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A temporal perspective on the rate of convergence in
first-passage percolation under a moment condition

Daniel Ahlberg
Stockholm University

Abstract. We study the rate of convergence in the celebrated Shape Theorem
in first-passage percolation, obtaining the precise asymptotic rate of decay
for the probability of linear order deviations under a moment condition. Our
results are presented from a temporal perspective and complement previous
work by the same author, in which the rate of convergence was studied from
the standard spatial perspective.

1 Introduction

Consider first-passage percolation on the Z
d nearest-neighbour lattice for d ≥ 2.

Large deviations were first studied in the context of first-passage percolation in
the 1980s, in a pioneering work of Grimmett and Kesten (1984). In this work, to-
gether with the subsequent work of Kesten (1986), the authors investigate the rate
of convergence of travel times to the so-called time constant, and provide neces-
sary and sufficient conditions for exponential decay for the probability of linear
order deviations. For the exponential decay to hold, one requires finite moment of
exponential order on the passage times.

It was only recently, in Ahlberg (2015), that large deviations in the regime of
polynomial decay of the probability tails were studied. This regime is highly in-
teresting since it is in this regime that strong laws such as the Subadditive Ergodic
theorem due to Kingman (1968), and the Shape theorem due to Richardson (1973)
(whose precise conditions were determined by Cox and Durrett (1981)) cease to
hold. In this paper, we complement earlier results by the same author (Ahlberg
(2015)) by offering a temporal perspective on the rate of convergence in the Shape
theorem. These results are sharp in the regime of polynomial decay on the proba-
bility tails.

We will assume throughout that the edges of the Zd lattice are assigned indepen-
dent non-negative random weights from some probability distribution satisfying
F(0) < pc(d), where pc(d) denotes the critical probability for bond percolation
on Z

d . The resulting weighted graph induces a random (pseudo-)metric structure
to Z

d , where the distance T (x, y) between two sites x, y ∈ Z
d is given by the min-

imal weight accumulated along paths connecting the two points. The existence of
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a time constant follows from a simple application of the Subadditive Ergodic the-
orem (Kingman (1968)). In fact, without further assumptions on the edge weights,
the limit

μ(z) := lim
n→∞

T (0, nz)

n
, (1)

exists in probability, and is finite and nonzero for all z �= 0, see Kesten (1986).
Richardson (1973) realized that the above convergence holds in all directions

simultaneously, in that a large ball Bt := {z ∈ Z
d : T (0, z) ≤ t} in the metric T

is asymptotically comparable to the deterministic ball B
μ
t := {z ∈ Z

d : μ(z) ≤ t}.
Cox and Durrett (1981) provided the precise condition for Richardson’s result to
hold. Let Y denote the minimum of the 2d weights assigned to the edges adjacent
to the origin. The result of Cox and Durrett says that if E[Yd ] < ∞, then, almost
surely, for every ε ∈ (0,1)

Bμ
(1−ε)t ⊂ Bt ⊂ Bμ

(1+ε)t (2)

for large enough t . The given moment condition is also necessary for this conclu-
sion.

In this paper, we investigate in further detail the probability that (2) fails, and
that Bt deviates significantly from its asymptotic rate of growth. Let

Tε := {
t ≥ 0 : either inclusion in (2) fails

}
.

We will study the behaviour of P(t ∈ Tε) for large t and fixed ε ∈ (0,1).
The result of Cox and Durrett implies that Tε is almost surely bounded if and

only if E[Yd ] < ∞. As it turns out, not only is Tε unbounded unless E[Yd ] < ∞,
but P(t ∈ Tε) may in fact be bounded away from zero even in the case when
E[Yα] < ∞ for all α < d . (See the remark at the end of the paper.) When
E[Y d ] < ∞, however, we show that in the regime of polynomial tails of the weight
distribution, the decay of P(t ∈ Tε) is governed by the tails of Y .

Theorem. Assume that d ≥ 2, F(0) < pc(d) and E[Yd ] < ∞. Then, for every
ε > 0 and q ≥ 1, there is c = c(ε, d, q) such that for all t ≥ 1

ctdP(Y > t) ≤ P(t ∈ Tε) ≤ 1

c
tdP(Y > ct) + 1

c
t−q.

Using Markov’s inequality we find that for each α > 0, the condition E[Yd+α] <

∞ implies that P(t ∈ Tε) = O(t−α). Another consequence of the theorem is the
following characterization.

Corollary. Assume that F(0) < pc(d). For every α ≥ 0, ε > 0 and d ≥ 2,

E
[
Yd+α]

< ∞ ⇔
∫ ∞

0
tα−1

P(t ∈ Tε) dt < ∞.
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Together with Fubini’s theorem, we see that

E |Tε| = E

∫ ∞
0

1{t∈Tε} dt =
∫ ∞

0
P(t ∈ Tε) dt,

where | · | denotes Lebesgue measure. Hence, the conclusion of the corollary was
for α = 1 known already in Ahlberg (2015, Theorem 2), but the statement for gen-
eral α > 0 was previously unknown. The proofs we present below will be heavily
based on ideas and results from Ahlberg (2015).

2 Proof

We first recall some results that will be used in the analysis: For every ε > 0 and
d ≥ 2 there exist constants M = M(ε,d) and γ = γ (ε, d) such that

P
(
T (0, z) − μ(z) < −εx

) ≤ Me−γ x for z ∈ Z
d and x ≥ |z|. (3)

If, in addition, E[Yα] < ∞ for some α > 0 and q ≥ 1, then we may choose the
constant M = M(α, ε, d, q) so that for all z ∈ Z

d and x ≥ |z| we have

P
(
T (0, z) − μ(z) > εx

) ≤ MP(Y > x/M) + Mx−q. (4)

The former statement was first proved by Grimmett and Kesten, Kesten (1984,
1986) for coordinate directions, and later extended by Ahlberg (2015) to the
present form. The latter statement is original from Ahlberg (2015).

Fix ε > 0 and q ≥ 1. We want to estimate the decay of P(t ∈ Tε). We let

A(z) := {
t ≥ 0 : T (0, z) > t and μ(z) ≤ (1 − ε)t

}
,

B(z) := {
t ≥ 0 : T (0, z) ≤ t and μ(z) > (1 + ε)t

}
.

Note that t ∈ Tε if and only if t ∈ A(z)∪B(z) for some z ∈ Z
d . Moreover, t ∈ A(z)

indicates that the time to reach z is unusually long, whereas t ∈ B(z) means that
the time to reach z is exceptionally short.

We proceed with the proof of the theorem. We begin with the lower bound,
which is elementary and does not require the bounds in (3) and (4).

2.1 The lower bound

Let D denote the set of all z ∈ Z
d such that μ(z) ≤ (1 − ε)t and whose �1-distance

from the origin is even. Let Y(z) denote the minimum weight among the 2d edges
adjacent to z, and note that the Y(z)’s are independent for z ∈ D, as points in D

are at �1-distance at least 2. Since A(z) ⊂ Tε and T (0, z) ≥ Y(z) for every z ∈ Z
d ,

we obtain

P(t ∈ Tε) ≥ P
(
T (0, z) > t for some z ∈ D

)
≥ P

(
Y(z) > t for some z ∈ D

)
.

(5)
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An application of Cachy-Schwarz’s inequality shows that any non-negative
random variable X satisfies P(X > 0) ≥ E[X]2/E[X2], and if X is binomially
distributed with parameters n and p, then a further lower bound is given by
np/(1 + np). Applying this to (5) leaves us with

P(t ∈ Tε) ≥ |D|P(Y > t)

1 + |D|P(Y > t)
. (6)

By assumption E[Yd ] < ∞, which implies that tdP(Y > t) ≤ E[Yd ] via Markov’s
inequality. Since the set D grows as td , we obtain the required lower bound on
P(t ∈ Tε).

2.2 The upper bound

We now continue with the upper bound. The union bound leaves us with

P(t ∈ Tε) ≤ ∑
μ(z)≤(1−ε)t

P
(
T (0, z) > t

) + ∑
μ(z)>(1+ε)t

P
(
T (0, z) ≤ t

)
,

and we will treat the two sums separately.
Let us first note that it is immediate from subadditivity and (1) that μ(kz) =

kμ(z) and μ(z + y) ≤ μ(z) + μ(y) for all k ≥ 1 and y, z ∈ Z
d . In particular, μ is

comparable to Euclidean distance. We also notice that the condition x ≥ |z| in (3)
and (4) is not essential. The bounds can be extended to x ≥ δ|z| by adjusting the
constants γ and M . Based on these observations, we use (3) to find M1 = M1(ε, d)

and γ1 = γ1(ε, d) so that

∑
μ(z)>(1+ε)t

P
(
T (0, z) ≤ t

) ≤ ∑
μ(z)≥(1+ε)t

P

(
T (0, z) − μ(z) ≤ − ε

1 + ε
μ(z)

)

≤ ∑
μ(z)≥t

M1e
−γ1μ(z),

which is at most M2e
−γ2t for t ≥ 1, and some constants M2 and γ2. Using (4) we

may find M3 = M3(ε, d, q) such that
∑

μ(z)≤(1−ε)t

P
(
T (0, z) > t

) ≤ ∑
μ(z)≤(1−ε)t

P
(
T (0, z) − μ(z) > εt

)

≤ ∑
μ(z)≤t

(
M3P(Y ≥ t/M3) + M3

td+q

)
.

Since the cardinality of the set Bμ
t grows at the order of td we obtain

P(t ∈ Tε) ≤ M4t
d
P(Y ≥ t/M3) + M4t

−q + M2e
−γ2t ,

for some M4 and all t ≥ 1, which gives the required upper bound.
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Remark. We note that the condition E[Yd ] < ∞ cannot be relaxed in general.
Consider for instance the case when P(Y > t) = (d − 1)t−d for t ≥ 1. Then E[Yα]
is finite for all α < d and infinite for α = d , but the bound in (6) shows that the
probability P(t ∈ Tε) is bounded away from zero.
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