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Abstract

We consider the preferential attachment model with multiple vertex types introduced
by Antunović, Mossel and Rácz. We give an example with three types, based on the
game of rock-paper-scissors, where the proportions of vertices of the different types
almost surely do not converge to a limit, giving a counterexample to a conjecture of
Antunović, Mossel and Rácz. We also consider another family of examples where we
show that the conjecture does hold.
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1 Introduction

We consider a model for randomly growing networks of agents having different types,
which are not innate but are chosen based on what they see when they join the network.
These types might represent social groups, opinions, or survival strategies of organisms.
This model was introduced by Antunović, Mossel and Rácz [1], who define a family of
preferential attachment random graphs where each new vertex receives one of a fixed
number of types according to a probability distribution which depends on the types of
its neighbours. Using stochastic approximation methods, they fully deal with the case
where there are two types of vertices, and show that the proportions of the vertices
which are of each type almost surely converge to a (possibly random) limit which is a
stable fixed point of a certain one-dimensional differential equation.

The case where there are more than two types is discussed in Section 3 of [1]. They
conjecture (Conjecture 3.2) that the behaviour is always similar to the two-type model in
that there is almost sure convergence to a limit which is a stationary point of what is now
a multi-dimensional vector field. They confirm this for the case they call the linear model,
where the probability each type is chosen is proportional to the number of neighbours of
that type the new vertex has. However, the difficulties of a general analysis of the class
of vector fields associated to models of this type make it hard for more general results to
be proved.
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Non-convergence of co-existing types

In this note, we give a model with three types which is a counterexample to Conjecture
3.2 of [1]. The type assignment mechanism in this model is inspired by the well-known
game of “rock-paper-scissors”, and we show that in this model the associated vector
field does not have attractive stationary points and that the proportions of the types do
not converge to a limit, but approach a limit cycle of the associated vector field, so that
each type in turn will have the largest proportion of the edges.

We also give a family of examples where we can show that Conjecture 3.2 of [1]
does hold. This is where the new vertex chooses uniformly at random from those types
represented among vertices which it connects to. In this case, we will show that there is a
single stable stationary point of the vector field, which corresponds to the proportions of
each type being equal, and that almost surely the proportions of the types will converge
to this point as n → ∞.

2 The Antunović-Mossel-Rácz framework

The framework introduced by Antunović, Mossel and Rácz in [1] considers a standard
preferential attachment graph where the new vertex connects to m existing vertices as
originally suggested by Barabási and Albert in [2], with the different vertices chosen
independently as in the “independent model” of [4]. That is, we consider a random
sequence of graphs G0, G1, . . . starting from some non-empty fixed graph G0. For each
t > 0 we choose m random vertices from Gt−1 independently and with replacement, with
probabilities proportional to their degrees. We then add a new vertex connected by m

edges to the chosen vertices (allowing multiple edges if a vertex is chosen more than
once) to form Gt.

Each vertex is one of N types {1, . . . , N}, often referred to in [1] as colours; once it
has been assigned, the type of a vertex is fixed for all time. When a new vertex joins
the graph, it takes a type based on the types of its neighbours in the following general
way, where the notation follows section 3 of [1]. The types of the m neighbours induce
a vector u ∈ NN

0 whose elements sum to m and whose ith element is the number of
neighbours of type i. For each possible u, we will have a probability distribution on
{1, . . . , N}, which we will describe by a vector pu ∈ ∆N−1, whose ith element gives the
probability that the new vertex is of type i given that u is the vector giving the numbers
of its neighbours of each type. Here ∆N−1 denotes the (N − 1)-dimensional simplex.

The special case where pu = u/m is referred to in [1] as the linear model. For other
cases, they show (Lemma 3.4) that the sequence of vectors xn giving the normalised
total degrees of the vertices of each type is a stochastic approximation process driven by
a vector field P which depends on the pu, that is we have

xn+1 − xn =
1

n

(
P (xn) + ξn+1 +Rn

)
, (2.1)

where the ξi satisfy the martingale difference condition E(ξn+1|Fn) = 0, with Fn =

σ(x0,x1, . . . ,xn), and the Ri are remainder terms satisfying
∑∞

i=1 Ri/n < ∞ almost
surely. As a result, understanding the vector field P is an important step towards
understanding the behaviour of the stochastic process and applying the general results
on stochastic approximation processes found in, for example, Benaïm [3] and Pemantle
[9].

All of the results in [1] hold provided that both types are represented in the starting
graph, though their model does not in general require this. In this paper, the models
we consider all have the property that a new vertex can only take types which are
represented in its neighbourhood, and so we will assume throughout that all types are
represented in the starting graph, since otherwise the missing types never appear and
the model reduces to a simpler case.
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Non-convergence of co-existing types

3 Rock-paper-scissors model

We introduce a model in the framework of [1] where the type assignment mechanism
is based on the game of rock-paper-scissors. Cyclic dominance systems of this basic form
have been shown to naturally occur in a variety of organisms and ecosystems, ranging
from colour morphisms of the side-blotched lizard [10] to strains of Escherichia coli
[8]. Such patterns of dominance can explain biodiversity. Whereas simpler transitive
relations necessarily have a single fittest phenotype which, in the absence of other
factors, should eventually dominate, cyclic dominance allows for situations where no
phenotype has an evolutionary advantage over all others and thus multiple phenotypes
may persist.

Itoh [7] investigated a simple Moran process based on the rock-paper-scissors game.
A population of fixed size consists of rock-type, scissors-type and paper-type individuals.
At each time step two individuals meet and play rock-paper-scissors; the loser is removed
and replaced with a clone of the winner. The population is assumed to be well-mixed,
so meetings occur uniformly at random; in such a system one type must eventually
take over the whole population. Similar processes have also been studied in a more
structured environment, such as sessile individuals interacting on the 2-dimensional
lattice (see e.g. [11]). Here the limited range of interactions allows co-existence of types
[8]. While a lattice model may closely approximate the interactions between bacteria
growing in vitro, neither a lattice nor a well-mixed model is a good representation of the
heterogeneous social interaction networks that arise among more complex organisms;
here a model incorporating preferential attachment is more realistic.

Our model has N = 3 types and m = 2, the types 1, 2 and 3 corresponding to “rock”,
“paper” and “scissors” respectively. If the two sampled vertices are of the same type, the
new vertex takes that type, whereas if they are of different types they play a game of
rock-paper-scissors, playing their type, and the new vertex takes the type of the winner.
In the notation above, we have

p(1,1,0) = (0, 1, 0), p(0,1,1) = (0, 0, 1), p(1,0,1) = (1, 0, 0),

p(2,0,0) = (1, 0, 0), p(0,2,0) = (0, 1, 0), p(0,0,2) = (0, 0, 1),

and the vector field P , defined by (3.1) of [1], on the triangle ∆2 is given by the
components

P1(x, y, z) =
x

2
(z − y)

P2(x, y, z) =
y

2
(x− z)

P3(x, y, z) =
z

2
(y − x).

3.1 Limiting behaviour of the model

Let Xn, Yn and Zn denote the total degrees of vertices of types 1, 2 and 3 respectively,
normalised to sum to 1. By Lemma 3.4 of [1], (Xn, Yn, Zn) follows a stochastic approxi-
mation process (2.1) on the triangle ∆2 driven by the vector field P with the noise terms
ξi bounded.

Lemma 3.1. The product xyz is constant on trajectories of P .

Proof. We have

d

dt
(xyz) = xyP3(x, y, z) + xzP2(x, y, z) + yzP1(x, y, z) = 0.
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Figure 1: Trajectories on which 27xyz is constant (ranging from 0.1 to 0.9).

The vector field has four stationary points: the corners of the simplex, which are
saddle points, and (1/3, 1/3, 1/3), which has eigenvalues ± i√

27
, making it an elliptic fixed

point. Together with Lemma 3.1 we can see that trajectories of P circle the centre of the
simplex on loops of constant xyz; some of these are shown in Figure 1.

Let Mn = XnYnZn. Our main result is the following.

Theorem 3.2. The process (Mn)n∈N almost surely converges to a limit M ∈ (0, 1/27),
and the distribution of M has full support on (0, 1/27). Furthermore, almost surely
(Xn, Yn, Zn) fails to converge; rather its limit set is the set {(x, y, z) ∈ ∆2 : xyz = M}.
Remark 3.3. The failure to converge means that this model provides a counterexample
to Conjecture 3.2 of [1].

Theorem 3.2 follows from the following three propositions, together with standard
results on stochastic approximation processes.

Proposition 3.4. The process (Mn)n∈N almost surely converges to a limit M ∈ [0, 1/27],
and the distribution of M has full support on (0, 1/27).

Proposition 3.5. Almost surely M = limn→∞ Mn < 1/27.

Proposition 3.6. Almost surely M = limn→∞ Mn > 0.

Proof of Proposition 3.4. Let γn = 4n+ 2e0, that is the total degree in Gn; here e0 is the
number of edges in the initial graph G0. Then, if the two sampled vertices are both
“rock”, which has probability X2

n, we have that

Mn+1γ
3
n+1 = (Xnγn + 4)YnZnγ

2
n = Mnγ

3
n + 4YnZnγ

2
n,

while if one sampled vertex is “rock” and the other is “paper”, which has probability
2XnYn, we have that

Mn+1γ
3
n+1 = (Xnγn + 1)(Ynγn + 3)Znγn = Mnγ

3
n + 3XnZnγ

2
n + YnZnγ

2
n + 3Znγn,

with analogous expressions for the other possibilities. Hence

E(Mn+1 | Fn) = γ−3
n+1(Mnγ

3
n + (4 + 6 + 2)Mnγ

2
n + (6 + 6 + 6)Mnγn)

= Mn(γn + 4)−3(γ3
n + 12γ2

n + 18γn)

= Mn

(
1− 30

γ2
n+1

+
56

γ3
n+1

)
, (3.1)

ECP 23 (2018), paper 54.
Page 4/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP157
http://www.imstat.org/ecp/


Non-convergence of co-existing types

showing that (Mn)n∈N is a supermartingale. It takes values in [0, 1/27].

If we let Rn+1 = Mn

(
30

γ2
n+1

− 56
γ3
n+1

)
and M̃n = Mn +

∑n
k=1 Rk then (M̃)n∈N is a

martingale. The difference M̃n −Mn is bounded, so M̃n → M̃ almost surely, where M̃ is
a random limit.

There exist positive constants c1, c2 such that − c1
γn

≤ Mn+1 −Mn ≤ c2
γn
. Hence there

exists c such that Var(M̃n+1 − M̃n | Fn) ≤ c
γ2
n
and thus Var(M̃ | Fn) → 0 as n → ∞.

Given an interval (r, r + ε) ∈ (0, 1/27), for n large enough there will be positive
probability of Mn ∈ (r + ε/3, r + 2ε/3). That Var(M̃ | Fn) → 0 and that

∑∞
k=n+1 Rk → 0

as n → ∞ ensures that if n is large enough there is then positive probability of M ∈
(r, r + ε).

In order to prove Proposition 3.5, we will need better control on the variation of Mn+1

if Mn is close to 1/27.

Lemma 3.7. If Mn > 1
27 − c

γn
then

∣∣Mn+1 − E(Mn+1 | Fn)
∣∣ < C

γ
3/2
n

for some C which

depends only on c and for sufficiently large n.

Proof. Note that if |Xn − 1
3 | ≥

c′√
γn

then Mn ≤ 1
27 − c′2

4γn
+ c′3

4γ
3/2
n

. Consequently, for a

suitable choice of c′ and sufficiently large n we have |Xn − 1
3 |, |Yn − 1

3 |, |Zn − 1
3 | <

c′√
γn
.

In turn this means that

1

Xn
<

3

1− 3c′√
γn

= 3 +
9c′
√
γn

+
27c′2

γn − 3c′
√
γn

< 3 +
c′′
√
γn

for some c′′ and n sufficiently large. Similarly we have 1
Xn

> 3 − c′′√
γn
, and the same

bounds apply to Yn, Zn.
Write µn+1 for E(Mn+1γ

3
n+1 | Fn); by (3.1), since γn+1 = γn + 4, we have

µn+1 = Mnγ
3
n+1 − 30Mnγn+1 + 56Mn

= Mnγ
3
n + 12Mnγ

2
n + 18Mnγn.

With probability X2
n we have Mn+1γ

3
n+1 = Mnγ

3
n + 4YnZnγ

2
n, giving

|Mn+1γ
3
n+1 − µn+1| ≤

∣∣∣ 4

Xn
− 12

∣∣∣Mnγ
2
n + 18Mnγn

<
4c′′

27
γ3/2
n +

2

3
γn < Cγ3/2

n

for some C and sufficiently large n. With probability 2XnYn we have Mn+1γ
3
n+1 =

Mnγ
3
n + 3XnZnγ

2
n + YnZnγ

2
n + 3Znγn, giving

|Mn+1γ
3
n+1 − µn+1| ≤

∣∣∣ 3

Yn
− 9 +

1

Xn
− 3

∣∣∣Mnγ
2
n + |3Zn − 18Mn|γn

<
4c′′

27
γ3/2
n + 3γn +

2

3
γn < Cγ3/2

n ,

and similar bounds apply in other cases. Thus we have

∣∣Mn+1 − E(Mn+1 | Fn)
∣∣ < Cγ

3/2
n

γ3
n+1

<
C

γ
3/2
n

.
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We are now ready to show that almost surely Mn does not tend to 1/27.

Proof of Proposition 3.5. Suppose for the sake of contradiction that P
(
M = 1

27

)
> 0.

Then for n0 sufficiently large there will be an event A ∈ Fn0
such that P

(
M = 1

27 | A
)
≥

1− ε. Fix c1 > c2 > 0 to be chosen later, and let B be the event that for some n ∈ [n0, 2n0]

we have Mn ∈
(

1
27 − c1

n , 1
27 − c2

n

)
. We claim that, for suitable c1, c2 which do not depend

on n0, we have P(B | Fn0
) is bounded away from 0 for n0 sufficiently large. To see

this, stop the process if Mn < 1
27 − c2

n0
or if n = 2n0; write τ for the stopping time. By

choice of τ , it follows from (3.1) that M (τ)
n+1 +

∑min(n,τ)
k=n0

1
γ2
k
is a supermartingale, since

30M
(τ)
n ≥ 30

(
1
27 − c1

n0

)
> 1.

If B fails, we must have τ = 2n0 and M2n0 > 1
27 − c2

2n0
, i.e.

M
(τ)
2n0

+

2n0−1∑
k=n0

1

γ2
k

>
1

27
+

a

n0

for some constant a, which is positive for suitable choice of c2. Applying Azuma–
Hoeffding, using Lemma 3.7, this occurs with probability bounded away from 1.

Suppose B occurs, with τ = n1. Let C be the event that Mn ∈
(

1
27 − 2c1

n1
, 1
27 − c2

2n1

)
for

every n ≥ n1. We claim that P(C | Fn1
) is bounded away from 0. The proof is similar: fix

n2 > n1 and stop the process if it leaves the interval or if n = n2, with stopping time τ ′.
If C fails to hold before n2 then we have, evaluated at n = n2, either

M (τ ′)
n > Mn1 −

c2
2n1

(3.2)

or

M (τ ′)
n −

n−1∑
k=n1

2

γ2
k

< Mn1
− c1

n1
. (3.3)

Since the left-hand sides of (3.2) and (3.3) are respectively a supermartingale and
submartingale, with variations bounded by Lemma 3.7, again by Azuma–Hoeffding this
has probability bounded away from 1, where the bound is independent of n1 and n2.

Finally, we show that almost surely the limit M is positive.

Proof of Proposition 3.6. First we claim that almost surely Mn = Ω(γ−1
n ). Indeed, in

a standard preferential attachment process the degree of a fixed vertex vi satisfies
dn(vi) = (1+o(1))ξi

√
γn, where ξi is a random variable which is almost surely positive: see

Theorem 8.2, Lemma 8.17 and Exercise 8.13 of [6]. Thus the contribution of the starting
vertices alone ensures that min(Xn, Yn, Zn) = Ω(γ

−1/2
n ) and so XnYnZn = Ω(γ−1

n ).
As in the proof of Lemma 3.7, with probability X2

n we have

Mn+1γ
3
n+1 − µn+1 = (4YnZn − 12Mn)γ

2
n − 18Mnγn;

note that
X2

n

(
(4YnZn − 12Mn)γ

2
n − 18Mnγn

)2
= O(M2

nγ
4
n).

With probability 2XnYn we have

Mn+1γ
3
n+1 − µn+1 = (3XnZn + YnZn − 12Mn)γ

2
n + (3Zn − 18Mn)γn,

and
2XnYn

(
(3XnZn + YnZn − 12Mn)γ

2
n + (3Zn − 18Mn)γn

)2
= O(Mnγ

4
n).

Similar expressions hold for the other possibilities, giving Var(Mn+1γ
3
n+1 | Fn) =

O(Mnγ
4
n), i.e. Var(Mn+1 | Fn) = O(Mnγ

−2
n ).
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Figure 2: Distributions of the value of 27M10000 from two different starting graphs.

Suppose Mn′ < 2Mn for all n′ ≥ n. Then we have Var(Mn′+1 | Fn′) = O(Mnγ
−2
n ) for

each n′ ≥ n, giving Var(M | Fn) = O(Mnγ
−1
n ) = O(M2

n). Thus there is a probability
bounded away from 0 as n → ∞ that M is in the interval (Mn/2, 3Mn/2) conditional on
Fn, but if M = 0 has positive probability then for any ε > 0 and n sufficiently large there
is an event A ∈ Fn with P (M = 0 | A) > 1− ε, giving a contradiction.

We can now complete the proof of our main result.

Proof of Theorem 3.2. Propositions 3.4, 3.5 and 3.6 show that the limit set L(X,Y, Z) is,
almost surely, contained within {(x, y, z) ∈ ∆2 : xyz = M}, where M ∈ (0, 1/27) is the
random variable defined in Proposition 3.4. By Theorem 5.7 of Benaïm [3], L(X,Y, Z) is
almost surely a chain transitive set for the flow; here a chain transitive set for the flow is
an invariant set M for the flow such that for every pair of points a and b in M and for
any δ > 0 and T > 0 there is a (δ, T )-pseudo-orbit from a to b, meaning a finite sequence
of partial trajectories, with the first starting at a and the last starting at b, the duration
of each trajectory at least T , and the finishing point of one trajectory and the starting
point of the next at most δ apart. For M ∈ (0, 1/27) the only invariant set for the flow,
and hence the only chain transitive set, which is a subset of {(x, y, z) ∈ ∆2 : xyz = M} is
the whole set.

The distribution of M will naturally depend critically on the starting graph G0. Figure
2 shows approximate distributions for two particular choices of G0, being the complete
graphs on 3 and 6 vertices respectively, each with equal numbers of rock, paper and
scissors vertices. These distributions were taken from simulations to time 10000.

3.2 Rate of circling

In this section we show that circling around the limiting cycle occurs on a logarithmic
scale as n → ∞, at a rate which depends only on the limit parameterM ; this is consistent
with the behaviour seen in Figure 3.

Theorem 3.8. For n0 sufficiently large depending on M = limn→∞ Mn, with high prob-
ability the process completes a circuit approximating the trajectory Mn = M at time
(A+ o(1))n0, where A > 1 is a parameter which depends only on M .
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Figure 3: Evolution of Xn, Yn, Zn from a simulation, together with 27Mn (grey curve).

Proof. For (x, y, z) ∈ ∆2, write f(x, y, z) for
∥∥x(z−y)

2 , y(x−z)
2 , z(y−x)

2

∥∥. For any δ > 0, if
min(x, y, z) ∈ (δ, 1/3− 2δ) then f(x, y, z) is bounded away from 0, since assuming without
loss of generality that x is the median value we have |x(z − y)| > δ/3, and trivially f is
also bounded above. Similarly we may bound all partial derivatives of f(x, y, z) away
from 0 when min(x, y, z) ∈ (δ, 1/3− 2δ).

Let CM be the curve {(x, y, z) ∈ ∆2 : xyz = M}, and let LM be its length (in the
Euclidean metric). Fix δ > 0 such that M ∈ (δ, 1/27− δ). Let ε ∈ (0, δ2) be arbitrary, and
suppose n0 is sufficiently large that |Mn −M | < ε2 for all n > n0 with high probability.
Note that, conditioned on this event, we must have min(Xn, Yn, Zn) ∈ (δ, 1/3− 2δ) for all
n > n0 and so f(Xn, Yn, Zn) is bounded away from 0.

Write ni+1 = b(1+ε)nic for i ≥ 0 and consider the process (Xn, Yn, Zn) for n ∈ [n0, n1].
Think of this as an urn process, where balls represent edge-ends; for each vertex we
draw two balls from the urn, replace them and add four new balls depending on the draw.
For the moment, only reveal the information of whether each ball drawn was in the urn at
time n0 or not; call a vertex “typical” if both balls drawn for that vertex were in at time n0.
The number of atypical vertices is dominated by a binomial (bεn0c, 2ε) random variable,
so we have at least (ε − 3ε2)n0 typical vertices with high probability. Now the type of
new balls added for each typical vertex are independent and identically distributed,
contributing on average 4εn0Xn0

(
1 +

Zn0
−Yn0

2

)
rock, 4εn0Yn0

(
1 +

Xn0
−Zn0

2

)
paper and

4εn0Zn0

(
1 +

Yn0
−Xn0

2

)
scissors to the urn, so the variance of numbers of each type

contributed by typical vertices is O(εn) = o(ε2n2). Consequently with high probability at

time n1 the number of balls of type rock is at least 4n0Xn0
+4εnXn0

(
1+

Zn0
−Yn0

2

)
− 4ε2n

and at most 4n0Xn0
+ 4εnXn0

(
1 +

Zn0
−Yn0

2

)
+ 4ε2n0, and similarly for paper and scissors.

It follows that the distance from (Xn0
, Yn0

, Zn0
) to (Xn1

, Yn1
, Zn1

) is within 12ε2

of ε
2(1+ε)f(Xn0

, Yn0
, Zn0

), and similarly for each i the distance from (Xni
, Yni

, Zni
) to

(Xni+1
, Yni+1

, Zni+1
) is within 12ε2 of ε

2(1+ε)f(Xni
, Yni

, Zni
), both with high probability.

Note that, since partial derivatives of f are bounded away from 0, f(Xni , Yni , Zni)
−1

is within O(ε2) of f(xi, yi, zi)
−1, where we define (xi, yi, zi) to be the closest point to

(Xni , Yni , Zni) on CM .

There exist values b < B such that after at least b/ε and at most B/ε steps of this
form the process has completed a circuit. The time at which this occurs is therefore in
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[(1 + ε)b/εn0, (1 + ε)B/εn0], i.e. in [ebn0, e
Bn0].

Letting ε → 0 gives the required result with A = exp
(
2LM

∫
t∈CM

f(t)−1 dt
)
.

3.3 Affine preferential attachment

A natural extension of the model of [1], considered briefly in that paper, is where
we have affine preferential attachment so that a vertex v is chosen for attachment with
probability proportional to d(v) + α for some α > −2. Affine preferential attachment was
introduced by Dorogovtsev, Mendes and Samukhin in [5]. It turns out that the behaviour
of the rock-paper-scissors model is similar in this modified setting. Let Xn, Yn, Zn be
the probabilities of selecting rock, paper and scissors vertices respectively by a single
preferential choice at time n, letMn = XnYnZn, and write γn =

∑
v(dn(v)+α). Now with

probability X2
n we have γ3

n+1Mn+1 = (γnXn + 4 + α)γnYnγnZn, with probability 2XnYn

we have γ3
n+1Mn+1 = (γnXn + 1)(γnYn + 3 + α)γnZn, and so on, giving

E(Mn+1 | Fn) = γ−3
n+1(Mnγ

3
n + (12 + 3α)Mnγ

2
n + (18 + 6α)Mnγn)

= Mn(γn + 4 + α)−3(γ3
n + (12 + 3α)γ2

n + (18 + 6α)γn)

= Mn

(
1− (30 + 18α+ 3α2)γn

γ3
n+1

− (4 + α)3

γ3
n+1

)
.

As in the proof of Proposition 3.4, noting that 30+18α+3α2 ≥ 3, we have that (Mn)n∈N is
a supermartingale with the appropriate variance properties, meaning that Propositions
3.4 and 3.5 apply as in the standard model. For α > 0, however, the proof of Proposition
3.6 does not translate to this setting, since the degree of a given vertex grows as
γ
1/(2+α/2)
n .
If M = 0 then {(x, y, z) ∈ ∆2 : xyz = 0} is a chain transitive set, but the stationary

points at the corners of the triangle are also chain transitive sets. However, we can
prove that the corners are limits with probability zero. Without loss of generality, assume
(Xn, Yn, Zn) → (1, 0, 0). Then, for n sufficiently large Xn > 1/2, meaning that conditional
on Fn the probability that vertex n+1 is of type 2 (paper), Y 2

n+2XnYn > Yn. Consequently
we can bound Yn below by the proportion of black balls in a coupled standard Pólya urn
process, showing that P(Yn → 0) = 0 on the event Xn > 1/2 for n large enough. Hence
P(L(X,Y, Z) = (1, 0, 0)) = 0. Thus we have the following slight weakening of Theorem
3.2 for this setting.

Theorem 3.9. For affine preferential attachment, the process (Mn)n∈N almost surely
converges to a limit M ∈ [0, 1/27), and the distribution of M has full support on (0, 1/27).
Furthermore, almost surely (Xn, Yn, Zn) fails to converge; rather its limit set is the set
{(x, y, z) ∈ ∆2 : xyz = M}.

4 Pick random visible type

We now consider another natural, simple rule for choosing types; instead of copying
the type of a random neighbour, as in the linear model, we choose uniformly at random
between types present in the neighbourhood. This method gives common types slightly
less advantage than the linear model, and instead of almost sure convergence to a
random limit, here we obtain almost sure convergence to a deterministic limit.

Theorem 4.1. Suppose we have N ≥ 2 types and each new vertex chooses m ≥ 3

neighbours, and adopts a type chosen uniformly at random from those present among
its neighbours. Then the proportion of each type converges almost surely to 1/N .

Remark 4.2. If m = 2 then this model reduces to the linear model of [1].

Proof. Write X
(i)
n for the proportion of edge-ends from vertices of type i. It is sufficient
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to show that lim infn→∞ X
(N)
n ≥ 1/N almost surely, since by symmetry of the model

the same will apply to all other types, implying that X(i)
n → 1/N ; convergence of the

proportions of vertices follows by considering the vertices added once |X(i)
n − 1/N | < ε

for each i.
We couple the process with a two-type process as follows. Treat all types other than

type N as indistinguishable, forming a single supertype ∗, and let Yn be the proportion
of edge-ends of type N at time n. Join each new vertex to m vertices as before. If each
of the chosen vertices has the same type, assign that type to the new vertex. Otherwise,
if k vertices are chosen from type ∗ and m − k from type N with 0 < k < m, sample k

independent variables from the uniform distribution on {1, . . . , n− 1} and let Z(k) be the
number of different values seen; now assign type N to the new vertex with probability

1
Z(k)+1 .

By Lemma 4.3 below, for every k and j we have

P(Z(k) ≥ j) ≥ P(An+1 ≥ j | Bn+1 = k,Fn),

where An+1 is the number of types other thanN among neighbours of vn+1 in the original
process, and Bn+1 is the number of neighbours not of type N ; it follows that

E
( 1

Z(k) + 1

)
≤ E

( 1

An+1 + 1

∣∣∣ Bn+1 = k,Fn

)
.

Provided X
(N)
n ≥ Yn, we have

P(vn+1 has type N | Fn) =

m−1∑
k=0

P(Bn+1 = k)E
( 1

An+1 + 1

∣∣∣ Bn+1 = k,Fn

)
≤

m−1∑
k=0

(
m

k

)
(1− Yn)

k(Yn)
m−kE

( 1

Z(k) + 1

)
,

and so it is possible to couple the two processes such that X(N)
n ≥ Yn. Writing

f(y) =

m−1∑
k=0

(
m

k

)
(1− y)kym−kE

( 1

Z(k) + 1

)
− y,

we have

Yn+1 − Yn =
f(Yn) + ξn+1

γn+1
,

where γn is the number of edge-ends at time n and ξn is a random variable satisfying
E(ξn | Fn) = 0 and |ξn| < m + 1. It is straightforward to check that this is a one-
dimensional stochastic approximation process satisfying the conditions of Pemantle [9],
Section 2.4, and hence Corollary 2.7 of [9] implies that Yn converges to a zero of f .

We claim that f(y) > 0 for 0 < y < 1/N . To see this, note that f(y) is the difference
in probability of the new vertex selecting type N in the linear model (copying the type of
a random neighbour) over this model, assuming that the proportion of type-N edge ends
is y, and proportions of other types are equal. We condition on the types represented in
the neighbourhood; the only cases which contribute are those where N is represented.
Given that type N and k specified other types are represented, the expected number
of neighbours of type N is at most that of each other type, so is at most m

k+1 . Thus the
probability of selecting type N , given which types are represented, is no greater in the
linear model than in this model. This inequality is strict provided 0 < k < m − 1 (if
k = m − 1 then necessarily each type is represented exactly once). Since m ≥ 3 and
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N ≥ 2, the inequality is strict in at least one case with positive probability of occurring,
and so f(y) > 0.

Thus Yn → 0 or limYn ≥ 1/N , so it suffices to show that Yn 6→ 0. This follows since if
Yn → 0 then we have Yn < 1/N for n sufficiently large, and since f(y) ≥ 0 if y ≤ 1/N we
can couple to a standard Pólya urn.

We conclude by proving the inequality required for the two-type coupling.

Lemma 4.3. Fix n ≥ 1, m ≥ 0 and k ≥ 0, and let p be a probability distribution on [n].
Then the probability pn,m,k(p) that a sample ofm independent variables with distribution
p includes at least k different elements of [n] is maximised when p = (1/n, . . . , 1/n), and
moreover when n,m ≥ k ≥ 2 that is the unique maximiser.

Proof. The statement is trivial unless n,m ≥ k ≥ 2 since ifmin(n,m) < k then pn,m,k(p) ≡
0 and if n,m ≥ k < 2 then pn,m,k(p) ≡ 1. When n,m ≥ k ≥ 2, we prove that if
p = p1, . . . , pn is a non-uniform probability distribution then it does not maximise pn,m,k(p)

by induction on n, with base case n = 2; in this case we have pn,m,k(p) = 1−pm1 −(1−p1)
m

and it is easy to see (e.g. by calculus) that this is uniquely maximised when p1 = 1/2.
Suppose n > 2 but the result holds for smaller values of n; note that any distribution

with full support gives pn,m,k(p) > 0, and so we may assume that pi 6= 1 for each i.
If additionally p is non-uniform, there exists some i for which pi > 0 and the other
probabilities are not all the same; without loss of generality, assume i = n. We condition
on the number of times n appears in the sample, so that

pn,m,k(p) = (1− pn)
mpn−1,m,k(q) +

m∑
j=1

(
m

j

)
pjn(1− pn)

m−jpn−1,m−j,k−1(q),

where q =
(

p1

1−pn
, . . . , pn−1

1−pn

)
is the conditional distribution if n is not selected. Applying

the induction hypothesis to q, equalising p1, . . . , pn−1 will not decrease any term, and will
strictly increase at least one term (the initial term if n > k or the j = 1 term otherwise),
so p does not maximise pn,m,k(p).
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