
Brazilian Journal of Probability and Statistics
2019, Vol. 33, No. 3, 638–673
https://doi.org/10.1214/18-BJPS405
© Brazilian Statistical Association, 2019

Estimation of parameters in the DDRCINAR(p) model

Xiufang Liu and Dehui Wang
Jilin University

Abstract. This paper discusses a pth-order dependence-driven random co-
efficient integer-valued autoregressive time series model (DDRCINAR(p)).
Stationarity and ergodicity properties are proved. Conditional least squares,
weighted least squares and maximum quasi-likelihood are used to estimate
the model parameters. Asymptotic properties of the estimators are presented.
The performances of these estimators are investigated and compared via sim-
ulations. In certain regions of the parameter space, simulative analysis shows
that maximum quasi-likelihood estimators perform better than the estimators
of conditional least squares and weighted least squares in terms of the pro-
portion of within-� estimates. At last, the model is applied to two real data
sets.

1 Introduction

Integer-valued time series models have received growing attention recently. These
models can be broadly classified into two types. One is regression-type models,
and the other is ‘thinning’ models. (See Davis, Dunsmuir and Wang (1999), for a
review of the regression models.) Steutel and Van Harn (1979) gave the ‘thinning’
operator ‘◦’, which has been used by many authors. For example, Al-Osh and
Alzaid (1987, 1988, 1990) have studied the thinning models, as well as Du and
Li (1991), Latour (1997, 1998), Brannas and Hellstrom (2001) and Li, Wang and
Zhang (2015), in a slightly more general form, among others. The work presented
in this paper is that we propose a dependence-driven random coefficient thinning
model for the pth-order integer-valued autoregression.

The first-order integer-valued autoregressive (INAR(1)) process is introduced
by Al-Osh and Alzaid (1987). It is defined by

Xt = φ ◦ Xt−1 + εt , t ≥ 1,

where

φ ◦ Xt−1 =
Xt−1∑
i=1

B1,t ,

here, the so-called counting series {B1,t } are independent and identically dis-
tributed (i.i.d.) Bernoulli random variables with success probability φ ∈ [0,1] and
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{εt } is a sequence of i.i.d. non-negative integer-valued random variables and inde-
pendent of the counting series {B1,t }. Thus, φ ◦Xt−1 is a binomial random variable
with φ and Xt−1 as parameters, namely φ ◦ Xt−1 ∼ B(Xt−1, φ).

In many real-life situations there is a INAR model to be used for some situa-
tions, which could be found in reliability theory, meteorology, insurance theory,
communications, medicine, law and social sciences, such as counts of accidents,
detected errors, transmitted messages, patients, crime victimization, etc. As an ex-
ample of a standard INAR(1) model, let Xt denote the number of surviving epilep-
tic patients in a hospital at time t , φ the probability of survival from time t − 1
to t , and εt the number of new epileptic patients admitted at time t . As further
example, suppose Xt denote the number of unemployed in the t th month. Then
Xt can be modeled as the sum of the previously unemployed φ ◦ Xt−1 and the
newly unemployed εt . In particular, the parameter φ may vary with time and it
may be random as the survival rate (the unemployment rate) φ may be affected
by various environmental factors, such as the quality of health care, the state
of health of patients, etc. (affected by factors such as the state of the economy,
productivity growth, etc.). Thus, it is necessary to research random-coefficient
INAR model. Recently, Zheng, Basawa and Datta (2007) and Zheng and Basawa
(2008) studied the random-coefficient INAR(1) model as well as Zhang and Wang
(2015).

The pth-order integer-valued autoregressive (INAR(p)) model is recursively
defined by Du and Li (1991) as

Xt =
p∑

i=1

φi ◦ Xt−i + εt , t ≥ 1,

where, for i = 1, . . . , p,

φi ◦ Xt−i =
Xt−i∑
i=1

Bi,t ,

here {Bi,t }, i ∈ {1, . . . , p} are independent Bernoulli-distributed variables, where
{Bi,t } has success probability φi ∈ [0,1] and {εt } is a sequence of i.i.d. non-
negative integer-valued random variables and independent of all the counting se-
ries and

∑p
i=1 φi < 1.

In the specification of Du and Li (1991) and Latour (1998), the autocorrela-
tion structure of an INAR(p) process was the same as that of an AR(p) pro-
cess. Du and Li (1991) proved the existence and ergodic property of the INAR(p)

model, and Latour (1998) gave a new method to prove stationary ergodicity based
on the method given by Du and Li (1991). Moreover, Drost, Van Den Akker
and Werker (2008) studied the local asymptotic normality and efficient estima-
tion. Zhu and Joe (2006) obtained new models and results for count time se-
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ries based on binomial thinning. Drost, Van Den Akker and Werker (2009) con-
sidered the semi-parametric efficient estimation for INAR(p) models. Recently,
Zheng, Basawa and Datta (2006) studied the random-coefficient INAR(p) model,
which is defined by the following recursive equation:

Xt =
p∑

i=1

φ
(t)
i ◦ Xt−i + εt , t ≥ 1,

where the random parameter {φ(t)
i } replaces the fixed {φi} values in the literature

by Du and Li (1991), and is an i.i.d. sequence for fixed i and
∑p

i=1 E(φ
(t)
i ) < 1.

However, in the practical-life situations, {φ(t)
i } may be dependent in some kind

of relationship. In this paper, we extend the above model to a dependence-driven
random coefficient model DDRCINAR(p), where {φti} is a dependence-driven se-
quence of random vectors with a joint distribution function P{φt1,...,φtp}. Therefore,
this article is mainly to introduce the basic statistical properties of this model and
provide some inferential methods for the relevant parameters associated with this
model.

The structure of the article is as follows. In Section 2, the dependence-driven
random coefficient model DDRCINAR(p) is described in detail and we show, un-
der certain conditions, the stationarity and the ergodicity of the DDRCINAR(p)

model. In Section 3, we propose three estimation methods for the DDRCINAR(p)

model parameters and study their consistency and asymptotic properties. In Sec-
tion 4, comparisons among the three methods for the DDRCINAR(2) model and
the proportion of in-range estimates are given via simulation studies. In Section 5,
two real data sets are analysed by using estimation methods in Section 3. In Sec-
tion 6, we give a summary and concluding remarks. The paper ends with condi-
tional moments used later which are provided in the Appendix.

2 The pth-order dependence-driven random coefficient
integer-valued autoregressive model

A pth-order dependence-driven random coefficient integer-valued autoregressive
(DDRCINAR(p)) model is defined by the following equation:

Xt =
p∑

i=1

φti ◦ Xt−i + εt , t ≥ 1, (2.1)

where {εt } is an i.i.d. non-negative integer-valued sequence with a probability mass
function fε > 0, such that E(ε4

t ) < ∞; {φti,1 ≤ i ≤ p} and {εt } are independent
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each other; the joint distribution of {φt1, φt2, . . . , φtp} is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(φt1 = φ1, φt2 = 0, . . . , φtp = 0) = α1;
p(φt1 = 0, φt2 = φ2, . . . , φtp = 0) = α2;
...

p(φt1 = 0, φt2 = 0, . . . , φtp = φp) = αp;
p(φt1 = 0, φt2 = 0, . . . , φtp = 0) = α0,

(2.2)

where α0, α1, . . . , αp are non-negative and
∑p

i=0 αi = 1. Let

με = E(εt ), σ 2
ε = Var(εt ).

According to (2.2), we have

E(φti) = αiφi,

Cov(φti, φtj ) = −αiαjφiφj , Var(φti) = αiφ
2
i (1 − αi).

(2.3)

Now, we give some notation for the following theorem.
Let

Xt = (Xt ,Xt−1, . . . ,Xt−p+1)
′
1×p,

εt = (εt ,0, . . . ,0)′1×p and με = (με,0, . . . ,0)′1×p.

Then we have

Xt = At ◦ Xt−1 + εt ,

where

At =

⎡
⎢⎢⎢⎢⎢⎢⎣

φt1 φt2 · · · φt,p−1 φtp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1φ1 α2φ2 · · · αp−1φp−1 αpφp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Theorem 2.1. If
∑p

i=1 αiφi < 1 and the maximum absolute eigenvalue of E[A′
t ⊗

At ] is less than 1, then there exists a unique stationary integer-valued random se-
ries {Xt } satisfying equation (2.1). Furthermore, the process is an ergodic process.



642 X. Liu and D. Wang

Proof. First, we introduce a sequence of random variables {Z(n)
t }n∈N ,

Z
(n)
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, n < 0,

εt , n = 0,
p∑

i=1

φti ◦ Z
(n−i)
t−i + εt , n > 0.

(2.4)

Let

U(n, t, k) = ∣∣Z(n)
t − Z

(n−k)
t

∣∣ and l(n, t, k) = min
(
Z

(n)
t ,Z

(n−k)
t

)
.

Then we have the following inequality

U(n, t, k) ≤
p∑

i=1

∣∣φti ◦ Z
(n−i)
t−i − φti ◦ Z

(n−i−k)
t−i

∣∣

=
p∑

i=1

∣∣∣∣∣
Z

(n−i)
t−i∑
j=1

B
(t,i)
j −

Z
(n−i−k)
t−i∑
j=1

B
(t,i)
j

∣∣∣∣∣
=

p∑
i=1

U(n−i,t−i,k)∑
j=1

B
(t,i)
l(n,t,k)+j

d=
p∑

i=1

φti ◦ U(n − i, t − i, k).

(2.5)

Let

B =

⎡
⎢⎢⎢⎣
α1φ1(1 − φ1) α2φ2(1 − φ2) · · · αpφp(1 − φp)

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ ,

At ◦
⎡
⎢⎣

X1
...

Xp

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p∑
i=1

φti ◦ Xi

X1
...

Xp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we note that

U(n)
t,k = (

U(n, t, k),U(n − 1, t − 1, k), . . . ,U(n − p + 1, t − p + 1, k)
)′
.
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Then by equation (2.4) and the above notation, following the similar argument in
Latour (1998) or Zheng, Basawa and Datta (2006), we can obtain

E
(
U(n)

t,k

) ≤ E
(
At ◦ U(n−1)

t−1,k

) = AE
(
U(n−1)

t−1,k

)
≤ · · · ≤ AnE

(
U(0)

t−n,k

)
= An(με,0, . . . ,0)′ = Anμε

and

E
(
U(n)

t,k U(n)′
t,k

) ≤ diag
(
BAn−1με

)+ E
(
AtE

(
U(n−1)

t−1,k U(n−1)′
t−1,k

)
A′

t

)
.

Therefore

vec
(
E
(
U(n)

t,k U(n)′
t,k

))
≤ vec

(
diag

(
BAn−1με

))+ vec
(
E
(
AtE

(
U(n−1)

t−1,k U(n−1)′
t−1,k

)
A′

t

))
= vec

(
diag

(
BAn−1με

))+ E
(
A′

t ⊗ At

)
vec

(
E
(
U(n−1)

t−1,k U(n−1)′
t−1,k

))
.

(2.6)

Applying equation (2.5) recurrence n times, we obtain

vec
(
E
(
U(n)

t,k U(n)′
t,k

)) ≤
n−1∑
j=0

(
E
(
A′

t ⊗ At

))j vec
(
diag

(
BAn−j−1με

))

+ (
E
(
A′

t ⊗ At

))n vec

([
σ 2

ε + μ2
ε 0′

p−1
0p−1 0p−1×p−1

])
.

(2.7)

Because {At } is an i.i.d. random matrix sequence, all the above inequalities are
elementwise.

Since maximum absolute eigenvalue of E(A′
t ⊗ At) is less than 1, [E(A′

t ⊗
At)]n converges to a null matrix. And An converges to a null matrix as well since∑p

i=1 αiφi < 1. Thus, using a similar method as in Latour (1998), we can prove
that

E
(
U(n)

t,k U(n)′
t,k

) → 0, as n → ∞.

The stationarity and uniqueness follow as in Du and Li (1991). �

For the ergodicity of the process, we can follow the proof in Du and Li (1991)
based on Zikun (1965). The only difference between Zheng, Basawa and Datta
(2006) and Du and Li (1991) is that Zheng, Basawa and Datta (2006) introduce
that {φ(t)

1 , φ
(t)
2 , . . . , φ

(t)
p }, t ≥ 1 is an i.i.d. sequence with a cumulative distribution

function Pφi
and assume E(φ

(t)
i ) = φi (i = 1,2, . . . , p). But we assume that the

random vectors {φt1, φt2, . . . , φtp} are dependence-driven and have the joint distri-
bution function as (2.2). Therefore, the argument on ergodicity in Du and Li (1991)
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remains effective for our model. This condition, for the existence of the station-
ary and ergodic DDRCINAR(p) model, will define the parameter space � used
here for the model. We also show 0 ≤ αi ≤ 1, 0 ≤ φi ≤ 1, i = 1,2, . . . , p and
0 < α1 + α2 + · · · + αp < 1.

Next, we consider the problem of estimation involved in the DDRCINAR(p)

model.

3 Estimation methods

We reparameterize equation (2.3) by defining

ai = αiφi, σii = αiφ
2
i (1 − αi), i = 1,2, . . . , p. (3.1)

Let Ft−1 be the σ -field generated by X1,X2, . . . ,Xt−1, and Jtp be the σ -field
generated by φt1, φt2, . . . , φtp . Denote

a = (a1, a2, . . . , ap)′, σ = (σ11, σ22, . . . , σpp)′,

θ = (
a′, σ ′,με, σ

2
ε

)′
, ϑ = (

α1, α2, . . . , αp,φ1, φ2, . . . , φp,με, σ
2
ε

)′
.

Assume that observation of Xt are available for t = 1,2, . . . , n.
Next, we consider three different methods of parameter estimation, namely, the

conditional least squares (CLS) estimators, the weighted conditional least squares
(WCLS) estimators and the maximum quasi-likelihood estimators (MQE). An ad-
vantage of the three methods is that they do not require specifying the exact family
for the innovations.

3.1 Conditional least squares estimators

The CLS estimates of a and με can be obtained by minimizing

Q1(a,με) =
n∑

t=p+1

u2
t

with respect to a and με , where ut = Xt −E(Xt |Ft−1). This yields the estimators

â =
(

n∑
t=p+1

YtY
′
t − 1

n − p

n∑
t=p+1

Yt

n∑
t=p+1

Y ′
t

)−1

(3.2)

×
(

n∑
t=p+1

YtXt − 1

n − p

n∑
t=p+1

Yt

n∑
t=p+1

Xt

)
,

μ̂ε = 1

n − p

n∑
t=p+1

(
Xt − Y ′

t â
)

(3.3)

with Yt = (Xt−1,Xt−2, . . . ,Xt−p)′.
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To obtain estimates of σ and σ 2
ε , CLS is again applied to estimate the residual

sequence Ht , where

Ĥt =
(
Xt −

p∑
i=1

âiXt−i − μ̂ε

)2

+ 2
p∑

j=2

j−1∑
i=1

âi âjXt−iXt−j −
p∑

i=1

Xt−i

(
âi − â2

i

)
,

by minimizing

Q2
(
σ,σ 2

ε

) =
n∑

t=p+1

(
Ĥt −

p∑
i=1

σii

(
X2

t−i − Xt−i

)− σ 2
ε

)2

with respect to σ and σ 2
ε . This yields the estimators

σ̂ =
(

n∑
t=p+1

ZtZ
′
t − 1

n − p

n∑
t=p+1

Zt

n∑
t=p+1

Z′
t

)−1

(3.4)

×
(

n∑
t=p+1

ZtĤt − 1

n − p

n∑
t=p+1

Zt

n∑
t=p+1

Ĥt

)
,

σ̂ 2
ε = 1

n − p

n∑
t=p+1

(
Ĥt − Z′

t σ̂
)

(3.5)

with Zt = (X2
t−1 − Xt−1,X

2
t−2 − Xt−2, . . . ,X

2
t−p − Xt−p)′.

We obtain estimates ϑ̂ from

α̂i = â2
i

σ̂ii + â2
i

and φ̂i = σ̂ii + â2
i

âi

, i = 1,2, . . . , p. (3.6)

The following theorem gives the strong consistency and the limited distribution
of the estimates ϑ̂ given in equation (3.6).

Theorem 3.1. Let {Xt } be an DDRCINAR(p) process generated as in equation
(2.1) and (2.2) with the conditions given in Theorem 2.1. Then the estimates ϑ̂

obtained from equation (3.6) will be strongly consistent and jointly asymptotically
normally distributed.

Proof. We first prove the strong consistency of â, σ̂ , μ̂ε and σ̂ 2
ε . According to

Theorem 2.1, {Xt }∞t=1 is a stationary ergodic sequence of integrable random vari-
ables.

Let

g1
(
θ(1),Ft−1

) = E(Xt |Ft−1) =
p∑

i=1

aiXt−i + με,
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then

Q1
(
θ(1)) =

n∑
t=p+1

(
Xt − g1

(
θ(1),Ft−1

))2
,

where θ(1) = (a′,με)
′. Take a Taylor expansion of Q1(θ

(1)) carried out to third
order terms:

Q1
(
θ(1)) = Q1

(
θ

(1)
0

)+ (
θ(1) − θ

(1)
0

)′ ∂Q1(θ
(1))

∂θ(1)

+ 1

2

(
θ(1) − θ

(1)
0

)′
V1

(
θ(1) − θ

(1)
0

)+ R1,

where V
(p+1)×(p+1)
1 = ∂2Q1(θ

(1)
0 )

∂(θ(1))2 and R1 is the usual remainder term. Obviously, it

is easy to check that g1(θ
(1),Ft−1),

∂g1(θ
(1),Ft−1)

∂θ
(1)
i

, ∂2g1(θ
(1),Ft−1)

∂θ
(1)
i ∂θ

(1)
j

and ∂3g1(θ
(1),Ft−1)

∂θ
(1)
i ∂θ

(1)
j ∂θ

(1)
k

for i, j, k ∈ {1,2, . . . , p + 1} satisfy all the regularity conditions in Klimko and
Nelson (1978). Thus, Theorem 3.1 of Klimko and Nelson (1978) leads us to con-
clude that θ̂ (1) is strongly consistent, which indicates that â and μ̂ε are strongly
consistent.

Similarly, we obtain that σ̂ and σ̂ 2
ε are strongly consistent. Then ϑ̂ is strongly

consistent from equation (3.6).
Next, we prove the asymptotic normality of the estimates ϑ̂ . According to The-

orem 3.1 of Hwang and Basawa (1998) or Theorem 3.1 of Nicholls and Quinn
(1982), we have

√
n(â − a)

d−→ Np

(
0,
−1W
−1), n → +∞,

where W = E(u2
t YtY

′
t ) = E(var(Xt |Ft−1)YtY

′
t ) and 
 = E(YtY

′
t ).

With the similar method, we can obtain
√

n(σ̂ − σ)
d−→ Np

(
0,L−1�L−1),

√
n(μ̂ε − με)

d−→ N(0,G),

√
n
(
σ̂ 2

ε − σ 2
ε

) d−→ N(0, I ), n → +∞.

According to Theorem 3.2 in Nicholls and Quinn (1982), we have
√

n(θ̂ − θ)
d−→ N2p+2(0,�), n → +∞,

where

� =

⎡
⎢⎢⎢⎣


−1W
−1 
−1V L−1 
−1M 
−1D

L−1V ′
−1 L−1�L−1 L−1Q L−1B

M ′
−1 Q′L−1 G F

D′
−1 B ′L−1 F T

⎤
⎥⎥⎥⎦ ,
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where

M = E
(
Ytu

2
t

)
, V = E

(
utUtYtZ

′
t

) = E
(
ϕtYtZ

′
t

)
, L = E

(
ZtZ

′
t

)
,

G = E
(
u2

t

)
, Q = E(ZtUtut ), � = E

(
U2

t ZtZ
′
t

)
,

D = E(YtutUt ), B = E
(
U2

t Zt

)
, F = E(utUt ), T = E

(
U2

t

)
,

where

ϕt = E
(
X3

t |Ft−1
)− 3 var

(
Xt |Ft−1

)
E(Xt |Ft−1) − (

E(Xt |Ft−1)
)3

,

Ut = u2
t − E

(
u2

t |Ft−1
)
.

According to Equation (3.6) and Proposition 6.4.3 of Brockwell and Davis
(1987), we have

√
n(ϑ̂ − ϑ)

d−→ N2p+2
(
0,���′), n → +∞,

where

� =
⎡
⎣�11 �12 �13
�21 �22 �23
�31 �32 �33

⎤
⎦

with

�11 = diag
(

2a1σ11

(σ11 + a2
1)2

,
2a2σ22

(σ22 + a2
2)2

, . . . ,
2apσpp

(σpp + a2
p)2

)
,

�12 = diag
( −a2

1

(σ11 + a2
1)2

,
−a2

2

(σ22 + a2
2)2

, . . . ,
−a2

p

(σpp + a2
p)2

)
,

�13 = �23 = 0p×2,

�21 = diag
(

a2
1 − σ11

a2
1

,
a2

2 − σ22

a2
2

, . . . ,
a2
p − σpp

a2
p

)
,

�22 = diag
(

1

a1
,

1

a2
, . . . ,

1

ap

)
,

�31 = �32 = 02×p,

�33 = I2×2. �

3.2 Weighted conditional least squares estimators

The Conditional Least Squares (CLS) estimates, in general, are not asymptotically
efficient. Because Var(Xt |Ft−1,Jtp), Var(Xt |Ft−1), Cov(Xt ,X

2
t |Ft−1,Jtp),

Cov(Xt ,X
2
t |Ft−1), Var(X2

t |Ft−1) and Var(X2
t |Ft−1,Jtp) depend on Xt−1,Xt−2,
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. . . ,Xt−p, φt1, φt2, . . . , φtp , we can consider WCLS estimates to improve the effi-
ciency. In this section, we give these estimates.

Write

ψt = E
(
u2

t

∣∣Ft−1
)
, �t = E

(
U2

t

∣∣Ft−1
)
,

with Ut given in Section 3.1, then we have

ψt = var(Xt |Ft−1),

�t = var
(
X2

t |Ft−1
)− 4E

(
Xt |Ft−1

)
cov

(
Xt,X

2
t |Ft−1

)
+ 4

(
E
(
Xt

∣∣Ft−1
))2 var

(
Xt

∣∣Ft−1
)
.

We can obtain the WCLS estimates by minimizing

Q3(θ) =
n∑

t=p+1

u2
t

ψt

+
n∑

t=p+1

U2
t

�t

with respect to θ . Since it is very difficult to derive explicit estimators of the pa-
rameters using an iterative method, we consider θ replaced with the corresponding
consistent estimates by other means. In particular, we may choose to use the esti-
mated versions of ψt and �t denoted by ψ̂t and �̂t according to the CLS. Thus,
we can derive θ̂ . So with similar arguments as in Section 3.1, we can obtain the
WCLS estimators of a, με , σ and σ 2

ε :

âw =
(

n∑
t=p+1

1

ψt

YtY
′
t −

(
n∑

t=p+1

1

ψt

)−1 n∑
t=p+1

1

ψt

Yt

n∑
t=p+1

1

ψt

Y ′
t

)−1

(3.7)

×
(

n∑
t=p+1

1

ψt

YtXt −
(

n∑
t=p+1

1

ψt

)−1 n∑
t=p+1

1

ψt

Yt

n∑
t=p+1

1

ψt

Xt

)
,

μ̂w
ε =

(
n∑

t=p+1

1

ψt

)−1 n∑
t=p+1

1

ψt

(
Xt − Y ′

t â
w), (3.8)

σ̂ w =
(

n∑
t=p+1

1

�t

ZtZ
′
t −

(
n∑

t=p+1

1

�t

)−1 n∑
t=p+1

1

�t

Zt

n∑
t=p+1

1

�t

Z′
t

)−1

(3.9)

×
(

n∑
t=p+1

1

�t

ZtĤ
w
t −

(
n∑

t=p+1

1

�t

)−1 n∑
t=p+1

1

�t

Zt

n∑
t=p+1

1

�t

Ĥw
t

)
,

σ̂ 2w
ε =

(
n∑

t=p+1

1

�t

)−1 n∑
t=p+1

1

�t

(
Ĥw

t − Z′
t σ̂

w), (3.10)
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where Yt and Zt are given in Section 3.1, and

Ĥw
t =

(
Xt −

p∑
i=1

âw
i Xt−i − μ̂w

ε

)2

+ 2
p∑

j=2

j−1∑
i=1

âw
i âw

j Xt−iXt−j

−
p∑

i=1

Xt−i

(
âw
i − (

âw
i

)2)
.

Thus, we can also obtain estimators ϑ̂w by using the similar equations given in
equation (3.6). These estimator given in (3.7), (3.8), (3.9) and (3.10) are strongly
consistent from the ergodic theorem. However, when the sample size n is small, the
mean squared errors (MSE) are large, a high proportion of estimates fall outside
� in simulations and the above estimators cannot be guaranteed to be positive
estimators for σ and σ 2

ε , the results of which are presented in Section 4.

Remark 3.1. The proof of the strongly consistence of ϑ̂w is omitted here since it
is difficult relatively.

Remark 3.2. The small sample size n is usually less than 1000, which is presented
in Section 4.

3.3 Maximum quasi-likelihood estimators

The MQEs for the DDRCINAR(p) model can be based on the p-dimensional
stochastic process {Xt,X

2
t , . . . ,X

p
t }. The resulting system of estimating equations

is given by:

n∑
t=p+1

B1 × B2 × B3 = 0, (3.11)

where

B1 =

⎡
⎢⎢⎢⎣

e11 e12 · · · e1,2p+2
e21 e22 · · · e2,2p+2
...

...
. . .

...

ep1 ep2 · · · ep,2p+2

⎤
⎥⎥⎥⎦

′

,

B2 =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1p

v21 v22 · · · v2p

...
...

. . .
...

vp1 vp2 · · · vpp

⎤
⎥⎥⎥⎦

−1

,

B3 = (
Xt − E

(
Xt

∣∣Ft−1
)
,X2

t − E
(
X2

t

∣∣Ft−1
)
, . . . ,X

p
t − E

(
X

p
t |Ft−1

))′
,
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where

eij = ∂E(Xi
t |Ft−1)

∂αj

, ei,j+p = ∂E(Xi
t |Ft−1)

∂φj

,

ei,2p+1 = ∂E(Xi
t |Ft−1)

∂με

, ei,2p+2 = ∂E(Xi
t |Ft−1)

∂σ 2
ε

,

vij = cov
(
Xi

t ,X
j
t |Ft−1

) = E
(
X

i+j
t |Ft−1

)− E
(
Xi

t |Ft−1
)
E
(
X

j
t |Ft−1

)
,

i, j = 1,2, . . . , p.

This nonlinear system of equations can be solved using an iterative method to
obtain the MQEs ϑ̂ of parameter vector ϑ and the conditional moments used in
equation (3.11) are given in the Appendix. Hutton and Nelson (1986) gave reg-
ularity conditions for the existence, strong consistency and asymptotic normality
of the MQEs and showed that they are optimal in Godambe’s sense. However, for
the DDRCINAR(p) model of order p ≥ 2, it is difficult to prove these regular-
ity conditions because of the complexity of the algebraic expressions given in the
appendix. Next, we consider some properties of MQEs when p = 1.

Let ξ = (σ11, η, σ 2
ε )′, where η = a1(1 − a1) − σ11 and β = (a1,με)

′. Thus, the
expression for one-step conditional variance

Vξ (Xt |Xt−1) = v11 = σ11X
2
t−1 + ηXt−1 + σ 2

ε .

According to (3.11) and (3.1), a set of MQEs estimating equations take the form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
t=2

V −1
ξ (Xt |Xt−1)(Xt − a1Xt−1 − με) = 0,

n∑
t=2

V −1
ξ (Xt |Xt−1)Xt−1(Xt − a1Xt−1 − με) = 0.

(3.12)

Note that the presence of ξ in the expression for the conditional variance makes
the corresponding estimating equations complicated and intractable in the general
case. Therefore, we propose substituting a suitable consistent estimator ξ̂ of ξ

obtained by other means and then solve the estimators of (3.12). This approach
leads to the following closed form estimator of β:

(
ã1
μ̃ε

)
=

⎛
⎜⎜⎜⎜⎝

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1)

n∑
t=2

V −1
ξ̂

(Xt |Xt−1)

n∑
t=2

X2
t−1V

−1
ξ̂

(Xt |Xt−1)

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1)

⎞
⎟⎟⎟⎟⎠

−1

×

⎛
⎜⎜⎜⎜⎝

n∑
t=2

XtV
−1
ξ̂

(Xt |Xt−1)

n∑
t=2

XtXt−1V
−1
ξ̂

(Xt |Xt−1)

⎞
⎟⎟⎟⎟⎠ .

(3.13)
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A consistent estimator of ξ is proposed next that can be used in (3.13).

Proposition 3.1. Let Xt be a DDRCINAR(1) model, then the following estimators
are consistent:

σ̂ 2
ε = 1

n

n∑
t=2

(Xt − â1Xt−1 − μ̂ε)
2 − σ̂11

n

n∑
t=2

(
X2

t−1 − Xt−1
)− â1 − â2

1

n

n∑
t=2

Xt−1,

η̂ = â1 − â2
1 − σ̂11,

where â1, σ̂11 and μ̂ε are consistent estimators of a1, σ11 and με . In practice, we
can use the CLS or WCLS estimators of a1, σ11 and με .

Proof. Let An = 1
n

∑n
t=2(Xt − a1Xt−1 − με)

2, Bn = 1
n

∑n
t=2 X2

t−1 and Cn =
1
n

∑n
t=2 Xt−1. By Theorem 1.1 of Billingsley (1961), An

a.s.−−→ E((Xt − a1Xt−1 −
με)

2) = σ 2
ε + σ11(γ1 − γ2) + (a1 − a2

1)γ2, Bn
a.s.−−→ γ1 and Cn

a.s.−−→ γ2, where
γ1 = E(X2∞), γ2 = E(X∞) and X∞ denotes the limiting random variable cor-
responding to the stationary of the process. Therefore,

σ̂ 2
ε = An − An + 1

n

n∑
t=2

(Xt − â1Xt−1 − μ̂ε)
2 − σ̂11

n

n∑
t=2

(
X2

t−1 − Xt−1
)

− â1 − â2
1

n

n∑
t=2

Xt−1

= An + (â1 − a1)
(
(â1 + a1 − 2)Bn + 2μ̂εCn

)
+ (μ̂ε − με)

(
μ̂ε + με − 2(1 + a1)Cn

)− σ̂11(Bn − Cn) − (
â1 − â2

1
)
Cn

p−→ σ 2
ε .

Similar arguments lead to η̂
p−→ η. �

Remark 3.3. α̂1 and φ̂1 are also consistent by Proposition 3.1 and (3.6).

Asymptotic normality of the MQEs estimators in (3.13) is established in the
following theorem.

Theorem 3.2. The joint limit distribution of the MQEs estimators (ã1, μ̃ε) given
by (3.13) is

√
n

(
ã1 − a1
μ̃ε − με

)
d−→ N

(
0, T −1(ξ)Q(ξ)T −1(ξ)

)
, n → +∞,
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where

Q(ξ) =
(
T1(ξ) T3(ξ)

T3(ξ) T2(ξ)

)
,

T −1(ξ) = (
T 2

3 (ξ) − T1(ξ)T2(ξ)
)−1

(
T3(ξ) −T1(ξ)

−T2(ξ) T3(ξ)

)
,

where T1(ξ) = E[V −1
ξ (X2|X1)], T2(ξ) = E[X2

1V
−1
ξ (X2|X1)] and T3(ξ) =

E[X1V
−1
ξ (X2|X1)].

Proof. First, we suppose ξ is known. For the following estimation equations:

S(1)
n (ξ, β) =

n∑
t=2

V −1
ξ (Xt |Xt−1)(Xt − a1Xt−1 − με),

S(2)
n (ξ, β) =

n∑
t=2

V −1
ξ (Xt |Xt−1)Xt−1(Xt − a1Xt−1 − με),

we have

E
[
V −1

ξ (Xt |Xt−1)(Xt − a1Xt−1 − με)|Ft−1
]

= V −1
ξ (Xt |Xt−1)E

[
(Xt − a1Xt−1 − με)|Ft−1

] = 0

and

E
[
S

(1)
t (ξ, β)|Ft−1

] = S
(1)
t−1(ξ, β).

Thus, {S(1)
t (ξ, β),Ft , t ≥ 0} is a martingale. By Theorem 1.1 of Billingsley (1961),

1

n

n∑
t=2

V −2
ξ (Xt |Xt−1)(Xt − a1Xt−1 − με)

2

a.s.−−→ E
[
V −2

ξ (X2|X1)(X2 − a1X1 − με)
2]

= E
[
E
(
V −2

ξ (X2|X1)(X2 − a1X1 − με)
2|X1

)] = E
[
V −1

ξ (X2|X1)
] = T1(ξ).

By Corollary 3.2 of Hall and Heyde (1980), the martingale MQEs applies and we
get

1√
n
S(1)

n (ξ, β)
d−→ N

(
0, T1(ξ)

)
, n → +∞.
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Similarly,

1

n

n∑
t=2

V −2
ξ (Xt |Xt−1)X

2
t−1(Xt − a1Xt−1 − με)

2

a.s.−−→ E
[
V −2

ξ (X2|X1)X
2
1(X2 − a1X1 − με)

2]
= E

[
E
(
V −2

ξ (X2|X1)X
2
1(X2 − a1X1 − με)

2|X1
)]

= E
[
X2

1V
−1
ξ (X2|X1)

] = T2(ξ)

and
1√
n
S(2)

n (ξ, β)
d−→ N

(
0, T2(ξ)

)
, n → +∞.

Again by Cramer–Wold device, for any c = (c1, c2)
′, c1 and c2 ∈ R are not both 0.

When n → +∞, we have

c′
√

n

(
S(1)

n (ξ, β)

S(2)
n (ξ, β)

)
d−→ N

(
0,E

[
V −2

ξ (X2|X1)(c2X1 + c1)
2(X2 − a1X1 − με)

2]),
implying

1√
n

(
S(1)

n (ξ, β)

S(2)
n (ξ, β)

)
d−→ N

((
0
0

)
,

(
T1(ξ) T3(ξ)

T3(ξ) T2(ξ)

))
, n → +∞, (3.14)

where T3(ξ) = E[V −2
ξ (X2|X1)X1(X2 − a1X1 − με)

2] = E[X1V
−1
ξ (X2|X1)].

Now, we replace V −2
ξ (Xt |Xt−1) by V −2

ξ̂
(Xt |Xt−1), where ξ̂ is a consistent es-

timator of ξ . Then we want

1√
n

(
S(1)

n (ξ̂ , β)

S(2)
n (ξ̂ , β)

)
d−→ N

((
0
0

)
,

(
T1(ξ) T3(ξ)

T3(ξ) T2(ξ)

))
, n → +∞. (3.15)

To obtain this we need to prove that

1√
n
S(i)

n (ξ̂ , β) − 1√
n
S(i)

n (ξ, β)
p−→ 0, i = 1,2. (3.16)

Let Rn(ξ) = (1/
√

n)S
(1)
n (ξ, β). Then ∀ε > 0 and δ > 0 such that ξ −δ1 > 0, where

1 is the unit vector, we have

P
(∣∣Rn(ξ̂ ) − Rn(ξ)

∣∣ > ε
)

≤ P
(|σ̂11 − σ11| > δ

)+ p
(|η̂ − η| > δ

)
+ p

(∣∣σ̂ 2
ε − σ 2

ε

∣∣ > δ
)

+ P
(

sup
{|σ1−σ11|<δ,|η1−η|<δ,|σ 2

2 −σ 2
ε |<δ}

∣∣Rn(ξ1) − Rn(ξ)
∣∣ > ε

)
,
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where ξ1 = (σ1, η1, σ
2
2 )′. Let D = {|σ1 − σ11| < δ, |η1 − η| < δ, |σ 2

2 − σ 2
ε | < δ}. If

ξ̂ is a consistent estimator of ξ , then we just need to prove that

P
(
sup
D

∣∣Rn(ξ1) − Rn(ξ)
∣∣ > ε

)
p−→ 0.

By Markov inequality,

P
(
sup
D

∣∣Rn(ξ1) − Rn(ξ)
∣∣ > ε

)

≤ 1

ε2 E
(
sup
D

(
Rn(ξ1) − Rn(ξ)

)2
)

= 1

ε2 E

(
sup
D

1

n

n∑
t=2

(
V −1

ξ1
(Xt |Xt−1) − V −1

ξ (Xt |Xt−1)
)2

× (Xt − a1Xt−1 − με)
2

)

= 1

ε2 E
(
sup
D

(
V −1

ξ1
(X2|X1) − V −1

ξ (X2|X1)
)2

(X2 − a1X1 − μξ)
2
)

= 1

ε2 E

(
sup
D

((σ1 − σ11)X
2
1 + (η1 − η)X1 + (σ 2

2 − σ 2
ε ))2

V 2
ξ1

(X2|X1)V
2
ξ (X2|X1)

× (X2 − a1X1 − με)
2
)

= 1

ε2 E

(
sup
D

((σ1 − σ11)X
2
1 + (η1 − η)X1 + (σ 2

2 − σ 2
ε ))2

V 2
ξ1

(X2|X1)Vξ (X2|X1)

)

≤ 1

ε2 sup
D

{
(σ1 − σ11)

2c1 + (η1 − η)2c2

+ (
σ 2

2 − σ 2
ε

)2
c3 + 2c4

∣∣(σ1 − σ11)(η1 − η)
∣∣

+ 2c5
∣∣(σ1 − σ11)

(
σ 2

2 − σ 2
ε

)∣∣+ 2c6|(η1 − η)
(
σ 2

2 − σ 2
ε

)|}
≤ Cδ2

ε2 ,

where {ci, i = 1, . . . ,6} are finite moments and C is a positive constant. Similar
argument can be used for 1√

n
S

(2)
n (ξ, β). When δ goes to zero, we get our assertion

which in turn establishes (3.15). Similarly, we have

1

n

n∑
t=2

V −1
ξ

(
Xt |Xt−1) − 1

n

n∑
t=2

V −1
ξ̂

(Xt |Xt−1)
p−→ 0,
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1

n

n∑
t=2

Xt−1V
−1
ξ (Xt |Xt−1) − 1

n

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1)
p−→ 0,

1

n

n∑
t=2

X2
t−1V

−1
ξ (Xt |Xt−1) − 1

n

n∑
t=2

X2
t−1V

−1
ξ̂

(Xt |Xt−1)
p−→ 0.

Therefore, by the above and Theorem 1.1 of Billingsley (1961), we have

(A1 − A2)
−1 × A3

p−→ (
T 2

3 (ξ) − T1(ξ)T2(ξ)
)−1

(
T3(ξ) −T1(ξ)

−T2(ξ) T3(ξ)

)

= T −1(ξ),

(3.17)

where

A1 =
(

1

n

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1)

)2

,

A2 =
(

1

n

n∑
t=2

V −1
ξ̂

(Xt |Xt−1)

)(
1

n

n∑
t=2

X2
t−1V

−1
ξ̂

(Xt |Xt−1)

)

A3 =

⎛
⎜⎜⎜⎜⎝

1

n

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1) −1

n

n∑
t=2

V −1
ξ̂

(Xt |Xt−1)

−1

n

n∑
t=2

X2
t−1V

−1
ξ̂

(Xt |Xt−1)
1

n

n∑
t=2

Xt−1V
−1
ξ̂

(Xt |Xt−1)

⎞
⎟⎟⎟⎟⎠ .

After some algebra, we have

(
ã1 − a1
μ̃ε − με

)
= n−1(A1 − A2)

−1 × A3 ×
(
S(1)

n (ξ̂ , β)

S(2)
n (ξ̂ , β)

)
.

Therefore, by (3.15) and (3.17),

√
n

(
ã1 − a1
μ̃ε − με

)
d−→ N

(
0, T −1(ξ)′Q(ξ)T −1(ξ)

)
, n → +∞,

where

Q(ξ) =
(
T1(ξ) T3(ξ)

T3(ξ) T2(ξ)

)
. �

Remark 3.4. When p = 1, the MQEs is equivalent to modified quasi-likelihood
(MQL) estimation method proposed by Zheng, Basawa and Datta (2007). Thus,
the proof of the above theorem can be also obtained by Zheng, Basawa and Datta
(2007).
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4 Simulations

Consider the model 2.1 with p = 2, that is, DDRCINAR(2) model, where εt is an
i.i.d. poisson sequence with mean λ, and

E
(
A′

t ⊗ At

) =

⎡
⎢⎢⎢⎣
α1φ

2
1 0 α1φ1 α2φ2

α1φ1 0 1 0
0 α2φ

2
2 0 0

α2φ2 0 0 0

⎤
⎥⎥⎥⎦ .

By Theorem 2.1, the conditions for the existence of this stationary and ergodic
DDRCINAR(2) model are: 0 ≤ α1, α2 ≤ 1; 0 < α1 + α2 < 1; 0 ≤ φ1, φ2 ≤ 1;
α1φ1 + α2φ2 < 1 and maximum absolute eigenvalue of E(A′

t ⊗ At) < 1. These
conditions define the parameter space � used here. A simulation study was con-
ducted by generating DDRCINAR(2) processes, each of which are from four sam-
ples of parameter values for αi , φi and λ, namely

(a) sample 1: α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7 and λ = 1,
(b) sample 2: α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7 and λ = 2,
(c) sample 3: α1 = 0.25, α2 = 0.25, φ1 = 0.5, φ2 = 0.5 and λ = 1,
(d) sample 4: α1 = 0.25, α2 = 0.25, φ1 = 0.5, φ2 = 0.5 and λ = 2.

Figure 1 on page 656 gives four typical sample pathes for a sample size 200
about the DDRCINAR(2) model. We use R for the random number generation

Figure 1 Samples 1, 2, 3 and 4 paths of Model.
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Table 1 Mean values of three sets of estimates for samples 1 and 2

n α1 α2 φ1 φ2 λ

α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7, λ = 1
CLS
10,000 0.4006 0.5001 0.5985 0.7004 1.0000
30,000 0.3990 0.5009 0.6022 0.6995 0.9988

WCLS
10,000 0.3999 0.5002 0.5987 0.7005 1.0003
30,000 0.3990 0.5007 0.6019 0.6998 0.9990

MQE
10,000 0.3999 0.4997 0.6026 0.7041 0.9910
30,000 0.3991 0.5003 0.6036 0.7014 0.9949

α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7, λ = 2
CLS
10,000 0.4010 0.5004 0.5990 0.7006 1.9986
30,000 0.4008 0.4997 0.5998 0.7004 1.9991

WCLS
10,000 0.4011 0.5002 0.5990 0.7011 1.9974
30,000 0.4004 0.4997 0.6001 0.7004 1.9992

MQE
10,000 0.4014 0.5001 0.6016 0.7035 1.9842
30,000 0.4005 0.4998 0.6019 0.7021 1.9899

and sample sizes n = 200,500,1000,10,000,30,000 and 500 replications were
used. For WCLS and MQE estimates, ψt , �t and vij are estimated by using CLS.
We use the mean squared errors (MSE), that is,

1

n

n∑
j=1

(
ϑest − ϑ

)2
, (4.1)

to evaluate the performance of the estimators, where n is the number of realizations
and ϑest denotes any estimator of ϑ . Table 1 on page 657 enumerates the estimates
of parameters for samples 1 and 2, with similar results given for samples 3 and 4 in
Table 3 on page 659. The representative results about MSE and the percent lying
in � for samples 1, 2, 3 and 4 are summarized in Tables 2 on page 658 and 4 on
page 660, respectively.

Values outside the allowed range for ϑ might easily be obtained for small sam-
ple sizes of n = 200,500 and 1000. By (3.6), the estimates of αi and φi are decided
by a and σ . Therefore, when the sample size is very small, there emerge negative
estimated values of αi and φi . We thus need to adjust negative estimates in a some-
what ad hoc manner. In Tables 3 on page 659 and 4 on page 660, such estimated
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Table 2 MSE and per cent within parenthese space of three sets of estimates for samples 1 and 2

n α1 α2 φ1 φ2 λ % in �

α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7, λ = 1
CLS
10,000 0.0005 0.0004 0.0007 0.0004 0.0008 100.00
30,000 0.0002 0.0001 0.0002 0.0001 0.0003 100.00

WCLS
10,000 0.0004 0.0003 0.0005 0.0004 0.0007 100.00
30,000 0.0001 0.0001 0.0002 0.0001 0.0002 100.00

MQE
10,000 0.0004 0.0003 0.0004 0.0003 0.0002 100.00
30,000 0.0001 0.0001 0.0002 0.0001 0.0001 100.00

α1 = 0.4, α2 = 0.5, φ1 = 0.6, φ2 = 0.7, λ = 2
CLS
10,000 0.0004 0.0003 0.0004 0.0002 0.0023 100.00
30,000 0.0001 0.0001 0.0001 0.0001 0.0010 100.00

WCLS
10,000 0.0003 0.0002 0.0003 0.0002 0.0020 100.00
30,000 0.0001 0.0001 0.0001 0.0001 0.0008 100.00

MQE
10,000 0.0003 0.0002 0.0002 0.0001 0.0008 100.00
30,000 0.0001 0.0001 0.0001 0.0000 0.0003 100.00

have been adjusted by taking account that the restrictions on αi and φi imply,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 < a1 + a2 < 1,

σ11σ22 > a2
1a2

2,

0 < σii < 0.25,

σii < ai(1 − ai), i = 1,2.

(4.2)

Thus if â1 + â2 > 1, âi have been replaced by âi/(â1 + â2), and other constraints
and parameters can be made with similar adjustments.

As the sample size increases, three sets of estimates seem to converge to the true
parameter values, indicating consistency. However, the MQEs seem fall within
� with a higher proportion of times than the existing estimators of CLS and
WCLS, which indicate an improvement. Observing Tables 2 on page 658 and 4
on page 660, it is conclusion that MQEs dominate CLS and WCLS in terms of the
MSE, which is accordance with our expectation. Meanwhile, when the sample size
is increased, it is better to estimate the parameters for these three estimation meth-
ods, which shows large sample size may be needed to obtain reasonable results.

In order to more fully compare the three sets of estimators in terms of the per-
centage of estimates that fall within �, we calculate and examine the � of the two
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Table 3 Mean values of three sets of estimates for samples 3 and 4

n α1 α2 φ1 φ2 λ

α1 = α2 = 0.25, φ1 = φ2 = 0.5, λ = 1
CLS
200 0.4032 0.4280 0.3991 0.4010 0.9530
500 0.3486 0.3797 0.4132 0.4292 0.9655
1000 0.3115 0.3235 0.4550 0.4581 0.9793
10,000 0.2535 0.2601 0.4981 0.4908 1.0005
30,000 0.2510 0.2515 0.5004 0.4998 0.9999

WCLS
200 0.4022 0.4364 0.3998 0.3964 0.9565
500 0.3522 0.3839 0.4268 0.4293 0.9659
1000 0.3125 0.3249 0.4551 0.4582 0.9804
10,000 0.2526 0.2569 0.4973 0.4947 1.0004
30,000 0.2507 0.2507 0.5005 0.5014 0.9999

MQE
200 0.3721 0.4174 0.4014 0.4095 0.9508
500 0.3313 0.3548 0.4473 0.4466 0.9675
1000 0.2968 0.3341 0.4560 0.4729 0.9815
10,000 0.2551 0.2598 0.4992 0.4957 0.9932
30,000 0.2528 0.2524 0.5004 0.5013 0.9955

α1 = α2 = 0.25, φ1 = φ2 = 0.5, λ = 2
CLS
200 0.3101 0.3321 0.3836 0.4431 2.0713
500 0.2854 0.2859 0.4680 0.4717 2.0168
1000 0.2667 0.2697 0.4759 0.4853 2.0172
10,000 0.2529 0.2510 0.4975 0.4991 2.0025
30,000 0.2528 0.2492 0.4967 0.5016 2.0003

WCLS
200 0.3204 0.3054 0.4304 0.4594 2.0745
500 0.2879 0.2705 0.4511 0.4866 2.0162
1000 0.2636 0.2663 0.4772 0.4884 2.0152
10,000 0.2523 0.2501 0.4982 0.4994 2.0031
30,000 0.2521 0.2498 0.4976 0.5008 2.0001

MQE
200 0.3541 0.3571 0.4419 0.4469 1.8986
500 0.3100 0.2907 0.4576 0.4845 1.9422
1000 0.2763 0.2776 0.4798 0.4899 1.9623
10,000 0.2562 0.2547 0.4999 0.4999 1.9881
30,000 0.2545 0.2518 0.4981 0.5021 1.9918

estimators for a range of different parameter values when φ1 = φ2 = 0.6, λ = 1,
and φ1 = φ2 = 0.6, λ = 2. The sum of α1 and α2 is confined within the range of
[0.0,1.0]. And, for each of these two parameters, different values range from 0.0 to
1.0, on a grid of 0.10. All possible samples of α1 and α2 are examined.
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Table 4 MSE and per cent within parenthese space of three sets of estimates for samples 3 and 4

n α1 α2 φ1 φ2 λ % in �

α1 = α2 = 0.25, φ1 = φ2 = 0.5, λ = 1
CLS
200 0.0910 0.1042 0.0799 0.0764 0.0079 56.60
500 0.0546 0.0662 0.0456 0.0489 0.0036 76.00
1000 0.0264 0.0356 0.0280 0.0297 0.0015 92.80
10,000 0.0016 0.0018 0.0053 0.0048 0.0004 100.00
30,000 0.0005 0.0005 0.0014 0.0014 0.0001 100.00

WCLS
200 0.0922 0.1078 0.0802 0.0776 0.0071 55.20
500 0.0556 0.0686 0.0467 0.0505 0.0035 75.00
1000 0.0262 0.0355 0.0287 0.0309 0.0014 92.80
10,000 0.0013 0.0014 0.0035 0.0036 0.0004 100.00
30,000 0.0004 0.0004 0.0010 0.0011 0.0001 100.00

MQE
200 0.0772 0.0983 0.0668 0.0685 0.0084 57.60
500 0.0506 0.0571 0.0403 0.0436 0.0033 79.40
1000 0.0212 0.0211 0.0225 0.0243 0.0013 94.40
10,000 0.0012 0.0013 0.0029 0.0030 0.0002 100.00
30,000 0.0004 0.0004 0.0009 0.0010 0.0001 100.00

α1 = α2 = 0.25, φ1 = φ2 = 0.5, λ = 2
CLS
200 0.0865 0.0926 0.0643 0.0705 0.0795 62.20
500 0.0457 0.0312 0.0431 0.0353 0.0327 92.60
1000 0.0163 0.0165 0.0193 0.0207 0.0160 98.40
10,000 0.0010 0.0009 0.0021 0.0019 0.0014 100.00
30,000 0.0003 0.0003 0.0006 0.0006 0.0005 100.00

WCLS
200 0.0866 0.0902 0.0714 0.0615 0.0797 64.80
500 0.0430 0.0243 0.0359 0.0300 0.0291 93.80
1000 0.0141 0.0146 0.0163 0.0176 0.0137 98.60
10,000 0.0010 0.0009 0.0017 0.0015 0.0012 100.00
30,000 0.0003 0.0003 0.0005 0.0005 0.0004 100.00

MQE
200 0.0622 0.0678 0.0464 0.0504 0.0609 78.80
500 0.0255 0.0129 0.0224 0.0210 0.0109 97.20
1000 0.0114 0.0119 0.0121 0.0137 0.0050 99.40
10,000 0.0010 0.0008 0.0016 0.0014 0.0005 100.00
30,000 0.0003 0.0002 0.0004 0.0005 0.0002 100.00

Tables 5 on page 661 and 6 on page 662 show the proportion of estimates for
the parameters, α̂1, α̂2, φ̂1, φ̂2 and λ̂. Obviously, when α1 or α2 is 0 or the sum of
α1 and α2 is 1, the percentage of in-range estimates is very small, which indicates
that the problem of out-of-range estimates is severe near the boundaries of �.
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Table 5 Percentage of in-range estimates for φ1 = φ2 = 0.6 and λ = 1

α1

α2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

CLS
0.00 1.8 5.8 10.8 12.2 14.4 16.4 18.6 17.4 18.2 14.2 4.4
0.10 6.4 24.4 39.6 47.2 49.0 50.0 55.4 51.0 42.4 18.8
0.20 13.4 42.6 65.4 74.8 78.6 79.0 74.0 70.2 26.0
0.30 15.4 51.8 75.6 86.4 90.2 88.8 75.4 32.4
0.40 17.2 54.8 82.2 89.6 90.4 76.6 33.0
0.50 18.0 57.8 83.0 90.6 79.4 32.4
0.60 23.2 59.4 82.6 79.6 30.6
0.70 19.4 61.8 71.6 33.8
0.80 17.2 49.2 29.4
0.90 16.6 17.8
1.00 7.4

WCLS
0.00 1.2 3.6 10.8 13.0 13.8 15.0 18.6 16.8 17.0 16.0 6.0
0.10 6.8 25.0 39.6 49.0 53.0 53.8 59.6 55.2 46.0 21.0
0.20 11.4 42.0 65.6 76.4 80.4 84.6 80.6 72.2 31.8
0.30 12.8 53.4 76.8 90.0 92.4 92.4 80.4 37.4
0.40 17.6 56.6 84.6 91.8 92.8 80.0 40.4
0.50 17.6 59.8 88.2 91.0 81.8 37.8
0.60 20.6 61.6 84.0 83.6 38.0
0.70 19.4 64.4 78.4 41.6
0.80 20.2 54.8 38.0
0.90 17.4 27.2
1.00 9.4

MQE
0.00 51.6 58.4 62.6 68.6 70.4 73.8 77.8 79.0 72.6 65.2 41.0
0.10 55.8 66.4 76.0 82.6 84.2 84.2 85.6 82.6 75.4 43.4
0.20 67.2 78.0 90.6 91.2 93.6 95.2 90.2 85.8 50.0
0.30 72.6 82.6 93.6 95.4 96.8 95.2 86.2 52.4
0.40 77.0 84.0 96.0 96.6 96.4 86.2 58.8
0.50 77.2 87.0 96.4 95.6 87.8 56.2
0.60 74.2 89.0 92.2 88.8 52.6
0.70 73.8 86.0 86.6 53.6
0.80 71.2 81.4 52.0
0.90 64.6 48.8
1.00 36.6

Generally, it is true that the three estimation methods improve when α1 or α2 or
both increase(s). Specifically, it can be seen, from Tables 5 on page 661 and 6 on
page 662, that MQEs perform better than the estimators of CLS and WCLS in
terms of the proportion of within-� estimates.
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Table 6 Percentage of in-range estimates for φ1 = φ2 = 0.6 and λ = 2

α1

α2 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

CLS
0.00 2.0 10.4 16.4 16.6 19.2 21.4 21.4 21.6 21.0 16.0 6.6
0.10 11.6 34.6 53.8 59.2 62.4 64.4 66.6 64.8 60.6 22.6
0.20 18.0 55.8 79.0 84.4 88.6 91.2 90.6 83.6 30.0
0.30 19.6 64.0 86.0 95.2 97.2 97.6 95.2 33.0
0.40 22.6 69.2 90.8 98.0 99.0 97.2 36.0
0.50 24.0 70.2 92.2 98.6 97.2 37.2
0.60 25.8 69.0 93.6 97.0 32.2
0.70 27.8 72.2 91.0 37.4
0.80 25.0 71.6 32.8
0.90 22.8 26.6
1.00 10.0

WCLS
0.00 2.0 8.4 17.4 18.2 19.4 19.6 20.0 21.0 21.0 16.4 8.8
0.10 11.2 34.2 51.0 63.4 63.0 67.8 67.6 67.4 67.2 28.8
0.20 16.0 56.2 79.0 86.2 90.4 93.0 92.6 89.6 36.8
0.30 19.4 65.0 87.0 96.6 98.4 99.0 96.4 41.2
0.40 23.4 69.0 92.2 99.0 99.4 97.6 41.6
0.50 24.6 73.4 94.6 99.4 98.6 45.2
0.60 24.6 73.0 97.0 96.6 42.8
0.70 28.0 76.4 94.4 45.6
0.80 26.0 74.2 41.2
0.90 22.8 33.8
1.00 12.0

MQE
0.00 59.6 66.4 76.8 78.2 78.6 78.8 77.4 77.0 76.0 73.4 41.8
0.10 67.0 83.8 88.8 91.2 94.4 93.0 90.6 91.6 89.6 49.4
0.20 78.4 91.6 98.0 98.8 99.2 99.8 97.6 96.2 53.6
0.30 79.2 94.4 99.0 99.8 99.8 99.6 98.4 58.0
0.40 79.8 96.0 99.4 100.0 99.8 99.0 61.6
0.50 78.2 95.2 99.6 100.0 99.4 61.8
0.60 78.0 94.4 99.2 99.0 57.2
0.70 76.8 94.0 96.2 59.6
0.80 76.6 93.0 57.8
0.90 72.0 49.6
1.00 37.4

We also simulated other representative parameter samples. We find that good
estimates and high proportion of within-� estimates can be derived when α1 and
α2 are both large, and poor estimates and low proportion of within-� estimates are
derived when α1 or α2 is small.
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5 Real data analysis

In this section, we will show how the model and methods from Section 3 can
be applied to two real data time series. Moreover, we will consider two kinds of
criteria to compare different models to the real data sets. The first kind is the root
mean squared (RMS) errors defined by

RMS =
√√√√1

n

n∑
i=1

(Xi − X̂i)2, (5.1)

and the second is defined as

MSE = 1

m

m∑
i=1

(Xn−m+i − X̂n−m+i )
2, (5.2)

where X̂k = E(Xk|Ft−1) and take m = 30. The MSE criteria is studied by Li, Lian
and Zhu (2016). The predictive performance of models is evaluated according to
the two criteria.

5.1 Epileptic seizure counts analysis

Franke and Seligmann (1993), Latour (1998) and Zheng, Basawa and Datta (2006)
analysed these data by using different methods. Franke and Seligmann (1993) used
conditional maximum likelihood method for their SINAR(1) model, Latour (1998)
used conditional least squares method for the fixed coefficient INAR(p) model,
and Zheng, Basawa and Datta (2006) used conditional least squares method and
modified quasi-likelihood for the random coefficient INAR(p) model. We will re-
consider the first half the time series of patient number 2, corresponding to the
period before the patient had submitted to medical treatment.

The data were extracted from Figure 22.3 of Franke and Seligmann (1993) and
are presented in Figure 2 on page 664. Note that the counts vary from 0 to 5, the
sample mean equals 0.6612 and the variance 0.8592. Moreover, the plots of ACF
and PACF are given in Figure 3 on page 664. From the graphs, we would assume
that the model for the process is a dependence-driven random coefficient integer-
valued autoregressive model as follows:

Xt = φt6 ◦ Xt−6 + φt,14 ◦ Xt−14 + εt , (5.3)

where the joint distribution of {φt6, φt,14} is given by⎧⎪⎪⎨
⎪⎪⎩

p(φt6 = φ6, φt,14 = 0) = α6;
p(φt6 = 0, φt,14 = φ14) = α14;
p(φt6 = 0, φt,14 = 0) = 1 − α6 − α14.

(5.4)

Using the methods proposed in Section 3, the following results are given in
Table 7 on page 665.
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Figure 2 Seizure counts plot.

Figure 3 Seizure counts ACF and PACF plots.

Since α̂14 > 1 for CLS and WCLS methods, and α̂6 + α̂14 > 1 for MQE in
Table 7 on page 665, we should treat φt,14 as the fixed coefficient, i.e. take σ14 =
0. Then, using WCLS method, we obtain the variance estimation of σ 2

ε is that
σ̂ 2

ε = 0.5015. The difference between σ̂ 2
ε and μ̂ε is 0.0603, which indicates it is

reasonable that we assume the error εt has Poisson distribution with expectation
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Table 7 Parameter estimation for model (5.3)

Method Parameter

α6 α14 φ6 φ14 με

CLS 0.3664 0.7001 0.2342 0.4079

WCLS 0.2397 0.8756 0.1843 0.4412

MQE 0.8946 0.2962 0.4421

0.4421. Thus, our model for these data is degenerated to

Xt = φt6 ◦ Xt−6 + φ14 ◦ Xt−14 + εt , (5.5)

where the distribution of {φt6} is given by{
p(φt6 = φ6) = α6;
p(φt6 = 0) = 1 − α6.

(5.6)

According to the above assumptions, maximum quasi-likelihood estimators for
Model (5.5) are given by α̌6 = 0.2459, φ̌6 = 0.8942, φ̌14 = 0.2455 and μ̌ε =
0.4446. Then by (5.1) and (5.2), we have

RMS = 0.8837,

MSE = 0.5878.

If we use the fixed coefficient model, where εt is poisson-distributed, then we
have the following results for the MQE method:

φ̃6 = 0.2277, φ̃14 = 0.2271, μ̃ε = 0.4614,

similarly, we have

RMS = 0.8839,

MSE = 0.5919.

The fitting results are summarized in Figure 4 on page 666. Figure 4 on page 666
shows the standardized residuals, the histograms of standardized residuals, ACF
and PACF plots of residuals under two Models. As is known in Figure 4 on
page 666, the residuals are stationary series. Furthermore, the residual mean and
variance of model (5.5) and fixed-coefficient model are (−0.0119,0.7882) and
(−0.0228,0.7882), respectively, which show that the model (5.5) is closest to a
normal distribution relatively.

From the above results, we can see that the random coefficient model has the
smallest RMS and MSE. On the one hand, based on the RMS and MSE alone, one
may prefer to select the coefficient model for these data. On the other hand, one
may prefer to select the coefficient model for these data because of the innovation
that the autoregressive parameters are dependence-driven random variables with a
joint distribution function.



666 X. Liu and D. Wang

Figure 4 Diagnostic checking plots under different models for the monthly Seizure data. (a), (e)
Standardized residuals; (b), (f) Histograms of standardized residuals; (c), (g) ACF plots of residuals;
(d), (h) PACF plots of residuals.

Remark 5.1. The confidence internals in Figure 3 on page 664 are

(−2/
√

n,2/
√

n) = (−0.1818,0.1818),

which can be obtained by Cryer and Chan (2008). The confidence internals in the
following ACF and PACF plots can be derived by the same way.

5.2 Precinct rape counts analysis

The data are obtained from the rape data section of the Forecasting Principles
site (http://www.forecastingprinciples.com). There are 132 observations, starting
in January 1991 and ending in December 2001. Note that the counts vary from 0
to 9. The sample mean and variance are 2.2348 and 2.9902, respectively. The plots
of the time series, its ACF and PACF are given in Figure 5 on page 667. Analyzing
the diagrams we conclude that the first-order autoregressive model is appropriate
for the given data series. Therefore, we consider two models for the data. They are:

Model I.

Xt = φt,10 ◦ Xt−10 + εt , (5.7)

the distribution of {φt,10} is given by{
p(φt,10 = φ10) = α10;
p(φt,10 = 0) = 1 − α10.

Where {εt } is an i.i.d. poisson sequence with mean λ and φ10 is in [0,1).

http://www.forecastingprinciples.com
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Figure 5 Precinct rape counts sample, ACF and PACF plots.

Figure 6 Diagnostic checking plots under different models for the monthly Precinct rape data.
(a), (e) Standardized residuals; (b), (f) Histograms of standardized residuals; (c), (g) ACF plots of
residuals; (d), (h) PACF plots of residuals.

Model II.

Xt = ϕ10 ◦ Xt−10 + εt

where {εt } is an i.i.d. poisson sequence with mean μ and ϕ10 is fixed in [0,1).
The fitting results are summarized in Figure 6 on page 667 and Table 8 on

page 668. Figure 6 on page 667 shows the standardized residuals, the histograms
of standardized residuals, ACF and PACF plots of residuals under two models. As
is known in Figure 6 on page 667, the residuals are stationary series. From the
histograms of Figure 6 on page 667, the two models are well closed to a normal
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Table 8 Parameters, RMS and MSE

MQE CLS WCLS

Model I α̂
MQE
10 = 0.3709 α̂CLS

10 = 0.5753 α̂WCLS
10 = 0.4079

φ̂
MQE
10 = 0.5198 φ̂CLS

10 = 0.4408 φ̂WCLS
10 = 0.5425

λ̂
MQE
10 = 1.7614 λ̂CLS

10 = 1.6231 λ̂WCLS
10 = 1.6874

RMS 1.6916
MSE 1.7195

Model II ϕ̂
MQE
10 = 0.1645 ϕ̂CLS

10 = 0.2536 ϕ̂WCLS
10 = 0.2341

μ̂
MQE
10 = 1.8287 μ̂CLS

10 = 1.6231 μ̂WCLS
10 = 1.6672

RMS 1.6954
MSE 1.7210

distribution. In Table 8 on page 668, we also give the predicted values RMS and
MSE for each model. Moreover, The intuitionistic reason that the CLS estimators
of λ and μ are relatively small is as follows:

It is easy to obtain the CLS estimations,

âCLS =
(

n∑
t=11

YtY
′
t − 1

n − 10

n∑
t=11

Yt

n∑
t=11

Y ′
t

)−1

(5.8)

×
(

n∑
t=11

YtXt − 1

n − 10

n∑
t=11

Yt

n∑
t=11

Xt

)
,

λ̂CLS = 1

n − 10

n∑
t=11

(
Xt − Y ′

t
ˆaCLS

)
, (5.9)

where n = 132, the data which we use to estimate λ are X11,X12, . . . ,X132 with-
out X1,X2, . . . ,X10, thus some important “information” are lost. Then a similar
argument can be applied to WCLS. But MQEs are based on the 10-dimensional
stochastic process {Xt,X

2
t , . . . ,X

10
t }, where the value of t is from 11 to 132. Thus,

MQEs may derive more “information”. Therefore, we recommend MQE method
to analyse the real data. As can be seen, RMS and MSE are smaller for the Model I
than Model II. For this data, all criteria show that Model I performs best.

6 Summary and conclusion

In this paper, we have introduced a pth-order dependence-driven random coeffi-
cient integer-valued autoregressive model for count data. The autoregressive coef-
ficient is allowed to vary randomly over time. The stationarity and ergodicity of
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the process are established. MQE, CLS and WCLS methods are used to estimate
the parameters. Some of their asymptotic properties are obtained.

In the simulation study, we have shown three estimation methods for the
DDRCINAR(p) model. And we conclude that a very large sample size may
be needed to obtain reasonable results. Without considering the time factor,
we recommend to use MQE to estimate the parameters in the DDRCINAR(p)

model. We also consider the proportion of in-range parameter estimates of the
DDRCINAR(p) model. It is concluded that the MQE method performs better than
CLS and WCLS methods on the part of the proportion of within-� estimates, es-
pecially near the boundaries of the parameter space. The model is applied to two
real data sets. It is shown that the dependence-driven random coefficient model
(DDRCINAR(p)) is suitable for the real data sets.

Appendix

In Section 2, we introduce our model DDRCINAR(p). Next, we give the condi-
tional moments used in Section 4. From equation (2.1) we have

Xm
t =

( p∑
i=1

φ
(t)
i ◦ Xt−i + εt

)m

=
m−1∑
k=0

Ck
m

p∑
i=1

(
φ

(t)
i ◦ Xt−i

)m−k
εk
t + εm

t + Rm, m = 1,2, . . . ,2p,

(A.1)

where Ck
m is the number of combinations of size k from 1,2, . . . ,m and

Rm = Xm
t −

m−1∑
k=0

Ck
m

p∑
i=1

(
φ

(t)
i ◦ Xt−i

)m−k
εk
t − εm

t .

According to {εs, s ≥ t} and {φ(s)
i , i = 1,2, . . . , p; s ≥ t} are independent of

{Xs, s ≤ t − 1}, we have E(Rm|Ft−1) = 0 from (2.1) and (2.2). Then

E
(
Xm

t |Ft−1,Jtp

)

= E

([
m−1∑
k=0

Ck
m

p∑
i=1

(
φ

(t)
i ◦ Xt−i

)m−k
εk
t + εm

t

]∣∣∣Ft−1,Jtp

)

=
m−1∑
k=0

Ck
m

p∑
i=1

E
((

φ
(t)
i ◦ Xt−i

)m−k|Ft−1,Jtp

)
E
(
εk
t

)+ E
(
εm
t

)
.

(A.2)

Let Si = φ
(t)
i ◦Xt−i , we know that Si is a conditional binomial distribution. Denote

Si |Ft−1,Jtp ∼ B
(
Xt−i , φ

(t)
i

)
.
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Then the conditional expected recursion formula of Si is as follows

E
(
Sk+1

i |Ft−1,Jtp

) = φ
(t)
i

(
1 − φ

(t)
i

)dE(Sk
i |Ft−1,Jtp)

dφ
(t)
i

+ Xt−iφ
(t)
i E

(
Sk

i |Ft−1,Jtp

)
.

(A.3)

Since εt has a poisson distribution with parameter λ, the quantities E(εk
t ) can

be obtained by the expected recursion formula

E
(
εk+1
t

) = λ
dE(εk

t )

dλ
+ λE

(
εk
t

)
, k = 1,2, . . . ,m. (A.4)

Taking conditional expectations on both sides of (A.1), we obtain the following
formula as follows

E
(
Xm

t |Ft−1
) =

m−1∑
k=0

Ck
m

p∑
i=1

E
[
E
(
Sm−k

i |Ft−1,Jtp

)|Ft−1
]
E
(
εk
t

)+ E
(
εm
t

)
. (A.5)

Next, substituting (A.3) and (A.4) into equation (A.5), we can obtain E(Xm
t |Ft−1),

m = 1,2, . . . ,2p.
Specifically, we have

E(Xt |Ft−1) =
p∑

i=1

αiφiXt−i + λ,

Var(Xt |Ft−1) =
p∑

i=1

[
αiφi(1 − φi)Xt−i + αiφ

2
i X

2
t−i

]+ 2λ

p∑
i=1

αiφiXt−i

+ λ + λ2 −
( p∑

i=1

αiφiXt−i + λ

)2

,

Cov
(
Xt,X

2
t |Ft−1

)

=
p∑

i=1

[
αiφi(1 − φi)(1 − 2φi)Xt−i + 3αiφ

2
i (1 − φi)X

2
t−i + αiφ

3
i X

3
t−i

]

+ 3λ

p∑
i=1

[
αiφi(1 − φi)Xt−i + αiφ

2
i X

2
t−i

]

+ 3
(
λ + λ2) p∑

i=1

αiφiXt−i + λ + 3λ2 + λ3
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−
( p∑

i=1

αiφiXt−i + λ

)( p∑
i=1

[
αiφi(1 − φi)Xt−i + αiφ

2
i X

2
t−i

])

−
( p∑

i=1

αiφiXt−i + λ

)(
2λ
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i=1

αiφiXt−i + λ + λ2

)
,

Var
(
X2

t |Ft−1
)

=
p∑

i=1

[
αiφi(1 − φi)

(
1 − 6φi + 6φ2

i

)
Xt−i + αiφ

2
i (1 − φi)(7 − 11φi)X

2
t−i

]

+
p∑

i=1

[
6αiφ

3
i (1 − φi)X

3
t−i + αiφ

4
i X

4
t−i

]

+ 4λ

p∑
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[
αiφi(1 − φi)(1 − 2φi)Xt−i + 3αiφ

2
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2
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3
i X

3
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]

+ 6
(
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[
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2
i X
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]
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(
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−
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2
i X
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i=1

αiφiXt−i + λ + λ2

)2

.
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