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Fractional backward stochastic variational inequalities
with non-Lipschitz coefficient

Katarzyna Jańczak-Borkowska
University of Technology and Life Sciences

Abstract. We prove the existence and uniqueness of the solution of back-
ward stochastic variational inequalities with respect to fractional Brownian
motion and with non-Lipschitz coefficient. We assume that H > 1/2.

1 Introduction

Nonlinear backward stochastic differential equations (BSDEs for short) were
first introduced by Pardoux and Peng (1990). They assumed that its generator—
function f is a Lipschitz continuous function on space variables. Since it was
found that BSDEs play an important role in many fields such as financial mathe-
matics, stochastic games, optimal control and signal processing, many papers were
devoted to their study (see example Hamadéne and Lepeltier (1995), El Karoui,
Peng and Quenez (1997), Borkowski (2010)). Later, the theory of BSDEs has been
extended on equations with stochastic integral with respect to fractional Brownian
motion, called fractional BSDEs.

Let us now recall that a centered fractional Brownian motion (fBm for short)
with Hurst parameter H ∈ (0,1) is a process BH = {BH

t , t ≥ 0} that satisfies

E
(
BH

s BH
t

) = 1

2

(
t2H + s2H − |t − s|2H )

.

The property of its self-similarity (i.e., BH
at has the same law as aHBH

t for any
a > 0), makes this process a useful tool in models related to network traffic anal-
ysis, mathematical finance, physics, signal processing and many other fields. Note
that for H = 1/2 we obtain a standard Wiener process, but for H �= 1/2, the pro-
cess BH is not a semimartingale. Therefore, we cannot use the classical theory of
stochastic calculus to define the fractional stochastic integral. Nevertheless an ef-
ficient stochastic calculus of BH has been developed. To our best knowledge, Dai
and Heyde and Lin were the first authors who defined the integral of Stratonovich
type with respect to fBm (see Dai and Heyde (1996), Lin (1995)), but it did not sat-
isfy the natural property E

∫ t
o fs dBH

s = 0. Next, a new type of stochastic integral
with respect to fBm was defined to satisfy the mentioned property. The definition
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introduced in Decreusefond and Üstünel (1999) is the divergence operator (Sko-
rokhod integral), defined as the adjoint of the derivative operator in the framework
of the Malliavin calculus and the equivalent for H > 1/2 definition introduced in
Duncan, Hu and Pasik-Duncan (2000) is based on the Wick product as the limit of
Riemann sums.

The existence and uniqueness of nonlinear BSDEs and backward stochastic
variational inequalities (BSVI for short) with respect to fBm, H > 1/2 was shown
in Maticiuc and Nie (2015). They assumed in both cases the Lipschitz condition
on the generator f on space variables. Also the Lipschitz function as a generator
was considered in the generalized BSDEs and the generalized BSVI with respect
to fBm in Jańczak-Borkowska (2013) and Borkowski and Jańczak-Borkowska
(2016), respectively. By generalized, we mean the equation with additional com-
ponent being an integral with respect to some increasing process. The authors of
Wang and Huang (2009) omitted the Lipschitz condition on variable y in a gener-
ator f and assumed that∣∣f (t, x, y, z) − f

(
t, x, y′, z

)∣∣2 ≤ ρ
(
t,

∣∣y − y′∣∣2)
, (1.1)

where ρ is a continuous, concave and nondecreasing function satisfying some
technical conditions (see assumption (H3)) and proved the existence and unique-
ness of the solution of BSDE with respect to Wiener process. In Aïdara and Sow
(2016), the non-Lipschitz assumption (1.1) was considered to show the existence
and uniqueness of the solution to fractional generalized BSDE. In this paper, we
treat a particular type of nonlinear drivers as described in (1.1) and with this as-
sumption we prove the existence and the uniqueness of the solution to fractional
BSVI.

The paper is organized as follows. In Section 2, we recall some definitions and
result about a fractional stochastic integral which will be needed throughout the
paper. In Section 3, we formulate the definition of fractional BSVI and introduce
assumptions on generators. Section 4 contains some a priori estimates and finally
Section 5 is devoted to the proof of the main theorem of the paper based on ap-
proximation of the solution to the fractional BSVI by Picard method.

2 Fractional calculus

Denote φ(x) = H(2H − 1)|x|2H−2, x ∈ R and by |H| denote the Banach space of
measurable functions f : [0, T ] →R such that

‖f ‖2|H| =
∫ T

0

∫ T

0
φ(u − v)

∣∣f (u)
∣∣∣∣f (v)

∣∣dudv < ∞.

For ξ, η ∈ |H| we put

〈ξ, η〉t =
∫ t

0

∫ t

0
φ(u − v)ξ(u)η(v) dudv
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and ‖ξ‖2
t = 〈ξ, ξ〉t . Note that, for any t ∈ [0, T ], 〈ξ, η〉t is a Hilbert scalar product.

Let H be the completion of the space of step function in |H| under this scalar
product. The elements of H may be distributions (see Pipiras and Taqqu (2000)).
Moreover, it is known that L2([0, T ]) ⊂ L

1/H (0, T ) ⊂ |H| ⊂ H (see, e.g., Nualart
(2006)).

Let (ξn)n be a sequence in H such that 〈ξi, ξj 〉T = δij and by PT denote the set
of elementary random variables of the form

F(ω) = f

(∫ T

0
ξ1(t) dBH

t , . . . ,

∫ T

0
ξk(t) dBH

t

)
,

where f is a polynomial function of k variables. The Malliavin derivative operator
DH of an element F ∈PT is defined as follows:

DH
s F =

k∑
i=1

∂f

∂xi

(∫ T

0
ξ1(t) dBH

t , . . . ,

∫ T

0
ξk(t) dBH

t

)
ξi(s), s ∈ [0, T ].

The divergence operator DH = (DH
s )s∈[0,T ] is closable from L2(	,F,P ) to

L2(	,F,P ;H). By D1,2 denote the Banach space being a completion of PT with
the following norm: ‖F‖2

1,2 = E|F |2 + E‖DHF‖2
T . Now we introduce another

derivative

D
H
t F =

∫ T

0
φ(t − s)DH

s F ds.

For a deeper discussion about the stochastic integral, we refer the reader to
Duncan, Hu and Pasik-Duncan (2000), Hu (2005) and Nualart (2006). Here we
will formulate only some theorems needed throughout the paper.

Theorem 2.1. We denote by L
1,2
H the space of all stochastic processes F :

(	,F,P) → H such that

E

(
‖F‖2

T +
∫ T

0

∫ T

0

∣∣DH
s Ft

∣∣2 ds dt

)
< ∞.

If F ∈ L
1,2
H , then the stochastic integral denoted by

∫ T
0 Fs dBH

s exists in L2(	,F).
Moreover, E(

∫ T
0 Fs dBH

s ) = 0 and

E

(∫ T

0
Fs dBH

s

)2
= E

(
‖F‖2

T +
∫ T

0

∫ T

0
D

H
s FtD

H
t Fs ds dt

)
.

The above theorem can be found in Duncan, Hu and Pasik-Duncan (2000),
Theorem 3.7 for an integral

∫ T
0 Fs dBH

s defined by the limit of Riemann sums
involving Wick products, and in Hu (2005), Proposition 6.25 for an integral de-
fined by Definition 6.11 in Hu (2005). Note that these two integrals coincide (see
Hu (2005), Proposition 6.12).
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Theorem 2.2 (Theorem 4.5 in Duncan, Hu and Pasik-Duncan (2000)). Let F ∈
L

1,2
H . Assume that there is α > 1 − H such that E|Fu − Fv|2 ≤ C|u − v|2α , where

|u − v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E
∣∣DH

u (Fu − Fv)
∣∣2 = 0.

Set

Xt = X0 +
∫ t

0
Gs ds +

∫ t

0
Fs dBH

s , t ∈ [0, T ],

where X0 is a constant and E
∫ T

0 |Gs |ds < ∞. Let f be continuously differen-
tiable with respect to t and twice continuously differentiable with respect to x and
that these derivatives are bounded. Moreover, assume that E

∫ T
0 |DH

s XsFs |ds <

∞ and (∂f/∂x(s,Xs)Fs)s∈[0,T ] ∈ L
1,2
H . Then

f (t,Xt) = f (0,X0) +
∫ t

0

∂f

∂s
(s,Xs) ds +

∫ t

0

∂f

∂x
(s,Xs)Gs ds

+
∫ t

0

∂f

∂x
(s,Xs)Fs dBH

s +
∫ t

0

∂2f

∂x2 (s,Xs)D
H
s XsFs ds, t ∈ [0, T ].

Theorem 2.3 (Theorem 10.3 in Hu (2005)). Let T ∈ (0,∞) and let f1(s),
f2(s), g1(s), g2(s) be in D1,2 and E(

∫ T
0 (|fi(s)| + |gi(s)|) ds) < ∞. Assume that

D
H
t f2(s) and D

H
t g2(s) are continuously differentiable with respect to (s, t) ∈

[0, T ] × [0, T ] for almost all ω ∈ 	. Suppose that

E

∫ T

0

∫ T

0

∣∣DH
t f2(s)

∣∣2 ds dt < ∞, E

∫ T

0

∫ T

0

∣∣DH
t g2(s)

∣∣2 ds dt < ∞.

Denote

F(t) =
∫ t

0
f1(s) ds +

∫ t

0
f2(s) dBH

s , t ∈ [0, T ]
and

G(t) =
∫ t

0
g1(s) ds +

∫ t

0
g2(s) dBH

s , t ∈ [0, T ].
Then

F(t)G(t) =
∫ t

0
F(s)g1(s) ds +

∫ t

0
F(s)g2(s) dBH

s

+
∫ t

0
G(s)f1(s) ds +

∫ t

0
G(s)f2(s) dBH

s

+
∫ t

0
D

H
s F (s)g2(s) ds +

∫ t

0
D

H
s G(s)f2(s) ds.
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3 BSVI with respect to fBm

Assume that

(H1) σ : [0, T ] → R is a deterministic continuous differentiable function such that
σ(t) �= 0, for all t ∈ [0, T ] and ηt = η0 + ∫ t

0 σ(s) dBH
s , t ∈ [0, T ], where η0

is a given constant.

Note that, since ‖σ‖2
t = H(2H − 1)

∫ t
0

∫ t
0 |u − v|2H−2σ(u)σ (v) dudv, we have

d

dt

(‖σ‖2
t

) = 2H(2H − 1)

∫ t

0
|t − u|2H−2σ(u)σ (t) du = 2σ(t)σ̂ (t) > 0,

where σ̂ (t) = ∫ t
0 φ(t − u)σ(u)du.

We will consider the following fractional backward stochastic variational in-
equality with non-Lipschitz coefficient:{

dYt + f (t, ηt , Yt ,Zt ) dt − Zt dBH
t ∈ ∂ϕ(Yt ) dt,

YT = ξ.
(3.1)

We suppose that

(H2) ξ = h(ηT ) for some function h with bounded derivative and such that
E|ξ |2 < ∞.

(H3) f : [0, T ] ×R×R×R → R is a continuous function such that there exists
positive constant L > 1 and for all t ∈ [0, T ], x, x′, y, y′, z, z′ ∈ R,∣∣f (t, x, y, z) − f

(
t, x′, y′, z′)∣∣2 ≤ ρ

(
t,

∣∣y − y′∣∣2) + L2(∣∣x − x′∣∣2 + ∣∣z − z′∣∣2)
and ∫ T

0

∣∣f (t,0,0,0)
∣∣2 dt < ∞,

where ρ : [0, T ] ×R
+ → R

+ satisfies:

(a) for fixed t ∈ [0, T ], ρ(t, ·) is a continuous, concave and nondecreas-
ing function such that ρ(t,0) = 0

(b) the ordinary differential equation

v′(t) = −ρ
(
t, v(t)

)
, v(T ) = 0 (3.2)

has a unique solution v(t) = 0, t ∈ [0, T ]
(c) there exists two continuous functions a, b : [0, T ] → R

+ such that

ρ(t, v) ≤ a(t) + b(t) · v,

∫ T

0

(
a(t) + b(t)

)
dt < ∞.

(H4) ϕ : R → (−∞,∞] is a proper, convex and lower semi-continuous function
and satisfies ϕ(y) ≥ ϕ(0) = 0.
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We will denote

∂ϕ(y) = {
ŷ ∈ R; ŷ · (v − y) + ϕ(y) ≤ ϕ(v),∀v ∈ R

}
,

Domϕ = {
y ∈ R;ϕ(y) < ∞}

, Dom(∂ϕ) = {
y ∈R; ∂ϕ(y) �= ∅

}
,

〈y, ŷ〉 ∈ ∂ϕ ⇔ y ∈ Dom(∂ϕ), ŷ ∈ ∂ϕ(y).

Remark 3.1. ∂ϕ is maximal in this sense that

(ŷ − û)(y − u) ≥ 0, (y, ŷ), (u, û) ∈ ∂ϕ.

Let us mention here, that Mao (1995) considered a generator f satisfying the
following non-Lipschitz assumption: there exists L > 0 and for all t ∈ [0, T ],
y, y′ ∈ R

d , z, z′ ∈R
d×m,∣∣f (t, y, z) − f

(
t, y′, z′)∣∣2 ≤ ρ

(∣∣y − y′∣∣2) + L
∣∣z − z′∣∣2,

where ρ : R+ → R
+ is a concave and nondecreasing function such that ρ(0) = 0,

ρ(u) > 0, u > 0 and
∫

0+ du
ρ(u)

= ∞. With the help of Bihari’s inequality (see Bihari
(1956)) he proved the existence and uniqueness of the solution to BSDE (with
respect to a Wiener process) under this assumption. Moreover, he introduced some
examples of non-Lipschitz functions satisfying the above condition and noted that
his condition includes also Lipschitz continuity. Wang and Wang (2003) showed
the existence and uniqueness of the solution to BSDE under the assumption (H3)
with additional condition on ρ—continuity in both variables t and u. With the
help of Bihari’s inequality their also proved that their result includes that of Mao.
Obviously our assumption, (H3) includes both results and we have the following.

Remark 3.2.

1. If f (t, x, y, z) = y · t−1/4 +L(x + z), then assumption (H3) is satisfied with
ρ(t, u) = 2u · t−1/2.

2. If f (t, x, y, z) = t−1/2κ(|y|) + L(x + z), then assumption (H3) is satisfied
with ρ(t, u) = 2κ(u)

t
where

κ(u) =
{−u lnu, 0 ≤ u ≤ δ,

−δ ln δ + κ ′(δ−)(u − δ), u > δ,

for some δ ∈ (0,1) small enough.

Now consider the set

V[0,T ] =
{
Y = ψ(·, η) : ψ ∈ C

1,2
pol

([0, T ] ×R
)

and
∂ψ

∂t
is bounded

}
.

By ṼH[0,T ] denote the completion of the set of processes from V[0,T ] with the fol-
lowing norm

‖Y‖2
H = E

∫ T

0
t2H−1|Yt |2 dt = E

∫ T

0
t2H−1∣∣ψ(t, ηt )

∣∣2 dt.
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Definition 3.3. A solution to a fractional backward stochastic variational in-
equality (3.1) associated with data (ξ, f ) is a triple of processes (Y,Z,U) =
(Yt ,Zt ,Ut )t∈[0,T ] satisfying

Yt = ξ +
∫ T

t
f (s, ηs, Ys,Zs) ds −

∫ T

t
Zs dBH

s −
∫ T

t
Us ds, t ∈ [0, T ] (3.3)

and such that

(Yt ,Ut ) ∈ ∂ϕ, t ∈ [0, T ] and Y ∈ Ṽ1/2
[0,T ], Z,U ∈ ṼH[0,T ].

4 A priori estimates

Proposition 4.1. Let (Yt ,Zt ,Ut ) be a solution of (3.3). Then

(i) D
H
t Yt = σ̂ (t)

σ (t)
Zt , 0 ≤ t ≤ T .

(ii) There exists a constant M > 0 such that

t2H−1

M
≤ σ̂ (t)

σ (t)
≤ Mt2H−1, 0 ≤ t ≤ T .

Proof. (i) Since Y ∈ ṼH[0,T ], Y = ψ(·, η) where ψ ∈ C
1,2
pol ([0, T ] × R). Applying

Itô’s formula and putting ψ(T ,ηT ) = ξ we have

ψ(t, ηt ) − ξ = −
∫ T

t
ψ ′

s(s, ηs) ds −
∫ T

t
ψ ′

x(s, ηs)σ (s) dBH
s

− 1

2

∫ T

t
ψ ′′

xx(s, ηs)σ (s)σ̂ (s) ds

= −
∫ T

t

(
ψ ′

s(s, ηs) + 1

2
ψ ′′

xx(s, ηs)σ (s)σ̂ (s)

)
ds

−
∫ T

t
ψ ′

x(s, ηs)σ (s) dBH
s .

Comparing the above equation with (3.3), we deduce that Zt = ψ ′
x(t, ηt )σ (t) and

therefore

D
H
t Yt =

∫ T

0
φ(t − v)DH

v ψ(t, ηt ) dv = ψ ′
x(t, ηt )

∫ T

0
φ(t − v)σ (v) dv

= σ̂ (t)ψ ′
x(t, ηt ) = σ̂ (t)

σ (t)
Zt .

(ii) The proof is analogous to the proof of Proposition 25 in Maticiuc and Nie
(2015). �
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Proposition 4.2. Let (Yt ,Zt ,Ut ) be a solution of (3.3). Then there exists a con-
stant C depending on L, H , T , M such that

E|Yt |2 + E

∫ T

t
s2H−1|Zs |2 ds

≤ CE

(
|ξ |2 +

∫ T

t

(|ηs |2 + ∣∣f (s,0,0,0)
∣∣2)

ds +
∫ T

t
ρ

(
s, |Ys |2)

ds

)
.

Proof. By the Itô formula,

|Yt |2 = |ξ |2 + 2
∫ T

t
Ysf (s, ηs, Ys,Zs) ds − 2

∫ T

t
YsZs dBH

s

− 2
∫ T

t
YsUs ds − 2

∫ T

t
D

H
s YsZs ds.

Since (Y,U) ∈ ∂ϕ, YtUt ≥ 0 and by Proposition 4.1(i), we can write

|Yt |2 + 2
∫ T

t

σ̂ (s)

σ (s)
|Zs |2 ds

≤ |ξ |2 + 2
∫ T

t
Ysf (s, ηs, Ys,Zs) ds − 2

∫ T

t
YsZs dBH

s .

(4.1)

By assumption (H3) and using the inequality 2ab ≤ a2/ε + εb2 we have

2yf (t, η, y, z) ≤ 2|y|
√

ρ
(
t, |y|2) + L2|η|2 + L2|z|2

+ 2|y|∣∣f (t,0,0,0)
∣∣

≤ 2|y|
√

ρ
(
t, |y|2) + 2L|y||η| + 2L|y||z|

+ 2|y|∣∣f (t,0,0,0)
∣∣

≤ L2|y|2 + 1

L2 ρ
(
t, |y|2) + L2|y|2 + |η|2

+ L2M

s2H−1 |y|2 + s2H−1

M
|z|2 + |y|2 + ∣∣f (t,0,0,0)

∣∣2.
Therefore, using also Proposition 4.1(ii), from (4.1), we have

E|Yt |2 + 1

M
E

∫ T

t
s2H−1|Zs |2 ds

≤ E|ξ |2 + E

∫ T

t

(
2L2 + L2M

s2H−1 + 1
)
|Ys |2 ds

+ E

∫ T

t

(
1

L2 ρ
(
s, |Ys |2) + |ηs |2 + ∣∣f (s,0,0,0)

∣∣2)
ds.
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Denote

μt = L2E

(
|ξ |2 +

∫ T

t

(|ηs |2 + ∣∣f (s,0,0,0)
∣∣2)

ds

)
,

then by the above

E|Yt |2 + 1

M
E

∫ T

t
s2H−1|Zs |2 ds ≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)

+ E

∫ T

t

(
2L2 + L2M

s2H−1 + 1
)
|Ys |2 ds.

(4.2)

Now by Gronwall’s lemma, we get

E|Yt |2 ≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)
× exp

(∫ T

t

(
2L2 + L2M

s2H−1 + 1
)

ds

)

= 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)

× exp
((

2L2 + 1
)
(T − t) + L2M

2 − 2H

(
T 2−2H − t2−2H ))

.

Choose α such that (T 2−2H − t2−2H ) ≤ α2−2H (T − t) and let β satisfy:

(
2L2 + 1

)
(T − t) + L2M

2 − 2H
α2−2H (T − t) = β(T − t).

Then by the above, we have

E|Yt |2 ≤ 1

L2 eβ(T −t)

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)
. (4.3)

Moreover putting (4.3) to (4.2), we get

1

M
E

∫ T

t
s2H−1|Zs |2 ds (4.4)

≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)

+ E

∫ T

t

(
2L2 + L2M

s2H−1 + 1
)

1

L2 eβ(T −s)

(
μs + E

∫ T

s
ρ

(
u, |Yu|2)

du

)
ds

≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)
(4.5)

+ 1

L2 eβ(T −t)

(
μt + E

∫ T

t
ρ

(
u, |Yu|2)

du

)∫ T

t

(
2L2 + L2M

s2H−1 + 1
)

ds

≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)
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+ 1

L2 eβ(T −t)β(T − t)

(
μt + E

∫ T

t
ρ

(
u, |Yu|2)

du

)

= 1

L2

(
1 + eβ(T −t)β(T − t)

)(
μt + E

∫ T

t
ρ

(
s, |Ys |2)

ds

)
.

Now (4.5) together with (4.3) completes the proof. �

5 Picard method

We will consider Picard method for (3.3). Without loss of generality assume that
Y 0 = 0 and define a sequence (Yp,Zp,Up), p ∈ N as

Y
p
t = ξ +

∫ T

t
f

(
s, ηs, Y

p−1
s ,Zp

s

)
ds

−
∫ T

t
Zp

s dBH
s −

∫ T

t
Up

s ds, t ∈ [0, T ].
(5.1)

It is known that there exists a unique solution for (5.1). Indeed, since f is Lipschitz
with respect to η and zp and constant with respect to yp it follows by Theorem 3.3
in Borkowski and Jańczak-Borkowska (2016) with � = 0. Moreover, (Yp,Up) ∈
∂ϕ.

Proposition 5.1. There exists � > 0 and 0 ≤ T1 < T not depending on ξ such that
for p ≥ 1,

E
∣∣Yp

t

∣∣2 ≤ �, T1 ≤ t ≤ T .

Proof. Arguing similarly as in the proof of Proposition 4.2 we have

E
∣∣Yp

t

∣∣2 + 1

M
E

∫ T

t
s2H−1∣∣Zp

s

∣∣2 ds ≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s,

∣∣Yp−1
s

∣∣2)
ds

)

+ E

∫ T

t

(
2L2 + L2M

s2H−1 + 1
)∣∣Yp

s

∣∣2 ds,

where μt is as in the proof of Proposition 4.2. By Gronwall’s lemma, we get

E
∣∣Yp

t

∣∣2 ≤ 1

L2

(
μt + E

∫ T

t
ρ

(
s,

∣∣Yp−1
s

∣∣2)
ds

)

× exp
((

2L2 + 1
)
(T − t) + L2M

2 − 2H

(
T 2−2H − t2−2H ))

(5.2)

≤ 1

L2 exp
(
β(T − t)

)(
μt + E

∫ T

t
ρ

(
s,

∣∣Yp−1
s

∣∣2)
ds

)
,
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where β is the same as in the proof of Proposition 4.2. Put T1 = max{T − lnL2

β
,0}.

Then for t ∈ [T1, T ] we have 1
L2 exp(β(T − t)) ≤ 1. Indeed, if βT < lnL2 then

T1 = 0 and

1

L2 exp
(
β(T − t)

) ≤ 1

L2 exp(βT ) <
1

L2 exp
(
lnL2) = 1

and if βT > lnL2 then T1 = T − β−1 lnL2 and for t ∈ [T1, T ],
1

L2 exp
(
β(T − t)

) ≤ 1

L2 exp
(
β(T − T1)

) = 1

L2 exp
(
lnL2) = 1.

Therefore by (5.2) and from the concavity of ρ for t ∈ [T1, T ], we can write

E
∣∣Yp

t

∣∣2 ≤ μt +
∫ T

t
ρ

(
s,E

∣∣Yp−1
s

∣∣2)
ds, t ∈ [T1, T ]. (5.3)

Let

1

2
� = μ0 +

∫ T

0
a(s) ds

= L2E

(
|ξ |2 +

∫ T

0

(|ηs |2 + ∣∣f (s,0,0,0)
∣∣)ds

)
+

∫ T

0
a(s) ds < ∞.

Choose T̂1 such that

μ0 +
∫ T

t
ρ(s,�)ds ≤ �, t ∈ [T̂1, T ].

One can do that since by assumption (H3)(c),

μ0 +
∫ T

t
ρ(s,�)ds ≤ μ0 +

∫ T

t

(
a(s) + b(s)�

)
ds

≤ 1

2
� + �

∫ T

t
b(s) ds < ∞.

And it is enough to take T̂1 satisfying
∫ T

T̂1
b(s) ds = 1/2.

Now let T1 = max{T1, T̂1}. Then for t ∈ [T1, T ] the equation (5.3) is satisfied
and in particular,

E
∣∣Y 1

t

∣∣2 ≤ μt +
∫ T

t
ρ

(
s,E

∣∣Y 0
s

∣∣2)
ds ≤ μ0 +

∫ T

t
ρ(s,�)ds ≤ �,

E
∣∣Y 2

t

∣∣2 ≤ μt +
∫ T

t
ρ

(
s,E

∣∣Y 1
s

∣∣2)
ds ≤ μ0 +

∫ T

t
ρ(s,�)ds ≤ �,

E
∣∣Y 3

t

∣∣2 ≤ μt +
∫ T

t
ρ

(
s,E

∣∣Y 2
s

∣∣2)
ds ≤ μ0 +

∫ T

t
ρ(s,�)ds ≤ �.
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Therefore by induction,

E
∣∣Yp

t

∣∣2 ≤ μt +
∫ T

t
ρ

(
s,E

∣∣Yp−1
s

∣∣2)
ds ≤ μ0 +

∫ T

t
ρ(s,�)ds ≤ �, t ∈ [T1, T ]

which finishes the proof. �

Proposition 5.2. Let (Yp,Zp,Up) satisfies (5.1). Then

(i) E
∣∣Yp

t − Y
q
t

∣∣2 + E

∫ T

t
s2H−1∣∣Zp

s − Zq
s

∣∣2 ds

≤ C

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp−1
s − Yq−1

s

∣∣2)
ds,

(ii) E

∫ T

t
s2H−1∣∣Up

s

∣∣2 ds

≤ CE

(
T 2H−1ϕ(ξ)

+
∫ T

t
s2H−1(

ρ
(
s,

∣∣Yp−1
s

∣∣2) + ∣∣Zp
s

∣∣2 + |ηs |2 + ∣∣f (s,0,0,0)
∣∣2)

ds

)
.

Proof. (i) Using theorems 2.2 and 2.3, we have

∣∣Yp
t − Y

q
t

∣∣2 = 2
∫ T

t

(
Yp

s − Yq
s

)(
f

(
s, ηs, Y

p−1
s ,Zp

s

) − f
(
s, ηs, Y

q−1
s ,Zq

s

))
ds

− 2
∫ T

t

(
Yp

s − Yq
s

)(
Zp

s − Zq
s

)
dBH

s

− 2
∫ T

t

(
Yp

s − Yq
s

)(
Up

s − Uq
s

)
ds

− 2
∫ T

t
D

H
s

(
Yp

s − Yq
s

)(
Zp

s − Zq
s

)
ds.

(5.4)

Analogously as in the proof of Proposition 4.1 one can show

D
H
t

(
Y

p
t − Y

q
t

) = σ̂ (t)

σ (t)

(
Z

p
t − Z

q
t

)
, 0 ≤ t ≤ T .

Moreover,

2
(
yp − yq)(

f
(
s, η, yp−1, zp) − f

(
s, η, yq−1, zq))

≤ 2
∣∣yp − yq

∣∣(√ρ
(
s,

∣∣yp−1 − yq−1
∣∣2) + L

∣∣zp − zq
∣∣)

≤ L2∣∣yp − yq
∣∣2 + 1

L2 ρ
(
s,

∣∣yp−1 − yq−1∣∣2)

+ L2M

s2H−1

∣∣yp − yq
∣∣2 + s2H−1

M

∣∣zp − zq
∣∣2.
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Therefore integrating (5.4)

E
∣∣Yp

t − Y
q
t

∣∣2 + 1

M
E

∫ T

t
s2H−1∣∣Zp

s − Zq
s

∣∣2 ds

+ 2E

∫ T

t
s2H−1(

Yp
s − Yq

s

)(
Up

s − Uq
s

)
ds

≤ 1

L2 E

∫ T

t
ρ

(
s,

∣∣Yp−1
s − Yq−1

s

∣∣2)
ds

+ E

∫ T

t

(
L2 + L2M

s2H−1

)∣∣Yp
s − Yq

s

∣∣2 ds.

(5.5)

Note that since (Yp,Up) ∈ ∂ϕ and (Y q,Uq) ∈ ∂ϕ, we have E
∫ T
t (Y

p
s −Y

q
s )(U

p
s −

U
q
s ) ds ≥ 0 and using Gronwall’s lemma

E
∣∣Yp

t − Y
q
t

∣∣2 ≤ 1

L2 exp
{
L2(T − t) + L2M

2 − 2H

(
T 2−2H − t2−2H )}

× E

∫ T

t
ρ

(
s,

∣∣Yp−1
s − Yq−1

s

∣∣2)
ds (5.6)

≤ 1

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp−1
s − Yq−1

s

∣∣2)
ds,

where β is as before. Putting (5.6) into (5.5) we get the result.
(ii) Since (Y

p
t ,U

p
t ) ∈ ∂ϕ for any t ∈ [0, T ] by definition of ∂ϕ(y), we have

Up
r

(
Yp

s − Yp
r

) + ϕ
(
Yp

r

) ≤ ϕ
(
Yp

s

)
.

Assume that T ≥ s > r ≥ T1 and multiply the above inequality by s2H−1.

s2H−1ϕ
(
Yp

s

) ≥ s2H−1ϕ
(
Yp

r

) + s2H−1Up
r

(
Yp

s − Yp
r

)
≥ r2H−1ϕ

(
Yp

r

) + s2H−1Up
r

(
Yp

s − Yp
r

)
.

Take s = ti+1 ∨ T , r = ti ∨ T , where T1 = t0 < t1 < t2 < · · · < tn = T and ti+1 −
ti = 1/n. Summing up over i and passing to the limit as n → ∞, we deduce

T 2H−1ϕ
(
Y

p
T

) ≥ t2H−1ϕ
(
Y

p
t

) +
∫ T

t
s2H−1Up

s dYp
s , t ∈ [T1, T ]

and

t2H−1ϕ
(
Y

p
t

) ≤ T 2H−1ϕ
(
Y

p
T

) −
∫ T

t
s2H−1Up

s dYp
s

= T 2H−1ϕ(ξ) +
∫ T

t
s2H−1Up

s f
(
s, ηs, Y

p−1
s ,Zp

s

)
ds (5.7)

−
∫ T

t
s2H−1Up

s Zp
s dBH

s −
∫ T

t
s2H−1Up

s Up
s ds.
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Since

u · f (s, η, y, z) ≤ |u|(√ρ
(
s, |y|2) + L2|z|2 + L2|η|2 + ∣∣f (s,0,0,0)

∣∣)
≤ 1

2
|u|2 + ρ

(
s, |y|2) + L2|z|2 + L2|η|2 + ∣∣f (s,0,0,0)

∣∣2
from (5.7) we get

Et2H−1ϕ
(
Y

p
t

) + E

∫ T

t
s2H−1∣∣Up

s

∣∣2 ds

≤ ET 2H−1ϕ(ξ) + 1

2
E

∫ T

t
s2H−1∣∣Up

s

∣∣2 ds

+ E

∫ T

t
s2H−1(

ρ
(
s,

∣∣Yp−1
s

∣∣2) + L2∣∣Zp
s

∣∣2 + L2|ηs |2 + ∣∣f (s,0,0,0)
∣∣2)

ds

and therefore

E

∫ T

t
s2H−1∣∣Up

s

∣∣2 ds ≤ 2ET 2H−1ϕ(ξ) + 2E

∫ T

t
s2H−1(

ρ
(
s,

∣∣Yp−1
s

∣∣2)
+ L2∣∣Zp

s

∣∣2 + L2|ηs |2 + ∣∣f (s,0,0,0)
∣∣2)

ds,

which implies the result. �

Theorem 5.3. There exists a unique solution of (3.3).

Proof. We repeat here the arguments from the proof of Theorem 3.9 in Aïdara
and Sow (2016) to show that (Yp,Zp) is a Cauchy sequence in the Banach space
Ṽ1/2

[T1,T ] × ṼH[T1,T ]. Indeed, define the sequence {τn(t)}n∈N as follows:

τ0(t) =
∫ T

t
ρ(s,�)ds, τn+1(t) =

∫ T

t
ρ

(
s, τn(s)

)
ds.

For t ∈ [T1, T ] we have

τ0(t) =
∫ T

t
ρ(s,�)ds ≤ �,

τ1(t) =
∫ T

t
ρ

(
s, τ0(s)

)
ds ≤

∫ T

t
ρ(s,�)ds = τ0(t),

τ2(t) =
∫ T

t
ρ

(
s, τ1(s)

)
ds ≤

∫ T

t
ρ

(
s, τ0(s)

)
ds = τ1(t)

and by induction, for all n ∈ N, τn(t) satisfies

0 ≤ τn+1(t) ≤ τn(t) ≤ · · · ≤ τ1(t) ≤ τ0(t) ≤ �.
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Therefore the sequence τn(t) is uniformly bounded. Moreover, for all n ∈ N and
t1, t2 ∈ [T1, T ], t1 < t2,

∣∣τn(t1) − τn(t2)
∣∣ =

∣∣∣∣
∫ t2

t1

ρ
(
s, τn−1(s)

)
ds

∣∣∣∣ ≤
∣∣∣∣
∫ t2

t1

ρ(s,�)ds

∣∣∣∣ < ∞

and we deduce that supn |τn(t1) − τn(t2)| → 0 as t1 − t2 → 0. That means that
the sequence τn(t) is equicontinuous family of functions and by the Arzelà–Ascoli
theorem we can choose a subsequence of τn(t) which is convergent. Its limit denote
by τ(t) and it satisfies

τ(t) =
∫ T

t
ρ

(
s, τ (s)

)
ds.

By assumption (H3) (3.2), we have τ(t) = 0 for t ∈ [0, T ].
Now, by (5.6) in the proof of Proposition 5.2 and by Proposition 5.1 for t ∈

[T1, T ],

E
∣∣Yp+1

t − Y 1
t

∣∣2 ≤ 1

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp
s − Y 0

s

∣∣2)
ds

≤
∫ T

t
ρ(s,�)ds = τ0(t),

E
∣∣Yp+2

t − Y 2
t

∣∣2 ≤ 1

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp+1
s − Y 1

s

∣∣2)
ds

≤
∫ T

t
ρ

(
s, τ0(s)

)
ds = τ1(t),

E
∣∣Yp+3

t − Y 3
t

∣∣2 ≤ 1

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp+2
s − Y 2

s

∣∣2)
ds

≤
∫ T

t
ρ

(
s, τ1(s)

)
ds = τ2(t)

and by induction,

E
∣∣Yp+m

t − Ym
t

∣∣2 ≤ 1

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Yp+m−1
s − Ym−1

s

∣∣2)
ds

≤
∫ T

t
ρ

(
s, τm−2(s)

)
ds = τm−1(t).

In particular,

sup
T1≤t≤T

E
∣∣Yp+m

t − Ym
t

∣∣2 ≤ sup
T1≤t≤T

τm−1(t) = τm−1(T1) → 0 as m → ∞,

which together with Proposition 5.2(i) implies that (Y p,Zp) is a Cauchy sequence.
and therefore there exists a pair of processes (Y,Z) ∈ Ṽ1/2

[T1,T ]× ṼH[T1,T ] being a limit



Fractional BSVI with non Lipschitz 495

of (Yp,Zp), that is

lim
p→∞E

(∫ T

T1

∣∣Yp
t − Yt

∣∣2 dt +
∫ T

T1

t2H−1∣∣Zp
t − Zt

∣∣2 dt

)
= 0.

Now, note that from Proposition 5.2(ii) it follows that there exist a subsequence
pn → ∞ and process U such that Upn → U weakly in ṼH[0,T ] and from the Fatou
lemma

E

∫ T

0
s2H−1|Us |2 ds ≤ C.

Since for any t ∈ [T1, T ],
lim

p→∞

(
−Y

p
t + ξ +

∫ T

t
f

(
s, ηs, Y

p−1
s ,Zp

s

)
ds −

∫ T

t
Up

s ds

)

= −Yt + ξ +
∫ T

t
f (s, ηs, Ys,Zs) ds −

∫ T

t
Us ds

= �(t) in L
2(	,F,P )

and Zp1[T1,T ] converges to Z1[T1,T ] in L
2(	,F,P ,H), we have

lim
p→∞

∫ T

T1

Zp
s dBH

s =
∫ T

T1

Zs dBH
s in L

2(	,F,P ).

Moreover since U
p
t ∈ ∂ϕ(Y

p
t ), for all u ∈ ṼH[0,T ] we have

U
p
t · (

ut − Y
p
t

) + ϕ
(
Y

p
t

) ≤ ϕ(ut ).

Therefore, we can deduce that

Ut · (ut − Yt ) + ϕ(Yt ) ≤ ϕ(ut ),

which means that (Yt ,Ut ) ∈ ∂ϕ, t ∈ [T1, T ].
Uniqueness. Assume that (Y,Z,U) and (Y ′,Z′,U ′) are two solutions of (3.3).

Then computing similarly as in the proof of Propositions 4.2 and 5.2 for t ∈ [T1, T ]
we have

E
∣∣Yt − Y ′

t

∣∣2 ≤
∫ T

t
ρ

(
s,E

∣∣Ys − Y ′
s

∣∣2)
ds.

From the comparison theorem of ODE, we know that E|Yt − Y ′
t |2 ≤ r(t), where

r(t) is the maximum left shift solution of

v′(t) = −ρ(t, v), v(T ) = 0.

From (3.2), it follows that r(t) = 0 for t ∈ [T1, T ]. Hence, E|Yt − Y ′
t |2 = 0. More-

over, since

E

∫ T

t
s2H−1∣∣Zs − Z′

s

∣∣2 ds ≤ C

L2 eβ(T −t)
∫ T

t
ρ

(
s,E

∣∣Ys − Y ′
s

∣∣2)
ds,

then also Zt = Z′
t and in a consequence also Ut = U ′

t in t ∈ [T1, T ].



496 K. Jańczak-Borkowska

Note that T1 does not depend on ξ . Hence, one can deduce by iteration the exis-
tence and uniqueness on [T2, T1] replacing T by T1 and T1 by T2 and therefore the
existence and uniqueness on the whole interval [0, T ]. That completes the proof. �
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