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Abstract

We consider the Poisson Boolean percolation model in R2, where the radius of each
ball is independently chosen according to some probability measure with finite second
moment. For this model, we show that the two thresholds, for the existence of an un-
bounded occupied and an unbounded vacant component, coincide. This complements
a recent study of the sharpness of the phase transition in Poisson Boolean percolation
by the same authors. As a corollary it follows that for Poisson Boolean percolation in
Rd, for any d ≥ 2, finite moment of order d is both necessary and sufficient for the
existence of a nontrivial phase transition for the vacant set.
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Introduction

Percolation theory is the collective name for the study of long-range connections
in models of random media. In the most fundamental model of this kind, Bernoulli
bond percolation, a discrete random structure is obtained by removing edges of the Z2

nearest-neighbour lattice by the toss of a coin. The removed edges can be identified
with present edges of a slightly shifted ‘dual’ lattice. A milestone within percolation
theory was reached in 1980 with Kesten’s proof that the thresholds for the existence of
an infinite primal and an infinite dual component coincide [5]. Analogous results have
since been obtained for models of percolation in the continuum of R2, such as Poisson
Boolean percolation with bounded radii [8] and Poisson Voronoi percolation [2]. In our
previous work [1], we characterized the phase transition of Poisson Boolean percolation
in two dimensions in terms of crossing probabilities. As a consequence, we proved that
the vacant and occupied phase transitions occur at the same parameter under a specific
moment assumption (see Equation (0.5) below). As announced in [1], we prove in the
present paper that the result holds under the minimally required condition that the radii
distribution has finite second moment. As a corollary we show that finite moment of
order d is both necessary and sufficient for the existence of a nontrivial phase transition

*The authors thank an anonymous referee for a number of comments and corrections on the manuscript.
This work was partially funded by grants 237-2013-7302 of the Swedish Research Council (DA), 406250/2016-2
and 309356/2015-6 from CNPq and 202.231/2015 from FAPERJ.

†Department of Mathematics, Stockholm University, Sweden
‡Department of Mathematics, ETH Zürich, Switzerland
§IMPA – Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil. E-mail: augusto@impa.br

https://doi.org/10.1214/18-ECP152
http://www.imstat.org/ecp/
http://arXiv.org/abs/1706.03053v2
mailto:augusto@impa.br


Unbounded vacant set for subcritical continuum percolation

for the vacant set in any dimension d ≥ 2. An alternative argument has been obtained by
Penrose [7], see Remark 0.5 for more details.

In Poisson Boolean percolation, a random occupied set is created based on a Poisson
point process in Rd with intensity parameter λ ≥ 0. At each point we center a disc
with radius sampled independently from some probability distribution µ on R+. The
subset O ⊆ Rd of points covered by some disc is referred to as the occupied set, and
its complement V = Rd \ O as the vacant set. Clearly, the probability of long-range
connections in the occupied set is increasing in λ. Conversely, connections in the vacant
set become less likely as λ increases. We introduce the threshold parameters

λc := inf
{
λ ≥ 0 : Pr

λ

[
0

O←→∞
]
> 0

}
,

λ?
c := sup

{
λ ≥ 0 : Pr

λ

[
0

V←→∞
]
> 0

}
,

where we write 0
S←→∞ if the connected component in S of the origin is unbounded.1

Since a detailed description of the model and an account of previous work on the topic
was given by the same authors in the recent paper [1], we shall only recall what is
relevant for the results presented here.

Throughout the paper, when considering Poisson Boolean percolation in dimension d,
we always assume that the law µ that determines the radii has finite moment of order d:∫ ∞

0

rd µ(r.) <∞. (Hd)

This assumption is very natural since the space Rd is entirely occupied for any λ > 0 if
(Hd) does not hold, see [4]. In other words, we have for every λ > 0,

(Hd) ⇐⇒ Pr
λ

(
O = Rd

)
= 0. (0.1)

Furthermore, as soon as (Hd) is satisfied, there exists λ > 0 sufficiently small to ensure
that the occupied set does not percolate. More precisely, it is proved in [3] that this
moment assumption is equivalent to the non triviality of the phase transition for the
occupied set:

(Hd) ⇐⇒ λc ∈ (0,∞). (0.2)

In this paper, we investigate the phase transition of the vacant set. Our main result
states that in dimension 2, the phase transitions of the vacant and occupied sets occur at
the same parameter, under the minimal assumption (H2).

Theorem 0.1. Consider Poisson Boolean percolation in R2, and assume the finite second
moment hypothesis (H2). Then, we have

λ?
c = λc. (0.3)

Remark 0.2. By combining Theorem 0.4 below and the results in [1], we obtain a more
detailed description of the vacant set in the phases λ > λ?

c and λ = λ?
c . More precisely,

one can show that Theorem 1.2 in [1] holds assuming only the finite second moment
condition (H2).

In higher dimensions, as a corollary to Theorem 0.1, we find that finite moment of
order d is also sufficient for the existence of an unbounded vacant component at small
densities.

1Below, we similarly write A
S←→ B if there is a continuous path in S connecting the sets A and B.
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Unbounded vacant set for subcritical continuum percolation

Theorem 0.3. Consider Poisson Boolean percolation in Rd, for some d ≥ 2, and assume
that (Hd) holds. Then,

λ?
c ∈ (0,∞). (0.4)

Note that λ?
c = 0 when (Hd) is not satisfied. Hence, the theorem above shows that

the phase transition for the vacant set is non-trivial if and only if the hypothesis (Hd) is
satisfied. That is, Eq. (0.2) also holds for λ?

c in place of λc.
As mentioned above, the duality relation (0.3) was previously established in [8] for

bounded radii, and in [1] under the assumption∫ ∞

0

r2 log r µ(dr) <∞. (0.5)

These previous approaches are based on Russo-Seymour-Welsh techniques and renormal-
ization of crossing probabilities. The hypothesis (0.5) implies a decorrelation property of
the crossing probabilities of the vacant set, that is sufficient for the standard renormal-
ization techniques to apply. The new step in the proof of Theorem 0.1 is the following
theorem, which we prove using specific properties of Boolean percolation valid witout
the hypthesis (0.5), contrary to the standard renormalization techniques used in [1].
Define Cross(`, r) as the event that the box [0, `]× [0, r] can be crossed from left to right
by an occupied path.

Theorem 0.4. Consider Poisson Boolean percolation in R2, and assume the finite second
moment hypothesis (H2). If λ > 0 is such that

lim
`→∞

Pλ[Cross(`, 3`)] = 0, (0.6)

then there exists an unbounded connected vacant component almost surely.

Remark 0.5. In a parallel work, Penrose [7] obtained a nice alternative proof of the
theorem above, using a refined renormalization argument on the crossing probabilities.
In the present paper we present a different approach, based on a Peierls-type argument.

As will be explained in Section 1 below, Theorems 0.1 and 0.3 can easily be derived
from Theorem 0.4. The core of the paper is thus devoted to the proof of Theorem 0.4.
The proof will follow a Peierls-type argument, but requires some modifications. In order
to present the difficulties related to our framework, let us briefly present the standard
arguments that would prove Theorem 0.4 in the case of unit radii (which corresponds
to µ = δ1). In this case, using a renormalization method based on independence, we
can show that (0.6) implies the exponential decay of the connection probabilities for the
occupied set: there exists a constant c > 0 such that the probability of an occupied path
from a box Λ(x, 1) around a given point x with radius 1 to distance r around it satisfies

Pλ

[
Λ(x, 1)

O←→ Λ(x, r)c
]
≤ e−cr. (0.7)

To prove that the vacant set percolates, one can first observe that

Pλ

[
B(0, L)

V
6←→ ∞

]
= Pλ

[
∃ an occupied circuit surrounding B(0, L)

]
(0.8)

and then use the exponential decay to show that that the right hand side above tends
to 0 as L tends to infinity. This argument fails when µ has a fat tail, due to long-range
dependencies. Indeed, if we choose µ with a sufficiently fat tail (but still satisfying (H2)),
the probability that a disc of radius L covers a given point may decay arbitrarily slowly
with L, and we cannot expect to have a fast decay as in (0.7). Nevertheless, by consid-
ering carefully the properties of the combinatorial structures blocking a vacant path
(sequences of discs encircling a large box, which we refer to as “necklaces”) one may
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Unbounded vacant set for subcritical continuum percolation

sill prove that an occupied circuit around the origin is unlikely. A key factor in the
calculation will be to discriminate on the radius r of the second largest disc in a necklace.
Then the rest of the necklace must consist of long paths of discs of size smaller than r,
and we can quantitatively bound the probability of such events.

The paper is organized as follows. In Section 1, we give the main notation, we derive
Theorems 0.1 and 0.3 from Theorem 0.4, as well as provide some useful lemmas. In
Section 2, we complete the proof of Theorem 0.4.

1 Preliminaries

Notation For the remainder of this paper we work in R2 and use the notation B(x, r)

and Λ(x, r) to respectively denote the Euclidean ball and `∞-ball centred at x ∈ R2 with
radius r > 0. Let ω be a Poisson point process on R2 × R+ of intensity λ dxµ(dz), for
some λ ≥ 0. We denote by Prλ the law of ω. Based on ω we obtain a partition of R2 into
an occupied set O and vacant set V = R2 \ O as follows:

O(ω) :=
⋃

(x,z)∈ω

B(x, z).

We shall in what follows simply refer to the sets B(x, z) for (x, z) ∈ ω as ‘discs’.

Derivation of Theorems 0.1 and 0.3 from Theorem 0.4

Proof of Theorem 0.1. That λ?
c ≤ λc was proved already in [1, Corollary 4.5], so we only

need to verify the remaining inequality. Pick λ < λc. By Theorem 1.1 in [1], we have
lim`→∞Pλ[Cross(`, 3`)] = 0, which implies λ ≤ λ?

c by Theorem 0.4. Therefore λ?
c ≥ λc.

Proof of Theorem 0.3. We first note that the restriction of the occupied set of Poisson
Boolean percolation in Rd to a two dimensional subspace is in law identical to the occu-
pied set of Poisson Boolean percolation in R2, now for some modified radius distribution.
Instead of calculating how this procedure modifies the radii distribution we can use (0.1):
Under (Hd) the occupied set does not cover Rd almost surely. Therefore its restriction to
R2 is almost surely also not covered. Again by (0.1) we conclude that condition (H2) is
satisfied for the induced planar model. By Theorem 0.1 we conclude that in the induced
model there is almost surely an unbounded vacant component for small enough values
of λ, concluding the proof.

Connection probabilities for truncated radii As explained in the introduction, we
cannot in general expect fast decay of the connection probabilities due to the presence
of large discs. Nevertheless, if we remove all sufficiently large discs, then we recover a
similar exponential bound as the one observed in (0.7). This is the content of the next
lemma. Let

O`(ω) :=
⋃

(x,z)∈ω: z≤`

B(x, z).

Lemma 1.1. Assume that λ ≥ 0 is such that (0.6) holds. Then there exist constants
`0 ≥ 1 and c > 0 such that for every x ∈ R2 and L ≥ ` ≥ `0, we have

Pλ[Λ(x, `)
O`←→ Λ(x, L)c] ≤ 1

c
e−cL/`.

Proof. Fix ε > 0 and let `0 ≥ 1 be such that Pλ[Cross(`, 3`)] < ε for every ` ≥ `0. Define
for ` ≥ `0 the following Bernoulli process on Z2: For y ∈ Z2, set X(y) = 1 if there exists a
path in O` from Λ(`y, `) to Λ(`y, 3`)c, and set X(y) = 0 otherwise. When X(y) = 1 we say
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that y is X-open. Then X defines a 10-dependent percolation process on Z2, in the sense
of [6], and satisfies Pλ[X(y) = 1] < 4ε. For ε > 0 small enough, this process is dominated
by subcritical Bernoulli percolation. Therefore, for ε > 0 small, the probability that
there exists an X-open nearest-neighbour path2 of length k in Z2 from the origin decays
exponentially in k.

Observe next that if in R2 there exists an occupied path from Λ(0, `) to Λ(0, L)c, using
only balls with radius smaller than `, then there must exist anX-open path in Z2, starting
at the origin, of length bL/`c. Therefore, for some constant c > 0,

Pλ[Λ(x, `)
O`←→ Λ(x, L)c] ≤ 1

c
e−cbL/`c,

as required.

A direct consequence of the exponential decay above is the following estimate, that
will be useful to apply in the Peierls argument to come. Let E`(L) be the event that for
some x ∈ R2 satisfying |x| ≥ L there is a path in O` from x to B(x, |x|)c.
Lemma 1.2. Assume that λ ≥ 0 is such that (0.6) holds. Then there exist constants
`0 ≥ 1 and c > 0 such that for every L ≥ ` ≥ `0 we have

Pλ[E`(L)] ≤
1

c
e−cL/`.

Proof. If E`(L) occurs, then there must exist a point y ∈ `Z2 \B(0, L− `) such that Λ(y, `)
is connected to distance |y| − ` around it. By the exponential decay of Lemma 1.1, we
obtain

Pλ[E`(L)] ≤
∑

y∈`Z2\B(0,L−`)

1

c
e−c|y|/` ≤ 1

c′
e−c′L/` (1.1)

for some c′ > 0.

Large discs are found far from the origin We next estimate the probability of seeing
two large discs close to the origin. Given r, s > 0, let F (r, s) be the event that there exist
at least two discs B1, B2 such that for i = 1, 2,

(i) the radius of Bi satisfies rad(Bi) ≥ r, and

(ii) the Euclidean distance between 0 and Bi satisfies 0 < d(0, Bi) ≤ s.

Lemma 1.3. For every λ ≥ 0 we have that

Pλ[F (r, s)] ≤ λ2

(
πs2µ ([r,∞)) + 2πs

∫ ∞

r

z µ(dz)

)2

.

Proof. The number of open discs satisfying items (i) and (ii) above is a Poisson random
variable with parameter

λ · Leb⊗ µ
[{
(x, z) ∈ R2 ×R+ : r ≤ z < |x| ≤ s+ z

}]
= λ

∫ ∞

r

(
2π

∫ s+z

z

ρ dρ

)
µ(dz)

= λ

(
πs2µ([r,∞)) + 2πs

∫ ∞

r

z µ(dz)

)
.

The result then follows since a Poisson variable with parameter ν has probability at most
νk of being larger than or equal to k.

2That is, made up of X-open vertices.
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2 Proof of Theorem 0.4

Throughout this section we shall assume (H2) and that λ > 0 is such that (0.6) holds.
The proof of Theorem 0.4 will proceed by counting necklaces, which we define as follows.

Definition 2.1. A sequence (B1, B2, . . . , Bk) of discs of decreasing size, i.e. where
rad(B1) ≥ rad(B2) ≥ · · · ≥ rad(Bk), will be called a necklace around B(0, L) if

(i) the complement of
⋃

i∈[k] Bi consists of two connected components, one bounded
and one unbounded;

(ii) B(0, L) is contained in the bounded component;

(iii) the complement of
⋃

i∈[k]\{j} Bi is connected for every j = 1, 2, . . . , k.

Remark 2.2. Alternatively, we could have defined simply a necklace as a connected set
of balls disjoint from B(0, L) and containing an occupied circuit around the origin. The
proof would follow the steps, up to minor modifications.

Notice, in particular, that if B1, B2, . . . , Bk is a necklace around B(0, L), then none of
the discs intersect B(0, L). We shall proceed via a Peierls-type of argument, and show
that for large L the probability that there is a necklace around B(0, L) is tiny. This will
suffice for the following reason.

Lemma 2.3. For all L ≥ 0 we have that

Pλ

[
there is no unbounded component of V

]
≤ Pλ

[
∃ necklace around B(0, L)

]
. (2.1)

Proof. To see why this is true, recall that the number of discs that intersect a bounded
region is almost surely finite (see e.g. [1, Eq. (2.15)]). It is also not possible, outside of
a null set, to create an unbounded vacant component by removing a finite number of
discs. That is, if there is no unbounded vacant component, then we can assume that
the occupied circuit that surrounds B(0, L) is contained in a finite number of discs that
avoid B(0, L). We obtain a necklace around B(0, L) by removing discs until (i) and (iii)
are satisfied. Indeed, if (B1, B2, . . . , Bk) is minimal in the sense of (iii), then there is a
reordering of the discs so that each disc intersects its predecessor and its successor, but
none of the others. In this case also (i) holds.

In order to bound the probability of a necklace around B(0, L), we discriminate on
the size of the second largest pearl3. Fix L ≥ 0. For 0 ≤ a ≤ b, let GL(a, b) be the event
that there exists a necklace (B1, B2, . . . , Bk) around B(0, L) with rad(B2) ∈ [a, b]. Let
j0 := blog3(

√
L)c. Due to the union bound, we have

Pλ

[
∃ necklace around B(0, L)

]
≤ Pr

λ
[GL(0,

√
L)] +

∑
j≥j0

Pr
λ
[GL(3

j , 3j+1)]. (2.2)

We bound the terms on the right-hand side, by using the two lemmas below.

Lemma 2.4. There exists a constant c > 0 such that for all large L we have

Pλ[GL(0,
√
L)] ≤ 1

c
e−c

√
L. (2.3)

Proof. Assume that there exists a necklace (B1, . . . , Bk) around B(0, L) with rad(B2) ≤√
L. Consider a disc Bj of the necklace that intersects B1. Starting from the center xj

3It is of course, as suggested by the referee, presumptuous of us to assume that the necklace is made out of
pearls. But we cannot imagine a reader that would oppose our mental image.
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of Bj there must exist an occupied path from xj to distance |xj | contained in discs with
radii at most

√
L, see Figure 1. Hence the event E√

L(L) occurs. So, by Lemma 1.2,

Pλ[GL(0,
√
L)] ≤ Pλ[E√

L(L)] ≤
1

c
e−c

√
L,

for some c > 0 and all large L.

B1

B2

B(0, L)

Figure 1: On the event GL(a, b) there exist two sequences of discs with radii at most
b connecting B1 to B2, while avoiding the shaded region. At least one of the two must
have length at least L.

Set p(r) = πr2µ ([r,∞)) + 2πr
∫∞
r

z µ(dz).

Lemma 2.5. There exists a constant c > 0 such that for all large L and r we have

Pλ[GL(r, 3r)] ≤
λ

c
p(r). (2.4)

Proof. Let a ≥ 3 be a constant to be chosen later. First, by Lemma 1.3,

Pλ[GL(r, 3r)] ≤ Pλ[F (r, ar)] + Pλ[GL(r, 3r) \ F (r, ar)]

≤ λ2a4p(r)2 + Pλ[GL(r, 3r) \ F (r, ar)].
(2.5)

Assume that GL(r, 3r) occurs but not F (r, ar). Let (B1, . . . , Bk) be a necklace around
B(0, L) such that r ≤ rad(B2) ≤ 3r. Since the discs B1 and B2 have radii larger than r,
but F (r, ar) does not occur, at least one of them must be at distance at least ar from
0. By considering a ball of the necklace intersecting B1, one can see as above that the
event E3r(ar) must occur. Hence, Lemma 1.2 gives

Pλ[GL(r, 3r) \ F (r, ar)] ≤ Pλ[E3r(ar)] ≤
1

c
e−ca/3 ≤ 1

c′a4
. (2.6)

For a = (λp(r))−1/4 Equations (2.5) and (2.6) together give (2.4), assuming r is large.

We are now ready to complete the proof of Theorem 0.4.

Proof of Theorem 0.4. Recall first that j0 = blog3(
√
L)c. Combining (2.1), (2.2), (2.3)

and (2.4) we find a constant c > 0 such that for all large L we have

Pλ

[
there is no unbounded component of V

]
≤ 1

c
e−c

√
L +

λ

c

∑
j≥j0

p(3j).
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Using Fubini’s theorem we may interchange the order of summation, and obtain the
following upper bound on the infinite sum:∑

j≥j0

p(3j) = π
∑
j≥j0

32j
∫ ∞

3j
µ(dz) + 2π

∑
j≥j0

3j
∫ ∞

3j
z µ(dz)

≤ π

∫ ∞

z0

81z2 µ(dz) + 2π

∫ ∞

z0

9z2 µ(dz)

≤ 99π

∫ ∞

z0

z2 µ(dz),

where z0 = 3j0 ≥
√
L/3. As L increases the upper bound tends to zero, due to assump-

tion (H2). This completes the proof of Theorem 0.4.
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