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Abstract

We show a probabilistic functional limit result for one-dimensional diffusion processes
that are reflected at an elastic boundary which is a function of the reflection local
time. Such processes are constructed as limits of a sequence of diffusions which
are discretely reflected by small jumps at an elastic boundary, with reflection local
times being approximated by e-step processes. The construction yields the Laplace
transform of the inverse local time for reflection. Processes and approximations of
this type play a role in finite fuel problems of singular stochastic control.
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1 Introduction

The classical Skorokhod problem is that of reflecting a path at a boundary. It is a
standard tool to construct solutions to SDEs with reflecting boundary conditions. The
fundamental example is Brownian motion with values in [0,00) being reflected at a
constant boundary at zero, solved by Skorokhod [16]. Starting with Tanaka [17], well-
known generalizations concern diffusions in multiple dimensions with normal or oblique
reflection at the boundary of some given (time-invariant) domain in the Euclidean space
of certain smoothness or other kinds of regularity, cf. e.g. [10, 3]. Other generalizations
admit for an a-priori given but time-dependent boundary, see for instance [11].

Our contribution is a functional limit result for reflection at a boundary which is a
function of the reflection local-time L, for general one-dimensional diffusions X. Because
of the mutual interaction between boundary and diffusion, see Figure 1a, we call the
boundary elastic. Such elastic boundaries appear typically in solutions to singular control
problems of finite fuel type, where the optimal control is the reflection local time that
keeps a diffusion process within a no-action region, cf. Karatzas and Shreve [5]. In order
to explicitly construct the control (pathwise via Skorokhod’s Lemma), finite fuel studies
typically assume that the dynamics of the diffusion can be expressed without reference
to the control (see e.g. [7, 4]). This is different to our setup, where the non-linear mutual
interdependence between diffusion and control (local time) subverts direct construction
by Skorokhod’s lemma, already for OU processes [18, Remark 1]. We relate to a concrete
application in context of optimal liquidation for a financial asset position in Remark 3.4.
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Approximating diffusion reflections at elastic boundaries
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(a) X against real time t. (b) X against local time L.

Figure 1: Example. Brownian motion X; (blue) reflected at the elastic boundary
g(L) = V'L (purple), where L is the reflection local time of X at boundary g(L).

A natural idea for approximation is to proxy ‘infinitesimal’ reflections by small e-jumps
ALF, thereby inducing jumps of the elastic reflection boundary, see Figure 2. This allows
to express excursion lengths of the approximating diffusion X°¢ in terms of independent
hitting times for continuous diffusions, what naturally leads to an explicit expression
(3.9) for the Laplace transform of the inverse local time of X. In our singular control
context, L® is asymptotically optimal at first order if L is optimal, see Remark 3.4. Our
main result is Theorem 3.2. We prove ucp-convergence of (X<, L) to (X, L) by showing
in Section 4 tightness of the approximation sequence (X¢, L¢). and using Kurtz-Protter’s
notion of uniformly controlled variations (UCV), introduced in [8].

2 Elastic reflection: model and notation

We consider a filtered probability space (Q,]—" , (.7-}),520,]?) with one-dimensional
(F¢)-Brownian motion W and filtration (F;) satisfying the usual conditions of right-
continuity and completeness. Let 0 : R — (0,00) and b : R — R be Lipschitz-continuous
and such that the continuous R-valued (b, o)-diffusion dZ; = b(Z;) dt + o(Z;) dW; with

generator G := Llo(x)? dd;Q + b(x)(% is regular and recurrent. Moreover, let X be a

2
(b, o)-diffusion with reflection at an elastic boundary. This means that for a given non-

decreasing g € C*([0,00)), the processes (X, L) satisfy

dXt = b(Xt) dt + O'(Xt) th - st 5 XO = g(O), (21)

with the reflection local time L being a continuous non-decreasing process L that only
grows when X is at the (local-time-dependent) boundary g(L), i.e.

ALy = Ux,—gz,y ALi, Lo =0, with X; < g(L,) for all ¢ > 0. (2.2)

Note that the reflecting boundary is not deterministic in real time and space coordinates.
Instead, the boundary ¢g(L), at which the diffusion X is being reflected, is elastic in the
sense that it is itself a stochastic process which retracts when being hit, cf. Figure 1b.
Strong existence and uniqueness of (X, L) follow from classical results (cf. Remark 3.3)
and are also an outcome of our explicit construction below, see Lemma 4.9.

We are particularly interested (see Remark 3.4) in the inverse local time

o :=1inf{t > 0| L; > (}. (2.3)

Remark 2.1. Note that {¢t > 0 | X; = g(L:)} is a.s. of Lebesgue measure zero by [13,
ex. VI.1.16]. For a constant boundary ¢g(¢) = a, Tanaka’s formula for symmetric local
times [13, ex. VI.1.25] hence shows that the process L, that we obtain as a solution
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to the SDE with reflection (2.1) - (2.2), is the symmetric local time of the continuous
semimartingale X at given level a € R, i.e. L; = lim.\ o 2—15 fg T(a—c,ate) (Xs) (X, X) .

We denote by HY the first hitting time of a point y by a (b, o)-diffusion, and write
H*~Y for the hitting time when the diffusion starts in z. Note that P[H* 7Y < 0] =1
for all z, y by our assumption on the diffusion being regular and recurrent.

3 Approximation by small c-reflections
XS

s

Figure 2: Approximating processes X< and g(L¢) = v L¢ for e = 4.

We construct solutions to (2.1) - (2.2) and derive an explicit representation (3.9) of
the Laplace transform of the inverse local time at boundary g by approximating reflection
by jumps in the following system of SDEs:

AX? = b(X?)dt + o(XF)dW,; — dLS, X =g(0),  (3.1)
if X; =g(L3
Li= Y ALY with AL =40 = 9Li) e iy, (3.2)
0Ty ) 0 otherwise,
77 :=inf{t > 0| L; > ¢} forl>0. (3.3)

As soon as process X° hits the boundary, it is reflected by a jump of fixed size € > 0.
We will speak of L° as discrete local time, as it is approximating L in the sense of
Theorem 3.2. Since the target reflected diffusion X starts at the boundary g, we now
have X§ = g(0) — ¢ after an initial jump AL§ = ¢ away from X§_ := g(0).

Lemma 3.1. For any ¢ > 0, the SDE (3.1)-(3.2) has a unique (up to indistinguishability)
strong global solution (X;, L§):>o. Moreover, uniqueness in law holds.

Proof. Indeed, one can argue by results [14, V.9-11, V.17] for classical diffusion SDEs
with Lipschitz coefficients (b, o) by inductive construction on [0, 7,,[ where for n > 1,
T, = inf{t > 7,1 | X{_ = g(ne)} = 75, with 7o := 0. Clearly L equals L;  for
t€[rn_1,mm[and L =L:  +e while X; = F(X: ,(Wr, _ 16)s30)u—r,_, OD [Tn_1, 70|
holds for a suitable functional representation F' of strong solutions to (b, o)-diffusions
[14, Theorem V.10.4]. Such construction extends to [0, 7o, [ for 7o := lim,, 7,.

It suffices to show 7., = oo (a.s.). To this end, let g, := lim, g(ne) € R U {oo}.
In the case g < 0o, one can find z,y € R with g, —¢ < 2 < ¥y < go. By re-
currence of (b,o)-diffusions, we have (a.s.) finite times 7§ := inf{t > 0 | X; = y},
o= inf{t > 77, | Xf =z}, 7¢¥ == inf{t > 77 | X; = y}, for n € N. The durations
¥ — 72, n € NN, for upcrossings of the interval [z, y| are i.i.d., by the strong Markov prop-
erty of the time-homogeneous diffusion. Moreover, X* is continuous on all [7%, 7¥]. By
the law of large numbers, 1 3" | exp(—A(7Y — 7)) converges almost surely for n — oo
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to the Laplace transform IE,[exp(—AHY)], A > 0, of the time HY for hitting y by the
(b, o)-diffusion process (started at z). This expectation is strictly less than 1 for A > 0,
as HY > 0 P,-a.s. for y > , whereas the limit of 2 3" | exp(—A(7/ — 7)) equals 1 on
{Too < 00}, where lim;_,o. (77 — 7) = 0. Hence P[TOO < oo] = 0.

If goo = 00, let 7}, :=inf{t > 7,1 | X;_=g((n—1)e)}, forn > 1, so that Tno1 < Tp, < Ty
and X7, _ =g((n—1)e) = XG., _,)—- Using the time change ¢, := fo 1 Yper g du with
inverse s; := inf{u | ¢, > t}, we get (cf. [14, IV.30.10]) that X] := XEt t > (), solves the
SDE dX, = b(X])dt +o(X,)dW/, X = ¢(0), on [0, oo [ for v := sup, ;, with respect to
W/ = [ 3 1 7 AWy. We have W/ = By, for some Brownian motion B on [0, co)
by the Dambis-Dubins-Schwarz theorem, cf. [6, Thm. 3.4.6, Prob. 3.4.7]. So X’ solves the
(b, 0)-diffusion SDE w.r.t. B on [0, oo [. Consider a (b, o)-diffusion X w.r.t. B on [0, 0).
By the usual Gronwall argument for uniqueness of SDE solutions, we get X’ = X on all
[0, -] and hence X’ = X on [0, po[. In particular, X’ remains a.s. bounded on any finite
time interval [0, 7] with T’ < ¢.,. However, in the event {7o, < 00} C {9 < 0}, We get
from X|, = g(ne) — oo that sup,,, _ Xj = co. Hence, we must have P[r,, < ool =0. O

By (3.1) - (3.3), we have 7§ = 75_ = O and 77 = 7). for £ € [(k — 1)¢, ke) with
k € IN, and 7;_ is the k-th jump time of X* and L® within period (0, c0). For ¢ = ke, the
approximating process X°¢ is a continuous (b, o)-diffusion on stochastic intervals [7;_, 75 [,
and X7. = X%H —e= g(Li(aH) —e=g(l —¢)—¢. Forsuch ¢ = ke, we shall call 7§ — 75_
the length of the (k-th) excursion of X¢ away from the boundary. Note that this excursion
length is independent of ]—'ﬁa and its (conditional) distribution is

5 — 15~ HYY under P, . ., (3.4)

what is also denoted as 7; — 7/_ £ Ho(t=9)==~3(0) The Laplace transform of first hitting
times H® " # is well-known, see e.g. [14, V.50]: for x,z € R and A > 0,

Ble M) = I, [ M {@A,_(x)/¢A7_(z) i<z 3.5)
x4 (2)/Pa+(2) ifz >z,
where functions @, ; are uniquely determined up to a constant factor as the increasing
(®,—) respectively decreasing (®, ) positive solutions ® of the differential equation
G® = A® with generator G = Lo(2)2-L, 4+ b(x) L of the (b, o)-diffusion. Since we assume
the boundary function g to be non-decreasing, only ®, _ is of interest for our purpose.
Due to independence of Brownian increments over disjoint time intervals, the Laplace
transform of the inverse local time can be calculated from a sum of (independent)
excursion lengths at (discrete) local times ¢,, := en as

Bloxo(-31)] = o (3 3 7, 7.} = TT Bfes(-A(7 7))

n=1
L£/¢] L¢/e]
D) _(g(ﬁn - 5) - 5)

=TI By, o) [exp(-AHI))] = ’

nl;[1 g(e ) [ X ( )] };[1 (I),\’,(g(fn))

L€/¢]
Py (gl — ) —¢) )

= 1 , (3.6)

exp(% Og( @5~ (9(0n))

for £ > 0 and A > 0. With h,, (&) := @5 _(9(£n — &) — £), each summand in (3.6) equals

CY NG 5 / en_ N
log hy, () — log by, (0) = /0 1, (€) d¢ = _/0 (¢ (ln — &) +1) @ (g( §) f; de

hn(f) (I)X,— (g(gn - 5) - 5
tn P\ _(g(a) +a—1ty)
— "(a) + 1) =2 da. (3.7)
IR ey
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Therefore, we obtain

N oWl @ (g(a) +a—ela/e])
B [exp(=A7)] = eXP(—/O @+ ) g @) s /D) da)- (3.8)

Intuitively, this already suggests the formula (3.9) when taking € — 0.

Theorem 3.2. The approximations (X;, L§);>o from (3.1)-(3.2) converge uniformly in
probability for ¢ — 0 to a pair (X, L;);>o of continuous adapted processes with non-
decreasing L, which is the unique strong solution (globally on [0, oc)) to the reflected SDE
(2.1)-(2.2). The inverse local time 7, := inf{t > 0| L; > ¢} has the Laplace transform

14 ! a
Ble"] = exp(_/o (9'(a) + 1)% da) for A >0, ¢ >0, (3.9)

where ®) _ is the (up to a constant factor) unique positive increasing solution of the
differential equation G® = \®, for G denoting the generator of the (b, o)-diffusion.

Proof. Existence and uniqueness of (X, L) is shown in Lemma 4.9 below. Corollary 4.10
gives uniform convergence in probability. Using dominated convergence fgr the right-
hand side of equation (3.8), we find lim. o Ele ™7 ] = exp(~ [y (¢/(a) + 1) g2=123) da).
For the left-hand side, it suffices to prove weak convergence 7; = 7, as ¢ — 0 for all
£ > 0. This is done in Corollary 4.11 below. O

Remark 3.3. Existence and uniqueness for (X, L) can also be concluded from classical
results, cf. [3, suitably extended to non-bounded domains], by considering the pair
(X, L) as a degenerate diffusion in R? with oblique reflection in direction (—1,+1) at a
smooth boundary, see Figure 1b. This uses an iteration argument involving the Skohorod-
map and yields another approximation by a sequence of continuous processes. Yet,
these do not satisfy the target diffusive dynamics inside the domain, except at the
limiting fixed point (unless (b, o) are constant). In contrast, (X<, L¢) adheres to the same
dynamics as (X, L) between jump times, cf. (2.1) and (3.1), is Markovian and has a
natural interpretation.

Remark 3.4. An application example for (3.9) and elastically reflected diffusions is the
optimal execution for the sale of a financial asset position if liquidity is stochastic, see
[1]. A large trader with adverse price impact seeks to maximize expected proceeds from
selling 6 risky assets in an illiquid market. His trading strategy A (predictable, cadlag,
non-decreasing) affects the asset price S; = f(V;*)S; via a volume impact process
dyA = —pYAdt + 6dB; — dA; with S; = £(cW), for an increasing function f, and
Brownian motions (B, W) with correlation p. The gains to maximize in expectation are

T AA;
Gra)i= [ NS Y s [ A ) da
0 0<t<T 0
AAF#0
The optimal strategy turns out to be the local time L of a reflected Ornstein-Uhlenbeck
process X (with b(z) := pod — Sz and o(x) = o > 0) at a suitable elastic boundary g, as
in (2.1)-(2.2), see [1, Section 3]. After a change of measure argument, one can write the
expected proceeds from such strategies as E[G . (L)] = foe f(g9(0))E[e~™¢] d¢. To find the
optimal free boundary g, one can then apply (3.9) to express the proceeds as a functional
of the boundary g, and optimize over all possible boundaries by solving a calculus of
variations problem. This is key to the proofin [1]. The discrete local time L° has a natural
interpretation as the step process which approximates the continuous optimal strategy
L by doing small block trades, as they would be realistic in an actual implementation,
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with identical (no-)action region. The approximation is asymptotically optimal for the
control problem. Indeed, straightforward calculations similar to the derivation of (3.8)
show that L¢ is asymptotically optimal in first order, i.e. E[G(L)] = E[Goo(L)] + O(e).

4 Tightness and convergence

To show convergence of (7} )., we will prove that the pair of cadlag processes (X*¢, L¢)
forms a tight sequence in ¢ — 0. Applying weak convergence theory for SDEs by
Kurtz and Protter [9], we show that any limit point (for ¢ — 0) satisfies (2.1) and (2.2).
Uniqueness in law for solutions of (2.1) - (2.2) will then allow to conclude Theorem 3.2.

Let (en)nen be a sequence with ¢, — 0 and consider the sequence (X¢», L°"),. To
show tightness, we will apply the following criterion due to Aldous.

Proposition 4.1 ([2, Cor. to Thm. 16.101). Let (E,|-|) be a separable Banach space. If
a sequence (Y"),en of adapted, E-valued cadlag processes satisfies the following two
conditions, then it is tight.

(a) The sequences (Jr(Y™)) and (Yy'), are tight (in R, resp. E) for any T € (0, ),
with J7(Y™) := supy,<p|Y;" — Y;" | denoting the largest jump until time T.

(b) For any T € (0,00) and €y,n > 0 there exist 6y > 0 and ny € N such that for all
n > ng, all (discrete) Y™ -stopping times 7 < T and all § € (0,4y] we have

P

Vi, =Y >e) <n.

To get tightness one needs to control both jump size and, regarding (L:),, the
frequency of jumps simultaneously. As we are considering processes with jumps of
size £+¢,, — 0, only the latter is not yet clear. To this end, the next lemma provides a
technical bound on X¢~, L*~, while a second lemma constricts the probability that X~
(respectively L*) performs a number of V,, jumps in a time interval of fixed length.

Lemma 4.2 (Upper bound). Fix a time horizon T € (0,00) and n € (0,1]. Then there
exists a constant M € R such that P[3n : g(L7* —¢&,) > M| < n, with the domain of
definition for the function g being extended by g(—z) := ¢(0) for —z < 0.

Proof. Consider a continuous (b, o)-diffusion Y that starts at time ¢ = 0 at g(0). For

n € Nand k=0,1,2,..., let {(n, k) := ke,,. By induction over k, using comparison for
diffusion SDEs, cf. [6, Theorem 5.2.18], one obtains that (a.s.) X;" <Y fort € [0,7;; [

for all £ > 1, and hence X <Y on [0,00) (a.s.) because limy_, T;(;L’k) = oo for any n
by Lemma 3.1. Hence, on the event {3n : g(L7" —¢e,) > M} we have sup,co ) Y: > M,
and hence H9) =M < T Thus P[3n : g(L —¢,) > M] < P[HIO =M < T]. Now the
claim follows since limy; o, P[H9() =M < T] = 0. O

Lemma 4.3 (Frequency of jumps). Fix T € (0,0), 9,7 > 0, and set N,, := [eo/e,]. Then
there exists 6 > 0 and ng € IN such that for every bounded stopping time 7 < T we have
P[Ji%5 > N,| <1 foralln > ng, where J5% := inf{k | L:* + ke, > L% ;} is the number
of jumps of X, respectively L, in time |7, 7 + ¢].

Proof. We will first find an estimate for the jump count probability for arbitrary but fixed
0>0,n€eN, N, € Nand 7 < T. Only in part 2) of the proof we will consider (N, ),cn
as stated, to study the limit n — co. More precisely, we will show in part 1) that, given
F, for every A > 0 there exist k, » € {0,1,...,N,, — 1} s.t. for z,, := g(L5" + e,kn 2),

(4.1)

Nn—1
Pz > N, | Fr] < e (‘I’A—@ﬂ> |

<I>,\’,(xn)
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1) In this part, fix arbitrary § > 0, n € IN, N,, € IN and 7 < T. We enumerate the jumps
and estimate the sum of excursion lengths by §. Let ¢;, := L:" + ke, be the (discrete)
local time at the k-th jump after time 7. If X*» has at least N,, jumps in the interval
|7, 7 + 4], it is doing at least N,, — 1 complete excursions (cf. (3.4)), so that, noting that

TZ";n <t< TE” (forallt >0)and ¢y, 1 + e, < Li"m' we have
ey

~ - T, B d n

6:(T+5)_T>TL5—10 En LE” - Z TZk/ _T;k—l) = Z Hk
k=1

with the last equality being in distribution conditionally on F;, for Hy being conditionally

independent and distributed as H9(s-1)=n = 9(+) Clearly, (), is F;-measurable. By the

Laplace transform (3.5) of H; and the Markov inequality, we get for A > 0

Np—1 Nn—1
P[Jy > N, | F] < ]P{ > Hp<s ‘ ff] < e*ém{exp(—A > Hk) '}}}

k=1 k=1

N,—1
— M ] E[exp(—wg“kfl)—fn*9““) | 7]

k=1

(I))\ —(9(le—1) —€n) ‘P,\ —(g(ly) —en)

)\6 /\5
H <I>,\_(g fk) kl_ll CI))\— k))

Py (9(fr) —en) )N”_l _ 6A5<W>Nn,—1

<et max
= <O§k<Nn, Py —(g(lr)) Py, —(7n)

where z,, := g({;) for the index k = k,, » attaining the maximum.
2) For given § > 0 and 7 < T, let us now consider the sequence N,, = [e¢/e, ], n € IN.
To investigate the limit n — oo, first observe that by Taylor expansion
D) _(z—¢p) <I>’/\7(:c)
log ————= = +enr(x,en),
@ T ey ) e
where r(-,&,) — 0 converges uniformly on compacts for ¢,, — 0. Since 7+ § < T +J is
bounded, Lemma 4.2 yields a constant M € R such that P[3n : 2, > M| < I for the
from above. On the event {Vn : z,, € I} with compact I := [¢(0), M], we have uniform
convergence of r(z,,e,) and thereby get

Nn—1
Dy, _(Tn —en)\ " . by (2, — en
hmsupem(w) :exp()\6+1lmsup(N )log(xs)>

n—o00 @A,f(xn) n—o0o P 7( )
= exp <>\5 + lig:solip (Nnen —€n) (r(a:n, En) — Ex:; >>

<exp<)\66 inf M) supexp()\é ~(@ )>

rer@y_(v))  er @)
By [12, Theorem 11, ¥*(\) := %(I)&yf(x)/@,\,_(x) is the Laplace exponent of A%(k?),
where xj is the inverse local time at constant level z of a (b, o)-diffusion Z* starting at
z, and A*(t) is the occupation time A*(¢ fo I{zz<ayds. So we get for A — oo that

exp(—2e91®(N)) = E, [exp(— )\A“:(@so))] —> 0 By compactness of I and Dini’s theorem
there exists A = A, , a such that for ¢ := 1/\ we have

. Pr,— (w0 — )\ n

lim sup e*? (H < eMsup exp(—2e0%(N)) < ~ (4.2)

m sup B (o) <&’ sup p(—2800" (V) < 5
on the event {z, < M forall n}. By equation (4.1) and P[In : z, > M] < /2, this
completes the proof. O
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Using the preceding two lemmas, we will first prove tightness of (L»),, and of (X*"),,
separately. Tightness of the pair (X°~, L*"),, is handled afterwards.

Lemma 4.4 (Tightness of the local time approximations). The sequence (L°"),, of cadlag
processes defined by (3.1) and (3.2) satisfies Aldous’ criterion and thus is tight.

Proof. Part (a) of Proposition 4.1 is clear, as the initial value Lg* = ¢, is deterministic
and Jy(L*") < ,. For part (b), consider T, 7n,eo > 0 and any bounded L°"-stopping time
7 <T. The event |LZ" ;s — L5"| > ¢o means that L°» performs at least N,, := [g¢/c, ] jumps
in the stochastic interval |7, 7 + d]. Lemma 4.3 yields some ng and §p = dyp(go) such that
Aldous’ criterion is satisfied for all n > ny. Hence, (L"), is tight by Proposition 4.1. O

Next we show boundedness of (X" ),,, needed for Lemma 4.6 to prove tightness.

Lemma 4.5 (Bounding the diffusion approximations). Let T € (0,00) and > 0. Then
there exists M € R such that P[sup,co 77| X;"| > M] < n for alln € N.

Proof. By Lemma 4.2, for every n € IN the process X*» on [0, 7] is bounded from above
by a constant M with probability at least 1 — /2. It remains to show that it is also
bounded from below with high probability. To this end, we will construct a process Y
that is a lower bound for all X*~ and then argue for Y.

For ¢ := sup,, &,, consider a (b, o)-diffusion Y which is discretely reflected by jumps of
size —¢ at a constant boundary ¢ := ¢(0) — &, with Yy = y := g(0) — 2¢. Such Y is a special
case of (3.1)-(3.2), for a constant boundary function: dY; = b(Y;)dt+o(Y;) dW, — L} with
LY =% ALY and ALY :=élyy, _o. Let 7} :=inf{t > 0| L} > ké} be the k-th
hitting time of Y at the boundary c. So on all [7}, 7 411, Y is a continuous (b, o)-diffusion
starting in y. Now for fixed n, ¢ := ¢,, note that X:. = g((m — 1)) —e > ¢ > Yie
by monotonicity of g. As 7, — oo for m — oo bymﬁemma 3.1, induction over the
inverse (discrete) local times 75,., m € IN, yields X¢ > Y on [}, 7}, ] if X:y > Y,y by
comparison results [6, Thm. 5.2.18]. Since X§ > Y), the latter follows by indlﬁction over
k. As 1}y — oo for k — oo by Lemma 3.1, we get X > Y on [0, o) for all n. So it suffices
to show P[inf,cj 7 Y: < —M] < /2 for some M, which directly follows from the cadlag
property of Y. O

Lemma 4.6 (Tightness of the reflected diffusion approximations). The sequence (X°"),
of cadlag processes from (3.1) and (3.2) satisfies Aldous’ criterion and thus is tight.

Proof. Condition (a) of Proposition 4.1 holds. To verify part (b), letn > 0, T' € (0, 00), and
7 < T be a stopping time. By Lemma 4.5, | X:"| is with a probability of at least 1 — /4
bounded by some constant M (not depending on n and 7). Let us consider the events
{Xins S Xom —eof U{XIs > X5 + e} = {| X5 — Xi7| > eo} separately.

1) First consider { X7 ; < X:" — ¢o}. For { := X:" we construct a reflected process
V¢ such that Y} < X:n, forallt > 0. We then estimate P[X 7 ; < X:" — ¢¢] by means
of IP[Y;” < x — go] in (4.3), uniformly for all n large enough. We estimate the latter in
(4.4) using the probability of a down-crossing in time § of intervals [z — g9,z — 2] by a
continuous diffusion. Covering | J, [z — ¢,  — 2¢] by finitely many intervals [y, Yr+1] in
(4.5) then allows us to choose ¢ > 0 sufficiently small.

To this end, choose ¢ < ¢¢/4 and n large enough such that ¢,, < ¢, and let (Yf)tzo be
the (b, 0)-diffusion w.r.t. the Brownian motion (W34, — W;);> with Y = & — 2¢, which is
discretely reflected by jumps of size —¢ at a constant boundary at level £ — £. More pre-
cisely, dY;* = b(Y?)dt + o (V) dW; 4, — K¢ with (discrete) local time K¢ := Yocsct AKS
for AKS = é1 {v¢ —¢_z;- Global existence and uniqueness of (Y¢, K¢) follows from

the proof of Lemma 3.1. By comparison arguments and induction as in the proof of
Lemma 4.5, one verifies Y < X:n, fort € [0,00). Indeed, [6, Theorem 5.2.18] gives
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ve < Xz on [0,7:[ until the first jump of either YS or X:Zr . attime 7 > 0. If only Yy¢

jumps, we have Yfl = Yfﬁ)_ —é< X(ET"l)_ — &= X:r — ¢, butif XZ1 jumps, we have
Xon = gL, )—en > g(LE") e, = € > V5. Now Y5 < X2t , sowe get Y& < X2

on [k, 7k+1[ by induction for all jump times 75, of (Y?, Xzn).
Using Yf < X?jr(S and the strong Markov property of Y¢ w.r.t. (Frit)e>0, we get

IP[X?}NS < X — g0, | X5 < M] < sup PYY <z-—ego. (4.3)
—M<z<M

By construction Y$ depends on n and 7 (through &), while the right-hand side of (4.3)
does not. Thus one only needs to bound the probability of an (gy — 2¢)-displacement of
diffusions Y* with starting points x — 2¢ from a compact set, which are reflected (by
(—£€)-jumps) at constant boundaries x — £. By the arguments in the proof of Lemma 4.3
(here applied for Y* which is reflected at a constant boundary), for § = 69 > 0
there exists N € IN with the following property: for every x € [—M, M|, the number
J§ :=1inf{k | k¢ > K§} of jumps of Y until time ¢ is bounded by N — 1 with probability
at least 1 — /8.

Indeed, by (4.1), fixing § > 0, A := 1/, one gets for any = that P[J¥ > [N(x)]] <n/8
where N(z) := 1+ (log(n/8) — 1)/(log ®x,—(z — €) — log 5 _(z)) € R. Compactness of
[—M, M] and continuity of N(x) gives N := [sup,¢[_,a IV (2)] < 0o. Hence,

sup PIYF <z —ep, JF<N—-1<N sup P[H*2*77 <] (4.4)
xe[—M,M) x€[—M, M)
since for the event under consideration, the process Y* would have to move at least once
(in at most N occasions) continuously from = —2¢ to z —eg. Let d := (g9 —2¢)/2 > g9/4 > 0,
K := |2M/d] and yy, := kd— M. For x € [y, yx+1], we have HYr—2 = ¥r—2-d < fjo—co > z=2¢
since [yg—2 — d, yr—2] C [x — €0, — 2€], so by [-M, M] C [yo,yx+1] we get

IP[HX?'_E”_)XEH_EO < &‘X:" < M] < 77/8+N sup P[H;t—2é—>w—sg < 5]

z€[—M,M)]
=n/8+ N max sup IP[H””_%_"'”_‘EO < 5]
k=0,....K ze[kd—M,(k+1)d— M)
<n/8+N max P[HY v <], (4.5)
k=—2,..,K
For a sufficiently small § = §; € (0, do] the right-hand side of (4.5) can be made smaller
than 7/4. The above holds for all n such that ¢,, < £, meaning that there is some n such
that is holds for all n > ng. Note that §; only depends on 7' (via M and K) and on ng but
not on n. Hence, for all § € (0,01], all n > ng and all 7 < T we have
P[X5, < X5 —eg) < g . (4.6)
2) For the alternative second case X?jré > Xi“ + €9, consider the solution (Y};):>
on [7,00[ of dY; = b(Y;)dt + o(Y;) dW; with Y; = X:". Using comparison results for
continuous diffusions [6, Theorem 5.2.18] inductively over times [r;" ;) 7.7 [, we find
Y, > X/~ for all ¢t € [7,00[, a.s. Hence, arguing like in the previous case

P[Xins > X5m 420, | X5 < M| < P[Yiys > Yz + 0, V2| < M]

746
< sup ]P[HyHyJFE“ < 6]. (4.7)
—M<y<M

As in (4.5) we find a d; > 0 such that for all § € (0, d2] the right side of (4.7) is bounded by
n/4. Hence we have IP[XETM > XZ" +¢9) < n/2, so with (4.6), Proposition 4.1 applies. O
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Now, to prove joint tightness of (X*», L*~),,, we can utilize the fact that both processes
satisfy Aldous’ criterion and that their jump times and jump magnitudes are identical.

Lemma 4.7 (Tightness of joint approximations). The sequence (X¢~, L"), of cadlag
R2-valued processes defined by (3.1) and (3.2) is tight.

Proof. In view of Proposition 4.1, choose the space F := R? equipped with Euclidean
norm |-| and let Y™ := (X*, L") € D([0,00),E). Then Y = (g(0) — €n,e,) and
Jr(Y™)=+/2¢, form tight sequences in F and R, respectively. Furthermore,

n En €0 En
PV — Y7 2 0] < P[IXEy, - X5 2 5] + P[IL53, - L5 = 2.
Hence Y™ also satisfies Aldous’s criterion and therefore is tight. O

Tightness only implies weak convergence of a subsequence. It remains to show
(in Lemma 4.9) that every limit point satisfies (2.1) and (2.2) and that uniqueness
in law holds. The latter will follow from pathwise uniqueness results for SDEs with
reflection, while for the former we apply results from [9] on weak converges of SDEs.
For that purpose, note that the approximated local times form a good sequence of
semimartingales (cf. [9, Definition 7.3]), as shown in the following lemma.

Lemma 4.8. The sequence (L°"),, is of uniformly controlled variation and thus good.

Proof. Let ¢ := sup,, €,. Then all processes L*» have jumps of size at most § < oco. Fix
some « > 0. By tightness, there exists some C' € R such that P[L5" > C] < 1/a. So the
stopping time 7, = inf{¢t > 0 | L;" > C} satisfies P[7,,,, < o] = P[L* > C] < 1/a.
Moreover, by monotonicity of L~ we have ]E[fotm"’“ d|L5"|S} = E[Li},, ] <C < oo.

Hence (L°") is of uniformly controlled variation in the sense of [9, Definition 7.5]. So by
[9, Theorem 7.10] it is a good sequence of semimartingales. O

We have gathered all necessary results to prove convergence of our approximating
diffusions and local times to the continuous counterpart.

Lemma 4.9 (Weak convergence of the approximations). The sequence (X", L") of
cadlag processes defined by (3.1) - (3.2) converges weakly to the unique continuous

strong solution (X, L) of (2.1) - (2.2).

Proof. By Prokhorov’s theorem, tightness of (X¢, L~ W), implies weak convergence
of a subsequence to some limit point, (X, L=, W), = (X,L,W) € D([0,00),R%).
Continuity of (X L) is clear since ¢, — 0 is the maximum jump size. First we prove that
(X, L) satisfies the asserted SDEs. Afterwards, we will prove uniqueness of the limit
point. To ease notation, let w.l.o.g. the subsequence (ny) be (n).

By [9, Theorem 8.1] we get that ()N(7 i) satisfy (2.1) for the semimartingale W. That
W is a Brownian motion follows from standard arguments, cf. [11, proof of Theorem 1.9].
As D([O 00), R3) is separable we find, by an application of the Skorokhod representation
theorem, that L is non-decreasing and X; < g(L,) for all t > 0, P-a.s. because these
properties already hold for (X¢©», L=).

To prove that L grows only at times ¢ with X, = g(ﬂt), we have to approximate the
indicator function by continuous functions. For § > 0 define

(x—g(0))/6+1 forg(t) -6 <z < g(0),
ha(w,0) = 41— (z — g(0)) /8 for g(¢) <z < g(£) +3,
0 otherwise,

ho(2,0) := Lgaeg(eyy and HY" o= hs(XEm, L57) and HY = hs(Xy, Ly) .
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For ¢ \, 0 the functions hs \, hy converge pointwise monotonically. Continuity of
hs implies weak convergence (H®", L") = (H° L). By Lemma 4.8, (L") is a good se-
quence. So for every § > 0 the stochastic integrals [, HY" AL = I H? dL, converge
weakly. Note that dLS* = H}»" dLi". Hence, for every § > 0 we have

/ HY" AL = / HY'HY™ AL = / HO™ALE = Lo
0 0 0
By the weak convergence L°" =- L it follows for every § > 0 that L, = fot Hg, dL, .
By monotonicity of L, dL; defines a random measure on [0,00). Hence monotone
convergence of HY \, H? yields dL; = ho(X;, L;)dL; .

Thus, we showed that (X<, L¢) converges in distribution to a weak solution (X, L) of
the reflected SDE, i.e. it might be defined on a different probability space with its own
Brownian motion. Note that (X, L) is continuous on [0, c0) and that 7., := sup, 7 = 00
a.s., where 7 := inf{t > 0 | |X;| V L; > k}. To show the existence and uniqueness of a
strong solution as stated in the theorem, we will use the results from [3]. Consider the
domain G := {(z,¢) € R? | z < g(¥),¢ > 0}. We may interpret the process (X;, L;) as a
continuous diffusion in G with oblique reflection in direction (-1, +1) at the boundary,
although the notion of a two-dimensional reflection seems unusual here, because (X, L)
only varies in one dimension in the interior of G. The unbounded domain G can be
exhausted by bounded domains Gy := {(z,f) € G | ||,|¢| < k}, which might have a
non-smooth boundary especially at (g(0), 0), but still satisfy [3, Cond. (3.2)]. Hence, by
[3, Cor. 5.2] the process (X, L) exists (up to explosion time) on the initial probability
space and is (strongly) unique on [0, 7 [ with exit time 75, := inf{t > 0 | |X¢|V L; > k},
for all k € N. So (X, L) is unique until explosion time 7, := sup,, 7. Moreover, by [3,
Theorem 5.1] we have the following pathwise uniqueness result: for any two continuous
solutions (X!, L') and (X?, L?) with explosion times 7. and 72, respectively defined
on the same probability space with the same Brownian motion and the same initial
condition, we have that X! = X? and L' = L? on [0, 7} A 7] for every k € N a.s. Using
a known argument due to Yamada and Watanabe, ideas being as in [6, Ch. 5.3.D], one
can bring the two (weak) solutions (X, L, W) and (X, L, W) to a canonical space with a
common Brownian motion. By pathwise uniqueness there, one concludes that 7., = c©
a.s. (as 7o, = 00). Hence the strong solution (X, L) does not explode in finite time. In
addition, we conclude uniqueness in law like in [6, Prop. 5.3.20] and thus any weak limit
point of the approximating sequence (X¢, L¢) will have the same law as (X, L). O

This convergence result can be strengthened as follows.

Corollary 4.10 (Convergence in probability). The sequence (X°~, L"), of cadlag pro-
cesses defined by (3.1)-(3.2) converges in probability to (X, L) defined by (2.1)-(2.2).

Proof. Following the proof of [8, Cor. 5.6], we will strengthen weak convergence
(Xe~, L) = (X, L) to convergence in probability. First, note that Lemma 4.9 implies
weak convergence of the triple (X°», L, W) = (X, L,W) by e.g. [15, Corollary 3.11.
Hence, for every bounded continuous F : D([0,c); R?) — R and every bounded con-
tinuous G : C([0,00); R) — R, we have lim,,_, E[F(X¢", L*»)G(W)] = E[F(X, L)G(W)].
Now, the previous equation even holds for all bounded measurable G by L!-approximation
of measurable functions by continuous functions. By strong uniqueness of (X, L), there
exists a measurable function H : C([0,00); R) — C([0,00); R?) such that (X, L) = H(W).
In particular, G(W) := F(H(W)) = F(X, L) is bounded and measurable, so we conclude

lim B[(F(X*, L") - F(X, L))*]
= lim (B[F(X*", L*")*] = 2B[F (X", L*")F(X,L)] + E[F(X, L)*]) = 0

n— oo
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and hence convergence in probability follows. O

Corollary 4.11 (Weak convergence of the inverse local times). For any ¢ > 0, the
sequence (7’;")n from (3.3) converges in law to the inverse local time 1, defined by (2.3).

Proof. Convergence L~ = L implies L;" = L, at all continuity points of L, i.e. at all
points, hence P[r;" <t| = P[L{" > (] = P[L, > (] = P[r, < {]. O

This completes the proof of Theorem 3.2.
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