
past, each pair of blocks merges independently at constant rate. These blocks stand
for the families of individuals that have a common ancestor at given times in the past.
Generalizations of the Kingman coalescent include the A-coalescent (Pitman [45], Sagitov
[47], Donnelly and Kurtz [16]) where multiple blocks are allowed to merge to a single
block at the same time, and the =-coalescent (Mohle and Sagitov [42], Schweinsberg
[48]) where several clusters of blocks may also merge simultaneously.

A (semi-)ultrametric p is a (semi-)metric that satisfies the strong triangle inequality
max{p(z,y),p(y,2)} > p(z,z). A realization of a coalescent for an infinite sample can
be expressed as a cadlag path (m;,t € R) with values in the space of partitions of IN
such that m; is a coarsening of 7, for all s < t. We assume that for each pair of integers,
there is a time ¢ such that the elements of this pair are in a common block of 7;. Then
(m¢,t € Ry) can equivalently be expressed as a semi-ultrametric p on IN such that for all
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te Ry and,j € N,
p(i,7) <2t if and only if 7 and j are in the same block of , (1.1)

and (1.1) yields a one-to-one correspondence between these cadlag paths and the semi-
ultrametrics on IN, cf. [21, Example 3.41] and [22, p.262].

Evans [20] studies the completion of the random ultrametric space associated with
the Kingman coalescent which he endows with a probability measure such that the mass
on each ball is given by the asymptotic frequency of the corresponding family, and a
class of more general coalescents is studied by Berestycki et al. [3].

Remark 1.1. Let us briefly recall the well-known correspondence between ultrametric
spaces and real trees to which we will refer to explain main concepts in this article. A
real tree is a metric space (7, d) that is tree-like in the sense that (i) no subspace is
homeomorphic to the unit circle, and (ii) for each z,y € T, there exists an isometry ¢
from the real interval [0,d(z,y)] to T with ¢(0) = z and «(d(z,y)) = v, see e.g. Evans
[21] for an overview. An ultrametric space (X, p) can be isometrically embedded into
the real tree (T,d) that is obtained by identifying the elements with distance zero of
the semi-metric space (Rt x X,d) given by d((s,?), (t,7)) = max{p(i,j) — s — t,|s — t|}.
Then T equals the set U in [22, p.262] with X = IN and the metrics d here and in [22,
p.262] coincide up to a factor 2. Clearly, (X, p) is isometric to the subspace {0} x X of
the leaves of (T, d). For a semi-ultrametric space (X, p), we identify the elements with
distance zero to obtain an ultrametric space which we associate with a real tree (7T, d) as
above. A related embedding of an ultrametric space is given in [30, Section 6].

As in Remark 1.1, a semi-ultrametric on IN can be considered as an infinite tree whose
leaves are labeled by the elements of IN. Often these labels are not relevant, for instance,
when they only record the order in which iid samples from a population are drawn. To
remove the labels, we could pass to the isometry class. However, the asymptotic block
frequencies in the coalescent given by an ultrametric on IN are not determined by the
isometry class, as one may apply an infinite permutation without changing the isometry
class. To retain just this information besides the metric structure, we can take a measure-
preserving isometry class of the completion of the ultrametric space that is endowed
with a probability measure that charges each ball with the asymptotic frequency of the
corresponding block, if such a probability measure exists. This probability measure
can equivalently be described as the weak limit of the uniform probability measures
on the individuals 1,...,n, as n — oo. Then we obtain the description by isomorphy
classes of metric measure spaces of Greven, Pfaffelhuber, and Winter [25] that was
applied to A-coalescents in the dust-free case. We speak of the dust-free case if the
semi-ultrametric space has no isolated points, which means that the coalescent tree has
no isolated leaves. Greven, Pfaffelhuber, and Winter [25] also show that their approach is
not directly applicable to A-coalescents with dust. The most elementary example for the
case with dust is the star-shaped coalescent which starts in the partition into singleton
blocks which all merge into a single block at some instant. The associated ultrametric
on IN induces the discrete topology. Here the uniform probability measureson 1,...,n
do not converge weakly as they converge vaguely to the zero measure.

A triple (X, r, ) that consists of a complete and separable metric space (X, ) and a
probability measure p on the Borel sigma algebra on X is called a metric measure space.
For a metric measure space (X,r, i), one can consider the matrix (r(z(4),z(j)))i jen
of the distances between p-iid samples (z(7));en. The distribution of (r(x (), z(j)))i,jen
is called the distance matrix distribution of (X, r, ). By the Gromov reconstruction
theorem (see Theorem 4 of Vershik [51]), there exists a measure-preserving isometry
between the supports of the measures of any two metric measure spaces that have the
same distance matrix distribution, in which case we call them isomorphic.
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We view a random semi-metric p on IN as the random matrix (p(4, j)); jen, and we
call it exchangeable if (p(7, j))i jen is distributed as (p(p(i),p(4))):,jen for each (finite)
permutation p of IN. Under an appropriate condition which we interpret as dust-freeness
in Remark 3.13, Vershik [51, Theorem 5] associates with any typical realization of an
exchangeable (and ergodic) random semi-metric on IN a metric measure space whose
distance matrix distribution is the distribution of this semi-metric. In the next subsection,
we discuss an extension of such a representation to the case with dust.

1.2 The sampling representation

We give a representation for all exchangeable random semi-ultrametrics on IN in
terms of sampling from random marked metric measure spaces. Marked metric measure
spaces are introduced in Depperschmidt, Greven, and Pfaffelhuber [12]. A (R, )-marked
metric measure space is a triple (X, r,m) that consists of a complete and separable
metric space (X,r) and a probability measure m on the Borel sigma algebra on the
product space X x R;. The marked distance matrix distribution of a marked metric
measure space (X, r,m) is defined as the distribution of ((r(z(7),z(J))):jen, (v(7))ien)
where (x(4),v(i));en is an m-iid sequence in X x R;. Marked metric measure spaces
with the same marked distance matrix distribution are called isomorphic.

In the present article, we use marked metric measure spaces to obtain from a random
variable (7,0) that has the marked distance matrix distribution of a marked metric
measure space an exchangeable semi-metric p on IN by

pli,j) = (7, 3) + 0(i) + 0(4)) 1{i # j} -
We call the distribution of ((7,7)); jen the distance matrix distribution of the marked
metric measure space. The basic result in this article (stated in Theorem 3.9 below) is
that every exchangeable semi-ultrametric p on IN can be represented as the outcome of a
two-stage random experiment, where we have the isomorphy class y of a random marked
metric measure space in the first stage, and we sample (p(i, j)); jew from this marked
metric measure space according to its distance matrix distribution in the second stage.

We construct x realization-wise from the exchangeable semi-ultrametric p: the key
idea is to decompose the tree that is associated with a realization of p into the external
branches and the remaining subtree. Here we define that an external branch consists
only of the leaf if that leaf corresponds to an integer that has p-distance zero to another
integer. In the marked metric measure space, the marks encode the external branch
lengths, and the metric space describes the remaining subtree. We call the semi-
ultrametric dust-free if the external branches all have length zero a.s. In this case, the
marked metric measure space can also be replaced by a metric measure space (as in
Corollary 3.12). We prove Theorem 3.9 in Section 10. In Section 2, we formulate the
decomposition at the external branches in terms of semi-ultrametrics.

The representation for exchangeable semi-ultrametrics from Theorem 3.9 can also
be seen in the more general but less explicit contexts of the ergodic decomposition
(Section 3.5) and the Aldous-Hoover-Kallenberg representation (see e.g. [32, Section
71). In the representation result outlined above, the distance matrix distribution of the
isomorphy class y of the marked metric measure space is the ergodic component in
whose support the realization p lies. The ergodic component is also characterized by y
itself, or in the dust-free case by the isomorphy class of a metric measure space. The
finite analog of the aforementioned ergodic decomposition is that a (discrete) random
tree whose leaves are labeled exchangeably can be obtained by first drawing the random
unlabeled tree and then sampling the labels of the leaves uniformly without replacement.

We mention that Evans, Gribel, and Wakolbinger [22] also decompose real trees into
the external branches and the remaining subtree to give a representation of the elements
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of the Doob-Martin boundary of Rémy’s algorithm in terms of sampling from a weighted
real tree and an additional structure. In [22, Section 7], a sampling representation for
exchangeable ultrametrics is considered (see Remark 10.9).

1.3 Evolving genealogies

In Section 4, we lay the foundation for our study of evolving genealogies by con-
sidering a general time-homogeneous Markov process with values in the space of
semi-ultrametrics on IN; this process describes evolving leaf-labeled trees. Assuming
that the state at each time is exchangeable, we map this process realization-wise to
the processes of the ergodic components. We express these ergodic components as
(isomorphy classes of) metric measure spaces and marked metric measure spaces, and
as distance matrix distributions, respectively. Here we use the representation result
for exchangeable semi-ultrametrics. This approach characterizes the processes of the
ergodic components up to null events only at countably many time points, i. e. as versions,
as we discuss in Remark 4.4. Using the criterion of Rogers and Pitman [46, Theorem 2],
we deduce that these image processes are also Markovian, and we describe them by
well-posed martingale problems. This is an example of Markov mapping in the sense of
Kurtz [37], and Kurtz and Nappo [38].

In Sections 5 - 6, we study a concrete Markov process with values in the space of
semi-ultrametrics, namely the process given by the evolving genealogical trees in a
lookdown model with simultaneous multiple reproduction events. Lookdown models
were introduced by Donnelly and Kurtz [15, 16] to represent measure-valued processes
along with their genealogy, see also e.g. Etheridge and Kurtz [18] and Birkner et al.
[8]. A lookdown model can be seen as a (possibly) infinite population model in which
each individual at each time is assigned a level. The role of this level is model-inherent,
namely to order the individuals such that the restriction of the model to the first finitely
many levels is well-behaved (i. e. only finitely many reproduction events are visible
in bounded time intervals) and that the modeled quantity (e.g. types, genealogical
distances) is exchangeable. In [16] and in the present article, the level is the rank among
the individuals at the respective time according to the time of the latest descendant.
Although the levels in finite restrictions of the lookdown model differ from the labels
in the Moran model, the processes of the unlabeled genealogical trees coincide which
is used to study the length of the genealogical trees in Pfaffelhuber, Wakolbinger, and
Weisshaupt [44] and Dahmer, Knobloch, and Wakolbinger [11].

In Section 7, we remove the labels from the evolving genealogical trees in the
infinite lookdown model by applying the result from Section 4 to the process from
Sections 5-6. We call the processes of the ergodic components tree-valued Fleming-Viot
processes, regardless which one of the three state spaces we use. The tree-valued
Fleming-Viot process with values in the space of isomorphy classes of metric measure
spaces is introduced in the case with binary reproduction events (which is associated
with the Kingman coalescent) by Greven, Pfaffelhuber, and Winter [26] as the solution
of a well-posed martingale problem that is the limit in distribution of corresponding
processes read off from finite Moran models. In [26, Remark 2.20], a construction
of (a version of) this process from the lookdown model of Donnelly and Kurtz [15] is
outlined. The aim in the present article regarding tree-valued Fleming-Viot process is the
generalization to the case with dust. We remark that tree-valued Fleming-Viot processes
with mutation and selection are studied in Depperschmidt, Greven, and Pfaffelhuber
[13, 14] where the states are isomorphy classes of marked metric measure spaces and
the marks encode allelic types. In the present article, the marks encode lengths of
external branches. We consider only the neutral case, and we describe genealogies
without using types.
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In Section 8, we show continuity properties of the semigroups of tree-valued Fleming-
Viot processes and that the domains of the martingale problems for them are cores. In
Section 9, we show that tree-valued Fleming-Viot processes converge in distribution to
equilibrium.

While we construct versions of tree-valued Fleming-Viot processes in the present arti-
cle using the representation result, the full sample paths are constructed by techniques
specific to the lookdown model in the companion article [29].

1.4 Additional related literature

Aldous [1] represents consistent families of finite trees that satisfy a “leaf-tight”
property by random measures on ¢; (and random subsets of ¢;). Kingman’s coalescent
is given as an example in [1]. The “leaf-tight” property corresponds to the absence of
dust. A representation for exchangeable hierarchies in terms of sampling from random
weighted real trees is given by Forman, Haulk, and Pitman [23]. There are many other
representation results for exchangeable structures in the literature. For instance, by
the Dovbysh-Sudakov theorem, see Austin [2] for a proof based on a representation
for exchangeable random measures, jointly exchangeable arrays that are non-negative
definite can be represented in terms of sampling from the space L,[0,1] x R.

The genealogy in the lookdown model is further studied in Pfaffelhuber and Wakol-
binger [43]. Kliem and Lohr [35] further study marked metric measure spaces. In their
article, tree-valued A-Fleming-Viot processes in the dust-free case is also mentioned.
Kliem and Winter [36] use marked metric measure spaces to describe trait-dependent
branching processes. In the context of measure-valued spatial A-Fleming-Viot processes
with dust, Véber and Wakolbinger [50] work with a skeleton structure. Functionals of
coalescents like external branch lengths have also been studied, see for example [41].
Also the time evolution of such functionals has been studied for evolving coalescents,
see for example [33, 10].

Bertoin and Le Gall [5, 6, 7] represent =-coalescents in terms of sampling from flows
of bridges from which they also construct measure-valued Fleming-Viot processes. They
also consider mass coalescents. Mass coalescents (see e.g. Chapter 4.3 in Bertoin [4])
also describe genealogies without labeling individuals. In Remark 7.2, we discuss that
the Fleming-Viot process with values in the space of distance matrix distributions can
be constructed from the dual flow of bridges. We also mention the work of Labbé [39]
where relations between the lookdown model and flows of bridges are studied.

2 Distance matrices and their decompositions

We write N = {1,2,3,...}. Let 4l denote the space of semi-ultrametrics on IN and let
® denote the space of semimetrics on IN. We view il and © as subspaces of R™ in that
we do not distinguish between a semi-metric p and the distance matrix (p(7,7)): jen. We
endow R™ with a complete and separable metric that induces the product topology
when R is equipped with the Euclidean topology. Using the map

a:RY xBRY 5 RY, (r,0) = ((0(0) + (i, 5) +v() 1{i # 5})ijen

we define the space
= {(r,v) €@ x RY : a(r,v) € U}

whose elements we call decomposed semi-ultrametrics or marked distance matrices.
~ 2

As above, we view © x RY and 4l as subspaces of RY x R™ which we endow with a

complete and separable metric that induces the product topology.
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We define the function

T:4—RY, H(l inf i,j) ,

+3 P 2 jem\fi) p(i, j) e

and we denote by 5 the function that maps a semi-ultrametric p € 4 to the decomposed
semi-ultrametric (r,v) € 4 that is given by v = T(p) and

r(i, ) = (p(i,§) — v(@) = v(7)) 1{i # j}

for 7,5 € IN. The interpretation of these functions is given in Remark 2.2 below from
which it follows that r is a tree-like semi-metric (i. e., r is 0-hyperbolic, see e.g. [21]).
Alternatively, it can be easily checked that r satisfies the triangle inequality.

The function « retrieves the semi-ultrametric from a decomposed semi-ultrametric.
For instance, a o (3 is the identity map on $l.

Remark 2.1. Let us agree on the following notation. When we identify the elements
of a semi-metric space (X, p) that have p-distance zero to obtain a metric space (X', p),
we refer by each element z € X also to the associated element of X’. Furthermore, we
define the metric completion of the semi-metric space (X, p) as the metric completion of
(X", p).
Remark 2.2. Let p € 4, (r,v) = B(p), and let (T,d) be the real tree associated with p
as in Remark 1.1 with X = IN. Then v(i) = Y(p)(¢) can be interpreted as the length,
and (i,v(¢)) as the starting vertex of the external branch that ends in the leaf (i,0) of
T. Here we define that this external branch consists only of the leaf if there exists
k€ N\ {i} with p(i, k) = 0. Furthermore, the map ¢(i) = (¢,v(¢)) from (N, r) to (T,d) is
distance-preserving.

In this sense, the map 5 : p — (r,v) decomposes the coalescent tree that is given by
p into the external branches with lengths v and the subtree spanned by their starting
vertices whose mutual distances are given by r. More generally, any element of {l can be
seen as a decomposed coalescent tree.

We call a semi-ultrametric p € 4l dust-free if T(p) = 0, that is, if all external branches
in the associated tree have length zero so that there are no isolated leaves.

3 Sampling from marked metric measure spaces

3.1 Preliminaries

Recall the definitions of metric measure spaces, marked metric measure spaces, and
their (marked) distance matrix distributions from Sections 1.1 and 1.2. Also recall that
two metric measure spaces are said to be isomorphic if they have the same distance
matrix distributions. We denote the set of isomorphy classes of metric measure spaces
by M and we endow it with the Gromov-weak topology in which metric measure spaces
converge if and only if their distance matrix distributions converge. Greven, Pfaffelhuber,
and Winter [25] showed that IM is then a Polish space.

Analogously, two marked metric measure spaces are said to be isomorphic if they have
the same marked distance matrix distributions. We denote the set of isomorphy classes
of marked metric measure spaces by M and we endow it with the marked Gromov-weak
topology in which marked metric measure spaces converge if and only if their marked
distance matrix distributions converge weakly. This makes M a Polish space, as shown
by Depperschmidt, Greven, and Pfaffelhuber [12].

We denote the distance matrix distribution of the isomorphy class of a metric measure
space x € M by vX. We denote the marked distance matrix distribution of y’ € M by vX,
so that «(vX') is the distance matrix distribution of x/, in accordance with the definition
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in Section 1.2. (We denote by ¢(£) = £ o p~! the pushforward measure of a measure ¢ on
a measurable space F under a measurable function ¢ on E.)

Remark 3.1. We call a marked metric measure space (X, r, m) dust-free if the probability
measure m is of the form m = p ® Jy for a probability measure i on the Borel sigma
algebra on X. Then the distance matrix distribution a/(v(X:7:#®%)) equals the distance
matrix distribution »(X"#) of the metric measure space (X,r, ;). We call (X,r, ) the
metric measure space associated with the dust-free marked metric measure space
(X,r,1u®dp).

Let S, denote the group of finite permutations on IN. We define the action of S, on
© and ® x RY, respectively, by p(p) = (p(p(i),p(5)))i,jen and

p(r,v) = ((r(p(i), p(7)))ijen, (v(p(i)))iex)

forpe Sw, p€D, (r,v) €D x ]R]E. A random variable, for instance with values in © or
D x Rﬂj, is called exchangeable if its distribution is invariant under the action of the
group Seo.

Remark 3.2. Exchangeable random variables with values in ® or ® x ]R]}\rI can be seen
as jointly exchangeable arrays, see e. . [32, Section 7]. Also recall that the definition of
exchangeability does not change when S, is replaced with the group of all bijections
from NN to itself, as the finite restrictions determine the distribution of a random variable
in® or ® x RY.

Remark 3.3. The coalescents associated by (1.1) with the exchangeable semi-ultra-
metrics on IN form a larger class of processes than the so-called exchangeable coales-
cents defined in e. g. Section 4.2.2 of Bertoin [4]. For example, the coalescent process
associated with an exchangeable semi-ultrametric on IN needs not be Markovian.

3.2 Tree-like marked metric measure spaces

We consider the space
U={xeM:vX) =1}

of ultrametric measure spaces which is a closed subspace of M, as shown in [26,
Lemma 2.3]. By the same argument, the space

TU:{Xe]M:a(VX)(ﬂ)zl}.

is a closed subspace of IM. It contains the marked metric measure spaces with ultrametric
distance matrix distribution. Following e. g. [25, 26] and Remark 1.1, we call the elements
of U trees. Also the elements of U may be called trees (as in Remark 10.8 below).

Proposition 3.4 below states that a. e. realization of a {l-valued random variable with
the marked distance matrix distribution of a marked metric measure space in U is the
decomposition of a semi-ultrametric by the map g from Section 2. As a consequence,
the isomorphy class of a marked metric measure space in U is determined already by its
distance matrix distribution.

Proposition 3.4. Let (X, 1/, m) be a marked metric measure space with o/(v"" ™)) (4) =
1. Let (r,v) be a {I-valued random variable with distribution v*""-™) Then

(r,v) = Boa(r,v) a.s.

The proof is deferred to Section 10.1.

Remark 3.5. We call a semi-ultrametric p € $ dust-free if Y(p) = 0. It can be seen as a
consequence of Proposition 3.4 that (the isomorphy class of) a marked metric measure
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space (X,r,m) in U is dust-free (as defined in Remark 3.1) if and only if a random
variable with distribution a(v(*X:"™)) is a.s. dust-free. In particular, a random variable
with the distance matrix distribution of a metric measure space is a.s. dust-free.

3.3 Marked metric measure spaces from marked distance matrices

In this subsection, we define functions by which we construct a (marked) metric
measure space from a (marked) distance matrix. An interpretation of these functions
is given in Remark 3.8 below. In Remark 3.16, we state their role in the context of the
ergodic decomposition.

First we define the function ¢ : ® — M that maps p € © to the isomorphy class of
the metric measure space (X, p, 1), given as follows: (X, p) is the metric completion of
(IN, p). The probability measure p is defined as the weak limit of the probability measures
n~t 3" | &; as n tends to infinity, if this weak limit exists. If the limit does not exist,
we define m arbitrarily, let us set ¢ = §;. Furthermore, we denote by ©* the subset of
distance matrices p € © such that the weak limit in the definition above exists.

Analogously, we define the function ¢ 1D X Rﬂj — M that maps (r,v) to the isomorphy
class of the marked metric measure space (X, r,m), where (X, r) is the metric completion
of the semi-metric space (IN,r) and m is the weak limit of the probability measures
Y 0,e)) on X x Ry if this weak limit exists, else we set m = d(; o). We denote
by ©* the subset of marked distance matrices (r,v) € ® x RY such that the weak limit
in the definition above exists.

We call i and m in the definitions of ¢ and ¢ also sampling measures.

Remark 3.6. Let (r,v) € © x RY. Then (r,v) € ©* implies r € ©*. For a representative
(X,r,m) of 1(r,v), the isomorphy class of (X,r, m(- x Ry)) equals ().
Proposition 3.7. The functions v and w are measurable.

The proof, in which we write ¢ and 1[) as limits of continuous functions, is deferred to
Section 10.2.

Remark 3.8 (An interpretation of ¥ and 1[)). For p € ©* N4, the probability measure
in the ultrametric metric measure space ¢ (p) charges each ball with the asymptotic
frequency of the corresponding block of the coalescent which is associated with p by
(1.1).

Similarly, for (r,v) € ©* N4, let (X,r,m) be the representative of ¢(r,v) from the
definition of ¢). We consider the completion (7', d) of the real tree (T, d) associated with
(r,v) as in Remark 2.2, and the extension ¢ : X — T of the isometry ¢ from Remark 2.2.
Then the image measure ;1 := p(m(- x R )) charges each region of 7' with the asymptotic
frequency of the integers that label the leaves of T' that are the endpoints of external
branches that begin in that region.

3.4 The sampling representation

The basic result in this paper is stated in Theorem 3.9 below. Here we consider an
exchangeable random semi-ultrametric p on IN, and we assert existence of a random
variable y with values in the space of isomorphy classes of marked metric measure
spaces that has the following property: Let p’ be a random variable whose conditional
distribution given y is the distance matrix distribution of x. Then the random variables p
and p’ have the same (unconditional) distribution. (In the language of the theory of ran-
dom measures, this means that the distribution of p is equal to the first moment measure
Ela(vX)]. Thatis, E[[ a(vX)(dp’)¢(p')] = E[¢(p)] for each bounded measurable ¢.)

Theorem 3.9. Let p be an exchangeable l-valued random variable. Let y = Yo B(p).
Let p' be a $l-valued random variable whose conditional distribution given x is a(vX).
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Then:

(i) B(p) € D* a.s.

(ii) p and p' are equal in distribution.
(i) x = o B(p') a.s.

Assertion (i) above states that for a typical realization of p and its decomposition 3(p),
the sampling measure m in the definition of z/?(ﬂ (p)) in Subsection 3.3 is the weak limit of
the uniform probability measures therein. Assertion (iii) states that the realization of
can typically be reconstructed from the realization of p’. We interpret the reconstruction
map 1& o f in terms of the ergodic decomposition in Remark 3.16. We prove Theorem 3.9
in Section 10.4. We give two proofs of Theorem 3.9(i). In one of them, the de Finetti
theorem yields the aforementioned sampling measure m as the directing measure of an
exchangeable sequence.

Remark 3.10. In the context of Theorem 3.9, (p, «(vX)) and (p’, a(vX)) are equal in
distribution. Hence, a(vX) is a regular conditional distribution of p given a/(vX).

We also note the following uniqueness property which is proved in Section 10.3.

Proposition 3.11. Let x and \’ be U-valued random variables. Let p be a \-valued
random variable with conditional distribution «(vX) given x, and let p' be another
$l-valued random variable with conditional distribution a(uX') given x’. Then p and p'
are equal in distribution if and only if x and x’ are equal in distribution.

(In terms of first-moment measures, Proposition 3.11 says that y and x’ are equal in
distribution if and only if E[a(vX)] = E[a(vX")].)

The aim of the present paper is the treatment of the case with dust. In the dust-free
case, we need not decompose the semi-metric p by the map 8. Instead, we can work
directly with the map v from Subsection 3.3. Theorem 3.9 then reduces to the setting of
metric measure spaces as follows:

Corollary 3.12. Let p be an exchangeable {-valued random variable that is a. s. dust-
free. Let x = ¢(p). Let p’ be a {-valued random variable whose conditional distribution
given x is vX. Then:

(i) p€®* a.s.
(ii) p and p' are equal in distribution.

(i) x = (o) a.s.

Proof. This is immediate from Theorem 3.9 and Remarks 3.1, 3.5, and 3.6. O

Remark 3.13. The assertions of Corollary 3.12 are closely related to Vershik [51]: Con-
dition (4) in [51, Theorem 5] is a necessary and sufficient condition for an exchangeable
(and ergodic) random semi-metric to have the distance matrix distribution of a metric
measure space. By Remark 3.5, the marked metric measure space x in Theorem 3.9 is
a.s. dust-free if and only if p is a.s. dust-free. Hence, for a semi-ultrametric p, condition
(4) in [51] is equivalent to dust-freeness. In the dust-free case, the metric measure
space associated with x as in Remark 3.1 is the completion of a typical realization of
the semi-metric, endowed with the probability measure given by the asymptotic block
frequencies of the associated coalescent (as in Remark 3.8). This can also be deduced
from [51, Equation (9)]. Assertion (iii) can be proved by Proposition 10.5 below which is
related to [51] as stated in Remark 10.6.
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3.5 Interpretation as ergodic decomposition

In this subsection, we interpret the representation from Theorem 3.9 as the ergodic
decomposition of an exchangeable distribution on the semi-ultrametrics on IN.

We denote by U/ the space of exchangeable probability distributions on 4, and we
endow U with the Prohorov metric dp which is complete and separable. We will also
consider the subspace

Uee = {5 eU: (= (I/(X’T’m)) for some marked metric measure space (X, r, m)}

of distance matrix distributions of marked metric measure spaces. The sets (/¢ and U
are in one-to-one correspondence by Proposition 3.4. Hence, also the elements of /"
can be seen as trees.

We define the invariant sigma algebra 7 on il as the sigma algebra that is generated
by those Borel sets B C 4 that satisfy B = {(p(p(i),p(j)))i,jen : p € B} for all finite
permutations p € S,. A distribution £ on i is called ergodic (with respect to the action
of the group S, of finite permutations) if £(I) € {0,1} forall T € 7.

Proposition 3.14. The distance matrix distribution a(v(*""™) of a marked metric
measure space (X, r,m) is invariant and ergodic with respect to the action of the group
of finite permutations.

Proof. This is analogous to [51, Lemma 7]. For I € Z, the Borel set I C (X x RN that
given by

T ={ (@), v(i)ien € (X x RN - (000) + r(2(0), 2(7)) + 0G) 1{i # 3}y en €1}
is invariant under finite permutations, that is,
[= {(m(p(i)), v(p()))ien : (z,0) € f} for all p € Sc.
From the ergodicity of an m-iid sequence (z(i),v(i));en, we obtain
a (MX"“"")) (=P ((x,'u) € f) e {0,1}. O

Proposition 3.15. The subset U°"® C U consists of the ergodic distributions.

Proof. By Theorem 3.9(ii), each element of U/ is a mixture of elements of ¢/**¢. The
assertion follows by Proposition 3.14 and as the ergodic distributions in I/ are extreme
in the convex set U (see e.g. [32, Lemma Al.2]). O

Remark 3.16. Theorem 3.9 decomposes the distribution of the exchangeable i-valued
random variable p’ into ergodic components in the sense of e.g. Theorem Al.4 in
Kallenberg [32]. The function

C:U—=>UT8 pa (Vlz’oﬁ(ﬁ))

is a decomposition map in the sense of Varadarajan [49, Section 4] so that typically, ¢(p’)
is the ergodic component in whose support the realization p’ lies. Note that this ergodic
component is characterized by the isomorphy class x = 'LZAJ o B(p’) of a marked metric
measure space, and in the dust-free case also by the isomorphy class ¢ (p’) of a metric
measure space. Some further references on the ergodic decomposition are given e. g. in
[32, p.475].

By the following proposition, ((/'8,dp) is Polish which will be applied in [28].
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Proposition 3.17. The subspace U®*¢ is closed in (U, dp).

Proof. Let (p™,n € IN) be a sequence of {-valued random variables that converges in
distribution to some il-valued random variable p. Assume that for each n € N, the
distribution of p” lies in U*¢. Then p" has ergodic distribution by Proposition 3.14.
Lemma 7.35 of [32] says that p" is dissociated, which means that for any disjoint
I,...,I; C IN, the restrictions (p"(¢,7))ijer,s ---» (p"(%,7))i jer, are independent. As this
property is preserved under the limit in distribution, it also holds for p, and another
application of Lemma 7.35 of [32] and yields that p has ergodic distribution. The
assertion follows by Proposition 3.15. O

4 Application to tree-valued processes

Using the function @[A} from Section 3.3, we map a Markov process (p;,t € R4) whose
states are exchangeable i-valued random variables to a process with values in the
space of isomorphy classes of marked metric measure spaces. At each time, the state
of the image process is the marked metric measure space from the representation
(Theorem 3.9) of the state of the {-valued process. We also consider the process of the
distance matrix distributions of these marked metric measure spaces. In the dust-free
case, we can also work with isomorphy classes of metric measure spaces and the map
as in Corollary 3.12.

In the proof of Theorem 4.1 below, we use the criterion of Rogers and Pitman [46,
Theorem 2] to show that also the image processes are Markovian. A martingale problem
for the {-valued process (p;,t € Ry) or the {I-valued process (8(p;),t € Ry) yields a
martingale problem for the respective image process.

The so-called polynomials and marked polynomials, introduced in [25, 12] have been
used as domains of martingale problems in e.g. [26, 13, 14]. We recall them here,
adapting the definition to our present use of the marks. The uniform continuity of
the derivative in the definitions of C,, and én below will turn out useful in [28]. For
n € IN, we write [n] = {1,...,n} for n € N, and we denote by +, the restriction from
RN x RN to R* x R™, Yu(r,v) = ((r(3,5))i,jem)> (v(i))iem)). We denote also by -, the
restriction from RN to R"’, Yn(p) = (p(i,7))ijen)- Let C, denote the set of bounded

differentiable functions R"* — R with bounded uniformly continuous derivative. For
¢ € C,, we denote also by ¢ the function ¢ o v, : RN R, and we call the function
U — R, x — vX¢ the polynomial associated with ¢. (Here and at other places, we use
the notation £f = [ &£(dx)f(x) for a measure ¢ and an integrable function f, and we view
measures also as functionals on spaces of integrable functions.) Similarly, we denote by
CAn the set of bounded differentiable functions R® x R™ — R with uniformly continuous
derivative. For ¢ € C,., we denote also by ¢ the function ¢ o v, : R™ x RN — R, and we
call the function U — R, x — vX¢ the marked polynomial associated with ¢. (Usually,
the argument (r,v) of a function ¢ € C will be a marked distance matrix.) We write
€=U, enCn and € = J,, C,. We denote the set of polynomials by

N={U—>R,x—vX¢:¢cC},
the set of marked polynomials by

ﬂz{@—)R,xb—)u"¢:¢€C},
and we define the set of test functions

¢ ={U" SR, E Ep:deC).
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For a metric space E, let My, (FE) denote the set of bounded measurable functions
E — R. For a subset 2 C My(F) and an operator G : 2 — M,,(E), we mean by a solution
of the martingale problem (G, 2) a progressive E-valued process (X;,t € R) such that
for every f € 2, the process

X0 - /0 G (X.)ds

is a martingale with respect to the filtration induced by (X;,¢ € R, ), cf. Ethier and Kurtz
[19, p.173].

Theorem 4.1. Let (p;,t € R) be a U-valued time-homogenous Markov process. As-
sume that for each t € R,, the random variable p,; is exchangeable. Let A : C —
My(RN*) and A : ¢ — My(RN x RN) be operators. Define the U-valued process
(xt,t € Ry) := (¥(pe),t € Ry), the U-valued process (Xi,t € Ry) := (4(B(pr)),t € Ry),
and the U°"8-valued process (&,t € Ry) := (a(vXt),t € Ry). Then the following two
assertions hold:

(i) The process (X:,t € R, ) is Markovian. If the {|-valued process (3(p;),t € R..) solves
the martingale problem (A,C), then ({:,t € R, ) solves the martingale problem
(B,1I), given by

Ba(x) = vX (flqb)
forall ¢ € C with associated polynomial ®, and all xy € U.

(ii) The process (&;,t € Ry) is Markovian. If (p;,t € R.) solves the martingale problem
(A,C), then (&,t € Ry) solves the martingale problem (C, %), given by

CYU(£) =¢(A9)
for all £ € U°"® and ¢ € C, and the function ¥ € €, £' — &'V,

Assertion (iii) below holds under the additional assumption that p; is a.s. dust-free for
eacht € R,.

(iii) The process (xi,t € R4 ) is Markovian. If (p;,t € R,) solves the martingale problem
(A,C), then (x:,t € Ry) solves the martingale problem (B,1I), given by

Be(x) = v*(A¢)
for all ¢ € C with associated polynomial ®, and all x € U.

The proof of Theorem 4.1 can be found in Section 10.5.

Remark 4.2. The process (5(p:),t € R4) in Theorem 4.1 is Markov. This follows as
(pt,t € Ry) is Markov by assumption and as p; is determined by 5(p:) via p: = a(B(p:))
so that

E[f(B(pu))|(B(ps))s<il = EIf (Blpu))|(ps)s<t] = Ef(B(pu))|pe] = ELf(B(pu))1B(p:)]  a.s.

for all s <t < u and bounded measurable f : {l - R. This is an example for Dynkin’s
criterion [17, Theorem 10.13] for a function of a Markov process to be Markov.

Remark 4.3. In Theorem 4.1, if p, is dust-free for some ¢t € R, then x; is (by Theo-
rem 3.9 and Remark 3.5 the isomorphy class of a) dust-free marked metric measure
space, x: is the (isomorphy class of the) metric measure space associated (as in Re-
mark 3.1) with (any representative of) x;, and we have & = vXt. The process (x:,t € Ry)
is relevant only in the dust-free case: If p; is not dust-free, then ¢ (p;) is just the arbitrary
element of M from the definition of ¥ in Section 3.3.
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Remark 4.4. In Theorem 4.1, we characterize only versions of the processes (x:,t € R),
(xt,t € Ry), and (&,t € Ry). That is, we do not make assertions on the full sample paths
but only on the states at countably many times.

From Theorem 3.9, we obtain (p;) € ®* (and in the dust-free case also p; € D* by
Corollary 3.12) only for a fixed time ¢ (or countably many ¢) on an event of probability 1.
This means that the uniform probability measures on the starting vertices of the external
branches that end in the first n leaves of the tree associated with the semi-ultrametric p;
are shown to converge only at countably many times ¢ on an event of probability 1. For
B(p:) € D*, a realization ¥; = ¢)(3(p;)) can be considered as an ergodic component. At
the other times ¢, we do not exclude that §; = 9)(3(p¢)) is just the arbitrary element of IM
with probability measure §(; oy in the definition of zﬁ in Section 3.3.

Theorem 4.1 yields in particular the semigroups of the processes (\:,t € Ry), (x¢,t €
R.), and (&,t € Ry ). Also the martingale problems in Theorem 4.1 characterize only
versions of these processes.

For the particular example of the process (p;,t € R, ) in Sections 5 - 9, it is shown
in [29] that B(p;) € D* (and p; € ©* in the dust-free case) also holds simultaneously for
all £ € Ry on an event of probability 1 (see Theorems 3.1(i) and 3.10(i), and Remarks
4.4 and 4.13 in [29]). This allows to construct the full sample paths (Section 4 in [29]).
These results are obtained in [29] by techniques specific to the lookdown model.

Remark 4.5. Theorem 4.1 is an example for Markov mapping. To show that the image
processes (Y(8(ps)),t € Ry), (&,t € Ry), and (¢(ps),t € R.) are Markovian, we use the
simple criterion of Rogers and Pitman [46, Theorem 2] as this criterion is formulated
in terms of the abstract semigroups of the processes, which fits to our assumption
that (p:,t € R4) is a general time-homogenous Markov process whose states p; are
exchangeable.

A criterion for the Markov property of the image processes in terms of martingale
problems is given in Corollary 3.5 of Kurtz [37] which requires more assumptions,
including uniqueness for the martingale problem for (p;,¢t € R;) and existence of
solutions of the martingale problems for the image processes. Corollary 3.5 of [37]
would also yield uniqueness for the martingale problems for the image processes.

In the present paper, we use martingale problems only to provide additional charac-
terizations of the processes under consideration. In Proposition 7.1, we show uniqueness
for the martingale problems for the image processes directly by duality for the concrete
examples from Section 7.

Remark 4.6. In particular in Sections 8 — 9, 11.3 and in [28], we need convergence
determining (or at least separating) sets of test functions. As in [40, 25, 12], the sets II
and IT are convergence determining in U and U, respectively. The argument from [40,
Corollary 2.8] also applies for ©": The algebra C generates the product topology on RN,
By a theorem due to Le Cam, see e.d. [40, Theorem 2.7] and the references therein, it
follows that C is convergence determining in 4. Hence, ¥ generates the weak topology
on s, As Il is an algebra (see [25, 12]) and by definition of /'8, also ¥ is an algebra.
Again by [40, Theorem 2.7], it follows that ¢ is convergence determining in /8.

Remark 4.7. The set of polynomials II' = {U — R,y — a(vX)¢ : ¢ € C} is separating
on U. This follows from Propositions 3.4 and 10.5 as in the proof of Proposition 3.11.
Nevertheless, we work with the space II of test functions on IM as IT’ is not convergence
determining, a counterexample can be constructed from [25, Example 2.12(ii)].

5 Genealogy in the lookdown model

In this section, we define a Markov process (p;,t € R4 ) to which we will later apply
Theorem 4.1. In Subsection 5.1, we read off a realization of such a process from a
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population model that is driven by a deterministic point measure . In Subsection 5.2,
we let n be a Poisson random measure, and we study further properties of (p;,t € Ry ) in
Subsection 5.3. We remark that for the lookdown model of Donnelly and Kurtz [15], the
process of the evolving genealogical distances and its martingale problem are considered
in Remark 2.20 of Greven, Pfaffelhuber, and Winter [26].

5.1 The deterministic construction

We denote by P the set of partitions of IN. We endow P with the topology in which a
sequence of partitions converges if and only if the sequences of their finite restrictions
converge. For n € IN, we denote by P, the set of partitions of [n] = {1,...,n}. We denote
the restriction map from P to P, by ~,, thatis, y,(7) = {BNn|: B € n}\ {0}. Recall
that other restriction maps, e.g. from R™ — R"" are also denoted by ~,. Moreover, we
denote by 0,, = {{1},...,{n}} the partition in P,, that consists of singletons only, and by
P ={m € P : y,(mw) # 0,} the set of partitions of IN in which the first n integers are
not all in different blocks. Furthermore, for 7 € P, we denote by By (7), B2(7),. .. the
enumeration of the blocks of 7 with min B; (7)) < min By(7) < .... For i € IN, we denote
by 7(¢) the integer j that satisfies i € B;(m).

We use a lookdown model as the population model. In this model, there are countably
infinitely many levels which are labeled by IN, and each level is occupied by one particle
at each time ¢ € R,. The particles undergo reproduction events which are encoded
by a simple point measure 7 on (0,00) x P. A simple point measure is a purely atomic
measure whose atoms all have mass 1. Let us impose a further assumption on 7, namely

n((0,t] x P") < oo forallt € (0,00) and n € IN. (5.1)

The interpretation of a point (¢, ) of i) is that the following reproduction event occurs:
At time t—, the particles on the levels i € IN with ¢ > #m are removed. At time ¢, for
each i € [#], the particle that was on level i at time ¢{— assumes level min B;(7) and has
offspring on all other levels in B;(7). Thus, the level of a particle is non-decreasing as
time evolves. Condition (5.1) means that for each n € IN, only finitely many particles
jump away from the first n levels in bounded time intervals.

For all 0 < s < t, each particle at time ¢ has an ancestor at time s. We denote

by As(t,7) the level of the ancestor at time s of the particle on level ¢ at time ¢ such
that the maps s — A,(t, i) and t — Ag(t,i) are cadlag. Then A,(¢,4) is well-defined as
s — A;_s(t,4) is non-increasing.
Remark 5.1. We will use that the trajectories of the particles are non-crossing in the
following sense: For any times s < ¢ and particles x,y on levels i, < i, at time s € R,
particle z is still alive if particle y is still alive, in which case the particles x and y occupy
levels j, < j,. In particular, if infinitely many particles at time s survive until time ¢, then
all particles at time s survive until time ¢.

We are interested in the process of the genealogical distances between the particles
that live at the respective times. Let py € R, (We can assume pg € il here, but differen-
tiability will be more elementary in the larger space, as a matter of taste.) We interpret
po(i,j) as the genealogical distance between the particles on levels i and j at time 0. We
define the genealogical distance between the particles on levels ¢ and j at time ¢ by

(i) 2t — 2sup{s € [0, 1] : As(t, i) = As(t, )} if Ao(t, i) = Ao(t, j)

P\, ) = . .
2t + p()(A() (t, Z), A()(tmj)) else.

In words, the genealogical distance between two particles at a fixed time is twice the

time back to their most recent common ancestor, if such an ancestor exists, else it is
given by the genealogical distance between the ancestors at time zero.
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Remark 5.2. If pg € 4, then p, € U for each t € R,. Indeed, a semi-metric p on IN is a
semi-ultrametric if and only if for each s € Ry, an equivalence relation ~ on IN is given
by i ~ j:& p(i,j) < s. If this property holds for py, then the definition of p; readily yields
that it also holds for p;.

We also describe the process (p;,t € R4 ) in a more formal way which will be useful
for the description by martingale problems in Section 5.2. With each partition 7= € P,
we associate a transformation R" — R"’, which we also denote by m, by

m(p) = (p(m (), 7(5)))i jen)- (5.2)

Here 7(i) denotes the integer k such that 7 is in the k-th block, when blocks are ordered
according to their minimal elements. Note that for each reproduction event encoded by
a point (s, ) € 7, the corresponding jump of the process (p;, ¢ € R ) can be described by

Yo (T) (Y (Ps—)) = Yn(ps)- (5.3)

In particular, v, (7) = 0,, if * € P\ P", and 0,, acts as the identity on R"*. By assump-
tion (5.1), there are only finitely many reproduction events in bounded time intervals
that result in a jump of the process (y,(p:(3,5)),t € Ry). Between such jumps, the
genealogical distances grow linearly with slope 2, that is, p;(i,5) + 2s = pi4s(i,j) for
distinct i, j € [n] and ¢, s € Ry with n((¢,¢t + s] x P™) = 0.

Remark 5.3. Schweinsberg [48] constructs the Z-coalescent analogously from a point
measure. The population model described in this section can be seen as the population
model that underlies the dual flow of partitions in Foucart [24]. A lookdown model with
a reproduction mechanism that is different in the case with simultaneous multiple repro-
duction events is studied by Birkner et al. [8]. In this model, a partition m € P encodes
the following reproduction event: Let i; < i2 < ... be the increasing enumeration of the
integers that either form singletons or are non-minimal elements of blocks of 7. For
each j € IN, the particle on level i; moves to the level given by the j-th lowest singleton
of 7 if m has at least j singletons, else the particle is removed. For each non-singleton
block B € 7, the particle on level min B remains on its level and has one offspring on
each level in B\ {min B}. Here the trajectories of the particles may cross: Consider a
partition m € P such that 1 and 2 are in the same block, 4 forms a singleton, and 3 is the
minimal element of a non-singleton block. If the reproduction event encoded by 7 occurs
at time ¢ € (0, 00), then there exists s € (0,¢) such that the particle on level 3 at time s is
on level 3 also at time ¢, and the particle on level 2 at time s jumps to level 4 at time ¢.
Such a crossing cannot occur in our population model by Remark 5.1.

5.2 The =-lookdown model

The population model from the Subsection 5.1 will now be driven by a Poisson random
measure n on (0,00) x P as in Schweinsberg [48], Bertoin [4], and Foucart [24].

To define this Poisson random measure, we briefly recall Kingman’s correspondence.
For a full account, see e.g. [4, Section 2.3.2]. Kingman'’s correspondence is a one-to-one
correspondence between the distributions of the exchangeable random partitions of IN
and the probability measures on the simplex

A={z=(z1,22,...) 121 > 22 >...>0,]z|; <1},

where |z[; = >, 7. Every x € A can be interpreted as a partition of [0,1] into
subintervals of lengths z1, 9, .. ., and possibly another interval of length 1 — |z|; which
may be called the dust interval. Let Uy, Us,,... be iid uniform random variables with
values in [0, 1]. The paintbox partition associated with z is the exchangeable random
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partition of IN where two different integers ¢ and j are in the same block if and only if
U; and U; fall into a common subinterval that is not the dust interval. This construction
defines a probability kernel x from A to P. Conversely, every exchangeable random
partition 7 in P has distribution [, £{(dx)x(x,-) for some distribution £ on A. Here z is
the random vector in A of the asymptotic frequencies of the blocks of .

Let = be a finite measure on A. We decompose

= = Zo 4+ Z{0}4p. (5.4)

For i,j € IN with ¢ # j, we denote by Kj ; the partition in P that contains the block {7, j}
and apart from that only singleton blocks. We define a o-finite measure H= on P by

H=(dr) = / K(x,dr) 2], Eo(dz) + E{0} Y Ok, (dr),
A 1<i<j
where |z]2 = (3,cn xf)l/Q.

Let n be a Poisson random measure on (0,00) x P with intensity dt H=(dw). Note
that x(z, P") < (4 )|#|3 for all z € A and n > 2. This follows as in the paintbox partition
associated with z, the probability that two fixed integers belong to the same block is |z|3.
The random point measure 7 thus satisfies condition (5.1) a.s. as

E[n((0,t] x P™)] = /K(:Z:,Pn)|x‘2_250(d$) +E{0}<;‘) < o0 (5.5)

forallt € Ry and n € IN. Hence, we can and will define the population model from
Subsection 5.1 from almost every realization of n and every pg € RN, We also let po be a
R .valued random variable that is independent of . We define the RY .valued process
(pt,t € Ry ) realization-wise from the Poisson random measure 7 and the random initial
state pg as in the preceding subsection.

Proposition 5.4. The process (p;,t € R ) is Markov.

Proof. The description around equation (5.3) implies that for 0 < t¢ < ¢’ and each n € IN,
the conditional expectation of v, (p+) given (ps, s < t) is measurable with respect to p,
and the restriction of 7 to (¢,t'] x P. The assertion follows as n € IN was arbitrary and as
the restrictions of a Poisson random measure to disjoint subsets are independent. O

For eachn € N and 7 € P, \ {0, }, the rate at which reproduction events encoded
by partitions in ~,, ! (7r) = {n’ € P : v, (7’) = 7} occur in the lookdown model is given by
Ar = H=(v,,*()). The rates )\, are calculated explicitly in (6.4) and (6.3) in Section 6.2.
Remark 5.5. The quantity A\, is the coagulation rate ¢, in Section 4.2.1 of Bertoin [4]. It
is related to the quantity Ak, .. k,.s from Schweinsberg [48] by Ax = A\n.ky,... ks, Where
ki,...,k, denote the sizes of the non-singleton blocks of 7, and s =n —k; —... — k.. This
can be seen by a comparison of equations (6.4) and (6.3) with equation (11) in [48]. In
particular, equation (18) in [48] implies that 7 satisfies a.s. condition (5.1).

In the next proposition, we state a martingale problem for the process (p;,t € R4).
2
Recall the set C from Section 4. For ¢ € C and p € RN, we write

0
Vo,2)(p) =2 —(p)- (5.6)
V020 =2 3 550
i#£]
Proposition 5.6. Define an operator A = Agow + Avepr With domain C by

Agrow®(p) = (V9,2)(p)

EJP 23 (2018), paper 41. http://www.imstat.org/ejp/
Page 17/42


http://dx.doi.org/10.1214/18-EJP153
http://www.imstat.org/ejp/

Exchangeable coalescent trees and tree-valued Fleming-Viot processes

and

Areprd(p) = Y Ax(@(7(1(p))) = ¢(p))

TE€PL\{0x}

forn € N, ¢ € C,, and p € RN". Then the stochastic process (pt,t € Ry) solves the
martingale problem (A,C).

Proposition 5.6 follows from the discussion above and the description of the process
(7n(pe),t € R4 ) around equation (5.3). As in [26], the operator Ag,ov reflects the growth
of the genealogical distances between reproduction events that affects them. The
operator A, stands for the jumps of the genealogical distances in reproduction events,
as described by equation (5.3). We omit a formal proof of Proposition 5.6.

Remark 5.7. That the solutions of the martingale problems in Proposition 5.6 and in
Proposition 6.4 below are unique can be shown by the approach from Section 11.3. We
do not use this assertion in the present paper.

5.3 Properties of the genealogy at a fixed time

We consider the process (p;,t € R ) from Subsection 5.2. To apply Theorem 4.1, we
need exchangeability of the random variable p; for each t € R.

Proposition 5.8. Lett € R, and assume that p, is exchangeable. Then p; is exchange-
able.

We prove Proposition 5.8 in Section 11.1.

Remark 5.9. For t € Ry, let (Hgt), s € [0,t]) be the P-valued stochastic process such
that two integers ¢, j € IN are in the same block of H,(f) if and only if p;(4,j) < 2s. Then a
comparison of the Poisson process construction of the =Z-coalescent in [48, Section 3]
with the Poisson process construction from the present section shows that a =-coalescent
up to time ¢ is given by the process (Hgt) ,8 € [0,t)). The distance matrix p; A (2t) can be

retrieved from (Hgt), s €[0,t)) by
pe(i,§) A (2t) = 2inf{s € [0,#] : i and j are in the same block of II{", or s = ¢}

As =-coalescents are exchangeable, it follows that the random variable (p.(7, j) A(2t)) jen
is exchangeable. We remark that the collection of partitions (HE;LS)JO < s <t)is
the dual flow of partitions from Foucart [24] in one-sided time. We also remark that

preservation of exchangeability in the lookdown model is studied in e.g. [15, 16, 8].

For the application of Theorem 4.1, it is also of interest whether the states p; are
a.s. dust-free. Proposition 5.10 formulates the criterion from [48, Proposition 30] in our
present context. We call the finite measure = on A dust-free if

2{0} >0 or / 2], |52 Eo(da) = 0. (5.7)
Proposition 5.10. Let t € (0,00) and assume pg € 4. Then = is dust-free if and only if p;
is a. s. dust-free.

Proof. By Remark 5.2, p; € 4, hence T(p) is well-defined. Clearly, p; is dust-free if and
only if the partition 1Y from Remark 5.9 contains no singletons for all s € (0,¢) N Q.
This holds a.s. if and only if = is dust-free by [48, Proposition 30]. O

6 Decomposition of the genealogical distances

To apply Theorem 4.1(i) to the process (p;,t € Ry ) from Section 5.2, we need to
describe the il-valued process (5(p;),t € Ry) by a martingale problem. A version of
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this process that readily yields a description by a martingale problem is read off from
the lookdown model in this section. We define such a process in Subsection 6.1 for a
deterministic point measure 7 that drives the population model. In Subsection 6.2, we
let  again be the Poisson random measure.

6.1 The deterministic construction

Let 7 be a simple point measure on (0,00) x P (as in Section 5.1). Let (ro,v9) €
RY x RY. We interpret (rg,vp) as a decomposition of genealogical distances at time 0.
Fori e NN, let

Pi)={reP:{i} ¢n}
be the set of partitions of IN in which ¢ does not form a singleton block. If n({s} x
P(As(t,4))) > 0 for some s € (0, ], then we set

ve(1) =t —sup{s € (0,t] : n({s} x P(As(t,4))) > 0},

else we set
ve(1) =t +vo(Ao(t, 1))

The quantity v;(¢) is the time back until an ancestor of the particle on level ¢ at time ¢ is
involved in a reproduction event in which it belongs to a non-singleton block, if there is
such an event, else v;(i) is defined from vy.

We let pg = a(rg,vg) and define the process (p:, t € R4) from 1 and pg as in Subsection
5.1. We set

T, §) = (pe(i,5) — ve(i) —ve(5)) 1{i # j}

fort € R4 and 4,5 € IN. Then (r, v;) can be thought of as a decomposition of the distance
matrix p, in the sense of Section 2. In this decomposition, we remove from the genealog-
ical tree at time t the part between any leaf ¢ and the most recent reproduction event on
the ancestral lineage of this leaf, and we encode the length of this part as the mark v;(i).

Remark 6.1. Consider for this remark the following change (compared to our definition
from Section 5.1) in the definition of the reproduction event encoded by a point (¢, 7) € 7:
For each non-singleton block B;(7), the reproducing particle on level i at time ¢t— dies
and is replaced at time ¢ by its offspring on all the levels in B;(w). Then the quantity
v¢(i) is the age of the particle on level ¢ at time ¢ if this holds for ¢ = 0. Condition (6.2)
below ensures that the times at which the particles on a fixed level are replaced do not
accumulate.

Analogously to Section 5.1, we give another description of the process ((r¢,v¢),t €
R.). Let S, be the set of semi-partitions of [n], that is, the set of systems of nonempty
disjoint subsets of [n]. Every partition is also a semi-partition. However, in a semi-
partition, there can be missing elements, that is, elements of [n] that are not contained
in the union Uo of the blocks of o. By “blocks” we mean the subsets of [n] that are the
elements of 0. From every semi-partition ¢ € S,,, a partition 7 is obtained by inserting
a singleton block for each missing element. We call 7= the partition associated with o,
and we define o (i) = (i) for each i € [n], where 7 (i) is defined in Section 5.1. In order
that equation (6.1) below hold, we associate with each element o of S,, a transformation
R™ x R™ — R"* x R", which we also denote by o, by o(r,v) = (r,v'), where

V(i) = v(o (i) 1{i ¢ Uo}
and
r'(i,§) = (v(o(i)) 1{i € Uo} +r(0(i), () + v(o(5)) 1{j € Uo}) 1{i # j}
fori,j € [n].
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We define the function
G :P—8,, m—={BNn]:Bem#B>2}\{0}.

that removes all singleton blocks from a partition of IN and restricts the semi-partition
obtained in this way to a semi-partition of [n]. For each reproduction event encoded by a
point (s, 7) € n, the corresponding jump of the process ((r;,v;),t € R) can be described
by

Sn (M) (Y (15—, v5—)) = Y (75, V). (6.1)

Here we cannot use the restriction v, (7) (of 7 to [n]) instead of ¢, (7) as we cannot read
off from ~,, (7) which singleton blocks in v, () are also singleton blocks in 7.
We define the set of partitions

P ={meP:q(m) #0}.

We remark that P is the set of partitions of IN in which not all of the first n integers form
singleton blocks, hence it is strictly larger than the set P™. Only reproduction events
that are encoded by a partition in P affect the decomposed genealogical distances on
the first n levels (v, (r¢, v¢),t € Ry). If n) satisfies the condition

" ((0715] x P") < oo forallte (0,00) and n € IN. (6.2)

then there are only finitely many reproduction events in bounded time intervals that
result in a jump of the process (v,(r:,v;),t € Ry). Between such jumps, the matrix
r; is constant, and the entries of the vector v; grow linearly with slope 1, that is,
vy(i) + 5 = vy44(i) for i € [n] and ¢, s € Ry with 5((t,t + s] x P") = 0.

6.2 Stochastic evolution

Now let 1 be the Poisson random measure from Section 5.2 whose distribution is
characterized by some finite measure = on A. Consider the population model from
Subsection 6.1 driven by the Poisson random measure 7. For eachn € Nand o € S,,\ {0},
the rate at which reproduction events encoded by a partition in g, * (o) € P occur is given
by

>\n,cr :HE(ggl(O—))
=/ w(a, o (0)) |ol3 > Solda) + {0} 3 1{K:j € 74(0)}

1<i<j
=[O et el )
i1,...,00 €N
pairwise distinct
+E2{0}1{t =1,k =2} +oo1{Z{0} > 0,4 = 1,k; = 1} (6.3)
where ¢ = #o0, and ki,...,ks; > 1 are the sizes of the subsets in ¢ in arbitrary order,

and = is defined as in (5.4). For the last equality, we consider the paintbox partition
m associated with z € A: With the notation from the beginning of Section 5.2, integers
i,j € [n] are elements of a common subset in ¢, (7) if and only if U; and U; fall into a
common subinterval that is not the dust interval. In particular, i ¢ Ug, () if and only if
U, falls into the dust interval.

Note that the rates A, for 7 € P, \ {0,}, which we discussed already in Remark 5.5,

satisfy
)\71’ HE (’Yn <U{ ) = Z )\n,aa (64)
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where the union and the sum are over all semi-partitions o € S,, with the same non-
singleton blocks as 7. In (6.4), we also use the restriction map ~,, : P — P,. From
equations (6.3) and (6.4), we see that A\(; 933 = Z(A) < oo and Ay < oo forall m €
Pn\{0,}, where 0,, = {{1},...,{n}}. This implies n((0, ] x P") < oo a.s. for all ¢ € (0, 00).
That is, condition (5.1) is a.s. satisfied, as stated in Section 5.2. The condition (5.7) for =
to be dust-free is the condition that A; ({13} = oo. That is, each particle reproduces with
infinite rate if and only if = is dust-free. Hence, if = is not dust-free, then almost every
realization of 7 satisfies condition (6.2). Moreover, if = is not dust-free, then A, , < 0o
foralln € Nand o € S, \ {0} as a consequence of equation (6.3).

Remark 6.2. Consider the case that = is concentrated on {(z,0,0,...): x € [0,1]} C A.
In this case, which corresponds to the A-coalescent, a.s. no simultaneous multiple
reproduction events occur. The measure = is then determined by the finite measure
Ao = w(Ep), where w : A — [0,1],  — z;1. For B C [n] and k = #2B, it then follows

Mg} = /[0 A holda) + (0} 1k = 2} o0 10} > 0.k = 1).

The rates )\, , for o € S,, with #0 > 1 are equal to zero in this case.

Now we consider the R™* x RN-valued process ((ry,v),t € Ry) from Subsection 6.1,
driven by the Poisson random measure 7. The initial state is defined as a RY x RN-valued
random variable (rg,vg) that is independent of 7.

Proposition 6.3. The process ((r:,v:),t € Ry) is Markov.
Proof. This follows by the same argument as for Proposition 5.4. O

Recall the set C from Section 4. For (r,v) € RN x RN and ¢ € C,,, we write
(VY,1)(r,v) = Z i¢(r7 v).
D=2 a0

From the discussion above and the description of the process (v, (r,v;),t € R1) around
equation (6.1), we deduce the next proposition.

Proposition 6.4. Assume that = is not dust-free. Define an operator A= Agrow + flrepr
with domain C by

Agrowd(r,v) = (V'$,1)(r,v)

and

Arcpr¢(ra v) = Z Ao (B(0(yn(r,v))) — ¢(r,v))

ceS,\{0}

forn € N, ¢ € C, and (r,v) € RN x RN. Then the stochastic process ((r,v;),t € Ry)
solves the martingale problem (A,C).

The operator Agmw accounts for the growth of the marks v; which is described in
the end of Subsection 6.1. The operator Arepr stands for the jumps of the decomposed
genealogical distances in reproduction events which are described by equation (6.1). We
omit a formal proof of Proposition 6.4.

Finally, we consider again the process (p;,t € R4 ) which is defined from the Poisson
random measure 7 and the initial state pg = (g, vo) as in Section 5.1. We assume pg € il
Then p; € U for all t € Ry by Remark 5.2. Moreover, the construction in Subsection 6.1
and the definition of the map « in Section 2 yield p; = a(r:, v+) and (r¢,v:) € {l for all
t € Ry. We further assume that

(r0,v0) = B(po)- (6.5)
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Then by the following proposition, the decomposition (r;, v;) of the semi-ultrametric p; is
the one given by the map 5 from Section 2, namely the decomposition into the external
branches and the remaining subtree.

Proposition 6.5. Assumption (6.5) implies (r:,v¢) = 5(p:) a.s. foreacht € R,.
We prove Proposition 6.5 in Section 11.2.

Corollary 6.6. The process (3(p:),t € R, ) is Markov and solves the martingale problem
(A,C) from Proposition 6.4.

Proof. This is immediate from Propositions 6.3, 6.4 and 6.5. The Markov property can
alternatively be seen from Proposition 5.4 and Remark 4.2. O

7 Tree-valued Fleming-Viot processes

In this section, we apply Theorem 4.1 to the process (p;,t € R4 ) from Section 5.2. By
Remark 5.2, we can consider (p;,t € R ) as an {-valued process. We call all the image
processes in Theorem 4.1 tree-valued Fleming-Viot processes. To distinguish them, we
also call them U-, U, and U/**¢-valued =-Fleming-Viot processes. Proposition 7.1 below
states that the martingale problems for the tree-valued Fleming-Viot processes have
unique solutions.

7.1 Processes with values in the space of metric measure spaces

In this subsection, we consider a finite measure = on A that is dust-free. Let x € U,
and let (pt,t € Ry ) be the 4-valued Markov process from Section 5.2 that is defined in
terms of = and an initial state py, with distribution vX. We define a U-valued =-Fleming-
Viot process (x:,t € R, ) with initial state x € U by x: = ¢¥(p:). As a justification for
this name, we note that xo = ¥(po) = x a.s. by Corollary 3.12(iii) and Remark 3.5.
By Theorem 4.1 and Propositions 5.4, 5.6, 5.8, and 5.10, the process (x¢, ¢t € Ry) is
Markovian and solves the martingale problem (B, II), where the generator B is defined
by B®(x) = vX(A¢) for ¢ € C with associated polynomial ® € II, and x € U. Here A is the
generator defined in Proposition 5.6. The martingale problem (B, II) is a generalization
of the martingale problem in Theorem 1 of Greven, Pfaffelhuber, and Winter [26].

7.2 Processes with values in the space of marked metric measure spaces

Let = be a general finite measure on the simplex A. Let x € U, let po be a U-valued
random variable with distribution a(X), and let the {{-valued Markov process (p;,t € R
be defined, as in Section 5.2, from = and the initial state po. We define a U-valued
=-Fleming-Viot process (x:,t € R ) with initial state y € Uby % = qﬂ(ﬂ(pt)) fort e Ry.
To justify this name, we note that the initial state satisfies Yo = ¥(8(po)) = x a.s. by
Theorem 3.9(iii). By Theorem 4.1 and Propositions 5.4 and 5.8, the process ({:,t € Ry)
is Markovian.

If = is not dust-free, then by Theorem 4.1 and Corollary 6.6, the process (x:,t € Ry)
solves the martingale problem (B, II), where the generator B is defined by B®(y/) =
X (/iqﬁ) for all ¢ € C with associated marked polynomial ®, and all ' € U. Here the
generator A is defined as in Proposition 6.4.

If = is dust-free, then for each ¢ € (0,00) by Remark 4.3 and Proposition 5.10, the
marked metric measure space x: is a.s. dust-free, and x; is determined a.s. by the
associated metric measure space ;.
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7.3 Processes with values in the space of distance matrix distributions

Let (Xt,t € R4 ) be the process from Section 7.2, where = is a general finite measure
on the simplex A. We define a U*"¢-valued =-Fleming-Viot process ({;,t € Ry) with
initial state a(vX°) € U™ by ¢; = a(vX*). Again by Theorem 4.1 and Propositions 5.4,
5.6 and 5.8, it follows that (£;,t € R, ) is Markovian and solves the martingale problem
(C, %), where the generator C is defined by C¥ (&) = £(A¢) for all £ € U8, ¢ € C, and
U e :& — £¢. Here the generator A is defined as in Proposition 5.6.

7.4 Well-posedness of the martingale problem, connection with the flow of
bridges
Proposition 7.1. The martingale problems (B, 11), (B,11), and (C,¢) are well-posed.

That a martingale problem is well-posed means that a solution exists whose finite-
dimensional distributions are uniquely determined by the initial state. A proof of Propo-
sition 7.1 by duality is given in Section 11.3.

Remark 7.2 (Connection with the flow of bridges). A random non-decreasing right-
continuous function F : [0,1] — [0, 1] with exchangeable increments and F(0) = F(1) = 1
is called a bridge. The dual flow of bridges of Bertoin and Le Gall [5] is a collection
F = (Fs4,s < t) of bridges that satisfies the following properties (see [5, Section 5.1]):

(i) Foreverys <t <u, Ft,u o F@,t = Es.,u a.s.

(i) The law of F,; depends only on ¢t — s. For s; < s3 < ... < s,, the bridges
Fy 65, Fsy 65, Fs, | s, are independent.

(iii) Fop is the identity function. For every xz € [0,1], the random variable Fj ()
converges to x in probability as ¢t decreases to zero.

For each s < ¢, it is also assumed that F} ; is a.s. not the identity function.

The interpretation is that the individuals of a continuous population are repre-
sented by the elements of the interval [0,1]. For each s < ¢, the individuals in a
subinterval (z1, z2] at time s have descendants at time ¢ that are a.s. the elements of
(Fs (1), Fs.1(x2)], see [7].

In [5, Section 3], Kingman’s correspondence is extended so as to represent distribu-
tions of =-coalescents in terms of sampling from flows of bridges. Let F' be a dual flow
of bridges, and let V = (V;,i € IN) be an iid sequence of uniform [0, 1]-valued random
variables, independent of F'. This iid sequence is interpreted as a sequence of random
samples from the population at some time ¢ € R. For each s € R, a partition %gt)
is defined such that any integers ¢,j € IN are in the same block of ﬁgt) if and only if
Ft__lsvt(Vi) = Ft__l&t(Vj) which means that these samples have the same ancestor at time
t —s. Here we set f~1(t) = inf{s € [0,1] : f(s) > tors =1} for t € [0,1] and a cadlag
function f : [0,1] — [0, 1]. In [5, Theorem 1], it is shown that the partition-valued process
(7~r§t)7 s € R4 ) obtained in this way is a version of a Z-coalescent of Schweinsberg [48].

For each t € R, there exists an event of probability 1 on which for all s < s’ € Q., the
partition ﬁ(gf) can be obtained by merging blocks of the partition ﬁgt). We can thus define
a.s. an ultrametric p; by

pe(i,j) = 2inf {5 € Q4 : 7 and j are in the same block of ﬁgt)} .

Moreover, we define a.s. a random variable 7, with values in the space (U, dp) of
exchangeable distributions on 4l such that 7; is a regular conditional distribution of
p: given the collection of bridges (F;_;,s € Q+). For the existence of this regular
conditional distribution, see e.g. [31, Theorem 6.3].
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In Section 12 of the arXiv version [27] of this article, it is shown that there exists
a finite measure = on A such that the process (&,t € R) is a stationary U/**2-valued
=-Fleming-Viot process in two-sided time (as in Section 9). In the proof, the conditional
distribution of p;;, given (és,s < t) is compared for each t € R, u € R, to a corre-
sponding object in the lookdown construction. From this, it is deduced that conditional
distribution of &, given (£,,s < t) is as desired.

8 Some semigroup properties

In this section, we state Feller continuity of tree-valued =-Fleming-Viot processes, and
that the domains of the martingale problems for them are cores. We consider U-valued
=-Fleming-Viot processes in detail, analogous results hold for the other processes from
Section 7.

Let = be a finite measure on the simplex A. For y € U, let (¥, € R,) under the
probability measure P, with associated expectation IE, be the U-valued =-Fleming-Viot
process from Section 7.2 with initial state y. We denote by C},(E) the set of bounded
continuous R-valued functions on a metric space E. We endow Cy,(E) with the supremum
norm.

The results in this section rely on the following lemma which we prove in Section 11.4
using the lookdown construction.

Lemma 8.1. For each t € Ry and & ¢ I, the function U — R, x — E,[®(X;)] is an
element of II.

As a corollary, we obtain the Feller continuity of a U-valued =-Fleming-Viot process,
namely that its semigroup preserves the set of bounded continuous functions.

Corollary 8.2. For each t € R, and f € C,(U), the map U — R, x — E,[f(x:)] is
continuous.

Proof. This follows from Lemma 8.1 as the set II of marked polynomials is convergence
determining, we use the definition of convergence in distribution in U. O

Let L denote the closure of IT in C’b(IfJ) with respect to the supremum norm. For
application in [28], we note two more corollaries of Lemma 8.1. The first of them states
that the semigroup of a U-valued =-Fleming-Viot process can be restricted to a semigroup
on L that is strongly continuous.

Corollary 8.3. Let f € L. Then for eacht € R, the function U — R, y E,[f(x:)] is
an element of L. Moreover,

lim sup [, [/ ()] = By [f(Xo)]| = 0.

xeU

Proof. The first assertion follows from Lemma 8.1 and the definition of L. As (X, t € Ry)
solves the martingale problem (B, II) from Section 7.2,

By [(30)] — By (R0)] = Ey [ / t B@(&)ds}

forallt € Ry and ¢ € II. The second assertion follows as B® is bounded and by
definition of L. O

The next corollary says that the semigroup on L of a U-valued =-Fleming-Viot process
is generated by the closure of the operator B with domain II, see [19, Chapter 1] for the
definitions.
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Corollary 8.4. The subspace IIc C’b(@) is a core for the generator of the semigroup on
L of a U-valued Z-Fleming-Viot process.

Proof. We note that B is the restriction of the generator of the semigroup to II and apply
Proposition 1.3.3 and Corollary 1.1.6 of [19], using Lemma 8.1 and Corollary 8.3. O

Let L be the closure of IT in C},(U) and let L’ be the closure of ¢ in Cy,(14°"8), with re-
spect to the supremum norm. In the same way as above, it can be shown: The semigroup
on L’ of a U**8-valued =-Fleming-Viot process is strongly continuous and generated by
the closure of the operator C' with domain % from Section 7.3. If = is dust-free, then
the semigroup on L of a U-valued =-Fleming-Viot process is strongly continuous and
generated by the closure of the operator B with domain II from Section 7.1. Continuity
properties analogous to Proposition 8.2 also hold.

9 Convergence to equilibrium

Let = be a finite measure on the simplex A with Z(A) > 0. We show convergence
to equilibrium for the {(-valued process (3(p:),t € Ry) from Section 6.2. From this,
we deduce in Proposition 9.1 that also the tree-valued =-Fleming-Viot process from
Section 7.2 converges to equilibrium. In the same way, it can be shown that the other
processes from Section 7 converge to equilibrium.

We define stationary processes and use a coupling argument. Analogously to Sec-
tion 5.2, let 7 be a Poisson random measure on R x P with intensity dt Hgz(dx). This
Poisson random measure drives a population model in two-sided time (with time axis
R) where the reproduction events and the ancestral levels A,(t,4) are defined as in Sec-
tion 5.1. Then we define the stationary -valued process (p;,t € R) of the genealogical
distances by

ﬁt(ivj) =2t — 2SU.p{S € (—OO,t] : As(t>i) = As(tuj)}
fort € R, i,7 € IN. On an event of probability 1, all these distances are finite. This
follows from the assumption that Z(A) > 0. That p; is indeed a semi-ultrametric for each
t € R can be seen as in Remark 5.2. Clearly, p; is exchangeable, which follows from
exchangeability of the Z-coalescent as in Remark 5.9 or can be shown as in the proof of
Proposition 5.8.

Let 7 denote the restriction of 7 to (0,00) x P. Let x € U be arbitrary, and let
po be a U-valued random variable with distribution «(vX), independent of n. Let the
process (pt,t € Ry) be defined from py and 7 as in Section 5.1. For n > 2, on the event
{max; jepn pe(4,7) < 2t}, the marked distance matrix ,(5(p;)) does not depend on py.
This follows from the construction in Section 5.1 and the definition of the map § in
Section 2. As p; can also be obtained from py and 7 as in Section 5.1, it follows that
Y (B(pt)) = 1 (B(p:)) on the event {max; jep p:(i,J) < 2t}. By stationarity of (p;,t € R),
it follows that

[E[6(8(p0))] — El6(8(50))]] < 25up 9| P (,mg[g]ﬁo@,j) >2t) S0 (t—oo) Q1)

)

for all ¢ € (fn.
We call a U-valued random variable that is distributed as o := ¢(8(po)) a E-coalescent
measure tree, generalizing the A-coalescent measure tree from [26]. A U-valued

=-Fleming-Viot process (x:,t € R ) with initial state x is given by x: = ¥(5(p:)), as
in Section 7.2.

Proposition 9.1. The U-valued random variable Xt converges in distribution to a
=-coalescent measure tree ast — oo.
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Proof. As in Proposition 10.10 below, we obtain E[®(xo)] = E[¢(po)] and E[®(x:)] =
E[¢(p:)]. The convergence (9.1) then yields that E[®(x;)] converges to E[®(xo)] as t — oo
for all marked polynomials ¢ € II. The assertion follows as the set II is convergence
determining in U. O

A stationary U-valued =-Fleming-Viot process can be defined by (¢)(5(p)),t € R).
In [26, Theorem 3], duality is used to show that the tree-valued Fleming-Viot process
converges to an equilibrium. In [16, Theorem 4.1], convergence to stationarity of
measure-valued Fleming-Viot processes is also proved by a coupling argument.

10 Proofs of the general results

In Subsection 10.1, we prove Proposition 3.4 which is needed for the proof of the
uniqueness result (Proposition 3.11) in Subsection 10.3. We prove the sampling repre-
sentation (Theorem 3.9) in Subsections 10.2 - 10.4. Theorem 4.1 gives the application to
tree-valued processes and is proved in Subsection 10.5.

10.1 Proof of Proposition 3.4

The proof of this result from Section 3.2 relies on the fact that in a separable metric
space, an iid sequence with respect to a probability measure on the Borel sigma algebra
has no isolated elements.

Proof of Proposition 3.4. Let ((x(i),v(i)),i € IN) be an m-iid sequence in X x R;. We
may assume
r=(r(i,)))ijen = (r'(x(i), 2(j)))i jen-
We write p = a(r,v). We show that v = T(p) a.s. from which the assertion follows by
definition of the map 3.
Let ¢ > 0 and ¢ € IN. By separability, X x R, can be covered by countably many balls
of diameter . This implies

m{(z’,v") € X x Ry : 7' (z(i),2') V|v(i) —v'| <2} >0 a.s.,
and that there exists a random j € IN\ {i} with
r'(z(i),z(4)) V |v(i) —v(j)| < 2¢ a.s. (10.1)

By inequality (10.1) and the definition of p, it follows that

20(i) +4e > v(@) +v(j) + r(i,5) = p(i,j5) a.s.
Using the definition of the map T, we deduce

v(i) +2¢ > Lp(i,5) = T(p)(i) a.s.

For the converse inequality, we first note that

20(1) <v(@i) +v(j) +2e+7r(i,5) = p(i,j) + 2¢ (10.2)
by inequality (10.1) and the definition of p. Moreover, for all k € IN\ {¢,j}, we obtain

20(i) — 2e < p(i, j) < p(i, k) V p(k, j)

r(i, k) Vr(k,j)+v(i) Vo(j)

r(i k) +o(i) + |r(k, j) — (@, k)| + |[v(d) — (i)
i, k) +7(i,j) + 2 < p(i, k) +4e  a.s.
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Here we use inequality (10.2) for the first and inequality (10.1) for the fifth and sixth
step, the definition of p for the third and fifth step, and ultrametricity for the second
step. By definition of the map Y, we obtain

T(p)(i) = %ke%l\f{i} p(i, k) > v(i) — 3¢ a.s.

As ¢ > 0 and 7 € IN were arbitrary, it follows that T(p) = v a.s. O

10.2 Measurability of the construction of (marked) metric measure spaces

In this subsection, we show Proposition 3.7 from Section 3.3. We only discuss
measurability of the map 1/3 1B X ]R]}\rI — M therein. Measurability of the map ¢ : ©® x M
follows along the same lines.

Recall that the Prohorov distance between two probability measures ;. and ¢ on the
Borel sigma algebra on a metric space (Z, d?) is given by

dZ(p, i) = inf{e > 0: u(F) < p/(F°) + ¢ for all closed F C Z}, (10.3)

where F© = {z € Z : d?(2,F) < e}. If (Z,d?) is separable, then the coupling characteri-
zation of the Prohorov distance holds, which can be found e.g. in [19, Theorem 3.1.2]:

dZ(p, i) = ir{lfinf{s >0:&{(x,y) € Z%:d?(x,y) > ¢} < e}, (10.4)

where the first infimum is over all couplings £ of the probability measures p and '.
We also use the marked Gromov-Prohorov distance d,,qgp which metrizes the marked
Gromov-weak topology on M, see [12]. It is defined by

dHlGP((Xv T, m),(X',r’,m’)) = Zlgf;p dz(@( ) @l(m/))
for marked metric measure spaces (X,r,m) and (X’,r’,m’). Here the infimum is over
all isometric embeddings ¢ : X — Z and ¢’ : X’ — Z into complete and separa-
ble metric spaces (Z,d?). The space Z x R, is endowed with the product metric
d? B+ ((z,0), (2',0")) = d?(z,7) and X’ x R,. The maps
Pp: X xRy - ZxRyand ¢ : X' xRy — Z x Ry are defined by ¢(z,v) = (p(x),v),
(z,v) € X x Ry and ¢'(2',v) = (¢(2'),v), (2',v) € X x Ry
We write © = D x ]R]N For n € IN, we denote by

D, = {(r,v) € R xR : r(i,i) = 0,7(i,5) = r(j, ),
r(i,j) +r(j, k) > r(i, k) for all ¢, j, k € [n]}

the space of decomposed semimetrics on [n] which we view as a subspace of R™ x R".
We denote by wn ©,, — M the function that maps (r,v) € D, to the isomorphy class
of the marked metric measure space ([n],7,n"' 7" | §(; ())), here we also identify the
elements of the semi-metric space ([n],r) with distance zero.

Lemma 10.1. The map J}n 1D, — M is continuous.

Proof. W.1.0.g. we can assume that © is endowed with the metric d that is given by

(00, ) = sup (g ) = 6] o) 01 ) 1 (279

keN i,j€[k] i€[k]

for all (r,v),(r',v') € ®. For (r,v),(r',v') € ®,, we define a probability measure ¢

on (D)? as the distribution of ((r(zi,z;))ijen, (0:)ien, (r (:1:1,:1:])) jen, (0])ien), where
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(i, 03, 2}, 0})ien is an iid sequence with distribution n=! 37" 8k v(k), ke (k))- Then &(- x

D) = v (") and ¢(D x ) = v¥ (") For

i e |r(i,) = (G d)| Vo) — o)
i,5€[n] 1€[n]

the coupling characterization (10.4) implies
dp (vi’"(’”’”), VJ’"(’”"”’)) <c+¢ {(y,y’) €D’ :d(y,y) > C} =c

Continuity of z[)n follows by definition of the marked Gromov-weak topology. O

Proof of Proposition 3.7. Let (r,v) € ©* and let (X,r) be the metric completion of
(IN,7). We endow the product space X x R, with the metric dX*®+((z,v), (2/,0')) =
r(z,v) V |v — v/|. The definition of ©* yields lim,,_ o dg“R* (N30 Oy, m) =
0 for a probability measure m on X x R;. As J}(r,v) equals the isomorphy class
of (X,r,m), and as Qﬁn(wn(r,v)) equals the isomorphy class of (X,r,n=!> " | O(i,u(i)))
for each n € ]}\I the fieﬁnition of the marked Gromov-Prohorov metric implies that
limy, 00 dmap (7/1(7’» 7{)7 U (Y (T, U)))A: 0.

For (r,v) € © \ ©*, the image ¢(r, v) is constant by definition. Using Lemma 10.1 and
Lemma 10.2 below, we deduce measurability of 1& O

Lemma 10.2. The subsets D* C ® and ©* C D are measurable.

Proof. We represent D* by countable unions and intersections of measurable sets. The
assertion on ® follows along the same lines by removing the marks v.

For (r,v) € ©, let (X, r) be the metric completion of (X,r). We endow the product
space X x Ry with the metric d**B+((z,v), (z/,v")) = r(z,v)V|v—12'| and define for n € IN
the probability measures m™ =n=! 3" | d(iw(iyy on X x Ry. The assertion (r,v) € D* is
equivalent to the assertion that (m™,n € IN) is a Cauchy sequence with respect to the
Prohorov metric on X x R,. Hence,

D = ﬂ U ﬂ EWRD

e€QN(0,00) kEN £>n>kK

with

@e,e,n = {(T,U) €D: dP(me,m") < E},
where m‘ and m™ are considered as probability measures on the (finite) support of m’ in
X x R.. Using the definition (10.3) of the Prohorov metric, we can write

14
Den=|) {22]1{3]’EFwithr(i,j)\/|v(i)—v(j):0}

Fc{1,...,0} i=1

< %zn:]l{ﬂj€Fwith r(i,7) V Jv(i) — v(j)] <6}+£—:}. O

i=1

10.3 Resampling from marked metric measure spaces

We will use the statements from this section to prove assertions (ii) and (iii) of
Theorem 3.9. In the end of this section, we also prove Proposition 3.11 from Section 3.4.

The following proposition can be compared with Lemma 8 of Vershik. We construct
a marked metric measure space from a marked distance matrix. When we sample
according to its marked distance matrix distribution, the assertion is that we arrive at
a random variable that has the same distribution as the marked distance matrix with
which we started. Recall the functions 1[) 1 and the sets ©*, D from Section 3.3.
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Proposition 10.3. Let (r,v) be an exchangeable random variable with values in ©*. Let
(+',v') be a random variable with values in ® x RY and conditional distribution (")
given {(r,v). Then (r',v') and (r,v) are equal in distribution.

Remark 10.4. For an exchangeable random variable with values in ®* and a random

variable p’ with conditional distribution ¥(*) given ¢ (p), the random variables p and p’
are equal in distribution. This follows from Proposition 10.3, we set (r,v) = (p,0).

Proof of Proposition 10.3. Let n € IN and let ¢ : ]Ri2 x R} — R be bounded and con-

tinuous. Let (X,r,m) be the representative of 1&(7’71)) as in the definition of ¢). We
have

E [¢ o 77L(T/a 'UI)} =E [/ m®n(dx dU//)¢((7”(LC(i), x(j)))i,je[n]a (U//(Z))LE[TL])

= lim ~ > T DB [((r(t, 4))i ey (0E))iem)]

Here the assumption (r,v) € ©* ensures that m is the weak limit of the uniform probabil-
ity measures % Zlgzl d(ew(ey) On X X Ry This yields the second equality by dominated

convergence. For the third equality, we use that summands where /4, ...,¢, are not
pairwise distinct vanish in the limit, and that for all other summands, the expectation in
the second line equals by exchangeability the expectation in the third line. O

In the next proposition, we start with a marked metric measure space and sample
(r,v) according to its marked distance matrix distribution. The marked metric measure
space that we construct from any typical realization of (r,v) turns out to be isomorphic
to the marked metric measure space with which we started.

Proposition 10.5. Let y € IM and let (r,v) be a D x RY-valued random variable with
distribution vX. Then (r,v) € ©* a.s. and {)(r,v) = x a.s.

Remark 10.6. Proposition 10.5 is essentially Vershik’s proof [51, Theorem 4] of the
Gromov reconstruction theorem (where metric measure spaces are considered, cf. also
[12, Theorem 1] for marked metric measure spaces). The present formulation focuses
on the map 1/; that will be used in the proofs of Theorems 3.9(iii) and 4.1 below.

Remark 10.7. For y € M and a ®-valued random variable p with distribution vX,
Proposition 10.5 implies p € ©* a.s. and ¢ (p) = x a.s.

Proof of Proposition 10.5. Let (X’,7',m’) be a representative of x. W.l.o.g. we as-
sume that the closed support of the probability measure m/(- x R) is the whole
space X', and that (r,v) = ((r'(z(4),z(j)))i jen,v) for an m/'-iid sequence (z,v). We
denote by (X, r) the completion of (IN,r). We endow X’ x R, with the product metric
dX B (2, 0)), (ahy, v)) = 7' (), £,) V |v} —v}|, and analogously X x R... As the sequence
((%))ien is a.s. dense in X', the isometry that maps z(¢) to ¢ for all « € IN can a.s. be
extended to a (surjective) isometry ¢ from X’ to X. An isometry ¢ from X’ x R, to
X x Ry is a. s. given by (z,v") — (p(z),v"). By the Glivenko-Cantelli theorem, the
probability measures m™ :=n=1 3" | d(a(i)w(iy) on X’ x R, converge weakly to m’ a.s.
As ¢ is continuous, the probability measures m™ :=n~* Y " | Oy = @(m™) on X x Ry

converge weakly to m := ¢(m/) a.s. This implies (r,v) € ©* a.s. and that ¢ (r,v) equals
the isomorphy class of (X, r,m) a.s. The second assertion follows as ¢ is a.s. a measure-
preserving isometry from X’ x R4 to X x R, which implies that (X', ', m’) and (X, r,m)
have a.s. the same marked distance matrix distribution. O
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Remark 10.8 (Marked metric measure spaces and weighted real trees). Let x € IU, and
let (r,v) be a {l-valued random variable with the marked distance matrix distribution of
X. By Proposition 10.5, we have (r,v) € ©* a.s., hence we can associate with any typical
realization of (7,v) a complete and separable weighted real tree (T',d, 1) as in Remark 3.8.
As in Proposition 3.14, the random marked distance matrix (r,v) is ergodic with respect
to the action of the group of finite permutations. This yields that the measure-preserving
isometry class of the weighted real tree (T,d, i) is an a.s. constant random variable. Its
typical realization can be associated with x.

Proof of Proposition 3.11. Let (r,v) be a random variable with conditional distribution
vX given x. Then we can assume p = a(r,v). Propositions 3.4 and 10.5 imply x = Yo B(p)
a.s. Hence, the distribution of p determines the distribution of x uniquely, which is the
“only if” assertion. The other direction clearly holds as the distribution of y determines
the distribution of p uniquely. O

10.4 Proof of the sampling representation

We give two proofs of Theorem 3.9(i) from Section 3.4 that build on a common part,
namely statement (10.7) below. The plan for the first proof is the following: We partition
the completion of the tree (T, d) associated with the semi-ultrametric p (as in Remark 1.1)
into small subsets. Into each of these subsets, we lay an atom whose mass is given by the
asymptotic frequency of those integers that label the leaves of T' that are the endpoints
of the external branches that begin in this subset. By exchangeability, these asymptotic
frequencies exist, and (10.7) yields that they add up to one. We obtain an atomic
probability measure on the product space of the metric completion of the tree and the
mark space R, by defining the R -component as the distance to the top of the coalescent
tree. Using the coupling characterization (10.4) of the Prohorov metric, we show that
this probability measure converges as the subsets become infinitely small, and that the
limit measure coincides with the limit of the uniform measures in the definition of D*.

As a slight difference to the description in the preceding paragraph, we will work
with the space (X, r) that corresponds to the completion of the space only of the starting
vertices of the external branches, but we will occasionally recall the relation to the whole
tree. We will use definitions also from Section 2.

Proof of Theorem 3.9. Let (r,v) = B(p). Then v = Y(p) by definition of the map §. Let
(X, r) be the metric completion of the semi-metric space (N, r).
Let ¢ > 0. As the distribution of the random variable v(i) has at most countably

many atoms, there exists a deterministic sequence 0 < h§E> < héa) < ... that increases to
infinity and that satisfies
WD <e, B - <,
and
P (v(z') - h§f>) ) (10.5)

©) ) for n e IN.
We define an equivalence relation ~¢ on IN such that two distinct integers i, j are
equivalent if and only if there exists n € IN with

v(i),v(5), 5p(i,5) € I;,.

To show transitivity, we consider 4, j, k € IN with ¢ # k, i ~¢ j, and j ~° k. Then there
exists n € IN with v(i),v(5),v(k), p(3,5) /2, p(4, k) /2 € IE. As

v(i) < p(i, k) /2 < (p(i, 5) V p(4, k) /2
by definition of T and ultrametricity, it follows that i ~¢ k.

for all i, j,n € IN. We set A7) = 0 and we write I = [1®)
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Note that the definitions in Section 2 imply
r(i,g) = (3006, 4) —v(i) + 3p(i.5) —v(§)) L{i # j} < 2¢ (10.6)

for ¢ ~* j. (That is, in the context of Remark 2.2, the starting points of external branches
that end in leaves (0, ), (0, ) of T with ¢ ~° j have distance smaller than 2¢.)
In the next two paragraphs, we prove the following claim:

A.s., the partition of IN given by ~° contains no singleton blocks. (10.7)

For each i,n € IN the sequence (1{v(j) € I, p(i,j)/2 € I5},j € N\ {i}) is exchange-
able. By the de Finetti theorem, it is conditionally iid. Hence, on the event that there
exists j € N\ {i} with v(j) € I and p(i,5)/2 € IZ, there exists a.s. another (in fact,
infinitely many) such j in IN \ {¢}.

For j € IN, the definition of T and condition (10.5) imply the existence of (random)
n € Nandi € IN\{j} such that v(j) € I and p(i,j)/2 € I¢ a.s. As shown in the preceding
paragraph, there exists a.s. an integer k € IN\ {i,j} with v(k) € It and p(i, k)/2 € IS.
From

v(k) < (i, k)/2 < (pi,3) V p(i, 1)) /2

it follows that p(j, k)/2 € IS a.s. This proves (10.7).

Now we show that the asymptotic frequencies exist and add up to one. For A C IN
and k € IN, we denote the relative frequency by |A|, = k~1#(A N [k]) and the asymptotic
frequency by |A| = limy_, o |A|r, provided the limit exists. As the random partition given
by ~° is exchangeable, the asymptotic frequencies of its blocks exist a.s. by Kingman'’s
correspondence. Let B¢(i) denote the equivalence class of i € IN with respect to ~¢, and
let

M® ={j e N:j=min B°(i) for some ; € N}

be the set of minimal elements of the equivalence classes of ~¢. As the exchangeable
partition given by ~¢ has no singleton blocks a. s., it has proper frequencies by Kingman'’s
correspondence, that is,

B =1 as.

ieMe
Consequently, on an event of probability 1, a probability measure m*® on the product
sigma algebra on X x R, is given by

mt = Z | B ()10 4,0(s)) (10.8)
ieMe

(Into each of the subsets of (X, r) given by ~¢, the first component of the measure m*®
lays an atom with mass given by the asymptotic frequency of the integers that label the
corresponding leaves in 7T'.)

Let ey > g9 > ... > 0 with limy_,,. ey = 0. For each ¢ € IN, we replace ¢ with ¢,
everywhere in this proof until now, and we use the notations introduced so far. We also
assume that for k& < ¢, the sequence (hgf’“), n € IN) is contained in (hf“, n € IN). That is,
the partitions {Ic*,n € IN} of Ry are nested.

For k < {andi € M*®*, let iy,is,... be an enumeration of M<¢ N B**(i). Then

B (i) = B (i1) W B (is) W ... .

By Fatou’s lemma and as a.s., the partition given by ~*¢ has proper frequencies, it
follows that
[B**(i)| = |B* (i1)| + [B* (i2)| + ... a.s.
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Using equation (10.8), we deduce
m*{ (i)} = Y mT{(v()} as. (10.9)
JEB®k (1)

A.s., a coupling of m® and m*¢ is given by the probability measure

K=Y m*{(j,0())}8((5,060),Grv(i)) (10.10)
(i,9)

on (X x R,)?, where the sum is over all pairs (i, j) with i € M** and j € M=t N B (3).

Indeed, as equation (10.9) implies

KE({(i,0(@)} x (X xRy) = D> m{(j,v(4))} = m*™{(i,0(0)} as.,
JEB®k (i)
K is a.s. a coupling of m® and m*®¢.

In words, the probability measure m*®¢ can be obtained by splitting each atom of m**
into fragments. Let us sample a point (j,v(j)) according to m®, and let (,v(7)) be the
point such that the atom of m** at (j,v(j)) is one of the fragments of the atom of m** at
(7,v(2)). Then the pair ((¢,v(2)), (7,v(7))) has distribution K.

For every pair (i,j) that appears in the sum in equation (10.10), we have i ~* j,
hence |v(i) — v(j)| < e and r(i,j) < 2¢;. Hence, the coupling characterization of the
Prohorov metric (10.4) yields

AR (mee mee) < 2¢y, (10.11)

a.s. forall k < ¢, when X xR is endowed with the product metric dX *®+ that is given by
dX>*B+((x,0), (z',v")) = r(z,2") V |v — v'|. As a consequence, on an event of probability 1,
the sequence (m®, ¢ € IN) in the space of probability measures on the complete space

X x R, is Cauchy, we denote its limit by m.
Consider for n, ¢ € IN also the probability measure m;f on X x R4, given by

mir = Y B @by as
i€ Mee

As there exists a.s. a coupling K’ of the probability measures m$! and m®* with

K'{(y,y)} = my!{y} Am*{y}

for all y € X x R4, the coupling characterization of the Prohorov metric (10.4) implies
for each k € IN

dpy " (mgr m®r)

<K'{(y.y) € (X xRy)*:y#y}
<m{(j,v(j)) : j € M=, j >k} + K'{((,v(1)), (j,v(§))) : 4,5 € M®*,i # j,j < k}
= > BHG)+ Y. IB*0G)n — 1B=()I| as.

JEM®E jEM*®L
i>k i<k

Letting first n and then £ tend to infinity, we deduce

lim dpy ™ (ms,m®) =0 a.s. (10.12)
n—oo

Moreover, we define for each n € IN the probability measure

-1
Mo =171 6wy
=1

on X x R;. (The first component corresponds to a probability measure on the starting
vertices of the external branches that end in one of the first n leaves of 7. These starting
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vertices are weighted according to the number of the corresponding leaves i, where we
count leaves i, j with p(i,j) = 0 as separate leaves.) By (10.11),

A (mE my,) < 4dep aus. (10.13)
for all n,¢ € IN. From (10.11), (10.12), and (10.13), we obtain

m =w- lim m, a.s. (10.14)
n—oo
This shows assertion (i).
Assertion (ii) follows from assertion (i) and Proposition 10.3. Proposition 10.5 implies
assertion (iii). O

The idea for the second proof of Theorem 3.9(i) is to construct directly by the de
Finetti theorem a sampling measure on a subspace of the metric completion of the
coalescent tree associated with p. To this aim, we fix by conditioning the closure of the
subspace of the starting vertices of the external branches that end in the leaves labeled
by the odd integers. By (10.7), this subspace contains a. s. the sequence of the starting
vertices of the external branches associated with the even integers, and this sequence
is exchangeable. For a related result, see also Forman, Haulk, and Pitman [23], where
trees are embedded into /;.

Remark 10.9. The second proof given below goes in a direction that is similar to the
argument in Section 7 of [22] for the construction of the sampling measure x on the real
tree S = I'(T). That the equality I'(T) =T'(T~) = I'(T") on p. 268 in [22] holds for the
embedding of I'(T™) and I'(T*) into I'(T) can be seen from (10.7) as in the proof below
as I'(T), I'(T~), and I'(T*) then correspond to X, X;, and X, therein. The real tree
I'(T™) can then be endowed with a measure like X is endowed with ;. Note that the
starting vertices of the external branches and the subtree spanned by them are called
the points of attachment and the core, respectively, in [22].

We remark that the second last paragraph of the proof below shows that the isomor-
phy class of the weighted real tree (S, p) is a.s. equal to 1 (r) where (r,v) = 5(d) and d is
the exchangeable ultrametric on IN from [22, Section 7], which corresponds to p below.
This equality can also be deduced from Theorem 3.9, Remark 3.6, as ¢ (r) is a. s. constant
by the ergodicity assumption in [22], and from the Gromov reconstruction theorem.

Second proof of Theorem 3.9(i). Let (r,v) = 3(p). We construct the first component of
the sampling measure, showing r € ®* a.s.

We denote by IN; the odd, and by IN, the even integers. Let (X, r) denote the metric
completion of (IN,7). A.s. by (10.6) and (10.7), there exists for each i € N, an integer
j € Ny with r(4,j) < 2¢. As ¢ can be chosen arbitrarily small, it follows that ¢ is a.s.
contained in the closure X; of the subset IN; of (X,r) a.s., hence X; = X a.s. (Recall
from Remark 2.2 that IN corresponds here to the set of starting vertices of the external
branches in the coalescent tree (T, d) associated with p.)

For ¢ € INy, let

1/- 1 . ..
v (i) = 2jen§?{{i}p(z’])'
(This is the length of the external branch that ends in the leaf (0, ¢) in the subtree spanned
by the leaves with labels in IN;.) By exchangeability of the sequence (p(i,5) : j € IN\ {i})
and by definition of v = T(p), it follows that v (i) = v(i) a.s. Let p* = (p(i,]))i jen, be
the restriction of p to IN;. We define the random variable r' = (r'(i,5))i jen, by

(i, ) = (p"(i,5) — o' (i) — v (§)) 1{i # j}.

By definition of r in Section 2, it follows that ' = (r(i, j)): jen, a.s.
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Let A be a regular conditional distribution of p given p'. Then for a.a. p', un-
der A(p!,-), the complete and separable metric space (X;,r) is a.s. constant as r! is
p'-measurable.

Moreover, the sequence 2,4, 6, ... of the even integers, viewed as a sequence in (X1, 7),
is exchangeable under A(p!,-) for a.a. p'. To see this, we use that the Borel sigma algebra
on (X1,r) is generated by the balls around the elements of N; C X;. Let n € N, and let
Bs, ..., Bs, be some finite intersections of such balls. Note that {2 € Bs,...,2n € By, }
can be written as an intersection of events of the form {p(i, j) < ¢}, where i € Ny, j € INy
and ¢ € (0,00). Using this, the uniqueness lemma, and the elementary fact that the
conditional distribution of p given its restriction p' is invariant under permutations that
leave IN; fixed, we obtain the claimed exchangeability.

For this exchangeable sequence, the de Finetti theorem yields, A(p!,-)-a.s. for a. a.
p', a sampling measure u' on (X1, ) that is the weak limit of the probability measures
iy :=n"t 3" | 89; on (X, r). By the same argument as above, also the closure X5 of the
subset IN; in (X, r) equals X a.s. On the event of probability 1 on which N, is a dense
subset of Xy = X = X3, an isometry ¢ : X; — X5 is given by ¢(i) = i for i € No. As
also the weak limit of the image measures ¢(ul) on (X, r) exists a.s., we have shown
(r(24,27))ijen € ©* a.s. This implies r € ©* a.s. as r and (r(24,25)); jew are equal in
distribution by exchangeability of r.

That (r,v) € ©* can be shown analogously by considering the sequence (i,v(%))sen, in
the space X; x R, which we endow with the metric dX1*B+((2/,v"), (z",v")) = r(z/, 2") v
[v" —v"]. O

10.5 Proof of Theorem 4.1
The following property is central in the proof of Theorem 4.1.

Proposition 10.10. Lett € R, andlet f: 4 — R, ¢: {{ - R be bounded measurable
functions. If the assumptions of Theorem 4.1 hold, then

Elg(B(pr))] = E[v*g]

and

]E[f(Pt)] = E[ﬁtf]-

If the assumptions of Theorem 4.1 hold and p; is a.s. dust-free, then

E[f(p)] = E[p* f].
Proof. This is immediate from Theorem 3.9, the definition of &;, and Corollary 3.12. O

Remark 10.11. In the context of Theorem 4.1(i), let (P;,¢t € R ) denote the semigroup

on My (L) of the Markov process (8(pt),t € R4 ), and let (Q:,t € Ry ) denote the semi-
group on Mb(lfJ) of the Markov process (x¢,t € Ry). Let K denote the probability
kernel from U to {1, given by K(x,:) = vX for x € U. Then Proposition 10.10 yields the
intertwining relation Q; K = K P; which is condition (b) in [46, Theorem 2]. Many papers

appeared on intertwining of Markov processes, a classical one is for instance [9].

Proof of Theorem 4.1. We apply [46, Theorem 2] to the semigroup of the Markov process
(B(pe),t € Ry), the measurable map ¢ : £ — U, and the kernel K from U to £l given
by K(x,-) = vX. Clearly, Theorem 2 in [46] also holds when the initial state y therein
is random. Then by Proposition 10.10, condition (b) and the condition on the initial
state in [46, Theorem 2] are satisfied. Condition (a) in [46, Theorem 2] follows from
Proposition 10.5 as f(x) = vX(f oz[)) for all xy € U and all bounded measurable f: U — R.
The Markov property of (x:,t € R ) now follows from [46, Theorem 2].
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Now we give a proof that (x;,t € R,) solves the martingale problem (B,f[). If
(B(pt),t € Ry) solves the martingale problem (A,C) in (i), then for all ¢ € C with
associated marked polynomial &,

0 =E [6(8(p0)) — 6(8(00)) - / A¢<ﬂ<pu>>du}

~E[ 6]~ Bl - | Bt (Ao

—B |2(i) - #(%0) - [ B@(m)@} (10.15)

by Proposition 10.10, Fubini, and the definitions ® and B. By the Markov property
of (xs,s € Ry) and equation (10.15), it now follows for all s € Ry and all (yu,u €
[0, s])-measurable events A that

s+t
E [2(tus0) - 8(%.) - | B<1><>zu>du;A} —0

which shows assertion (i).

The proof of (ii) is analogous, we apply [46, Theorem 2] to the Markov process
(pi,t € Ry), the measurable map 4 — U8, p +— a(v¥(#(?)), and the probability kernel
from U°"¢ to 4 given by (v, B) — v(B). In particular, condition (a) in [46, Theorem 2] is
satisfied by Propositions 10.5 and 3.4, and by definition of /*'s.

Also the proof of (iii) is analogous. We apply [46, Theorem 2] to the process (p;,t €
R, ), the measurable map # : 4 — U, and the probability kernel from U to 4 given by
(x, B) — vX(B). We use the assumption that p; is a.s. dust-free in the application of
Proposition 10.10 and Remark 10.7. O

11 Proofs related to the lookdown model

This section contains the remaining proofs of the results from Sections 5 - 8.

11.1 Exchangeability in the lookdown model

To prove Proposition 5.8, we show in Lemma 11.1 below that exchangeability of the
genealogical distances is preserved in single reproduction events. Then we construct
the genealogical distance matrix p; at time ¢, restricted to the first n € IN particles, from
the initial state pg and the reproduction events before time ¢ that affect the genealogical
distances between the first n individuals. Here we use the description of the process
(v (pt),t € Ry) by its jumps and the evolution between the jumps from the end of
Section 5.1.

For n € IN, we define the action of the group S,, of permutations of [n] on the set P,
of partitions of [n], and on R, respectively, by

p(m) ={p(B): Ben} and p(p) = (p(p(i),(})))i e (11.1)

foreachpe S,, m € Pn, p € R™ . A random variable with values for instance in P, orin
2
R™ is called exchangeable if its distribution is invariant under the action of S,,.

Lemma 11.1. Let n € N, let © be an exchangeable random partition of [n], and let
2

p be an exchangeable random variable with values in R™ . Assume that 7 and p are

independent. Then the random variable 7 (p) is exchangeable.

Lemma 11.1 can be seen as a generalization of Lemma 4.3 of Bertoin [4].
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Proof. Let p € S,,. For each partition #’ € P,, the blocks of n’ are in one-to-one
correspondence with the blocks of p(n’) via the bijection that maps a block B € «’ to
the block p(B) € p(n’). Also, the blocks of 7’ are in one-to-one correspondence with the
integers in [n] that are the minimal elements of the blocks of 7’. The same holds for the
blocks of p(7’) and their minimal elements. It follows that the minimal elements of the
blocks of 7’ are in one-to-one correspondence with the minimal elements of the blocks
of p(n’). We extend this one-to-one correspondence arbitrarily to a bijection from [n| to
itself which we denote by f(n’). This defines a map f : P, — S, which satisfies

(i) = f(7') (p(") (p(7))) (11.2)

for all 7' € P, and i € [n]. This equation holds as #’(¢), by its definition in Section
5.1, is a minimal element of a block of #’ and as p(«’)(p(7)) is the minimal element
of the corresponding block of /. By equation (11.1) and the definition (5.2) of the
. 2 . . . . .
transformation on R" associated with each element of P,, equation (11.2) implies

7' (p") = p(p(") (f(7")(p"))) (11.3)

for all 7’ € P, and p' € R™".

By assumption, p(7) and 7 are equal in distribution. As the distribution of f(7')(p) is
the same for all 7’ € P,,, namely equal to the distribution of p, it follows that f(7)(p) and =
are independent, and that f(7)(p) is equal in distribution to p. This implies that 7(p) and
p(m) (f(m)(p)) are equal in distribution as also p and 7 are independent by assumption.
By equation (11.3), it follows that 7(p) and p~!(7(p)) are equal in distribution, which
yields the assertion. O

Proof of Proposition 5.8. Let n € IN. For s € R, we define the map
A R S RY, oy +2 s,

where 2 = 2(1{i # j}); jen)- We will use the map A, to account for the linear growth of
the genealogical distances between reproduction events.

On an event of probability 1, let (¢1,71), (t2,m2), ... be the points of n in (0,¢] x P™.
Let L = n((0,t] x P,). Conditionally given (¢i,...,ts), the partitions m,..., 7, are
independent and for each k € IN, the restriction v, (7) is exchangeable. This follows
from the properties of Poisson random measures and the definition of n. From the
description around equation (5.3), we have

A/n(pt) = )\tftL o ’yn(ﬂL) © >\thth1 ©...0 ’Vn(ﬂ—l) o )\tl (’Vn(p(])) a.s.

on the event {L > 1}, and v, (p1) = M\e(n(po)) a.s. on {L = 0}. By assumption, v, (po) is
exchangeable, and Lemma 11.1 implies that 7, (p;) is exchangeable. The assertion follows
as n € IN was arbitrary and as the distribution of p; is determined by the distributions of
the restrictions v, (o). O

11.2 Equality of decompositions

To prove Proposition 6.5, we use the following lemma. Its meaning is that if the
ancestral lineage of an individual 7 at time ¢ can be traced back until a most recent
reproduction event on that lineage, then there exists a.s. another individual k at time ¢
that descends from this reproduction event.

Lemma 11.2. Assume that = is not dust-free. Lett € (0,00) and i € IN. Then a. s. on the
event {v,(i) < t}, there exists an integer k € IN\ {i} with v;(i) = $p.(i, k).
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Proof. Recall the process (Hgt), s € Ry) from Remark 5.9. We work on the intersection of
{v(i) < t} with the event of probability 1 on which condition (6.2) is satisfied, v;(i) > 0,
and for each s € (0,¢) N @, the partition Hgt) contains infinitely many blocks if it contains
singletons. The latter event indeed has probability 1 by Kingman’s correspondence and
as t is a.s. not the time of a reproduction event.

At time ¢ — v;(t), a reproduction event occurs that is encoded by a partition in which
the block that contains A;_,, (;)(t,7) contains some other element j. This follows from the
definition of v, (i) in Section 6.1 and as 7((0,#] x P’) < oo by condition (6.2) which means
that the reproduction events in which particles on levels not larger than ¢ reproduce do
not accumulate.

Moreover, by condition (6.2), there exists a time s € (¢ — v;(¢),t) N Q with n((t —
v(i), s] x P;) = 0, which implies that the particle on level j at time ¢ — v;(i) is still on
level j at time s.

By definition of v;(i), the partition 11{" contains the singleton block {A,(t,7)}, hence
Hgt) has infinitely many blocks. This means that infinitely many particles at time s survive
until time ¢. Remark 5.1 implies that all particles at time s survive until time ¢. Therefore,
the particle that was on level j at the times ¢ — v;(¢) and s is on some level k at time t.
The most recent common ancestor of the particles on levels i and & at time ¢ lives at time
t — vy(i), hence % p;(i, k) = vy (7). O

Proof of Proposition 6.5. Lett € (0,00) and ¢ € IN. We have to show that v:(i) = T(p:)(4)
a.s.

From the definitions of the reproduction events in Section 5.1 and of the quantity
v(7) in Section 6.1, it follows that for each s € (¢t — v;(i) A ¢, t], only the particle on level ¢
at time ¢ descends from the particle on level A,(¢,4) at time s. The definitions of T in
Section 2 and of p; in Section 5.1 imply 0 < v:(3) At < YT (ps) (i) At.

In the case that = is dust-free, we have T (p;) = 0 a.s. by Proposition 5.10, hence also
ve(i) =0 a.s.

Now we assume that = is not dust-free. Lemma 11.2 yields Y(p:)(7) < v:(4) a.s. on
the event {v.(i) < t}.

We claim that on the event {v;(¢) > t}, all individuals at time 0 have descendants at
time ¢. This can be seen as follows: For each s € (0,t), the exchangeable partition Hgt),
defined in Remark 5.9, contains the singleton block {A4;(¢,¢)} on the event {v:(i) > t}.
By Kingman’s correspondence, it follows that Hgt) has infinitely many blocks a.s. on
{v¢(i) > t}. Using Remark 5.1, we deduce that a.s. on {v;(i) > t}, all particles at any
time s € (0,¢) survive until time ¢. As condition (5.1) is a. s. satisfied, each individual at
time 0 retains its level for a positive time a.s., whence all individuals at time 0 survive
until time ¢ a.s.

Hence, as Y(pp) = vp by assumption (6.5),

’Ut(i) =t+ UU(Ao(t, Z)) =t+ %je]N\i{gf[;(t ) p()(A()(if7 Z)7j)

=1 inf i, 1) =T ) .S. 1) >t} O
§ne pid) =) aus.on {u(i) > 1)

11.3 Uniqueness for the martingale problems for tree-valued Fleming-Viot pro-
cesses

Proof of Proposition 7.1. We consider the martingale problem (B, II), the proofs for the
other martingale problems are analogous. It remains to show uniqueness of the solution
discussed in Section 7. We use a function-valued dual process. This method is applied in
the context of tree-valued Fleming-Viot processes in [13], another dual process is used in
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[26]. We fix n € IN and work with a dual process with state space C,,. With each element
7 of P,,, we also associate a transformation C,, — C,,, which we also denote by 7, by

m(0)(p) = ¢(n(p)), pER™,¢€Cy.

Here 7(p) is defined in equation (5.2). We define an independent process (¢;,t € Ry ) as
the Markov process with cadlag paths in C,, such that

 for each 7 € P, \ {0,,} at rate A\, the process jumps from ¢ to 7 (¢),

¢ and between these jumps, the process evolves deterministically according to
Grrs(p) = de(p+ 2, 5)
for s,t € Ry and p € R™, where 2 = 2(1{i # j})i jen)-
The process (¢;,t € R ) solves the martingale problem (B*, &), where

QZ{C,L—HR,(bHVXI(b:X/EU}

and an operator B' with domain 2 is defined by B+ = Bioal + thrink,
Bl (@)= Y (v¥(w(9) = 1¥0)

T€PL\{0,}

and
Bihrinkyx (¢) =X <v¢’;>

for ¢ € C,, and x’ € U. Here we use the notation (V¢,2) from equation (5.6).

From this definition, we have B(v'¢)(x’) = B*vX (¢) for all ¢ € C, and ¥’ € U, where
v’ ¢ is the polynomial associated with ¢. For all ¢t € R, and all polynomials & € II of
degree at most n, it follows from Theorem 4.4.11 in [19] that E[®(x,)] is equal for all
solutions ((X,t € R4 ); P) of the martingale problem (B, IT) with initial state x¢. Asn € IN
was arbitrary and the space II of polynomials is separating, the uniqueness assertion
follows from Theorem 4.4.2 in [19]. O

11.4 Proof of Lemma 8.1

Using the lookdown construction, we show that the semigroup of an U-valued
=-Fleming-Viot process preserves the set of marked polynomials.

Proof of Lemma 8.1. Let N denote the space of simple point measures on (0,00) x P. Let
t € Ry and n € IN. Note that in the construction in Sections 5.1 and 6.1, the restriction
~n(7¢,v¢) depends only on the simple point measure 1 and the restriction ~,, (1o, vo) of the
initial state. We may thus define the function g, : R™ x R™ x N = R™ x R" that maps
the restriction ~,,(ro,vo) of the initial state and the point measure 7 to ~, (¢, v;). Note
that when the simple point measure is fixed, g, is a differentiable function on R" x R"
with bounded uniformly continuous derivative.
Let ¢ € C,. We define the function

FiRT XR" SR, (r0) e /]P(n e dn')p o gu((r,v),n'),

where 7 is now the Poisson random measure from Section 5.2. By dominated convergence
and the mean value theorem, also the function f is differentiable with bounded uniformly
continuous derivative, and we obtain that f € C,.

EJP 23 (2018), paper 41. http://www.imstat.org/ejp/
Page 38/42


http://dx.doi.org/10.1214/18-EJP153
http://www.imstat.org/ejp/

Exchangeable coalescent trees and tree-valued Fleming-Viot processes

Let ® be the marked polynomial associated with ¢. For y € U, let (ro,v0) be a
random variable with the marked distance matrix distribution of x, and let (r;,v;) be
defined from (7, v9) and the independent Poisson random measure 7 as in Section 6.2.
From Propositions 6.5 and 10.10, and as we may assume tAhat the U-valued =-Fleming-

Viot process (%s,s € Ry ) from Section 8 satisfies x; = (r¢,v:) a.s., we obtain that
E,[®(x:)] = vXf forall x € U. Hence, x — E, [®(x)] is in IL O

List of notation

Here we collect notation that is used globally in the article.

Miscellaneous

R+ = [0,00), Q+ =R+ ﬂQ, N = {1,2,3,...}, [n] = {1,...,71} forn € NN, [O} =0
Yrn: restriction map in various contexts, (p.12/1.-18, p.15/1.10)

&f = [&(dz) f(z) for a measure £ and a function f (p. 12/1.-12)

My, (E): set of bounded measurable functions £ — R

o(p) = po p~': pushforward measure under a measurable function ¢ (p.8/1.1)

(Marked) distance matrices

i1: space of semi-ultrametrics on IN, (p.6/1.-11)

A space of decomposed semi-ultrametrics on N, (p. 6/1.-4)

9, D: spaces of (decomposed) semimetrics on IN (p.6/1.-10, p.27/1.-12)

«: map that retrieves the semi-ultrametric from a decomposed semi-ultrametric (p. 6/1.-6)

B — il decomposition map into the external branches and the remaining subtree (p. 7/1. 3)
T(p): vector of the lengths of the external branches in the coalescent tree associated with p
(p-7/1.2)

(Marked) metric measure spaces

IM: space of isomorphy classes of metric measure spaces (p. 7/1.-12)

U: space of isomorphy classes of ultrametric measure spaces (p. 8/1.-18)

M, U: spaces of isomorphy classes of marked metric measure spaces (p. 7/1.-7, p. 8/1.-15)

vX: distance matrix distribution of x € IM (p. 3/1.-4, p. 7/1.-2) or marked distance matrix distribution
of x € M (p.4/1.14, p. 7/1.-2)

U°™®: space of distance matrix distributions (p. 11/1.7)

PO - M, 1& 1D X ]Iﬂ — IM: construction of (marked) metric measure spaces (p.9/1.9, p.9/1.15)
D*, *: sets of (marked) distance matrices with a good sampling measure (p.9/1.13, p.9/1.19)
Cn, C, C, C: sets of bounded differentiable functions with bounded uniformly continuous derivative
(p.12)

II: set of polynomials on U (p.12/1. -5)

II: set of marked polynomials on U (p.12/1.-3)

%': a set of test functions on &/°"® (p.12/1.-1)

Partitions and semi-partitions

P: Set of partitions of IN

B;(m): i-th block of a partition = (p. 15/1. 14)

#m: number of blocks of a partition m

K; ;: partition of IN that contains only {i, j} and singleton blocks (p. 17/1.8)

Pn: Set of partitions of [n], associated transformations (equation (5.2))

0, ={{1},...,{n}} € Pn

P™: Set of partitions of IN in which the first n integers are not all in different blocks (p. 15/1. 13)
P": Set of partitions of IN in which the first n integers are not all in singleton blocks (p.20/1.11)
Sr set of semi-partitions of [n], associated transformations (p.19/1.-13, p. 19/1.-6)
A={z=(z1,22,...): 21 > 22>...0,]z]s <1}

]y = (3, 27)'/7 forz € A

k(z,-): paintbox distribution associated with z € A (p. 17/1.3)
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Genealogy in the lookdown model

7: point measure on (0, c0) X P that encodes the reproduction events, (p.15/1.20, p.17/1.12)
As(t,1): level of the ancestor at time s of the particle on level i at time ¢ (p. 15/1.-17)

pt(i,7): genealogical distance (p. 15/ 1.-4)

(r+,v:): decomposed genealogical distance (p. 19)

2 = Ep + Z{0}do, equation (5.4)

Hz=: characteristic measure of  (p.17/1.10)
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