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BOOTSTRAPPING AND SAMPLE SPLITTING FOR
HIGH-DIMENSIONAL, ASSUMPTION-LEAN INFERENCE

BY ALESSANDRO RINALDO, LARRY WASSERMAN AND MAX G’SELL

Carnegie Mellon University

Several new methods have been recently proposed for performing valid
inference after model selection. An older method is sample splitting: use part
of the data for model selection and the rest for inference. In this paper, we
revisit sample splitting combined with the bootstrap (or the Normal approx-
imation). We show that this leads to a simple, assumption-lean approach to
inference and we establish results on the accuracy of the method. In fact, we
find new bounds on the accuracy of the bootstrap and the Normal approx-
imation for general nonlinear parameters with increasing dimension which
we then use to assess the accuracy of regression inference. We define new
parameters that measure variable importance and that can be inferred with
greater accuracy than the usual regression coefficients. Finally, we elucidate
an inference-prediction trade-off: splitting increases the accuracy and robust-
ness of inference but can decrease the accuracy of the predictions.

“Investigators who use [regression] are not paying adequate attention to the
connection—if any—between the models and the phenomena they are studying. ...By
the time the models are deployed, the scientific position is nearly hopeless. Reliance on
models in such cases is Panglossian...”

—David Freedman

1. Introduction. We consider the problem of carrying out assumption-lean
statistical inference after model selection for high-dimensional linear regression.
This a very broad and important topic in the statistical literature for which many
approaches have been proposed under different settings—an overview of a subset
of these can be found for instance in [24]; we defer a more detailed discussion of
the literature and a list of references to Section 1.3. We are concerned with devel-
oping ways to assess the importance of the set of covariates returned by a generic
model selection procedure, whereby importance is defined in terms of changes in
predictive power. Our goal is to derive statistical guarantees for various measures
of variable importance, imposing minimal assumptions on the data generating dis-
tribution and the model selection methodology, and allowing for increasing dimen-
sions. In particular, though we will mainly use linear models, we do not assume
that the true regression function is linear. We show the following:
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1. Inference based on sample splitting followed by the bootstrap (or a Normal
approximation) may give assumption-lean, robust confidence intervals under weak
assumptions.

2. The usual linear regression or projection parameters, providing the best lin-
ear predictor, are not necessarily a good target for inference in the assumption-
lean framework. Instead, we propose new measure of variable importance, called
LOCO (Leave-Out-COvariates) parameters, that are interpretable, are compatible
with arbitrary model selection rules and can be estimated accurately.

3. We provide novel bounds on the accuracy of the Normal approximation and
the bootstrap to the distribution of the projection parameters when the dimension
increases and the linear model is misspecified. In fact, we give new general bounds
on Normal approximations for nonlinear parameters of increasing dimension. Our
results offer new insights on the accuracy of inference in high-dimensional situa-
tions and suggest, in particular, that the accuracy of the Normal approximation for
the standard regression parameters is very poor.

4. We show that the law of the projection parameters cannot be estimated con-
sistently based solely on training data. In contrast, sample splitting provides a sim-
ple way to obtain such an estimator.

5. We exhibit an interesting trade-off between prediction accuracy and inferen-
tial accuracy in sample splitting.

1.1. Variable importance. We consider a distribution-free regression frame-
work, where the random pair Z = (X,Y ) ∈ Rd × R of d-dimensional covari-
ates and response variable has an unknown distribution belonging to a large non-
parametric class Q of probability distributions on Rd+1. We impose minimal as-
sumptions on the regression function x ∈ Rd �→ μ(x) = E[Y |X = x] describing
the relationship between the vector of covariates and the expected value of the
response variable. In particular, we do not require it to be linear. We observe
data Dn = (Z1, . . . ,Zn), an i.i.d. sample of size n from some P in Q, where
Zi = (Xi, Yi) ∈ Rd+1, for i = 1, . . . , n and the class Q =Qn, to be specified later,
may depend on the sample size. We apply to the data a procedure wn, which re-
turns both a subset of the covariates and an estimator of the regression function
over the selected covariates. Formally,

Dn �→ wn(Dn) = (Ŝ, μ̂Ŝ),

where Ŝ, the selected model, is a random, nonempty subset of {1, . . . , d} and μ̂Ŝ

is an estimator of the regression function x ∈ Rd �→ E[Y |XŜ = xŜ] restricted to Ŝ,
where (X,Y ) ∼ P independent of Dn and, for a vector x = (x(1), . . . , x(d)) ∈ Rd ,
we set xŜ = (x(j), j ∈ Ŝ).

The only assumption we impose on wn is that the maximum size of the selected
model be under our control; that is, 1 ≤ |Ŝ| ≤ k, for a predefined positive inte-
ger k ≤ d , where k and d can both increase with the sample size. The selected
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model Ŝ need not be a good approximation of any optimal model; however, opti-
mality may be defined. Furthermore, μ̂Ŝ need not be a consistent estimator of the
regression function restricted to Ŝ. Although our framework allows for arbitrary
procedures, we will be focusing on linear estimators: x �→ μ̂Ŝ(x) = β̂�̂

S
xŜ , where

β̂Ŝ is any estimator of the linear regression coefficients for the selected variables,
for instance ordinary least squares. In particular, β̂Ŝ may arise from fitting a sparse
linear model, with, for example, the lasso or stepwise-forward regression.

Our goal is to provide statistical guarantees for various measure of variable im-
portance applied to the covariates in Ŝ, uniformly over the choice of wn and over
all the distributions P ∈ Qn. We will accomplish this goal by producing confi-
dence sets for four random parameters taking values in RŜ , each providing a dif-
ferent assessment of the level of statistical significance of the variables in Ŝ from
a purely predictive standpoint. All of the random parameters under consideration
are functions of the data generating distribution P , of the sample Dn and its size n,
and, importantly, of the model selection and the estimation procedure associated
with wn.

The projection parameter βŜ . The linear projection parameter βŜ is defined to
be the vector of coefficients of the best linear predictor of Y using XŜ :

βŜ = argmin
β∈RŜ

EX,Y

(
Y − β�XŜ

)2
,

where EX,Y denote the expectation with respect to the distribution of (X,Y ).
(Here, we are implicitly assuming that both Y and the coordinates of XŜ have fi-
nite second moments and that the covariance of XŜ is invertible.) The terminology
projection parameters refers to the fact that X�βŜ is the L2 projection of Y into
the linear space of all random variables that can be obtained as linear functions of
XŜ . For a through discussion and an analysis of the properties of such parameters,
see [15] as well as [12, 34, 63, 66]. The projection parameter is well-defined even
though the true regression function μ is not linear. Indeed, it is immediate that

(1) βŜ = �−1
Ŝ

αŜ,

where αŜ = (αŜ(j), j ∈ Ŝ), αŜ(j) = EX,Y [YXŜ(j)|Dn] and �Ŝ = EX[XŜX�̂
S

|Dn].
The LOCO parameters γŜ and φŜ . Often, statisticians are interested in βŜ as

a measure of the importance of the selected covariates. But there are of course
other ways to quantify variable significance. Toward that end, we will consider
two parameters of variable importance, which we refer to as Leave Out COvari-
ate Inference—or LOCO—parameters. They were originally defined in [36] and
are similar to the variable importance measures used in random forests. The first
LOCO parameter is γŜ = (γŜ(j) : j ∈ Ŝ), where

(2) γŜ(j) = EX,Y

[∣∣Y − β̂�̂
S(j)

XŜ(j)

∣∣ − ∣∣Y − β̂�̂
S

XŜ

∣∣|Dn

]
.
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In the last expression, β̂Ŝ is any estimator of the projection parameter βŜ and Ŝ(j)

and β̂Ŝ(j) are obtained by rerunning the model selection and estimation procedure
after removing the j th covariate. To be clear, for each j ∈ Ŝ, Ŝ(j) is a subset of
size at most k of {1, . . . , d} \ {j}. Notice that the selected model can be different
when the j th covariate is held out from the data, so that the intersection between
Ŝ(j) and Ŝ can be smaller than k − 1. The interpretation of γŜ(j) is simple: it is
the increase in prediction error by not having access to the j th covariate. It is easy
to extend the definition of this parameter by leaving out several variables from Ŝ

at once without additional conceptual difficulties.
The parameter γŜ has advantages over the projection parameter βŜ : it is more

interpretable since it refers directly to prediction error and, as we will see, the
accuracy of the Normal approximation and the bootstrap is much higher. The sec-
ond type of LOCO parameters that we consider are the median LOCO parameters
φŜ = (φŜ(j), j ∈ Ŝ) with

(3) φŜ(j) = median
[∣∣Y − β̂�̂

S(j)
XŜ

∣∣ − ∣∣Y − β̂�̂
S

XŜ

∣∣Dn

]
.

As with γŜ , we may leave out multiple covariates at the same time.
The prediction parameter ρŜ . It may also be of interest to obtain an omnibus

parameter that measures how well the selected model will predict future observa-
tions. To this end, we define the future predictive error as

(4) ρŜ = EX,Y

[∣∣Y − β̂�̂
S

XŜ

∣∣|Dn

]
,

where β̂Ŝ is computed based on Dn.
Some additional remarks on these parameter choices can be found in Supple-

ment D.

1.2. Goals and assumptions. Our main goal is to provide statistical guarantees
for each of the four random parameters of variable significance introduced above,
under an assumption-lean framework. For notational convenience, in this section
we let θŜ be any of the parameters of interest: βŜ , γŜ , φŜ or ρŜ .

We will rely on sample splitting: assuming for notational convenience that the
sample size is 2n, we randomly split the data D2n into two halves, D1,n and D2,n.
Next, we run the model selection and estimation procedure wn on D1,n, obtaining
both Ŝ and μ̂Ŝ . We then use the second half of the sample D2,n to construct an
estimator θ̂Ŝ and a confidence set ĈŜ for θŜ satisfying the following properties:

Concentration:
(5)

lim sup
n→∞

sup
wn∈Wn

sup
P∈Qn

P
(‖θ̂Ŝ − θŜ‖ > rn

) → 0,

Coverage validity (honesty):
(6)

lim inf
n→∞ inf

wn∈Wn

inf
P∈Qn

P(θŜ ∈ ĈŜ) ≥ 1 − α,
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Accuracy:
(7)

lim sup
n→∞

sup
wn∈Wn

sup
P∈Qn

P
(
ν(ĈŜ) > εn

) → 0,

where α ∈ (0,1) is a prespecified level of significance, Wn is the set of all the
model selection and estimation procedures on samples of size n, rn and εn both
vanish as n → ∞ and ν is the volume (Lebesgue measure) of the set. The prob-
ability statements above take into account both the randomness in the sample Dn

and the randomness associated to splitting it into halves.

REMARK. The property that the coverage of ĈŜ is guaranteed uniformly over
the entire class Qn is known as (asymptotic) honesty [37]. Note that the confidence
sets are for random parameters (based on half the data) but the uniform coverage,
accuracy and concentration guarantees hold with the respect to the distribution of
the entire sample and the randomness associated to splitting.

The statistical guarantees listed above ensure that both θ̂Ŝ and ĈŜ are robust
with respect to the choice of wn. We seek validity over all model selection and
estimation rules because, in realistic data analysis, the procedure wn can be very
complex. In particular, the choice of model can involve: plotting, outlier removal,
transformations, choosing among various competing models, etc. Thus, unless we
have validity over all wn, there will be room for unconscious biases to enter.

1.3. Related work. The problem of inference after model selection has re-
ceived much attention lately. Much of the work falls broadly into three categories:
inference uniformly over selection procedure, inference with regard to a particular
debiased or desparsified model and inference conditional on model selection. We
discuss these approaches in more detail in Section B.

The uniform approach includes POSI [12], which constructs valid inferential
procedures regardless of the model selection procedure by maximizing over all
possible model selections. This method assumes Normality and a fixed, known
variance, and is computationally expensive. The idea is further extended in [5, 6]
by considering more general parameters of interest and by allowing for het-
eroskedasticity, nonnormality and model misspecification.

Most other approaches focus on a particular model selection procedure and con-
duct inference for selections made by that procedure. This includes the literature
on debiased or desparsified regularized models; see, for example, [13, 14, 25, 33,
50, 64, 68, 69]. This line of work aims at constructing confidence intervals for
parameters in high-dimensional regression and can be used for the selected model
if a Bonferroni correction is applied. However, these results typically rely on the
assumption that the linear model is correct as well as on various other regularity
assumptions on the design matrix and the error distribution.

A separate literature on selective inference has focused on inference with re-
spect to the selected model, conditional on the event of that a particular model is
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selected. This began with [38], but was developed more fully in [28, 34] and [63].
Further works in this area include [39–41, 61–63]. In the simplest version, the dis-
tribution of

√
n(β̂(j) − β(j)) conditional on the selected model has a truncated

Gaussian distribution, if the errors are Normal and the covariates are fixed. The
cumulative distribution function of the truncated Gaussian is used as a pivot to ob-
tain tests and confidence intervals. This approach requires Normality, and a fixed,
known variance.

There have been several additional approaches to this problem that do not fall in
any of these broad categories. While this is a larger literature than can be addressed
completely here, it includes early work on model selection [32] and model aver-
aging interpretations [30]; the impossibility results of [35] and [15] on random X

and model misspecification; methods based on resampling or sample splitting [17,
18, 26, 44, 67]; stability selection [43, 57]; the conformal inference approach of
[36]; goodness-of-fit tests of [56]; moment-constraint-based uniform confidence
sets [4]; [42] on inference about groups of variables under general designs; [9] in
the instrumental variable setting; [10] on post-selection inference for Z-estimators
and the knockoffs approach of [7] and later [16]. Although they are not directed at
linear models, [65] and [45] address similar problems for random forests.

Sample splitting. Perhaps the oldest method for inference after model selection
is sample splitting: half the data D1,n are used for model fitting and the other half
D2,n are used for inference.1

The earliest references for sample splitting include [8, 23, 27, 29], page 13 of
[46, 47], page 37 of [48] and [51]. To quote Barnard: “... the simple idea of splitting
a sample in two and then developing the hypothesis on the basis of one part and
testing it on the remainder may perhaps be said to be one of the most seriously
neglected ideas in statistics...”

To the best of our knowledge there are only two methods that achieve asymptot-
ically honest coverage: sample splitting and uniform inference. Uniform inference
is based on estimating the distribution of the parameter estimators over all possi-
ble model selections. In general, this is infeasible. But we compare sample splitting
and uniform inference in a restricted model in Section 3.

1.4. Outline. In Section 2, we provide results in the concentration, coverage
validity and accuracy for the estimators described above. In Section 3, we compare
sample splitting to nonsplitting strategies. In Section 4, we establish Berry–Esseen
bounds for nonlinear statistics with possibly increasing dimension. Section 5 con-
tains concluding remarks. Extra results, proofs and a discussion of another version
of the bootstrap, are relegated to the Supplement [55], including numerical exam-
ples in Supplement A and comments on other methods in Supplement B.

1For simplicity, we assume that the data are split into two parts of equal size. The problem of
determining the optimal size of the split is not considered in this paper. Some results on this issue are
contained in [58].
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1.5. Notation. Let Z = (X,Y ) ∼ P where Y ∈ R and X ∈ Rd . We write
X = (X(1), . . . ,X(d)) to denote the components of the vector X. If X is a
random quantity with distribution P , we will write the expectation with re-
spect to P as EX[·], EP [·] or, when it is clear from the context, simply E[·].
Define � = E[XX�] and α = (α(1), . . . , α(d)) where α(j) = E[YX(j)]. Let
σ = vec(�), where vec is the operator that stacks a matrix into one large vec-
tor, and ψ ≡ ψ(P ) = (σ,α). Similarly, define 
 = �−1 and ω = vec(
). The
regression function is μ(x) = EY |X=x[Y |X = x]. We use ν to denote Lebesgue
measure. We write an 
 bn to mean that there exists a constant C > 0 such that
an ≤ Cbn for all large n. For a nonempty subset S ⊂ {1, . . . , d} of the covariates
XS or X(S) denotes the corresponding elements of X: (X(j) : j ∈ S). Similarly,
�S = E[XSX�

S ] and αS = E[YXS]. Integer index subscripts Xi will always be
used to index a collection X1,X2, . . . , and not to reference individual elements of
X. A ⊗ B denotes the Kronecker product of matrices. The commutation matrix
Km,n is the mn × mn matrix defined by Km,n vec(A) = vec(A�). For any k × k

matrix A, vech(A) denotes the column vector of dimension k(k + 1)/2 obtained
by vectorizing only the lower triangular part of k × k matrix A.

2. Main results. Recall that we rely on data splitting: we randomly split the
2n data points into two halves D1,n and D2,n. Then, for a given choice of the model
selection and estimation rule wn, we use D1,n to select a nonempty set of variables
Ŝ ⊂ {1, . . . , d} where k = |Ŝ| < n. For the LOCO and prediction parameters, based
on D1,n, we also compute β̂Ŝ , any estimator of the projection parameters restricted
to Ŝ. In addition, for each j ∈ Ŝ, we further compute, still using D1,n and the rule
wn, β̂Ŝ(j), the estimator of the projection parameters over the set Ŝ(j). Also, for
l = 1,2, we denote with Il,n random subset of {1, . . . ,2n} containing the indexes
for the data points in Dl,n.

2.1. Projection parameters. In his section, we will derive various statisti-
cal guarantees for the projection parameters, defined in (1). We will first de-
fine the class of data generating distributions on Rd+1 for which our results
hold. In the definition below, S denotes a nonempty subset of {1, . . . , d} and
WS = (vech(XSX�

S ),XSY ).

DEFINITION 1. Let POLS
n be the set of all probability distributions P on

Rd+1 with zero mean, Lebesgue density and such that, for some positive quan-
tities A,a,u,U, v and v:

1. the support of P is contained in [−A,A]d+1;
2. min{S : |S|≤k} λmin(�S) ≥ u and max{S : |S|≤k} λmax(�S) ≤ U , where �S =

EP [XSX�
S ];

3. min{S : |S|≤k} λmin(VarP (WS)) ≥ v and max{S : |S|≤k} λmax(VarP (WS)) ≤ v;
4. min{U,v} ≥ η, for a fixed η > 0.
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The first compactness assumption is made out of convenience, and may be eas-
ily relaxed by assuming instead that Y and the coordinates of X are sub-Gaussian.
In particular, it is weaker than assuming that the entire vector X is sub-Gaussian.
The bound on the smallest eigenvalue of �S , uniformly over all subsets S is natu-
ral: the projection parameter is only well-defined provided that �S is invertible for
all the subsets S under consideration. The quantities v and v in part 3. are akin to
fourth moment conditions. In particular, one can always take v ≤ A2k2 in the very
worst case. Finally, the assumption of zero mean is imposed out of convenience
and to simplify our derivations, so that we need not to be concerned with an in-
tercept term. As remarked above, in all of our results we have kept track of the
dependence on the constants a,u,U, v and v, so that we may in fact allow all of
these quantities to change with n (but we do treat A as fixed and, therefore, have
incorporated it into the constants).

We will be studying the ordinary least squares estimator of the random projec-
tion parameter βŜ defined in (1). This estimator is

(8) β̂Ŝ = �̂−1
Ŝ

α̂Ŝ ,

where, for any nonempty subset S of {1, . . . , d},

(9) α̂S = 1

n

∑
i∈I2,n

YiXi(S) and �̂S = 1

n

∑
i∈I2,n

Xi(Ŝ)Xi(S)�.

Note that βŜ depends on D1,n through Ŝ, and β̂Ŝ is based on the sub-sample D2,n

and restricted to the coordinates Ŝ. Since each P ∈ POLS
n has a Lebesgue density,

�̂Ŝ is invertible almost surely as long as n ≥ k ≥ |Ŝ|.
In order to relate β̂Ŝ to βŜ , it will first be convenient to condition on Ŝ and thus

regard βŜ as a k-dimensional deterministic vector of parameters, which depends
on some unknown P ∈ POLS

n . Then β̂Ŝ is an estimator of a fixed parameter βŜ =
βŜ(P ) computed using an i.i.d. sample D2,n from the same distribution P ∈POLS

n .
Notice that β̂Ŝ is not an unbiased estimator of βŜ , conditionally or unconditionally
on D2,n.

For each P ∈ POLS
n , we can represent the parameters �Ŝ = �Ŝ(P ) and αŜ =

αŜ(P ) in vectorized form as

(10) ψ = ψŜ = ψ(Ŝ,P ) =
[
vech(�Ŝ)

αŜ

]
∈R

b,

where b = k2+3k
2 . Similarly, based on the subsample D2,n we define the n random

vectors

Wi =
[

vech
(
Xi(Ŝ)Xi(Ŝ)�

)
Yi · Xi(Ŝ)

]
∈R

b, i ∈ I2,n,
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and their average

(11) ψ̂ = ψ̂Ŝ = 1

n

∑
i∈I2,n

Wi.

It is immediate to see that EP [ψ̂] = ψ , for all P ∈ POLS
n .

We express both the projection parameter βŜ and the least squares estimator
β̂Ŝ as nonlinear functions of ψ and ψ̂ , respectively, in the following way. Let
g : Rb →Rk be given by

(12) x =
[
x1
x2

]
�→ (

math(x1)
)−1

x2,

where x1 and x2 correspond to the first k(k + 1)/2 and the last k coordinates of x,
respectively, and math is the inverse mapping of vech, that is, math(x) = A if and
only if vech(A) = x. Notice that g is well-defined over the convex set{[

vech(�)

x

]
: � ∈ C+

k , x ∈ R
k

}
,

where C+
k is the cone of positive definite matrices of dimension k. It follows from

our assumptions that, for each P ∈ POLS
n , ψ is in the domain of g and, as long as

n ≥ d , so is ψ̂ , almost surely. Thus, we may write

βŜ = g(ψŜ) and β̂Ŝ = g(ψ̂Ŝ).

Concentration of β̂Ŝ . We begin by deriving high probability concentration
bounds for β̂Ŝ around βŜ . When there is no model selection nor sample splitting—
so that Ŝ is deterministic and equal to {1, . . . , d}—our results yield consistency
rates for the ordinary least squares estimator of the projection parameters, under
increasing dimensions and a misspecified model. An analogous result was estab-
lished in [31] for linear and ridge regression without model selection, where the
approximation error μ(x) − x�β is accounted for explicitly.

THEOREM 1. Let

Bn = C
1

u3

√
U3k

log k + logn

n

and assume that max{Bn,uBn} → 0 as n → ∞. Then, there exists a constant
C > 0, dependent on A and η only, such that, for all n large enough,

(13) sup
wn∈Wn

sup
P∈POLS

n

‖β̂Ŝ − βŜ‖ ≤ CBn,

with probability at least 1− 2
n

with respect to joint distribution of the entire sample
and of the splitting process.
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Theorem 1 can be easily generalized to cover the case in which the model selec-
tion and the computation of the projection parameters are performed on the entire
data set and not on separate, independent splits. In this situation, we seek a high
probability bound for the quantity

max
S

‖βS − β̂S‖,
where the maximum is over all nonempty subsets of {1, . . . , d} of size at most k

and β̂S = �̂−1
S α̂S (see equation (9)). Since there are less than ( ed

k
)k such subsets, a

union bound argument will yield a rate of consistency for the projection parameter
under arbitrary model selection rules without relying on sample splitting. We omit
the details.

Confidence sets for the projection parameters: Normal approximations. We
will now derive confidence intervals for the projection parameters using on a high-
dimensional Normal approximation to β̂Ŝ . The construction of such confidence
sets entails approximating the dominant linear term in the Taylor series expansion
of β̂Ŝ − βŜ by a centered Gaussian vector in RŜ with the same covariance matrix
�Ŝ (see (54) in Section 4). The coverage properties of the resulting confidence sets
depend crucially on the ability to estimate such covariances. For that purpose, we
use a plug-in estimator, given by

(14) �̂Ŝ = ĜŜV̂ŜĜ�̂
S
,

where V̂Ŝ = 1
n

∑n
i=1[(Wi − ψ̂)(Wi − ψ̂)�] is the b×b empirical covariance matrix

of the Wi’s and the k × b matrix ĜŜ is the Jacobian of the mapping g, given
explicitly in (106) [55], evaluated at ψ̂ .

The first confidence set for the projection parameter based on the Normal ap-
proximation that we propose is an L∞ ball of appropriate radius centered at β̂Ŝ :

(15) ĈŜ =
{
β ∈ R

k : ‖β − β̂Ŝ‖∞ ≤ t̂α√
n

}
,

where t̂α is a random radius (dependent on D2,n ) such that

(16) P
(∥∥�̂1/2

Ŝ
Q

∥∥∞ ≤ t̂α
) = α,

with Q a random vector having the k-dimensional standard Gaussian distribution
and independent of the data.

In addition to the L∞ ball given in (15), we also construct a confidence set for
βŜ to be a hyperrectangle, with sides of different lengths in order to account for
different variances in the covariates. This can be done using the set

(17) C̃Ŝ = ⊗
j∈Ŝ

C̃(j),
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where

C̃(j) =
[
β̂Ŝ(j) − zα/(2k)

√
�̂Ŝ(j, j)

n
, β̂Ŝ(j) + zα/(2k)

√
�̂Ŝ(j, j)

n

]
,

with �̂Ŝ given by (14) and zα/(2k) the upper 1 − α/(2k) quantile of a standard
Normal variate. Notice that we use a Bonferroni correction to guarantee a nominal
coverage of 1 − α.

THEOREM 2. Let ĈŜ and C̃Ŝ the confidence sets defined in (15) and (17),
respectively. Let

(18) un = u − K2,n and Un = U + K2,n,

where

K2,n = CA

√
kU

log k + logn

n
,

with C = C(η) > 0 the universal constant in (101). Assume, in addition, that n is
large enough so that un is positive. Then, for a C > 0 dependent on A only,

(19) inf
wn∈Wn

inf
P∈POLS

n

P(β ∈ ĈŜ) ≥ 1 − α − C(�n,1 + �n,2 + �n,3)

and

(20) inf
wn∈Wn

inf
P∈POLS

n

P(β ∈ C̃Ŝ) ≥ 1 − α − C(�n,1 + �n,2 + �̃n,3),

where

�n,1 = 1√
v

(
v2k2(log kn)7)

n

)1/6
,

�n,2 =
√√√√k5v(logn)2 log k

n
max

{
U2

n

u7
n

,
1

u4
n

}
,

�n,3 =
(

U2

v

)1/3 (
v2k3 logn

n
log4 k

)1/6

(EIGn)
1/3 and

�̃n,3 = min
{
�n,3,

U2

v
v

k5/2

u3
nu

2

logn

n
log k

}
with

(21) EIGn =
(

U

u5/2 max
{

Un

u
7/2
n

,
1

u2
n

})
.

A few remarks are in order:



BOOTSTRAPPING AND SAMPLE SPLITTING 3449

1. The coverage probability is affected by three factors: the term �n,1, which
bounds the approximation error stemming from the high dimensional Berry–
Esseen theorem (see Theorem 27); the term �n,2, which is a high probability
bound on the size of the remainder term in the Taylor series expansion of βŜ around
β̂Ŝ and can therefore be thought of as the price for the nonlinearity of the projection
parameter, and the terms �n,3 and �̃n,3, which are due to the fact that the covari-
ance of the estimator is unknown and needs to be also estimated, leading to another
source of error (the bootstrap procedure, described below, implicitly estimates this
covariance).

2. In terms of dependence of k on n, all other things being equal, the remainder
term �2,n exhibit the worst rate, as it constrains k to be of smaller order than n1/5

in order to guarantee asymptotic coverage of ĈŜ . This same term also contains the
worst dependence on u, the uniform bound on the smallest eigenvalue of all co-
variance matrices of the form �S , for S ⊂ {1, . . . , d} with 0 < S ≤ k. On the other
hand, under mild moment assumptions, the term k2 in �n,1 can be eliminated.
However, the dependence of the rates on the dimension and on the minimal eigen-
value is overall quite poor. While this phenomenon is, to an extent, unavoidable,
we do not make any claim as to the sharpness of our bounds.

3. The coverage rates obtained for the LOCO and prediction parameters below
in Section 2.2 are significantly faster then the ones for the projection parameters,
and hold under less restrictions on the class of data generating distributions. We
regard this as another reason to prefer the LOCO parameters.

4. As a function of sample size, there is a term of order n−1/6 in �1,n and
�3,n. The exponent 1/6 comes from the Berry–Esseen bound in Section 3. Cher-
nozhukov et al. [22] conjecture that this rate is optimal for high-dimensional cen-
tral limit theorems. Their conjecture is based on the lower bound result in [11]. If
their conjecture is true, then this is best rate that can be hoped for in general.

5. The rates are slower than the rate obtained in the central limit theorem given
in [53] for robust regression estimators. A reason for such discrepancy is that [53]
assumes, among the other things, that the linear model is correct. In this case,
the least squares estimators is conditionally unbiased. Without the assumption of
model correctness, there is a substantial bias.

We now consider the accuracy of the confidence set given by the hyper-rectangle
C̃Ŝ from equation (17) by deriving an upper bound on the length of the largest side
of maxj∈Ŝ C̃(j). Similar rates can be obtained for the length of the sides of the
hypercube confidence set ĈŜ given in (15).

COROLLARY 3. With probability at least 1 − 2
n

, the maximal length of the
sides of the hyperrectangle C̃Ŝ is bounded by

C

√√√√ log k

n

(
EIGnv

√
k3 logn

n
+ U2

u5 v

)
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for a constant C > 0 depending on A only, uniformly over all P ∈ POLS
n , where

EIGn is as in (21).

Confidence sets for the projection parameters: The bootstrap. The confidence
set in (15) based on the Normal approximation require the evaluation of both the
matrix �̂Ŝ and the quantile t̂α in (16), which may be computationally inconvenient.
Similarly, the hyperrectangle (17) requires computing the diagonal entries in �̂Ŝ .
Below we show that the paired bootstrap can be deployed to construct analogous
confidence sets, centered at β̂Ŝ , without knowledge of �̂Ŝ . Throughout, by the
bootstrap distribution we mean the empirical probability measure associated to the
subsample D2,n and conditionally on D1,n and the outcome of the sample splitting
procedure. We let β̂ ∗̂

S
denote the estimator of the projection parameters βŜ arising

from an i.i.d. sample of size n drawn from the bootstrap distribution.
For a given α ∈ (0,1), let t̂∗α be the smallest positive number such that

P
(√

n
∥∥β̂ ∗̂

S
− β̂Ŝ

∥∥ ≤ t̂∗α |D2,n

) ≥ 1 − α.

Next, let (̃t∗j , j ∈ Ŝ) be such that

P
(√

n|β̂ ∗̂
S
(j) − β̂Ŝ(j) ≤ t̃∗j ,∀j |D2,n

) ≥ 1 − α.

By the union bound, each t̃∗j can be chosen to be the largest positive number such
that

P
(√

n|β̂ ∗̂
S
(j) − β̂Ŝ(j) > t̃∗j , |D2,n

) ≤ α

k
.

Consider the following two bootstrap confidence sets:

Ĉ ∗̂
S

=
{
β ∈R

Ŝ : ‖β − β̂Ŝ‖∞ ≤ t̂∗α√
n

}
,

C̃ ∗̂
S

=
{
β ∈R

Ŝ : ∣∣β(j) − β̂Ŝ(j)
∣∣ ≤ t̃∗j√

n
,∀j ∈ Ŝ

}
.

(22)

It is immediate that Ĉ ∗̂
S

and C̃ ∗̂
S

are just the bootstrap equivalent of the confidence
sets of (15) and (17), respectively.

THEOREM 4. Let

vn = v − K1,n, vn = v + K1,n, un = u − K2,n and Un = U + K2,n,

where

K1,n = CA2

√
bv

logb + logn

n
and K2,n = CA

√
kU

logk + logn

n
,
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with C = C(η) > 0 the constant in (101). Assume that n is large enough so that
vn = v − K1,n and un = u − K2,n are both positive. Then, for a constant C =
C(A) > 0,

(23) inf
wn∈Wn

inf
P∈POLS

n

P
(
βŜ ∈ C ∗̂

S

) ≥ 1 − α − C
(
�∗

n,1 + �∗
n,2 + �n,3

)
,

where C ∗̂
S

is either one of the bootstrap confidence sets in (22),

�∗
n,1 = 1√

vn

(
k2v2

n(log kn)7)

n

)1/6
,

�∗
n,2 = Un√

vn

√
k5vn(logn)2 log k

n
max

{
U2

n

u7
n

,
1

u4
n

}
and �n,3 is as in Theorem 2.

The sparse case. Now we briefly discuss the case of sparse fitting where k =
O(1) so that the size of the selected model is not allowed to increase with n. In
this case, things simplify considerably. The standard central limit theorem shows
that

√
n(β̂ − β) � N(0,�),

where � = �−1E[(Y −β�X)2]�−1. Furthermore, � can be consistently estimated
by the sandwich estimator �̂ = �̂−1A�̂−1 where A = n−1X�RX, Xij = Xi(j),
R is the k × k diagonal matrix with Rii = (Yi − X�

i β̂)2. By Slutsky’s theorem,
valid asymptotic confidence sets can be based on the Normal distribution with �̂

in place of � [15].
Nonetheless, even if k is kept bounded, the effect of d increasing may be non-

trivial and the results of the previous section would be more appropriate. For in-
stance, the parameter u = min|S|≤k λmin(�S) may decrease as d grows even when
k is fixed. Hence, the usual fixed k asymptotics may be misleading.

2.2. LOCO parameters. Now we turn to the LOCO parameter γŜ ∈ RŜ of
(2), where Ŝ is the model selected on the first half of the data. In order to derive
confidence sets for γŜ , we will assume that the data generating distribution belongs
to the class PLOCO

n of all distributions on Rd+1 supported on [−A,A]d+1, for some
fixed constant A > 0. Clearly, the class PLOCO

n is significantly larger then the class
POLS

n considered for the projection parameters.
Next, we wrote the vector of LOCO parameters as γ̂Ŝ = 1

n

∑
i∈I2,n

δi , where
(δi, i ∈ I2,n) are independent and identically distributed random vectors such that,
for any i ∈ I2,n and j ∈ Ŝ,

(24) δi(j) = ∣∣Yi − β̂�̂
S(j)

Xi

(
Ŝ(j)

)∣∣ − ∣∣Yi − β̂�̂
S

Xi(Ŝ)
∣∣,
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with Xi(Ŝ) the subvector of Xi consisting only of the coordinates in Ŝ.
For technical reasons detailed in Supplement E, we redefine the vector of LOCO

parameters γŜ so that its j th coordinate is

(25) γŜ(j) = EX,Y,ξj

[∣∣Y − tτ
(
β̂�̂

S(j)
XŜ(j)

)∣∣ − ∣∣Y − tτ
(
β̂�̂

S
XŜ

)∣∣ + εξ(j)
]
,

where ε > 0 is a prespecified small number, ξ = (ξ(j), j ∈ Ŝ) is a random vector
comprised of independent Uniform(−1,1), independent of the data, and tτ is a
threshold function

(26) x ∈ R �→ tτ (x) =
{
x if |x| ≤ τ,

sign(x) otherwise.

Accordingly, we redefine the estimator γ̂Ŝ of this modified LOCO parameters as

(27) γ̂Ŝ = 1

n

∑
i∈I2,n

δi,

where the δis are random vector in RŜ such that the j th coordinate of δi is∣∣Yi − tτ
(
β̂�̂

S(j)
Xi

(
Ŝ(j)

))∣∣ − ∣∣Yi − tτ
(
Yi − β̂�̂

S
Xi(Ŝ)

)∣∣ + εξi(j), j ∈ Ŝ.

For simplicity, we take ε and τ to be fixed but we will keep explicit track of these
quantities in the constants.

We first establish a simple concentration bound of the modified LOCO parame-
ters.

LEMMA 5.

sup
wn∈Wn

sup
P∈PLOCO

n

P

(
‖γ̂Ŝ − γŜ‖∞ ≤ (

2(A + τ) + ε
)√

2
log k + logn

n

)
≥ 1 − 1

n
.

We now construct confidence sets for γŜ . Just like we did with the projection pa-
rameters, we consider two types of methods: one based on Normal approximations
and the other on the bootstrap.

Normal approximation. Obtaining high-dimensional Berry–Esseen bounds for
γ̂Ŝ is nearly straightforward since, conditionally on D1,n and the splitting, γ̂Ŝ is
just a vector of averages of bounded and independent variables with nonvanishing
variances. Thus, there is no need for a Taylor approximation and we can apply
directly the results in [22]. In addition, we find that the accuracy of the confidence
sets for this LOCO parameter is higher than for the projection parameters.

Similar to what we did in Section 2.1, we derive two approximate confidence
sets: one is an L∞ ball and the other is a hyperrectangle whose j th side length is
proportional to the standard deviation of the j th coordinate of γ̂Ŝ . Both sets are
centered at γ̂Ŝ .
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Below, we let α ∈ (0,1) be fixed and let

(28) �̂Ŝ = 1

n

n∑
i=1

(δi − γ̂Ŝ )(δi − γ̂Ŝ )�,

be the empirical covariance matrix of the δis. The first confidence set is the L∞
ball

(29) D̂Ŝ = {
γ ∈ R

k : ‖γ − γ̂Ŝ‖∞ ≤ t̂α
}
,

where t̂α is such that

P
(‖Zn‖∞ ≤ t̂α

) = 1 − α,

with Zn ∼ N(0, �̂Ŝ ). The second confidence set we construct is instead the hyper-
rectangle

(30) D̃Ŝ = ⊗
j∈Ŝ

D̂(j),

where, for any j ∈ Ŝ, D̃(j) = [γ̂Ŝ(j ) − t̂j,α, γ̂Ŝ(j) + t̂j,α], with t̂j,α =
zα/2k

√
�̂Ŝ (j,j)

n
.

The above confidence sets have the same form as the confidence sets for the
projection parameters (63), (66). The key difference is that for the projection pa-
rameters we use the estimated covariance of the linear approximation to β̂Ŝ , while
for the LOCO parameter γ̂Ŝ we rely on the empirical covariance (28), which is a
much simpler estimator to compute.

In the next result, we derive coverage rates for both confidence sets.

THEOREM 6. There exists a universal constant C > 0 such that

(31) inf
wn∈Wn

inf
P∈PLOCO

n

P(γŜ ∈ D̂Ŝ) ≥ 1 − α − C(E1,n + E2,n) − 1

n

and

(32) inf
wn∈Wn

inf
P∈PLOCO

n

P(γŜ ∈ D̃Ŝ) ≥ 1 − α − C(E1,n + Ẽ2,n) − 1

n
,

where

E1,n = 2(A + τ) + ε

ε

(
(lognk)7

n

)1/6
,(33)

E2,n = N
1/3
n (2 log 2k)2/3

ε2/3 ,(34)

Ẽ2,n = min
{

E2,n,
Nnzα/(2k)

ε2

(√
2 + log(2k) + 2

)}
(35)
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and

(36) Nn = (
2(A + τ) + ε

)2

√
4 log k + 2 logn

n

and εn = √
ε2 − Nn.

REMARK. The term E1,n quantifies the error in applying the high-dimensional
normal approximation to γ̂Ŝ − γŜ , given in [22]. The second error term E2,n is due
to the fact that �Ŝ is unknown and has to be estimated using the empirical covari-
ance matrix �̂Ŝ . To establish E2,n, we use the Gaussian comparison Theorem 28.
We point out that the dependence in ε displayed in the term E2,n above does not
follow directly from Theorem 2.1 in [22]. It can be obtained by tracking constants
and using Nazarov’s inequality Theorem 27 in the Supplementary Material, Sec-
tion J, for details.

COROLLARY 7. With probability at least 1 − 1
n

, the maximal length of the
sides of the hyperrectangle C̃n is bounded by

C
(
2(A + τ) + ε

)√ log k

n

(
1 + (4 logk + 2 logn)1/2

n1/2

)
,

for a universal constant C > 0, uniformly over all P ∈ PLOCO
n .

The bootstrap. We now demonstrate the coverage of the paired bootstrap ver-
sion of the confidence set for γŜ given above in (29). The bootstrap distribution is
the empirical measure associated to the n triplets {(Xi, Yi, ξi), i ∈ I2,n} and con-
ditionally on D1,n. Let γ̂ ∗̂

S
denote the estimator of the LOCO parameters (25) of

the form (27) computed from an i.i.d. sample of size n drawn from the bootstrap
distribution. Notice that E[γ̂ ∗̂

S
|(Xi, Yi, ξi), i ∈ I2,n] = γ̂Ŝ . For a given α ∈ (0,1),

let t̂∗α be the smallest positive number such that

P
(√

n
∥∥γ̂ ∗̂

S
− γ̂Ŝ

∥∥ ≤ t̂∗α |(Xi, Yi, ξi), i ∈ I2,n

) ≥ 1 − α.

Next, let (̃t∗j , j ∈ Ŝ) be such that

P
(√

n|γ̂ ∗̂
S
(j) − γ̂Ŝ (j )| ≤ t̃∗j ,∀j |(Xi, Yi, ξi), i ∈ I2,n

) ≥ 1 − α.

In particular, using the union bound, each t̃∗j can be chosen to be the largest positive
number such that

P
(√

n|γ̂ ∗̂
S
(j) − γ̂Ŝ (j )| > t̃∗j |(Xi, Yi, ξi), i ∈ I2,n

) ≤ α

k
.

Consider the following two bootstrap confidence sets:

D̂∗̂
S

=
{
γ ∈ R

Ŝ : ‖γ − γ̂Ŝ‖∞ ≤ t̂∗α√
n

}
and

D̃∗̂
S

=
{
γ ∈ R

Ŝ : |γj − γ̂Ŝ (j )| ≤ t̃∗j√
n
,∀j

}
.

(37)
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THEOREM 8. Using the same notation as in Theorem 6, assume that n is large
enough so that εn = √

ε2 − Nn is positive. Then there exists a universal constant
C > 0 such that the coverage of both confidence sets in (37) is at least

1 − α − C

(
E∗

1,n + E2,n + 1

n

)
,

where

E∗
1,n = 2(A + τ) + εn

εn

(
(lognk)7

n

)1/6
.

2.3. Median LOCO parameters. For the median loco parameters (φŜ(j), j ∈
Ŝ) given in (3), finite sample inference is relatively straightforward. In detail, for
each j ∈ Ŝ and i ∈ I2,n, recall the definition of δi(j) in (24) and let δ(1)(j) ≤ · · · ≤
δ(n)(j) be the corresponding order statistics. We will not impose any restrictions
on the data generating distribution. In particular, for each j ∈ Ŝ, the median of
δi(j) needs not be unique. Consider the interval

Ej = [
δ(l)(j), δ(u)(j)

]
,

where

(38) l =
⌈
n

2
−

√
n

2
log

(
2k

α

)⌉
and u =

⌊
n

2
+

√
n

2
log

(
2k

α

)⌋
,

and construct the hypercube

(39) ÊŜ =
n⊗

j∈Ŝ

Ej .

Then standard results about confidence sets for medians using order statistics,
along with a union bound, imply that ÊŜ is a 1 − α confidence set for the me-
dian LOCO parameters, uniformly over the class Pn of all distributions for (X,Y ).

PROPOSITION 9. For every n,

(40) inf
wn∈Wn

inf
P∈Pn

P(φŜ ∈ ÊŜ) ≥ 1 − α.

Of course, if the median of δi(j) is not unique, the length of the corresponding
confidence interval does not shrink as n increases. But if the median is unique for
each j ∈ Ŝ, and under addition smoothness conditions, we obtain that the maximal

length the side of the confidence rectangle ÊŜ is of order O(

√
log k+logn

n
), with

high probability.
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THEOREM 10. Suppose that there exists positive numbers M and η such that,
for each j ∈ Ŝ, the cumulative distribution function of each δi(j) is differentiable
with derivative no smaller than M at all points at a distance no larger than η from
its (unique) median. Then, for all n for which

1

n
+

√
1

2n
log

(
2k

α

)
+

√
log 2kn

2n
≤ ηM,

the sides of ÊŜ have length uniformly bounded by

2

M

(
1

n
+

√
1

2n
log

(
2k

α

)
+

√
log 2kn

2n

)
,

with probability at least 1 − 1
n

.

2.4. Prediction error. To construct a confidence interval for the future predic-
tion error parameter ρŜ , consider the set

(41) F̂Ŝ = [ρ̂S − zα/2sn/
√

n, ρ̂S + zα/2sn/
√

n],
where zα/2 is the 1 − α/2 upper quantile of a standard normal distribution,

ρ̂Ŝ = 1

n

∑
i∈I2

Ai, s2
n = 1

n

∑
i∈I2

(Ai − ρ̂Ŝ)2 and

Ai = ∣∣Yi − β̂�̂
S

Xi(Ŝ)
∣∣ ∀i ∈ I2,n.

For any P , let σ 2
n = σ 2

n (P ) = VarP (A1) and μ3,n = μ3,n(P ) = EP [|A1 −
EP [A1]|3]. Then one may hope that a direct application of the one-dimensional
Berry–Esseen theorem (see, e.g., Theorem 1.1, Chapter 11, in [60]), would yield
that

inf
wn∈Wn

P(ρŜ ∈ F̂Ŝ) ≥ 1 − α − O

(
μ3,n

σn

√
n

)
.

The asymptotic behavior of the last term on the right-hand side depends on how
σn and μ3,n scale with n (assuming they are well-defined), and in general cannot
be controlled uniformly well over data generating distributions and procedures.
In order to obtain uniform coverage guarantees, we slightly modify our target for
inference, similarly to the way we dealt with the LOCO parameters in Section 2.2.
Thus, we redefine the prediction parameter to be

ρŜ = E
[∣∣Y − tτ

(
β̂�̂

S
X(Ŝ)

)∣∣ + εξ
]
,

where tτ is the the threshold function in (26) and ξ an independent noise variate
uniformly distributed on [−1,1]. The positive parameters τ and ε are chosen to
ensure that the variance of the Ai ’s does not vanish and that their third moment
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does not explode as n grows. Indeed, with this modification, we can ensure that
σ 2

n ≥ ε2 and μ3,n ≤ (A + τ + ε)3 uniformly in n (and sn ≤ 4(A + τ + ε)2, almost
surely). Of course, we may let τ and ε change with n in a controlled manner. But
for fixed choices of τ and ε, it is easy to see that the coverage of the interval (41)
is

inf
wn∈Wn

P(ρŜ ∈ F̂Ŝ) ≥ 1 − α − C

(
1√
n

)
,

for all data generating distributions, where C is a constant dependent only on A,
τ and ε. Furthermore, the length of the confidence interval has parametric rate
O( 1√

n
).

3. Prediction/accuracy tradeoff: Comparing splitting to uniform inference.
There is a price to pay for sample splitting: the selected model may be less accurate
because only part of the data are used to select the model. Thus, splitting creates
gains in accuracy and robustness for inference but with some loss of prediction
accuracy. We call this the inference-prediction tradeoff. In this section, we study
this phenomenon by comparing splitting with uniform inference (defined below).
We use uniform inference for the comparison since this is the any other method
we know of that achieves (7). We study this use with a simple model where it is
feasible to compare splitting with uniform inference. We will focus on the many
means problem which is similar to regression with a balanced, orthogonal design.
The data are Y1, . . . , Y2n ∼ P where Yi ∈ RD . Let β = (β(1), . . . , β(D)) where
β(j) = E[Yi(j)]. In this section, the model Pn is the set of probability distributions
on RD such that maxj E|Y(j)|3 < C and minj Var(Y (j)) > c for some positive C

and c, which do not change with n or D (these assumptions could of course be
easily relaxed). Below, we will only track the dependence on D and n and will use
the notation 
 to denote inequality up to constants.

To mimic forward stepwise regression—where we would choose a covariate to
maximize correlation with the outcome—we consider choosing j to maximize the
mean. Specifically, we take

(42) Ŝ ≡ w(Y1, . . . , Y2n) = argmax
j

Y (j),

where Y(j) = (1/2n)
∑2n

i=1 Yi(j). Our goal is to infer the random parameter βŜ .
The number of models is D. In forward stepwise regression with k steps and d

covariates, the number of models is D = dk . So the reader is invited to think of D

as being very large. We will compare splitting versus nonsplitting with respect to
three goals: estimation, inference and prediction accuracy.

Splitting: In this case, we take Let D1,n = {i : 1 ≤ i ≤ n} and D2,n = {i : n+1 ≤
i ≤ 2n}. Then

(43) Ŝ ≡ w(Y1, . . . , Yn) = argmax
j

Y (j),
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where Y (j) = (1/n)
∑n

i=1 Yi(j). The point estimate and confidence interval for
the random parameter βŜ are

β̂Ŝ = 1

n

2n∑
i=n+1

Yi(Ŝ)

and

ĈŜ = [β̂Ŝ − szα/2/
√

n, β̂Ŝ + szα/2/
√

n],
where s2 = n−1 ∑2n

i=n+1(Yi(Ŝ) − β̂Ŝ)2.
Uniform inference (nonsplitting). By “nonsplitting,” we mean that the selec-

tion rule and estimator are invariant under permutations of the data. In partic-
ular, we consider uniform inference which is defined as follows. Let β̂(s) =
(2n)−1 ∑

i Yi(s) be the average over all the observations. Let Ŝ = argmaxs β̂(s).
Our point estimate is β̂Ŝ ≡ β̂(Ŝ). Now define

Fn(t) = P

(
sup

s

√
2n

∣∣β̂(s) − β(s)
∣∣ ≤ t

)
.

We can consistently estimate Fn by the bootstrap:

F̂n(t) = P

(
sup

s

√
2n

∣∣β̂∗(s) − β̂(s)
∣∣ ≤ t |Y1, . . . , Y2n

)
.

A valid confidence set for β is R = {β : ‖β − β̂‖∞ ≤ t/
√

2n} where t = F̂−1
n (1 −

α). Because this is uniform over all possible models (i.e., over all s), it also defines
a valid confidence interval for a randomly selected coordinate. In particular, we
can define

ĈŜ = [β̂Ŝ − t/
√

2n, β̂Ŝ + t/
√

2n].
Both confidence intervals satisfy (7).

We now compare β̂Ŝ and ĈŜ for both the splitting and nonsplitting procedures.
The reader should keep in mind that, in general, Ŝ might be different between the
two procedures, and hence βŜ may be different.

Estimation. First, we consider estimation accuracy.

LEMMA 11. For the splitting estimator,

(44) sup
P∈Pn

E|β̂Ŝ − βŜ | 
 n−1/2.

For nonsplitting, we have

(45) inf
β̂

sup
P∈Pn

E|β̂Ŝ − βŜ | � (logD)1/4
√

n
.
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Thus, the splitting estimator converges at a n−1/2 rate. In fact, this bound holds
for any selection rule. In contrast, nonsplitting estimators have a slower rate, even
with the added assumption of Normality.

Inference. Now we turn to inference. For splitting, we use the usual Normal
interval ĈŜ = [β̂Ŝ − zαs/

√
n, β̂Ŝ + zαs/

√
n] where s2 is the sample variance from

D2,n. We then have, as a direct application of the one-dimensional Berry–Esseen
theorem the following.

LEMMA 12. Let ĈŜ be the splitting-based confidence set. Then

(46) inf
P∈Pn

P(βŜ ∈ ĈŜ) = 1 − α − c√
n

for some c. Also,

(47) sup
P∈Pn

E
[
ν(ĈŜ)

] 
 n−1/2,

where ν is Lebesgue measure. More generally,

(48) inf
w∈Wn

inf
P∈Pn

P(βŜ ∈ ĈŜ) = 1 − α − c√
n

for some fixed c > 0, and

(49) sup
w∈Wn

sup
P∈Pn

E
[
ν(ĈŜ)

] 
 n−1/2.

LEMMA 13. Let ĈŜ be the uniform confidence set. Then

(50) inf
P∈Pn

P(βŜ ∈ ĈŜ) = 1 − α −
(

c(logD)7

n

)1/6

for some fixed > 0. Also,

(51) sup
P∈P2n

E
[
ν(ĈŜ)

] �
√

logD

n
.

The proof is a straightforward application of results in [20, 22]. We thus see that
the splitting method has better coverage and narrower intervals.

Can we estimate the law of β̂(Ŝ)? An alternative nonsplitting method to uniform
inference is to estimate the law F2n of

√
2n(β̂Ŝ − βŜ). Here, we show that the law

of
√

2n(β̂Ŝ −βŜ) cannot be consistently estimated even if we assume that the data
are Normally distributed and even if D is fixed (not growing with n). This was
shown for fixed population parameters in [35]. We adapt their proof to the random
parameter case in the following lemma.
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LEMMA 14. Suppose that Y1, . . . , Y2n
i.i.d.∼ N(β, ID), for some β ∈ RD , and

let ψn(β) = P(
√

2n(β̂Ŝ − βŜ) ≤ t). There is no locally uniformly consistent esti-
mator of ψn(β).

Prediction accuracy. Now we discuss prediction accuracy which is where split-
ting pays a price. The idea is to identify a population quantity θ that model se-
lection is implicitly targeting and compare splitting versus nonsplitting in terms
of how well they estimate θ . The purpose of model selection in regression is to
choose a model with low prediction error. So, in regression, we might take θ to
be the prediction risk of the best linear model with k terms. In our many-means
model, a natural analog of this is the parameter θ = maxj β(j).

We have the following lower bound, which applies to all estimators, including
the ones based on sample splitting.

LEMMA 15. Let Y1, . . . , Yn
i.i.d.∼ N(β, ID), for some β ∈ RD . Let θ =

maxj β(j). Then

inf
θ̂

sup
β

E
[
(θ̂ − θ)2] ≥ 2 logD

n
.

To understand the implications of this result, let us write

(52) β̂(S) − θ = β̂(S) − β(S)︸ ︷︷ ︸
L1

+β(S) − θ︸ ︷︷ ︸
L2

.

The first term, L1, is the focus of most research on post-selection inference. We
have seen it is small for splitting and large for nonsplitting. The second term takes
into account the variability due to model selection which is often ignored. Because
L1 is of order n−1/2 for splitting, and the because the sum is of order

√
logD/n it

follows that splitting must, at least in some cases, pay a price by have L2 large. In
regression, this would correspond to the fact that, in some cases, splitting leads to
models with lower predictive accuracy.

To summarize: splitting gives more precise estimates and coverage for the se-
lected parameter than nonsplitting (uniform) inference. But the two approaches can
be estimating different parameters. This manifests itself by the fact that splitting
can lead to less precise estimates of the population parameter θ . In the regression
setting, this would correspond to the fact that splitting the data can lead to selecting
models with poorer prediction accuracy.

4. Berry–Esseen bounds for nonlinear parameters with increasing dimen-
sion. The results in this paper depend on a Berry–Esseen bound for regression
with possibly increasing dimension. In this section, there is no model selection or
splitting. We set d = k and S = {1, . . . , k} where k < n and k can increase with n.
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These results will be applied after model selection and sample splitting. Existing
Berry–Esseen results for nonlinear parameters are given in [1–3, 19, 52, 59]. Our
results are in the same spirit but we keep careful track of the effect of dimen-
sion and the eigenvalues of �, while leveraging results from [20, 22] on high-
dimensional central limit theorems for simple convex sets.

We derive a general result on the accuracy of the Normal approximation over
hyperrectangles for nonlinear parameters. We make use of three findings from [21,
22] and [49]: the Gaussian anticoncentration theorem, the high-dimensional cen-
tral limit theorem for sparely convex sets and the Gaussian comparison theorem,
given in Supplement J as Theorems 26, 27 and 28, respectively. (We restate these
results in slightly different forms than they appear in the original papers. We do
this because we need to keep track of certain constants that affect our results.)

Let W1, . . . ,Wn be an independent sample from a distribution P on Rb belong-
ing to the class Pn of probability distribution supported on a subset of [−A,A]b,
for some fixed A > 0 and such that

v = inf
P∈Pn

λmin
(
V (P )

)
) and v = sup

P∈Pn

λmax
(
V (P )

)
) ≥ 1,

where V (P ) = EP [(Wi − ψ)(Wi − ψ)�]. We allow the class Pn to change with
n, so that b, v and v—but not A—are to be regarded as functions of n, although
we do not express such dependence in our notation for ease of readability. Notice
that, in the worse case, v can be of order b.

Let g = (g1, . . . , gs)
� : Rb →Rs be a twice-continuously differentiable vector-

valued function defined over an open, convex subset Sn of [−A,A]b such that, for
all P ∈ Pn, ψ = ψ(P ) = E[W1] ∈ Sn. Let ψ̂ = ψ̂(P ) = 1

n

∑n
i=1 Wi and assume

that ψ̂ ∈ Sn almost surely, for all P ∈ Pn. Finally, set θ = g(ψ) and θ̂ = g(ψ̂). For
any point ψ ∈ Sn and j ∈ {1, . . . , s}, we will write Gj(ψ) ∈ Rb and Hj(ψ) ∈ Rb×b

for the gradient and Hessian of gj at ψ , respectively. We will set G(ψ) to be the
s × b Jacobian matrix whose j th row is G�

j (ψ).
To derive a high-dimensional Berry–Esseen bound on g(ψ) − g(ψ̂), we will

study its first-order Taylor approximation. Toward that end, we will require a uni-
form control over the size of the gradient and Hessian of g. Thus we set

(53) B = sup
P∈Pn

max
j=1,...,s

∥∥Gj

(
ψ(P )

)∥∥ and H = sup
ψ∈Sn

max
j=1,...,s

∥∥Hj(ψ)
∥∥

op,

where ‖Hj(ψ)‖op is the operator norm.
The covariance matrix of the linear approximation of g(ψ) − g(ψ̂), which for

any P ∈ Pn, is given by

(54) � = �
(
ψ(P ),P

) = G
(
ψ(P )

)
V (P )G

(
ψ(P )

)�
,

plays a crucial role in our analysis. In particular, our results will depend on the
smallest variance of the linear approximation to g(ψ) − g(ψ̂):

(55) σ 2 = inf
P∈Pn

min
j=1,...,s

G�
j

(
ψ(P )

)
V (P )Gj

(
ψ(P )

)
.
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With these definitions in place, we are now ready to prove the following high-
dimensional Berry–Esseen bound.

THEOREM 16. Assume that W1, . . . ,Wn is an i.i.d. sample from some P ∈ Pn

and let Zn ∼ N(0,�). Then there exists a C > 0, dependent on A only, such that

(56) sup
P∈Pn

sup
t>0

∣∣P(√
n‖θ̂ − θ‖∞ ≤ t

) − P
(‖Zn‖∞ ≤ t

)∣∣ ≤ C(�n,1 + �n,2),

where

�n,1 = 1√
v

(
v2b(log 2bn)7

n

)1/6
,(57)

�n,2 = 1

σ

√√√√b2v2H
2
(logn)2 logb

n
.(58)

REMARK. Under the additional, very mild, moment bound condition
E[(v�(ψ̂ − ψ))4] ≤ C′ or a universal constant C′ > 0, it is easy to show that
the term b2 drops out in the expression for �n,1, so that the dependence on b is
only polylogarithmic.

Asymptotically honest confidence sets: The normal approximation approach.
We now show how to use the high-dimensional central limit theorem Theorem 16
to construct asymptotically honest confidence sets for θ . We will first to obtain a
consistent estimator of the covariance matrix � = G(ψ)V (ψ)G(ψ)� of the linear
approximation to θ̂ − θ . In conventional fixed-dimension asymptotics, we would
appeal to Slutzky’s theorem and ignore the effect of replacing � with a consistent
estimate. But in computing Berry–Esseen bounds with increasing dimension we
may not discard the effect of estimating �. As we will see below, this extra step
will bring an additional error term that must be accounted for. We will estimate �

with the plug-in estimator

(59) �̂ = G(ψ̂)V̂ G(ψ̂)�,

where V̂ = 1
n

∑n
i=1 WiW

�
i − ψ̂ψ̂� is the empirical covariance matrix. Below, we

bound the elementwise difference between � and �̂. Although this is in general
a fairly weak notion of consistency in covariance matrix estimation, it is all that
is needed to apply the Gaussian comparison Theorem 28, which will allow us to
extend the Berry–Esseen bound established in Theorem 16 to the case when � is
estimated.

LEMMA 17. Let

(60) ℵn = max
{
HBv

√
b

logn

n
,B2

√
bv

logb + logn

n

}
.
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There exists a C > 0 dependent on A only such that

(61) sup
P∈Pn

P

(
max
j,l

∣∣�̂(j, l) − �(j, l)
∣∣ ≥ Cℵn

)
≤ 2

n
.

Now we construct the confidence set. Let Q = (Q(1), . . . ,Q(s)) be i.i.d. stan-
dard Normal variables, independent of the data. Let Ẑ = �̂1/2Q and define t̂α by

(62) P
(‖Ẑ‖∞ > t̂α|�̂) = α.

Finally, let

(63) Ĉn =
{
θ ∈ R

s : ‖θ − θ̂‖∞ ≤ t̂α√
n

}
.

THEOREM 18. There exists a C > 0, dependent only on A, such that

(64) inf
P∈P P(θ ∈ Ĉn) = 1 − α − C

(
�n,1 + �n,2 + �n,3 + 1

n

)
,

where

(65) �n,3 = ℵ1/3
n (2 log 2s)2/3

σ 2/3 .

In addition to L∞ balls, we can also construct hyperrectangle confidence sets,
with side lengths proportional to the standard errors of the projection parameters.
In detail, we define

(66) C̃n = ⊗
j∈S

C(j),

where

C(j) =
[
β̂S(j) − zα/(2s)

√
�̂n(j, j)

n
, β̂S(j) + zα/(2s)

√
�̂n(j, j)

n

]
,

with �̂ given by (14) and zα/(2s) the upper 1−α/(2s) quantile of a standard normal
variate. Notice that we use a Bonferroni correction to guarantee a nominal cover-
age of 1 − α. Also, note that zα/(2s) = O(

√
log s), for each fixed α. The coverage

rate for this other confidence set is derived in the next result.

THEOREM 19. Let

(67) �̃n,3 = min
{
�3,n,

ℵnzα/(2s)

σ 2

(√
2 + log(2s) + 2

)}
.

There exists a C > 0, dependent only on A, such that

inf
P∈Pn

P(θ ∈ C̃n) ≥ (1 − α) − C

(
�n,1 + �n,2 + �̃n,3 + 1

n

)
.
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Asymptotically honest confidence sets: The bootstrap approach. To construct
the confidence set (63), one has to compute the estimator �̂ and the quantile t̂α in
(62), which may be computationally inconvenient. Similarly, the hyper-rectangle
(66) requires computing the diagonal entries in �̂.

Below we rely on the bootstrap to construct analogous confidence sets, centered
at θ̂ , which do not need knowledge of �̂. We let ψ̂∗ denote the sample average of
an i.i.d. sample of size n from the bootstrap distribution, which is the empirical
measure associated to the sample (W1, . . . ,Wn). We also let θ̂∗ = g(ψ̂∗).

For a fixed α ∈ (0,1), let t̂∗α be the smallest positive number such that

P
(√

n
∥∥θ̂∗ − θ̂

∥∥ ≤ t̂∗α |(W1, . . . ,Wn)
) ≥ 1 − α

and let (̃t∗j , j = 1, . . . , s) be such that

P
(√

n
∣∣θ̂∗(j) − θ̂ (j)

∣∣ ≤ t̃∗j ,∀j |(W1, . . . ,Wn)
) ≥ 1 − α.

By the union bound, each t̃∗j can be chosen to be the largest positive number such
that

P
(√

n
∣∣θ̂∗(j) − β̂(j)

∣∣ > t̃∗j |(W1, . . . ,Wn)
) ≤ α

s
.

Consider the following two bootstrap confidence sets:

Ĉ∗
n =

{
θ ∈R

s : ‖θ − θ̂‖∞ ≤ t̂∗α√
n

}
,

C̃∗
n =

{
θ ∈R

s : ∣∣θ(j) − θ̂ (j)
∣∣ ≤ t̃∗j√

n
,∀j ∈ Ŝ

}
.

(68)

THEOREM 20. Assume the same conditions of Theorem 16 and that ψ̂ and
ψ̂∗ belong to Sn almost surely. Suppose that n is large enough that the quantities
σ 2

n = σ 2 − Cℵn > 0 and vn = v − C�n are positive, where C is the larger of the
two constants in (61) and in (101) and

�n =
√

bv
logb + logn

n
.

Also set vn = v + C�n. Then, for a constant C depending only on A,

(69) inf
P∈Pn

P
(
θ ∈ Ĉ∗

n

) ≥ 1 − α − C

(
�∗

n,1 + �∗
n,2 + �n,3 + 1

n

)
,

where

�∗
n,1 = 1√

vn

(
vnb(log 2bn)7

n

)1/6
, �∗

n,2 = 1

σn

√√√√bvnH
2
(logn)2 logb

n
,

and �n,3 is given in (65). Similarly,

(70) inf
P∈Pn

P
(
θ ∈ C̃∗

n

) ≥ 1 − α − C

(
�∗

n,1 + �∗
n,2 + �n,3 + 1

n

)
.
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5. Conclusions. In this paper, we have taken a modern look at inference based
on sample splitting. We have also investigated the accuracy of Normal and boot-
strap approximations and we have suggested new parameters for variable signifi-
cance in regression.

Despite the fact that sample splitting is on old idea, there remain many open
questions. For example, in this paper, we focused on a single split of the data. One
could split the data many times and somehow combine the confidence sets. How-
ever, for each split we are essentially estimating a different (random) parameter.
So currently, it is nor clear how to combine this information.

The bounds on coverage accuracy—which are of interest beyond sample
splitting—are upper bounds. An important open question is to find lower bounds.
Also, it is an open question whether we can improve the bootstrap rates. For ex-
ample, the remainder term in the Taylor approximation of

√
n(β̂(j) − β(j)) is

1

2n

∫ ∫
δ�Hj

(
(1 − t)ψ + tψ̂

)
δ dt,

where δ = √
n(ψ̂ − ψ). By approximating this quadratic term, it might be possi-

ble to correct the bootstrap distribution. Pouzo [54] has results for bootstrapping
quadratic forms that could be useful here. In Supplement C, we see that a modified
bootstrap, which we called the image bootstrap, has very good coverage accuracy
even in high dimensions. Future work is needed to compute the resulting confi-
dence set efficiently.

Finally, we remind the reader that we have taken an assumption-lean perspec-
tive. If there are reasons to believe in some parametric model then, of course, the
distribution-free, sample splitting approach used in this paper will be suboptimal.
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SUPPLEMENTARY MATERIAL

Supplement to “Bootstrapping and sample splitting for high-dimensional,
assumption-lean inference” (DOI: 10.1214/18-AOS1784SUPP; .pdf). This sup-
plement provides additional material, including numerical examples, comments on
other approaches, an alternative bootstrap approach, and algorithmic statements of
the studied procedures. The supplement also includes proofs of many of the results
stated in this paper.

REFERENCES

[1] ANASTASIOU, A. and GAUNT, R. E. (2016). Multivariate normal approximation of the maxi-
mum likelihood estimator via the delta method. Preprint. Available at arXiv:1609.03970.

https://doi.org/10.1214/18-AOS1784SUPP
http://arxiv.org/abs/arXiv:1609.03970


3466 A. RINALDO, L. WASSERMAN AND M. G’SELL

[2] ANASTASIOU, A. and LEY, C. (2015). New simpler bounds to assess the asymptotic normality
of the maximum likelihood estimator. Preprint. Available at arXiv:1508.04948.

[3] ANASTASIOU, A. and REINERT, G. (2017). Bounds for the normal approximation of the max-
imum likelihood estimator. Bernoulli 23 191–218. MR3556771

[4] ANDREWS, D. W. K. and GUGGENBERGER, P. (2009). Hybrid and size-corrected subsam-
pling methods. Econometrica 77 721–762. MR2531360

[5] BACHOC, F., LEEB, H. and PÖTSCHER, B. M. (2014). Valid confidence intervals for post-
model-selection predictors. Available at arXiv:1412.4605.

[6] BACHOC, F., PREINERSTORFER, D. and STEINBERGER, L. (2016). Uniformly valid confi-
dence intervals post-model-selection. Available at arXiv:1611.01043.

[7] BARBER, R. F. and CANDÈS, E. J. (2015). Controlling the false discovery rate via knockoffs.
Ann. Statist. 43 2055–2085. MR3375876

[8] BARNARD, G. A. (1974). Discussion of “Cross-validatory choice and assessment of statistical
predictions,” by M. Stone. J. Roy. Statist. Soc. Ser. B 133–135.

[9] BELLONI, A., CHERNOZHUKOV, V. and HANSEN, C. B. (2013). Inference for High-
Dimensional Sparse Econometric Models. vol. 3 245–295. Cambridge Univ. Press.

[10] BELLONI, A., CHERNOZHUKOV, V. and KATO, K. (2015). Uniform post-selection inference
for least absolute deviation regression and other Z-estimation problems. Biometrika 102
77–94. MR3335097

[11] BENTKUS, V. Y. (1985). Lower bounds for the rate of convergence in the central limit theorem
in Banach spaces. Lith. Math. J. 25 312–320.

[12] BERK, R., BROWN, L., BUJA, A., ZHANG, K. and ZHAO, L. (2013). Valid post-selection
inference. Ann. Statist. 41 802–837. MR3099122

[13] BÜHLMANN, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli
19 1212–1242. MR3102549

[14] BÜHLMANN, P. and VAN DE GEER, S. (2015). High-dimensional inference in misspecified
linear models. Electron. J. Stat. 9 1449–1473. MR3367666

[15] BUJA, A., BERK, R., BROWN, L., GEORGE, E., PITKIN, E., TRASKIN, M., ZHAO, L. and
ZHANG, K. (2015). Models as approximations—A conspiracy of random regressors and
model deviations against classical inference in regression. Statist. Sci. 1460.

[16] CANDÈS, E., FAN, Y., JANSON, L. and LV, J. (2018). Panning for gold: “model-X” knockoffs
for high dimensional controlled variable selection. J. R. Stat. Soc. Ser. B. Stat. Methodol.
80 551–577. MR3798878

[17] CHATTERJEE, A. and LAHIRI, S. N. (2011). Bootstrapping lasso estimators. J. Amer. Statist.
Assoc. 106 608–625. MR2847974

[18] CHATTERJEE, A. and LAHIRI, S. N. (2013). Rates of convergence of the adaptive LASSO
estimators to the oracle distribution and higher order refinements by the bootstrap. Ann.
Statist. 41 1232–1259. MR3113809

[19] CHEN, L. H. Y. and SHAO, Q.-M. (2007). Normal approximation for nonlinear statistics using
a concentration inequality approach. Bernoulli 13 581–599. MR2331265

[20] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2013). Gaussian approximations
and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann.
Statist. 41 2786–2819. MR3161448

[21] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2015). Comparison and anti-
concentration bounds for maxima of Gaussian random vectors. Probab. Theory Related
Fields 162 47–70. MR3350040

[22] CHERNOZHUKOV, V., CHETVERIKOV, D. and KATO, K. (2017). Central limit theorems and
bootstrap in high dimensions. Ann. Probab. 45 2309–2352. MR3693963

[23] COX, D. R. (1975). A note on data-splitting for the evaluation of significance levels. Biometrika
62 441–444. MR0378189

http://arxiv.org/abs/arXiv:1508.04948
http://www.ams.org/mathscinet-getitem?mr=3556771
http://www.ams.org/mathscinet-getitem?mr=2531360
http://arxiv.org/abs/arXiv:1412.4605
http://arxiv.org/abs/arXiv:1611.01043
http://www.ams.org/mathscinet-getitem?mr=3375876
http://www.ams.org/mathscinet-getitem?mr=3335097
http://www.ams.org/mathscinet-getitem?mr=3099122
http://www.ams.org/mathscinet-getitem?mr=3102549
http://www.ams.org/mathscinet-getitem?mr=3367666
http://www.ams.org/mathscinet-getitem?mr=3798878
http://www.ams.org/mathscinet-getitem?mr=2847974
http://www.ams.org/mathscinet-getitem?mr=3113809
http://www.ams.org/mathscinet-getitem?mr=2331265
http://www.ams.org/mathscinet-getitem?mr=3161448
http://www.ams.org/mathscinet-getitem?mr=3350040
http://www.ams.org/mathscinet-getitem?mr=3693963
http://www.ams.org/mathscinet-getitem?mr=0378189


BOOTSTRAPPING AND SAMPLE SPLITTING 3467

[24] DEZEURE, R., BÜHLMANN, P., MEIER, L. and MEINSHAUSEN, N. (2015). High-dimensional
inference: Confidence intervals, p-values and R-software hdi. Statist. Sci. 30 533–558.
MR3432840

[25] DEZEURE, R., BÜHLMANN, P. and ZHANG, C.-H. (2017). High-dimensional simultaneous
inference with the bootstrap. TEST 26 685–719. MR3713586

[26] EFRON, B. (2014). Estimation and accuracy after model selection. J. Amer. Statist. Assoc. 109
991–1007. MR3265671

[27] FARAWAY, J. J. (1995). Data splitting strategies for reducing the e ect of model selection on
inference. Technical report, Citeseer.

[28] FITHIAN, W., SUN, D. L. and TAYLOR, J. (2014). Optimal inference after model selection.
Available at arXiv:1410.2597.

[29] HARTIGAN, J. A. (1969). Using subsample values as typical values. J. Amer. Statist. Assoc. 64
1303–1317. MR0261737

[30] HJORT, N. L. and CLAESKENS, G. (2003). Frequentist model average estimators. J. Amer.
Statist. Assoc. 98 879–899. MR2041481

[31] HSU, D., KAKADE, S. M. and ZHANG, T. (2014). Random design analysis of ridge regression.
Found. Comput. Math. 14 569–600. MR3201956

[32] HURVICH, C. M. and TSAI, C. (1990). The impact of model selection on inference in linear
regression. Amer. Statist. 44 214–217.

[33] JAVANMARD, A. and MONTANARI, A. (2014). Confidence intervals and hypothesis testing for
high-dimensional regression. J. Mach. Learn. Res. 15 2869–2909. MR3277152

[34] LEE, J. D., SUN, D. L., SUN, Y. and TAYLOR, J. E. (2016). Exact post-selection inference,
with application to the lasso. Ann. Statist. 44 907–927. MR3485948

[35] LEEB, H. and PÖTSCHER, B. M. (2008). Can one estimate the unconditional distribution of
post-model-selection estimators? Econometric Theory 24 338–376. MR2422862

[36] LEI, J., G’SELL, M., RINALDO, A., TIBSHIRANI, R. J. and WASSERMAN, L. (2018).
Distribution-free predictive inference for regression. J. Amer. Statist. Assoc. 113 1094–
1111. MR3862342

[37] LI, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17
1001–1008. MR1015135

[38] LOCKHART, R., TAYLOR, J., TIBSHIRANI, R. J. and TIBSHIRANI, R. (2014). A significance
test for the lasso. Ann. Statist. 42 413–468. MR3210970

[39] LOFTUS, J. R. and TAYLOR, J. E. (2015). Selective inference in regression models with groups
of variables. Preprint. Available at arXiv:1511.01478.

[40] MARKOVIC, J. and TAYLOR, J. (2016). Bootstrap inference after using multiple queries for
model selection. Available at arXiv:1612.07811.

[41] MARKOVIC, J., XIA, L. and TAYLOR, J. (2017). Comparison of prediction errors: Adaptive
p-values after cross-validation. Available at arXiv:1703.06559.

[42] MEINSHAUSEN, N. (2015). Group bound: Confidence intervals for groups of variables in
sparse high dimensional regression without assumptions on the design. J. R. Stat. Soc.
Ser. B. Stat. Methodol. 77 923–945. MR3414134

[43] MEINSHAUSEN, N. and BÜHLMANN, P. (2010). Stability selection. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 72 417–473. MR2758523

[44] MEINSHAUSEN, N., MEIER, L. and BÜHLMANN, P. (2009). p-values for high-dimensional
regression. J. Amer. Statist. Assoc. 104 1671–1681. MR2750584

[45] MENTCH, L. and HOOKER, G. (2016). Quantifying uncertainty in random forests via con-
fidence intervals and hypothesis tests. J. Mach. Learn. Res. 17 Paper No. 26, 41.
MR3491120

[46] MILLER, A. J. (1990). Subset Selection in Regression. Monographs on Statistics and Applied
Probability 40. CRC Press, London. MR1072361

http://www.ams.org/mathscinet-getitem?mr=3432840
http://www.ams.org/mathscinet-getitem?mr=3713586
http://www.ams.org/mathscinet-getitem?mr=3265671
http://arxiv.org/abs/arXiv:1410.2597
http://www.ams.org/mathscinet-getitem?mr=0261737
http://www.ams.org/mathscinet-getitem?mr=2041481
http://www.ams.org/mathscinet-getitem?mr=3201956
http://www.ams.org/mathscinet-getitem?mr=3277152
http://www.ams.org/mathscinet-getitem?mr=3485948
http://www.ams.org/mathscinet-getitem?mr=2422862
http://www.ams.org/mathscinet-getitem?mr=3862342
http://www.ams.org/mathscinet-getitem?mr=1015135
http://www.ams.org/mathscinet-getitem?mr=3210970
http://arxiv.org/abs/arXiv:1511.01478
http://arxiv.org/abs/arXiv:1612.07811
http://arxiv.org/abs/arXiv:1703.06559
http://www.ams.org/mathscinet-getitem?mr=3414134
http://www.ams.org/mathscinet-getitem?mr=2758523
http://www.ams.org/mathscinet-getitem?mr=2750584
http://www.ams.org/mathscinet-getitem?mr=3491120
http://www.ams.org/mathscinet-getitem?mr=1072361


3468 A. RINALDO, L. WASSERMAN AND M. G’SELL

[47] MORAN, P. A. P. (1973). Dividing a sample into two parts. A statistical dilemma. Sankhyā Ser.
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