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Abstract

A spectral decomposition for the generator of the block counting process of the β(3, 1)-
coalescent is provided. This decomposition is strongly related to Riordan matrices
and particular Fuss–Catalan numbers. The result is applied to obtain formulas for
the distribution function and the moments of the absorption time of the β(3, 1)-
coalescent restricted to a sample of size n. We also provide the analog spectral
decomposition for the fixation line of the β(3, 1)-coalescent. The main tools in the
proofs are generating functions and Siegmund duality. Generalizations to the β(a, 1)-
coalescent with parameter a ∈ (0,∞) are discussed leading to fractional differential
or integral equations.
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1 Introduction and main results

Coalescents with multiple collisions, independently introduced by Pitman [17] and
Sagitov [20], are Markovian processes Π = (Πt)t≥0 with state space P, the set of
partitions of N := {1, 2, . . .}. Each coalescent with multiple collisions is characterized
by a finite measure Λ on the unit interval [0, 1]. These processes are hence also called
Λ-coalescents. The most prominent example is the Kingman coalescent [9], where Λ

is the Dirac measure at 0. Another important example is the Bolthausen–Sznitman
coalescent [1], where Λ is uniformly distributed on [0, 1]. The Bolthausen–Sznitman
coalescent obviously belongs to the class of beta coalescents, where Λ = β(a, b) is the
beta distribution with parameters a, b ∈ (0,∞) having density x 7→ (B(a, b))−1xa−1(1−
x)b−1, x ∈ (0, 1), with respect to Lebesgue measure on (0, 1). Here B(a, b) :=

∫ 1

0
xa−1(1−

x)b−1 dx denotes the beta function.
For t ≥ 0 let Nt denote the number of blocks of Πt. The process (Nt)t≥0 is called the

block counting process of Π. In [16] a spectral decomposition for the generator of the
block counting process of the Bolthausen–Sznitman coalescent is provided. Kukla and
Pitters [11] provide a spectral decomposition for the generator of the (partition-valued)
Bolthausen–Sznitman coalescent restricted to a sample of size n ∈ N. For other beta
coalescents explicit spectral decompositions have been unknown so far.
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A spectral decomposition for the beta(3,1)-coalescent

We focus on the particular beta coalescent with Λ = β(3, 1) the beta distribution with
parameters a = 3 and b = 1 having density x 7→ 3x2, x ∈ (0, 1). One reason why we
focus on this particular beta coalescent is the fact that its block counting process moves
from state i ∈ N with i ≥ 2 to any state j ∈ N with j < i with equal probability 1/(i− 1)

not depending on j. The generator Q = (qij)i,j∈N of the block counting process of the
β(3, 1)-coalescent has entries (see, for example, [4, Eq. (2.6)] with a = 3 and b = 1)

qij =


3

i+ 1
if j < i,

−3(i− 1)

(i+ 1)
if j = i,

0 if j > i.

(1.1)

Let qi := −qii = 3(i− 1)/(i+ 1) denote the total rates, i ∈ N. In order to state the results
the following definition from [21] is useful.

Definition 1.1 (Riordan matrix). A lower left triangular matrix R = (rij)i,j∈N is called a
Riordan matrix if for every j ∈ N the jth vertical generating function rj(z) :=

∑∞
i=j rijz

i

has the form rj(z) = f(z)(g(z))j for some functions f and g of the form f(z) = 1 + f1z +

f2z
2 + · · · and g(z) = z + g2z

2 + g3z
3 + · · · defined in some neighborhood of 0.

In this case we write R = (f(z), g(z)) or R = (f, g). Riordan matrices are closed
under the usual matrix multiplication and R = (f, g) has inverse R−1 = (1/(f ◦ g−1), g−1).
A typical example for a Riordan matrix is (see [21, Example (A)]) the Pascal matrix
R = (rij)i,j∈N with binomial entries rij :=

(
i
j

)
, in which case it is easily checked that

R = (f, g) with f(z) := 1/(1 − z) and g(z) := z/(1 − z). Since g−1(z) = z/(z + 1) it
follows that R has inverse L := R−1 = (1/(z + 1), z/(z + 1)). Thus, lj(z) :=

∑∞
i=j lijz

i =

(1/(z + 1))(z/(z + 1))j = zj/(z + 1)j+1 and Taylor expansion of lj(z) shows that L has
entries lij = (−1)i−j

(
i
j

)
. Further examples of Riordan matrices are provided in [21]

and [22]. Riordan matrices bridge several disciplines in mathematics. They are highly
useful for calculating combinatorial sums [22]. Their group structure makes them as
well appealing to the algebraic community.

Our main result (Theorem 1.2 below) provides an explicit spectral decomposition for
the generator Q of the block counting process of the β(3, 1)-coalescent. The result is
remarkable, since the β(3, 1)-coalescent seems to be the only beta coalescent different
from the Bolthausen–Sznitman coalescent where such an explicit spectral decomposition
is available. For further information on this topic we refer the reader to Section 2 where
the delicate question on extensions to other beta coalescents is discussed. Moreover,
Theorem 1.2 sheds some new light on particular Fuss–Catalan numbers and generalized
Stirling numbers as explained in the remarks after the theorem.

In the following Γ denotes the gamma function. We furthermore use the notation
N0 := {0, 1, 2, . . .}. The proof of the following theorem and of all other results are
provided in Section 3.

Theorem 1.2. (Spectral decomposition of the generator of the block counting
process) The generator Q = (qij)i,j∈N of the block counting process of the β(3, 1)-
coalescent has spectral decomposition Q = RDL, where D = (dij)i,j∈N is the diagonal
matrix with entries dii = −3(i − 1)/(i + 1), i ∈ N, and R = (rij)i,j∈N and L = (lij)i,j∈N
are the lower left triangular Riordan matrices

R =

(
1√

1− z
,

z√
1− z

)
and L =

(√
1 +

z2

4
− z

2
, z

(√
1 +

z2

4
− z

2

))
(1.2)
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having entries

rij = (−1)i−j
(
− j+1

2

i− j

)
=

(
i− j+1

2

i− j

)
=

Γ(i− j−1
2 )

Γ( j+1
2 )Γ(i− j + 1)

, i ≥ j, (1.3)

and

lij =
j + 1

2
(−1)i−j

Γ( i+1
2 )

Γ(j − i
2 + 3

2 )Γ(i− j + 1)
, i ≥ j, (1.4)

with the convention that lij = 0 if j − i
2 + 3

2 ∈ −N0.

Remark 1.3. (i) Eqs. (1.3) and (1.4) are useful to compute the entries of R and L

numerically. One obtains

R =



1

1 1

1 3
2 1

1 15
8 2 1

1 35
16 3 5

2 1

1 315
128 4 35

8 3 1

1 693
256 5 105

16 6 7
2 1

...
. . .


and

L =



1

−1 1
1
2 − 3

2 1

− 1
8

9
8 −2 1

0 − 1
2 2 − 5

2 1
1

128
15
128 − 5

4
25
8 −3 1

0 0 1
2 − 5

2
9
2 − 7

2 1
...

. . .


.

We do not have an intuitive explanation for the fact that R has non-negative entries.

(ii) (Relations to the Fuss–Catalan numbers) For n ∈ N0 and α, β ∈ R the Fuss–Catalan
numbers cn(α, β) are defined (see, for example, Mlotkowski [14] or Riordan [19, p. 148
or p. 168]) via c0(α, β) := 1 and

cn(α, β) :=
β

n!

n−1∏
i=1

(αn+ β − i) =
β

n

(
αn+ β − 1

n− 1

)
, n ∈ N, α, β ∈ R. (1.5)

It is readily checked that the entries rij and lij , i, j ∈ N with i ≥ j, are related to the Fuss–
Catalan numbers via rij = ci−j(1,

j+1
2 ) = j+1

i+1 ci−j(
1
2 ,

i+1
2 ) and lij = (−1)i−jci−j(

1
2 ,

j+1
2 ) =

j+1
i+1 ci−j(1,−

i+1
2 ).

(iii) (Relations to generalized Stirling numbers) Let S(i, j;α, β, r) denote the general-
ized Stirling numbers in the notation of Hsu and Shiue [7]. Using the recursion for these
numbers (see, for example [7, Theorem 1]) a straightforward induction on i shows that
for the particular case α = 2β and r = 0 the Stirling number S(i, j; 2β, β, 0) is related to
the gamma function via

S(i, j; 2β, β, 0) =

(
− β

2

)i−j
Γ(2i− j)

Γ(j)Γ(i− j + 1)
= (−2β)i−j

Γ(i− j−1
2 )Γ(i− j

2 )

Γ( j2 )Γ( j+1
2 )Γ(i− j + 1)

,
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i ≥ j, where the last equality holds by Legendre’s duplication formula Γ(x2 )Γ(x+1
2 ) =

21−x
√
πΓ(x). Applying this formula with β = −1/2 and β = 1/2 it follows from (1.3) that

rij =
S(i, j;−1,− 1

2 , 0)

[ j2 ]i−j
=

(−1)i−jS(i, j; 1, 12 , 0)

[ j2 ]i−j
, i ≥ j, (1.6)

where [x]0 := 1 and [x]n := x(x + 1) · · · (x + n− 1), x ∈ R, n ∈ N, denote the ascending
factorials.

Let us provide some applications of Theorem 1.2. For n ∈ N let Π(n) = (Π
(n)
t )t≥0

denote the coalescent restricted to a sample of size n (n-coalescent) and let N (n)
t denote

the number of blocks of Π
(n)
t , t ≥ 0. We are interested in τn := inf{t > 0 : N

(n)
t = 1}, the

absorption time of Π(n). In the biological context τn is called the time back to most recent
common ancestor. For the β(3, 1)-coalescent it has been recently shown [15, Proposition
3.4] that τn has the convolution representation

τn
d
= En +

n−1∑
k=2

ξkEk, n ∈ {2, 3, . . .}, (1.7)

where E2, E3, . . . are independent and Ek is exponentially distributed with parameter qk,
and ξ2, ξ3, . . . are independent Bernoulli random variables and independent of E2, E3, . . .

with E(ξk) = 1/k, k ∈ {2, 3, . . .}. Formula (1.7) is intuitively clear by interpreting Ek as
the sojourn time of the block counting process in state k and {ξk = 1} as the event that
the jump chain of the block counting process ever visits state k ∈ {2, . . . , n} when started
from state n. The independence of (Ek)k and (ξk)k and the fact that ξk does not depend
on the initial state n are however particular for the β(3, b)-coalescent with parameter
b ∈ (0,∞) and related to the property that for this particular class of coalescents the
block counting process has constant hitting probabilities. For more details we refer
the reader to the proof of [15, Proposition 3.4]. From (1.7) one may derive formulas
for the distribution function of τn. The detail computations are however not very
amusing. Instead, we proceed as follows. Theorem 1.2 implies that the transition matrix
P (t) = (pij(t))i,j∈N = etQ of the block counting process has spectral decomposition
P (t) = RetDL. Thus, Theorem 1.2 immediately yields

P(τn ≤ t) = pn1(t) =

n∑
k=1

rnke
−qktlk1 = 1 +

n∑
k=2

rnklk1e
−qkt

= 1−
n∑
k=2

(−1)k
Γ(n− k−1

2 )

Γ(n− k + 1)Γ( 5−k
2 )Γ(k)

e−
3(k−1)
k+1 t. (1.8)

Consequently, τn has moments

E(τ jn) =

∫ ∞
0

jtj−1P(τn > t) dt = −
n∑
k=2

rnklk1

∫ ∞
0

jtj−1e−qkt dt

= −
n∑
k=2

rnklk1
j!

qjk
=

n∑
k=2

(−1)k
Γ(n− k−1

2 )

Γ(n− k + 1)Γ( 5−k
2 )Γ(k)

j!( 3(k−1)
k+1

)j , j ∈ N.

From (1.7) and the central limit theorem it follows that (3τn − log n)/
√

2 log n is asymp-
totically standard normal distributed, in agreement with Table 2 of [5].

The total tree length of the β(3, 1)-n-coalescent has a convolution representation (see
[15, Proposition 3.5]) similar to the representation (1.7) for τn. Theorem 1.2 seems to
be not directly useful to derive formulas for the distribution function or the moments of
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the total tree length, since these functionals cannot be expressed easily in terms of the
transition matrices P (t), t ≥ 0.

We now turn to the fixation line of the β(3, 1)-coalescent. For n ∈ N and t ≥ 0 define

L
(n)
t := sup{k ∈ N : N

(k)
t ≤ n} (1.9)

and set Lt := L
(1)
t for convenience. The process (Lt)t≥0 is called the fixation line of

the coalescent. It is easily seen from (1.9) and well known (see [4, Theorem 2.9] or
[6, Lemma 2.4]) that the block counting process is Siegmund dual (see [23]) to the
fixation line, i.e. P(N

(i)
t ≤ j) = P(L

(j)
t ≥ i), i, j ∈ N, t ≥ 0. Moreover, (1.9) implies that

N
(n)
t = inf{k ∈ N : L

(k)
t ≥ n}, n ∈ N, t ≥ 0. An alternative definition of the fixation line

is based on the lookdown construction of the coalescent going back to Donnelly and
Kurtz [2, 3]. This more involved definition is provided in [6, p. 3010] for the Λ-coalescent
and in [4, Section 1] for general exchangeable coalescents. In this construction each
individual is equipped with a level being a positive integer. The construction is such that
when Lt reaches state n, all individuals at time t having level less than or equal to n are
offspring of a single individual (the individual at time 0 having level 1), an event called
fixation in genetics. For our purposes (and in many cases) it suffices to work with (1.9).
The precise definition via the lookdown construction is therefore omitted here.

A spectral decomposition for the generator of the fixation line of the Bolthausen–
Sznitman coalescent is provided in [10, Theorem 3.1]. Theorem 1.4 below is the analog
result for the β(3, 1)-coalescent and can be viewed as the Siegmund dual counterpart of
Theorem 1.2.

The generator G = (gij)i,j∈N of the fixation line of the β(3, 1)-coalescent has entries
(see, for example, [4, Eq. (2.10)])

gij =


3i

(j + 1)(j + 2)
if i < j,

− 3i

i+ 2
if i = j,

0 if i > j.

(1.10)

Note that the total rates gi := −gii = 3i/(i+ 2), i ∈ N, of the fixation line are related to
those of the block counting process via gi = qi+1, i ∈ N. The latter equality holds for all
exchangeable coalescents (see, for example, [4, Proposition 2.5]) and is essentially a
consequence of the Siegmund duality relations qj,≤i = gi,≥j , i, j ∈ N, for the generator
entries (see, for example, [4, Eq. (5.1)]). Choosing j := i + 1 in these relations yields
−qi+1 = qi+1,≤i = gi,≥i+1 = −gi, hence gi = qi+1 for all i ∈ N.

Theorem 1.4. (Spectral decomposition of the generator of the fixation line) The
generator G = (gij)i,j∈N of the fixation line of the β(3, 1)-coalescent has spectral
decomposition G = R̃D̃L̃, where D̃ = (d̃ij)i,j∈N is the diagonal matrix with entries
d̃ii = −3i/(i+ 2), i ∈ N, and R̃ = (r̃ij)i,j∈N and L̃ = (l̃ij)i,j∈N are upper right triangular
matrices with entries

r̃ij =
i

2
(−1)j−i

Γ( j2 )

Γ(i− j
2 + 1)Γ(j − i+ 1)

, i ≤ j, (1.11)

with the convention that r̃ij = 0 if i− j
2 + 1 ∈ −N0, and

l̃ij = (−1)j−i
(
− i

2

j − i

)
=

(
j − i

2 − 1

j − i

)
=

Γ(j − i
2 )

Γ( i2 )Γ(j − i+ 1)
, i ≤ j. (1.12)
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Remark 1.5. (i) Computations based on (1.11) and (1.12) yield

R̃ =



1 − 1
2

1
8 0 − 1

128 0 1
1024 · · ·

1 −1 1
2 − 1

8 0 1
128

1 − 3
2

9
8 − 1

2
15
128

1 −2 2 − 5
4

1 − 5
2

25
8

1 −3

1
. . .


and

L̃ =



1 1
2

3
8

5
16

35
128

63
256

231
1024 · · ·

1 1 1 1 1 1

1 3
2

15
8

35
16

315
128

1 2 3 4

1 5
2

35
8

1 3

1
. . .


.

In contrast to the spectral decomposition for the block counting process, here the matrix
L̃ has non-negative entries. Again we do not have an intuitive explanation for this fact.

(ii) It is readily seen that r̃ij and l̃ij are related to the Fuss–Catalan numbers cn(α, β)

defined in (1.5) via r̃ij = cj−i(1/2,−i/2) = (i/j)cj−i(1,−j/2) and l̃ij = cj−i(1, i/2) =

(i/j)cj−i(1/2, j/2), i, j ∈ N, i ≤ j.
(iii) For every i ∈ N the horizontal generating functions r̃i(z) :=

∑∞
j=i r̃ijz

j and

l̃i(z) :=
∑∞
j=i l̃ijz

j , |z| < 1, are provided in (3.9) and (3.10), implying that the transposed

matrices R̃> and L̃> are both particular Riordan matrices R̃> = (1, z(
√

1 + z2/4− z/2))

and L̃> = (1, z/
√

1− z) in the notation introduced after Definition 1.1.

(iv) From Theorem 1.2 and Theorem 1.4 it follows that

rij = l̃j+1,i+1 and lij = r̃j+1,i+1, i, j ∈ N. (1.13)

The relations (1.13) are special for the β(3, 1)-coalescent and do not hold for arbitrary
Λ-coalescents, in particular not for the Bolthausen–Sznitman coalescent, which is easily
seen by comparing the spectral decomposition for the generator of the block counting
process [16, Theorem 1.1] and for the generator of the fixation line [10, Theorem 3.1] of
the Bolthausen–Sznitman coalescent. The general Siegmund duality relations between
R and L̃ or, alternatively, between L and R̃, are slightly more involved, see (3.11) for the
details.

2 On extensions to the beta(a,1)-coalescent

In this section generalizations to the β(a, 1)-coalescent with parameter a ∈ (0,∞)

are discussed. For the β(a, 1)-coalescent with parameter a ∈ (0,∞) the block counting
process has rates (see, for example, [4, Eq. (2.6)])

qij = a
Γ(i+ 1)

Γ(i+ a− 1)

Γ(i− j + a− 1)

Γ(i− j + 2)
, 1 ≤ j < i. (2.1)
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The total rate qi :=
∑i−1
j=1 qij therefore simplifies to

qi = a
Γ(i+ 1)

Γ(i+ a− 1)

i−1∑
k=1

Γ(k + a− 1)

Γ(k + 2)
=


a

2− a

(
Γ(a)Γ(i+ 1)

Γ(i+ a− 1)
− 1

)
if a ∈ (0,∞) \ {2},

2(hi − 1) if a = 2,

where hi :=
∑i
j=1 1/j denotes the ith harmonic number, i ∈ N. Note that

qi − qj =


Γ(a+ 1)

2− a

(
Γ(i+ 1)

Γ(i+ a− 1)
− Γ(j + 1)

Γ(j + a− 1)

)
if a ∈ (0,∞) \ {2},

2(hi − hj) if a = 2.
(2.2)

Similarly, the fixation line has rates (see, for example, [4, Eq. (2.10)])

gij = ai
Γ(j + 1)

Γ(j + a)

Γ(j − i− 1 + a)

Γ(j − i+ 2)
, 1 ≤ i < j, (2.3)

and total rates

gi =
∞∑

j=i+1

gij =


a

2− a

(
Γ(a)Γ(i+ 2)

Γ(i+ a)
− 1

)
if a ∈ (0,∞) \ {2},

2(hi+1 − 1) if a = 2.
(2.4)

For a ∈ (0,∞) and |z| < 1 define

φ(z) :=
2− a
Γ(a)

∞∑
n=1

Γ(n+ a− 1)

Γ(n+ 2)
zn =


1 +

(1− z)2−a − (1− z)
(1− a)z

if a ∈ (0,∞) \ {1},

1 +
(1− z) log(1− z)

z
if a = 1.

(2.5)
For a ∈ (0, 2) the function φ is the probability generating function of a random variable η
with distribution

P(η = n) =
2− a
Γ(a)

Γ(n+ a− 1)

Γ(n+ 2)
, n ∈ N.

For a ∈ [2,∞) there is no analog probabilistic interpretation for φ, however we can still
work with φ. Note that φ(z) = 0 for a = 2. The following lemma provides a partial answer
towards the spectral decomposition Q = RDL of the generator Q of the block counting
process of the β(a, 1)-coalescent.

In order to state the result let us briefly recall fractional integrals and derivatives.
For a function f : [0, 1)→ R the Riemann–Liouville fractional integral of order α ∈ (0,∞)

is defined by (see, for example, [8, p. 69, Eq. (2.1.1)])

(Iαf)(x) :=
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, x ∈ [0, 1),

provided that the integral on the right hand side exists. The Riemann–Liouville fractional
derivative of order α ∈ [0,∞) is defined by

(Dαf)(x) :=

(
d

dx

)n
(In−αf)(x), x ∈ [0, 1),

where n := bαc + 1, provided that the expression on the right hand side exists. For
α ∈ (−∞, 0) we also write (Dαf)(x) := (I−αf)(x). We also use the notation Dα

x (f(x)) :=

(Dαf)(x), α ∈ R, x ∈ [0, 1). For general information on fractional calculus theory we
refer the reader to the books of Kilbas, Srivastava and Trujillo [8], Miller and Ross [13]
and Podlubny [18].
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Lemma 2.1. Let a ∈ (0,∞) and let R = (rij)i,j∈N denote the matrix in the spectral
decomposition Q = RDL of the generator Q of the block counting process of the β(a, 1)-
coalescent. Then for every j ∈ N the vertical generating function rj(z) :=

∑∞
i=j rijz

i is a
solution to the equation

(1− φ(z))rj(z) =
Γ(j + 1)

Γ(j + a− 1)
Da−2
z

(
za−2rj(z)

)
, z ∈ [0, 1), (2.6)

where φ(z) is defined via (2.5).

Remark 2.2. For a = 1 Eq. (2.6) is of the form (1−φ(z))rj(z) = j
∫ z
0
rj(t)/tdt. Taking the

derivative with respect to z yields the differential equation (1− φ(z))r′j(z)− φ′(z)rj(z) =

rj(z)/z, which was solved in [16, Eq. (2.7)]. For a = 3 Eq. (2.6) reduces to the differential
equation (3.3) with solution (3.4). For a = 2 Eq. (2.6) leads to the uninformative equation
rj(z) = rj(z). For integer a ∈ {4, 5, . . .} one may be able to solve the differential equation
(2.6) of order a−2 for rj , however the solution may turn out to have a rather complicated
form. For non-integer parameter a it might be possible to solve the truly fractional
equation (2.6) by applying fractional calculus theory; see for example Kilbas, Srivastava
and Trujillo [8], Miller and Ross [13] or Podlubny [18]. We leave the solution of (2.6) for
arbitrary a ∈ (0,∞) \ {1, 2, 3} as an open problem.

For completeness we finally provide the dual analog of Lemma 2.1 for the fixation
line.

Lemma 2.3. Let a ∈ (0,∞) and let L̃ = (l̃ij)i,j∈N denote the matrix in the spectral
decomposition G = R̃D̃L̃ of the generator G of the fixation line of the β(a, 1)-coalescent.
Then for every i ∈ N the horizontal generating function l̃i(z) :=

∑∞
j=i l̃ijz

j is a solution
to the equation

l̃i(z) + z(1− φ(z))l̃′i(z) =
Γ(i+ 2)

Γ(i+ a)
Da−1
z

(
za−1 l̃i(z)

)
, z ∈ [0, 1), (2.7)

where φ(z) is defined via (2.5).

Remark 2.4. Again, to the best of the authors knowledge, explicit solutions of (2.7) are
only known for a = 1 (see [10]) and a = 3 (see the proof of Theorem 1.4). For a = 2

Eq. (2.7) degenerates to the uninformative equation l̃i(z) + zl̃′i(z) = d
dz (zl̃i(z)).

Remark 2.5. In this final remark we provide some further information explaining why
the parameter values a = 1 and a = 3 are rather particular. For a ∈ {1, 3} the matrix
R = (rij)i,j∈N of the spectral decomposition Q = RDL of the generator Q of the block
counting process of the β(a, 1)-coalescent has entries

rij =
S(i, j;−1, 1−aa+1 , 0)

[ 2
a+1j]i−j

, i, j ∈ N, (2.8)

where S(i, j;α, β, r) are the generalized Stirling numbers as defined in Hsu and Shiue [7]
and [x]0 := 1 and [x]n := x(x+ 1) · · · (x+ n− 1), n ∈ N, denote the ascending factorials.
For a = 3 (2.8) reduces to (1.6) and for a = 1 (2.8) holds by [16, Theorem 1.1] and
the fact that the generalized Stirling numbers S(i, j;−1, 0, 0) coincide with the standard
absolute Stirling numbers of the first kind.

Note that (2.8) even holds for the limiting case a→ 0 (Kingman coalescent), which
follows from the formula for rij for the Kingman coalescent provided in the appendix of
[16] and from S(i, j;−1, 1, 0) = i!

j!

(
i−1
j−1
)

(Lah numbers).

However, (2.8) does not hold for a ∈ (0,∞) \ {1, 3}. More precisely, for a ∈ (0,∞) \
{1, 3}, the first indices i and j where (2.8) fails to hold are i = 6 and j = 2, which is seen

ECP 23 (2018), paper 102.
Page 8/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP203
http://www.imstat.org/ecp/


A spectral decomposition for the beta(3,1)-coalescent

as follows. Using the general recursion (3.1) for the entries rij it follows that, for the
β(a, 1)-coalescent,

r62 =
3(2a4 + 31a3 + 204a2 + 755a+ 1200)

2(a+ 5)(a3 + 12a2 + 59a+ 168)
, a ∈ (0,∞).

On the other hand, using the recursion (see Theorem 1 of [7]) for the generalized Stirling
numbers one obtains

S(6, 2;−1, 1−aa+1 , 0)

[ 4
a+1 ]4

=
9a2 + 53a+ 75

(a+ 5)(3a+ 7)
.

Taking the difference yields

r62 −
S(6, 2;−1, 1−aa+1 , 0)

[ 4
a+1 ]4

=
(a+ 1)a(1− a)(a− 3)

2(a+ 5)(a+ 7)(3a+ 7)(a2 + 5a+ 24)
, (2.9)

which differs from 0 for a ∈ (0,∞) \ {1, 3}. The latter expression vanishes for a = 0

(Kingman coalescent), a = 1 (Bolthausen–Sznitman coalescent) and a = 3 (β(3, 1)-
coalescent), explaining why these three cases are particular. Note that (2.9) has an
additional negative root at a = −1. One may analyse this additional case in more detail,
however the parameter value a = −1 does not seem to have any meaning in the context
of coalescent theory.

3 Proofs

We first provide the proofs of Theorems 1.2 and 1.4. Both proofs are based on
generating functions. We additionally present an alternative short proof of Theorem 1.4
based on Siegmund duality. We start with the proof of Theorem 1.2, since this proof
turns out to be slightly less technical than the (first) proof of Theorem 1.4.

Proof. (of Theorem 1.2) As in [16] it follows that the entries rij of R satisfy for each
j ∈ N the recursion rjj = 1 and

rij =
1

qi − qj

i−1∑
k=j

qikrkj , i ∈ {j + 1, j + 2, . . .}. (3.1)

Plugging in qik = 3/(i+ 1), 1 ≤ k < i, and qi − qj =
3(i− 1)

i+ 1
− 3(j − 1)

j + 1
=

6(i− j)
(i+ 1)(j + 1)

it

follows that

rij =
j + 1

2(i− j)

i−1∑
k=j

rkj , i ∈ {j + 1, j + 2, . . .}. (3.2)

In order to solve this recursion we proceed similar as in the proof of Theorem 1.1 of [16].
For j ∈ N define the generating function rj(z) :=

∑∞
i=j rijz

i, |z| < 1, and consider the

modified generating function fj(z) :=
∑∞
i=j(i− j)rijzi, |z| < 1. By (3.2),

fj(z) =

∞∑
i=j+1

j + 1

2

i−1∑
k=j

rkjz
i =

j + 1

2

∞∑
k=j

rkjz
k
∞∑

i=k+1

zi−k =
j + 1

2

z

1− z
rj(z).

On the other hand fj(z) =
∑∞
i=j irijz

i − j
∑∞
i=j rijz

i = zr′j(z) − jrj(z). Thus, zr′j(z) −
jrj(z) = ((j + 1)/2)(z/(1− z))rj(z) or, equivalently,

r′j(z) =

(
j + 1

2

1

1− z
+
j

z

)
rj(z), 0 < |z| < 1. (3.3)
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A spectral decomposition for the beta(3,1)-coalescent

The solution of this first order homogeneous differential equation with initial conditions
rj(0) = · · · = r

(j−1)
j (0) = 0 and r(j)j (0) = j!, where r(i)j denotes the ith derivative of rj , is

rj(z) =
zj

(1− z) j+1
2

=
1√

1− z

(
z√

1− z

)j
, j ∈ N, |z| < 1, (3.4)

showing that R is the Riordan matrix R = (1/
√

1− z, z/
√

1− z) in the notation introduced

after Definition 1.1. The function rj has Taylor expansion rj(z) = zj
∑∞
k=0

(− j+1
2
k

)
(−z)k =∑∞

i=j

(− j+1
2

i−j
)
(−1)i−jzi. For i ≥ j the coefficient rij in front of zi in the Taylor expansion

of rj is hence given by (1.3).
Let us now turn to L := R−1. We have (z, z2, . . .)R = (r1(z), r2(z), . . .). Multiply-

ing with L it follows that (z, z2, . . .) = (r1(z), r2(z), . . .)L. Thus, zj =
∑∞
i=j ri(z)lij =∑∞

i=j z
i(1− z)−(i+1)/2lij = (1− z)−1/2

∑∞
i=j(z(1− z)−1/2)ilij , or, equivalently,

lj

(
z√

1− z

)
:=

∞∑
i=j

lij

(
z√

1− z

)i
= zj

√
1− z, |z| < 1.

Substituting u := z/
√

1− z or z = u(
√

1 + u2/4− u/2) it follows that

lj(u) =

∞∑
i=j

liju
i =

zj+1

u
= uj

(√
1 +

u2

4
− u

2

)j+1

, j ∈ N, |u| < 1, (3.5)

showing that L is the Riordan matrix L = (
√

1 + z2/2−z/2, z(
√

1− z2/2−z/2)). Binomial
expansion leads to

lj(u) = uj
j+1∑
r=0

(
j + 1

r

)(
− u

2

)j+1−r(
1 +

u2

4

) r
2

= uj
j+1∑
r=0

(
j + 1

r

)(
− u

2

)j+1−r ∞∑
l=0

( r
2

l

)(
u

2

)2l

.

For i ≥ j the coefficient lij in front of ui in the Taylor expansion of lj(u) is hence given
by (choose r = 2j + 2l − i+ 1 above)

lij =

(
− 1

2

)i−j ∞∑
l=0

(
j + 1

2j + 2l − i+ 1

)(
j + l − i−1

2

l

)

=
j + 1

2
(−1)i−j

Γ( i+1
2 )

Γ(j − i
2 + 3

2 )Γ(i− j + 1)

by Lemma 4.1 in the appendix (applied with u := j+ 1 and v := 2j− i+ 1), with the usual
convention that 1/Γ(z) = 0 for z ∈ −N0, and, hence, lij = 0 if j − i

2 + 3
2 ∈ −N0. Thus,

(1.4) is established.

Remark 3.1. For the Bolthausen–Sznitman coalescent the corresponding generating
functions rj and lj , j ∈ N, are given by (see [16, Eqs. (2.7) and (2.9)])

rj(z) =
z

1− z
(− log(1− z))j−1 and lj(z) = ze−z(1− e−z)j−1, j ∈ N, |z| < 1,

showing that the matrices R and L of the spectral decomposition Q = RDL of the
generator Q of the block counting process of the Bolthausen–Sznitman coalescent are
Riordan matrices of the form

R =

(
z

(1− z)(− log(1− z))
,− log(1− z)

)
and L =

(
ze−z

1− e−z
, 1− e−z

)
.
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A spectral decomposition for the beta(3,1)-coalescent

Proof. (of Theorem 1.4) Two proofs of Theorem 1.4 are provided. The first proof is
self-contained and again based on generating functions. The second proof is rather short
and exploits Theorem 1.2 and the fact that the block counting process is Siegmund dual
to the fixation line.

Proof 1. We follow the first proof of Theorem 3.1 of [10]. Let D̃ = (d̃ij)i,j∈N be the
diagonal matrix with entries d̃ii := −gi = gii, i ∈ N, and let R̃ = (r̃ij)i,j∈N be the upper
right triangular matrix with entries defined for each j ∈ N recursively via r̃jj := 1 and
r̃ij := (gi − gj)−1

∑j
k=i+1 gikr̃kj for i ∈ {j − 1, j − 2, . . . , 1}. Since gii = −gi, i ∈ N, we

conclude that r̃ijgjj =
∑j
k=i gikr̃kj , Thus, the entries of R̃ are defined such that R̃D̃ = GR̃.

Define L̃ := R̃−1. Then, the spectral decomposition G = R̃D̃L̃ holds. Moreover, D̃L̃ = L̃G

and, hence, gii l̃ij =
∑j
k=i l̃ikgkj , i, j ∈ N. Since gii = −gi, i ∈ N, we obtain for each i ∈ N

the recursion l̃ii = 1 and

l̃ij =
1

gj − gi

j−1∑
k=i

l̃ikgkj , j ∈ {i+ 1, i+ 2, . . .}. (3.6)

For i ∈ N define the generating function l̃i(z) :=
∑∞
j=i l̃ijz

j , |z| < 1, and consider the

modified generating function fi(z) :=
∑∞
j=i(j + 1)(j + 2)(gj − gi)l̃ijzj , |z| < 1. From

gj − gi = 6(j − i)/((i+ 2)(j + 2)) we conclude that

fi(z) =
6

i+ 2

∞∑
j=i

(j + 1)(j − i)l̃ijzj =
6

i+ 2

( ∞∑
j=i

(j + 1)jl̃ijz
j − i

∞∑
j=i

(j + 1)l̃ijz
j

)

=
6

i+ 2

(
z

(
d

dz

)2(
zl̃i(z)

)
− i d

dz

(
zl̃i(z)

))
=

6

i+ 2

(
z2 l̃′′i (z) + (2− i)zl̃′i(z)− il̃i(z)

)
. (3.7)

On the other hand, by the recursion (3.6), we obtain

fi(z) =

∞∑
j=i+1

(j + 1)(j + 2)(gj − gi)l̃ijzj =

∞∑
j=i+1

(j + 1)(j + 2)

j−1∑
k=i

l̃ikgkjz
j

=

∞∑
k=i

l̃ik

∞∑
j=k+1

(j + 1)(j + 2)gkj︸ ︷︷ ︸
=3k

zj

= 3

∞∑
k=i

kl̃ik

∞∑
j=k+1

zj = 3

∞∑
k=i

kl̃ik
zk+1

1− z
=

3z2

1− z
l̃′i(z). (3.8)

Since (3.7) and (3.8) coincide, we obtain

z2 l̃′i(z)

1− z
=

2

i+ 2

(
z2 l̃′′i (z) + (2− i)zl̃′i(z)− il̃i(z)

)
or, after some straightforward manipulation,

2z2 l̃′′i (z) +
z

1− z
(4− 2i− 6z + iz)l̃′i(z)− 2il̃i(z) = 0.

The solution of this homogeneous second order differential equation with initial condi-
tions l̃i(0) = · · · = l̃

(i−1)
i (0) = 0 and l̃(i)i (0) = i!, where l̃(j)i denotes the jth derivative of l̃i,

is

l̃i(z) =
zi

(1− z) i
2

, i ∈ N, |z| < 1. (3.9)
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A spectral decomposition for the beta(3,1)-coalescent

The function l̃i has Taylor expansion l̃i(z) = zi
∑∞
k=0

(− i
2
k

)
(−z)k =

∑∞
j=i

(− i
2

j−i
)
(−1)j−izj .

The coefficient l̃ij in front of zj in the Taylor expansion of l̃i is hence given by (1.12).
Let us now turn to R̃ = L̃−1. We have L̃(z, z2, . . .)> = (l̃1(z), l̃2(z), . . .)T . Multiply-

ing from the left with R̃ it follows that (z, z2, . . .)> = R̃(l̃1(z), l̃2(z), . . .)>. Thus, zi =∑∞
j=i r̃ij l̃j(z) =

∑∞
j=i r̃ijz

j(1 − z)−j/2. Substituting u = z/
√

1− z or z = u(
√

1 + u2/4 −
u/2) it follows that

r̃i(u) :=

∞∑
j=i

riju
j = zi = ui

(√
1 +

u2

4
− u

2

)i
, i ∈ N, |u| < 1, (3.10)

and binomial expansion leads to

r̃i(u) = ui
i∑

r=0

(
i

r

)(
− u

2

)i−r(
1 +

u2

4

) r
2

= ui
i∑

r=0

(
i

r

)(
− u

2

)i−r ∞∑
l=0

( r
2

l

)(
u

2

)2l

.

For i ≤ j the coefficient r̃ij in front of uj in the Taylor expansion of r̃i(u) is hence given
by (choose r = 2i+ 2l − j above)

r̃ij =

(
− 1

2

)j−i ∞∑
l=0

(
i

2i+ 2l − j

)(
i+ l − j

2

l

)
=

i

2
(−1)j−i

Γ( j2 )

Γ(i− j
2 + 1)Γ(j − i+ 1)

by Lemma 4.1 in the appendix (applied with u := i and v := 2i − j), with the usual
convention that 1/Γ(z) = 0 for z ∈ −N0, and hence r̃ij = 0 if i − j

2 + 1 ∈ −N0. Thus,
(1.11) is established. 2

Proof 2. (via duality) Exploiting the fact that the block counting process is Siegmund
dual to the fixation line it follows as in the second proof of Theorem 3.1 of [10] that

r̃ij = −
i∑

k=1

lj+1,k and l̃ij = rj+1,i+1 − rj,i+1, i, j ∈ N. (3.11)

Plugging in the formulas (1.3) and (1.4) for rij and lij known from Theorem 1.2, we
obtain

r̃ij = −
j∑

k=1

k + 1

2
(−1)j+1−k Γ( j2 + 1)

Γ(k − j
2 + 1)Γ(j − k + 2)

=
i

2
(−1)j−i

Γ( j2 )

Γ(i− j
2 + 1)Γ(j − i+ 1)

and

l̃ij =
Γ(j − i

2 + 1)

Γ( i2 + 1)Γ(j − i+ 1)
−

Γ(j − i
2 )

Γ( i2 + 1)Γ(j − i)
=

Γ(j − i
2 )

Γ( i2 )Γ(j − i+ 1)
.

Remark 3.2. For the Bolthausen–Sznitman coalescent the corresponding generating
functions r̃i and l̃i, i ∈ N, are given by (see [10, p. 954]) r̃i(z) = (1 − e−z)i and l̃i(z) =

(− log(1 − z))i, i ∈ N, |z| < 1, showing that the transposed matrices R̃> and L̃> of
the spectral decomposition G = R̃D̃L̃ of the generator G of the fixation line of the
Bolthausen–Sznitman coalescent are Riordan matrices of the form R̃> = (1, 1− e−z) and
L̃> = (1,− log(1− z)).

We finish this section with the proofs of Lemma 2.1 and Lemma 2.3.

Proof. (of Lemma 2.1) Fix j ∈ N. Eq. (2.6) holds for a = 2, since φ(z) = 0 for a = 2. We
can therefore assume that a ∈ (0,∞) \ {2}. Consider the modified generating function

gj(z) :=
2− a

Γ(a+ 1)

∞∑
i=j

Γ(i+ a− 1)

Γ(i+ 1)
(qi − qj)rijzi, |z| < 1.
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The recursion (3.1) holds for any exchangeable coalescent as long as the total rates qi,
i ∈ N, are pairwise distinct. Thus, by the recursion (3.1) and by (2.1),

gj(z) =
2− a

Γ(a+ 1)

∞∑
i=j+1

Γ(i+ a− 1)

Γ(i+ 1)

i−1∑
k=j

qikrkjz
i

=
2− a

Γ(a+ 1)

∞∑
k=j

rkjz
k
∞∑

i=k+1

Γ(i+ a− 1)

Γ(i+ 1)
qikz

i−k

=
2− a
Γ(a)

∞∑
k=j

rkjz
k
∞∑

i=k+1

Γ(i− k + a− 1)

Γ(i− k + 2)
zi−k = rj(z)φ(z). (3.12)

On the other hand, it follows from (2.2) that

gj(z) =

∞∑
i=j

(
1− Γ(j + 1)

Γ(j + a− 1)

Γ(i+ a− 1)

Γ(i+ 1)

)
rijz

i

= rj(z)−
Γ(j + 1)

Γ(j + a− 1)

∞∑
i=j

Γ(i+ a− 1)

Γ(i+ 1)
rijz

i.

Applying the fractional calculus formula for monomials (see, for example, Kilbas, Srivas-
tava and Trujillo [8, p. 71, Eqs. (2.1.16) and (2.1.17)])

Dβ
z (zq) =

Γ(q + 1)

Γ(q − β + 1)
zq−β , q, q − β > −1,

with β := a− 2 and q := i+ a− 2 (> −1) it follows that

gj(z) = rj(z)−
Γ(j + 1)

Γ(j + a− 1)
Da−2
z (

∞∑
i=j

rijz
i+a−2)

= rj(z)−
Γ(j + 1)

Γ(j + a− 1)
Da−2
z

(
za−2rj(z)

)
. (3.13)

Since both expressions (3.12) and (3.13) are equal the result follows.

Proof. (of Lemma 2.3) Fix i ∈ N. Eq. (2.7) clearly holds for a = 2. We can therefore
assume that a 6= 2. By the recursion (3.6) and by (2.3),

hi(z) :=
2− a

Γ(a+ 1)

∞∑
j=i

Γ(j + a)

Γ(j + 1)
(gj − gi)l̃ijzj =

2− a
Γ(a+ 1)

∞∑
j=i

Γ(j + a)

Γ(j + 1)

j−1∑
k=i

l̃ikgkjz
j

=
2− a
Γ(a)

∞∑
k=i

kl̃ikz
k
∞∑

j=k+1

Γ(j − k + a− 1)

Γ(j − k + 2)
zj−k = zl̃′i(z)φ(z)

with φ as defined in (2.5). On the other hand, it follows from (2.4) that

hi(z) =

∞∑
j=i

Γ(j + a)

Γ(j + 1)

(
Γ(j + 2)

Γ(j + a)
− Γ(i+ 2)

Γ(i+ a)

)
l̃ijz

j

=

∞∑
j=i

(j + 1)l̃ijz
j − Γ(i+ 2)

Γ(i+ a)

∞∑
j=i

Γ(j + a)

Γ(j + 1)
l̃ijz

j

=
d

dz

(
zl̃i(z)

)
− Γ(i+ 2)

Γ(i+ a)
Da−1
z (

∞∑
j=i

l̃ijz
j+a−1)

= l̃i(z) + zl̃′i(z)−
Γ(i+ 2)

Γ(i+ a)
Da−1
z

(
za−1 l̃i(z)

)
,

which leads to the desired equation for l̃i.
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4 Appendix

With the usual convention that 1/Γ(z) = 0 for z ∈ −N0, the binomial coefficient(
u
v

)
= Γ(u + 1)/(Γ(v + 1)Γ(u − v + 1)) ∈ R is defined for all u, v ∈ R with u /∈ −N. For

nonnegative integer v ∈ N0 the binomial coefficient
(
u
v

)
= u(u−1) · · · (u−v+1)/v! is even

defined for all u ∈ R. The following technical lemma is used in the proofs of Theorems
1.2 and 1.4.

Lemma 4.1. For all u ∈ R \ −N and all v ∈ R with v < 2u,

∞∑
n=0

(
u

2n+ v

)(
n+ v

2

n

)
= u2u−v−1

Γ(u− v
2 )

Γ( v2 + 1)Γ(u− v + 1)
,

with the usual convention that 1/Γ(z) = 0 for z ∈ −N0.

Remark 4.2. For v = 0 the formula reduces to
∑∞
n=0

(
u
2n

)
= 2u−1, u ∈ (0,∞).

Proof. For x ∈ R and n ∈ N0 let [x]n denote the rising Pochhammer symbol, i.e. [x]0 := 1

and [x]n := x(x + 1) · · · (x + n − 1) for n ∈ N. Using Legendre’s duplication formula
Γ(x2 )Γ(x+1

2 ) = 21−x
√
πΓ(x) a somewhat cumbersome but straightforward computation

shows that, for |z| < 1,

∞∑
n=0

(
u

2n+ v

)(
n+ v

2

n

)
zn =

(
u

v

)
2F1

(
v − u

2
,
v − u+ 1

2
;
v + 1

2
; z

)
,

where 2F1(a, b; c; z) :=
∑∞
n=0

[a]n[b]n
[c]n

zn

n! , |z| < 1, denotes the hypergeometric function.

Applying the Gauß formula 2F1(a, b; c; 1) = Γ(c)Γ(c− a− b)/(Γ(c− a)Γ(c− b)), c > a+ b,
with a := (v − u)/2, b := (v − u+ 1)/2 and c := (v + 1)/2 leads to

∞∑
n=0

(
u

2n+ v

)(
n+ v

2

n

)
=

(
u

v

)
2F1

(
v − u

2
,
v − u+ 1

2
;
v + 1

2
; 1

)
=

(
u

v

)
Γ(v+1

2 )Γ(u− v
2 )

Γ(u+1
2 )Γ(u2 )

= u2u−v−1
Γ(u− v

2 )

Γ( v2 + 1)Γ(u− v + 1)
,

where the last equality follows again from Legendre’s duplication formula.
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