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ADAPTIVE-TO-MODEL CHECKING FOR REGRESSIONS WITH
DIVERGING NUMBER OF PREDICTORS1
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Hunan University∗, Beijing Normal University† and Hong Kong Baptist
University‡

In this paper, we construct an adaptive-to-model residual-marked empir-
ical process as the base of constructing a goodness-of-fit test for parametric
single-index models with diverging number of predictors. To study the rele-
vant asymptotic properties, we first investigate, under the null and alternative
hypothesis, the estimation consistency and asymptotically linear representa-
tion of the nonlinear least squares estimator for the parameters of interest
and then the convergence of the empirical process to a Gaussian process. We
prove that under the null hypothesis the convergence of the process holds
when the number of predictors diverges to infinity at a certain rate that can
be of order, in some cases, o(n1/3/ logn) where n is the sample size. The
convergence is also studied under the local and global alternative hypothesis.
These results are readily applied to other model checking problems. Further,
by modifying the approach in the literature to suit the diverging dimension
settings, we construct a martingale transformation and then the asymptotic
properties of the test statistic are investigated. Numerical studies are con-
ducted to examine the performance of the test.

1. Introduction. Parametric regression models have been widely used in
practice. It is however necessary to check the model adequacy to prevent possi-
ble wrong conclusions in any further analysis. This issue has been well studied
when the dimension p of the predictor vector is fixed. Yet, for the cases with large
dimension that may be regarded as a diverging number as the sample size goes to
infinity, there are no tests for parametric models available in the literature. We now
specify this problem.

Let Yn be a response variable associated with a pn-dimensional predictor vector
Xn ∈ R

pn where pn diverges as the sample size n tends to infinity. The regression
function mn(x) = E(Yn|Xn = x) is the conditional expectation of Yn given Xn.
Let Gn = {g(β�·, θ) : β ∈ R

pn, θ ∈ R
d} be a given parametric family of functions

where g(·, ·) is a given function. The study herewith is motivated by checking
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whether mn(·) belongs to Gn or not. Thus the null hypothesis we want to test is
that (Yn,Xn) follows a parametric single-index model as

(1.1) Yn = g
(
β�

n0Xn, θ0
) + εn for some βn0 ∈ R

pn, θ0 ∈ R
d .

Here εn = Yn − E(Yn|Xn) is the error term with εn = V1(β
�
n0Xn)ε̃n where ε̃n is

independent of Xn and has zero mean, V1 is a squared integrable nonparametric
function, d is fixed and � denotes the transposition. In this paper, we call this
model the parametric single-index model. Although they are in form a generalized
linear model, we do not use this name as generalized linear models have their own
definitions in the literature.

To make full use of the model structures under both the null and the alternative
hypothesis, we consider the following alternative model

(1.2) Yn = G
(
B�

n Xn

) + εn.

Here εn = Yn −E(Yn|Xn) is the error term with εn = V2(B
�
n Xn)ε̃n where ε̃n is in-

dependent of Xn and has zero mean, V2 is also a squared integrable nonparametric
function, G(·) is an unknown smooth function and Bn is a pn × qn orthonormal
matrix with an unknown qn with 1 ≤ qn ≤ pn. Note that this is a more general
model than the nonparametric model Yn = G(Xn) + εn that is a special case when
Bn is an pn × pn identity matrix with qn = pn.

We now review the existing methodologies in the literature when the dimen-
sion pn = p is fixed. Two major classes of tests are: locally smoothing tests and
globally smoothing tests. Locally smoothing tests use nonparametric smoothing
estimators to construct test statistics; see Härdle and Mammen (1993), Zheng
(1996), Fan and Li (1996), Dette (1999), Fan and Huang (2001), Koul and Ni
(2004) and Van Keilegom, González Manteiga and Sánchez Sellero (2008) as ex-
amples. Globally smoothing tests construct test statistics based on averages of
functionals of empirical processes and thus avoid nonparametric estimation. They
are called globally smoothing tests as averaging is a globally smoothing step. Ex-
amples include Bierens (1982, 1990), Stute (1997), Stute, Thies, and Zhu (1998),
Stute, González Manteiga and Presedo Quindimil (1998) and Khmaladze and Koul
(2004). González-Manteiga and Crujeiras (2013) is a nice review paper.

When the dimension p is fixed but large (even moderate), most existing tests,
especially locally smoothing tests, perform badly due to the use of nonparamet-
ric estimations. Globally smoothing tests also suffer from the data sparseness in
high-dimensional space. Several efforts have been devoted to solving this prob-
lem. Stute and Zhu (2002) can be regarded as a dimension reduction-based test.
A martingale transformation leads it to be asymptotically distribution-free. This
test has been proved to be powerful in many cases, even when p is large. But it
is not omnibus while is a directional test. Escanciano (2006) gave some detailed
comments on this issue, and proposed a test that is based on projected predictors.
Lavergne and Patilea (2008, 2012) also suggested projection-based tests. An early
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relevant reference is Zhu and An (1992). Guo, Wang and Zhu (2016) also com-
mented on this issue and put forward to a model adaptation notion in hypothesis
testing. This innovative notion provides a deep insight into model checking for re-
gressions and the adaptive-to-model approach can fully use the model structures
under both the null and alternative hypothesis. Recently, with the assistance of
sufficient dimension reduction techniques, Tan, Zhu and Zhu (2018) generalized
Stute and Zhu’s (2002) method and obtained an omnibus test which is asymptoti-
cally distribution-free and inherits the dimension reduction properties.

However, extending the existing methods to diverging dimension cases is by
no means trivial. In this paper, we devote the effort on this issue to construct an
adaptive-to-model residual-marked empirical process as the base of constructing
a test. Under the null hypothesis, the process is similar to that of Stute and Zhu
(2002). However, it is of importance to investigate at which rate of pn to infinity,
the convergence of the empirical process to a Gaussian process can be achieved.
As there are no relevant results in the literature about this, investigating this issue
is one of the main focuses in this paper. We find that the leading rate n1/3 of pn for
ensuring the convergence of the empirical processes would not be easy to improve
as the technical proof shows this, although we cannot give a definitive answer
right now. A brief comment will be given in Section 3. The results are of particular
interest as the theoretical results can be applied to other model checking problems
when any residual-marked empirical process is used to construct test statistic in
diverging dimension settings.

This study also relates to parameter estimation when pn is divergent. For linear
models, this issue has been paid much attention in the literature. Huber (1973)
was a pioneer work that provided norm consistency and asymptotic normality of
the least squares estimator for linear models when pn goes to infinity at the rate
of order o(n1/3) where n is the sample size. Portnoy (1984, 1985) refined the
results under some more conditions. There are many developments afterwards. For
instance, Zou and Zhang (2009) greatly improved the diverging rate of pn also for
linear models. All these methods assume fixed designs that are different from the
case in the present paper. When the model is nonlinear, there are few estimation
results available in the literature. Thus, we also give a study on this.

Another interesting issue is that even its limiting Gaussian process can be de-
rived, the shift term created by estimating the parameters of interest has no close
form. Thus, we cannot directly follow the martingale transformation as Stute and
Zhu (2002) did. This is a typical problem when pn is divergent, which does not
happen when pn = p is fixed. Then a modified approach is suggested to define a
martingale transformation in this scenario. The asymptotic properties of the mar-
tingale transformation-based innovation process under both the null and alterna-
tives are also studied. We show that when pn = p is fixed, this transformation is
equivalent to that in Stute and Zhu (2002). The test based on the constructed pro-
cess can be consistent against all global alternatives as well as the local alternatives
distinct from the null at the rate slower than 1/

√
n. We also prove that it can detect
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the local alternatives converging to the null at the rate of 1/
√

n, a fastest possible
rate in hypothesis testing. These are interesting results, that the sensitivity of the
test to the local alternatives can still be at a parametric rate even when pn is di-
vergent. Further, the test statistic construction is also under the model adaptation
framework such that the test is still omnibus even when the one-dimensional di-
mension reduction structure under the null has been fully used like Stute and Zhu
(2002). This inherits the properties of Tan, Zhu and Zhu’s (2018) test.

The paper is organized as follows. Section 2 contains the asymptotic properties
of the ordinary least squares estimator with diverging dimension. Based on the es-
timator, we define an adaptive-to-model residual-marked empirical process. Since
sufficient dimension reduction theory plays a crucial role to achieve the model
adaptation property, we give a brief review in this section and study the conver-
gence rate of the relevant estimators. In Section 3, we present the result that the
adaptive-to-model empirical process converges weakly to a Gaussian process un-
der the null hypothesis and the asymptotic properties under the local and global
alternative hypothesis. We also give the test statistic for practical use. In Section 4,
several simulation studies are conducted to examine the performance of the test
and a real data example is analysed for illustration. Section 5 contains some dis-
cussions and topics in the future study. As Theorem 3.1 is an important result to
show the convergence of the empirical process when the dimension pn is divergent,
we give the proof in the Appendix. The regularity conditions and the proofs for the
other theorems and propositions are contained in the Supplementary Material (Tan
and Zhu (2019)) for saving space.

2. An adaptive-to-model residual-marked empirical process.

2.1. Parameter estimation. Let {(Xni, Yni), i = 1, . . . , n} be an i.i.d. sample
with the same distribution as (Xn,Yn) and let εn = Yn − E(Yn|Xn) be the unpre-
dictable part of Yn given Xn. Recall that Gn = {g(β�·, θ) : β ∈ R

pn, θ ∈ R
d}. We

want to test whether or not

H0 : Yn = g
(
β�

n0Xn, θ0
) + εn for some βn0 ∈ R

pn, θ0 ∈R
d .

For estimating the unknown (βn0, θ0), in this paper we restrict ourselves to the
ordinary least squares method. Let

(β̂n, θ̂n) = argmin
β,θ

n∑
i=1

[
Yni − g

(
β�Xni, θ

)]2
.

To analyze the asymptotic property of (β̂n, θ̂n), define

(β̃n0, θ̃0) = argmin
β,θ

E
[
Yn − g

(
β�Xn, θ

)]2
.
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It is easy to see that if mn(·) ∈ Gn, we have (β̃n0, θ̃0) = (βn0, θ0). If mn(·) /∈ Gn,
(β̃n0, θ̃0) typically depends on the distribution of Xn. Let en = Yn − g(β̃�

n0Xn, θ̃0).
Then under the null hypothesis we have en = εn.

To study the asymptotic properties of (β̂n, θ̂n) as pn is divergent, we first give
some notations. The regularity conditions are postponed to the Supplementary Ma-
terial (Tan and Zhu (2019)). Suppose that g(β�x, θ) is third differentiable with
respect to (β, θ). Let

g′(β, θ, x) = ∂g(β�x, θ)

∂(β, θ)
and g′′(β, θ, x) = ∂g′(β, θ, x)

∂(β, θ)
.

The matrix g′′(β, θ, x) is used within the following matrix �n which will play a
crucial role in deriving the asymptotic properties of (β̂n, θ̂n):

�n = E
[
g′(β̃n0, θ̃0,Xn)g

′(β̃n0, θ̃0,Xn)
�] − E

[
eng

′′(β̃n0, θ̃0,Xn)
] =: �n1 − �n2.

The next two results give the norm consistency of (β̂n, θ̂n) to (β̃n0, θ̃0) and the

asymptotically linear representation of
( β̂n−β̃n0

θ̂n−θ̃0

)
. The representation generalizes

the results of White (1981) to the diverging dimension settings. For simplicity, we
define hereafter γ̂n = (β̂�

n , θ̂�
n )�, γ̃n0 = (β̃�

n0, θ̃
�
0 )� and γn0 = (β�

n0, θ
�
0 )�.

PROPOSITION 1. Assume that conditions (A1)–(A6) in the Supplementary
Material hold. If p2

n/n → 0 and g′′(β, θ, x) ≡ 0, or p4
n/n → 0, then γ̂n is a norm

consistent estimator of γ̃n0 in the sense that ‖γ̂n − γ̃n0‖ = Op(
√

pn/n), where ‖ · ‖
denotes the Frobenius norm.

The convergence rate of order
√

pn/n is in line with the results in Huber (1973)
and Portnoy (1984) when pn diverges. For the asymptotically linear representation,
we have the following result.

PROPOSITION 2. Assume that conditions (A1)–(A6) in the Supplementary
Material (Tan and Zhu (2019)) hold. If p3

n/n → 0 and g′′(β, θ, x) ≡ 0, or p5
n/n →

0, we then have the following asymptotically linear representation:

(2.1) γ̂n − γ̃n0 = �−1
n

1

n

n∑
i=1

[
Yni − g

(
β̃�

n0Xni, θ̃0
)]

g′(β̃n0, θ̃0,Xni) + op

(
1√
n

)
,

where the remaining term op( 1√
n
) is in the sense of norm consistency.

REMARK 1. Both the rate p4
n/n → 0 and p5

n/n → 0 in these two propositions
as n → ∞ seem slow. When the condition g′′(β, θ, ·) ≡ 0 holds, the rates can be
improved to p2

n/n → 0 and p3
n/n → 0, respectively as Huber (1973) obtained,

where he only considered linear models. Portnoy (1984, 1985) also obtained the
norm consistency and the normal approximation under a weaker condition where
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he still considered linear models. Note that if g(β�X,θ) = β�X, g′′(β, θ, ·) ≡ 0.
Thus, our result is more general, though slightly. Further, for the least squares
estimator for linear models, when fixed design is considered, the rates can be im-
proved to be pn = o(n) and pn = O(nα) for 0 ≤ α < 1 for the norm consistency
and asymptotically linear representation when some regularity conditions are as-
sumed. See Zou and Zhang (2009). However, for the random design in this paper, it
is still unknown whether these faster rates can achieve or not. More specifically, if
without other extra conditions, the fastest passible convergence rate is p2

n/n. This
is because we need the convergence rate of ‖�̂n − �n‖ in proving Propositions 1
and 2 where �̂n is the estimator of �n. Since each element in �̂n − �n has an
optimal rate 1/

√
n and ‖�̂n − �n‖ is a square root of the sum of p2

n elements, it

is easy to see that ‖�̂n − �n‖ = Op(
√

p2
n/n) as presented in Propositions 1 and 2.

Moreover, for nonlinear models without g′′(β, θ, ·) ≡ 0, the remainders after the
Taylor expansion involve g′′(β, θ, ·) and g′′′(β, θ, ·). Thus, the rate gets slower and
the optimal rate is still unknown.

2.2. Empirical process construction. Recall the null hypothesis:

H0 : P
{
E(Yn|Xn) = g

(
β�

n0Xn, θ0
)} = 1 for some βn0 ∈ R

pn, θ0 ∈ R
d,

against the alternative hypothesis:

H1 : P
{
E(Yn|Xn) = G

(
B�

n Xn

) �≡ g
(
β�Xn, θ

)}
< 1 ∀β ∈ R

pn, θ ∈ R
d,

where G(·) is an unknown smooth function and the pn × qn orthonormal ma-
trix Bn is given in (1.2). We assume that β̃n0 ∈ SE(Yn|Xn) under both the null
and alternative hypothesis where SE(Yn|Xn) is the central mean subspace such
that SE(Yn|Xn) = span(Bn). Under the null hypothesis, this is obvious. Under
the alternative hypothesis, if g(β�Xn, θ) = β�Xn is a linear model, we have
β̃n0 = [E(XnX

�
n )]−1E(XnYn) ∈ SE(Yn|Xn). For other models, β̃n0 may not be nec-

essarily in SE(Yn|Xn). If β̃n0 /∈ SE(Yn|Xn) under the alternative hypothesis, in Sec-
tion 5 we will give a detailed discussion and provide a partial solution to relax the
assumption we impose.

Also recall εn = Yn − E(Yn|Xn) and en = Yn − g(β̃�
n0Xn, θ̃0). Under the null

hypothesis, en = εn, q = 1 and Bn = κnβn0 with κn = ± 1
‖βn0‖ . Therefore, we ob-

tain that E(en|B�
n Xn) = E(en|β�

n0Xn) = 0. Under the alternative hypothesis, we
have E(en|B�

n Xn) = G(B�
n Xn) − g(β̃�

n0Xn, θ̃0) �= 0. Then it follows that under
the null hypothesis

(2.2) E
[
enI

(
B�

n Xn ≤ u
)] = E

[
enI

(
κnβ

�
n0Xn ≤ u

)] = 0.

While under the alternatives, by Lemma 1 of Escanciano (2006), there exists an
αn ∈ S+

qn
such that E(en|α�

n B�
n Xn) �= 0, where S+

qn
= {αn = (a1, . . . , aqn)

� ∈
R

qn : ‖αn‖ = 1 and a1 ≥ 0}. Then it follows that

(2.3) E
[
enI

(
α�

n B�
n Xn ≤ u

)] �= 0.
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Note that under the null we have qn = 1 and S+
qn

= {1}. Thus the quantity
E[enI (α�

n B�
n Xn ≤ u)] actually has the same form in both (2.2) and (2.3). Define

an adaptive-to-model residual marked empirical process Vn(u) in the diverging
dimension setting as below

Vn(α̂n, u) = 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
α̂�

n B̂�
n Xni ≤ u

)
,(2.4)

Vn(u) = sup
α̂n∈S+

q̂n

∣∣Vn(α̂n, u)
∣∣,(2.5)

where β̂n and θ̂n are defined as before and B̂n is the sufficient dimension reduction
estimator of Bn with an estimated structural dimension q̂n of qn, which will be
specified later. For Vn(u), one can also use the integral over S+

q̂n
to define a test

statistic.
To achieve the model adaptation property of the process, we need sufficient

dimension reduction (SDR) techniques to identify the structural dimension qn and
the matrix Bn. We give a brief review below on this topic and extend the results to
diverging dimension settings.

2.3. The estimation of the matrix Bn and its structural dimension. Recall un-
der the alternative hypothesis the model is as

(2.6) Yn = G
(
B�

n Xn

) + εn,

where the error term satisfies that E(εn|B�
n Xn) = 0, G(·) is an unknown smooth

function and Bn is a pn × qn orthonormal matrix with 1 ≤ qn ≤ pn. We can see
that under both the null and alternative hypothesis, the conditional independence
holds respectively:

Yn ⊥⊥ E(Yn|Xn)|β�
n0Xn, and Yn ⊥⊥ E(Yn|Xn)|B�

n Xn,

where ⊥⊥ means statistical independence. Define SE(Yn|Xn) as the central mean
subspace of Yn with respect to Xn (see Cook and Li (2002)) that is, the in-
tersection of all subspaces span(Bn) spanned by the columns of Bn such that
Yn ⊥⊥ E(Yn|Xn)|B�

n Xn. The dimension of SE(Yn|Xn) is called the structural di-
mension, denoted as dE(Yn|Xn). Under mild conditions, such a subspace SE(Yn|Xn)

always exists (see Cook and Li (2002)). If SE(Yn|Xn) = span(Bn), then E(Yn|Xn) =
E(Yn|B�

n Xn). Under the null hypothesis (1.1), dE(Yn|Xn) = 1 and SE(Yn|Xn) =
span(βn0/‖βn0‖). Under the alternative (1.2), dE(Yn|Xn) = qn and SE(Yn|Xn) =
span(Bn). There are some methods to estimate the central mean subspace such
that a matrix BnCn can be identified where Cn is a q × q orthonormal matrix.
Principal Hessian directions (pHd, Li (1992)) is a popularly used method for this
purpose when p is fixed. However, when p is divergent, there are no correspond-
ing asymptotic results about pHd and we guess that the convergence rates of the
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corresponding estimated eigenvalues and matrix Bn would be very slow. Thus, in
this paper we consider a method that is for identifying the central subspace defined
below.

The central subspace is related to the conditional distribution of Yn|Xn (see
Cook (1998)), denoted by SYn|Xn . This space is the intersection of all sub-
spaces span(Bn) such that Yn ⊥⊥ Xn|B�

n Xn. Obviously, SE(Yn|Xn) ⊂ SYn|Xn . Un-
der the conditions on the error term under the null and alternative hypothesis,
SE(Yn|Xn) = SYn|Xn . That is, our conditions on the error term can make sure that
SE(Yn|Xn) = SYn|Xn as εn = V1(β

�
n0Xn)ε̃n under the null and εn = V2(B

�
n Xn)ε̃n

under the alternative where ε̃n is independent of Xn. In Section 5, we will discuss
how to relax these conditions as well.

There are also several estimation proposals available in the literature. For in-
stance, sliced inverse regression (SIR, Li (1991)), sliced average variance estima-
tion (SAVE, Cook and Weisberg (1991)), directional regression (DR, Li and Wang
(2007)) and discretization-expectation estimation (DEE, Zhu et al. (2010)). All
these methods assumed that p is fixed. Zhu, Miao and Peng (2006) first discussed
the asymptotic properties of SIR when pn diverges to infinity. In this paper, we
adapt cumulative slicing estimation (CSE, Zhu, Zhu and Feng (2010)) to identify
the central subspace. This is because it is very easily implemented and can han-
dle the case where the dimension pn grows to infinity. Note that CSE requires the
linearity condition. This is satisfied if the predictors Xn are elliptically symmetric.
Hall and Li (1993) showed that when pn → ∞ as n → ∞, the linear combina-
tions of the covariates are approximately normally distributed. Thus the linearity
condition for CSE is approximately satisfied when the dimension pn is large.

The procedure of CSE is as follows. For simplicity, we assume E(Xn) = 0,
Var(Xn) = Ipn for a moment. Thus it is easy to see that E[Xnh(Yn)] ∈ SYn|Xn for
any function h(·). Theoretically, we obtain infinity amount of vectors in SYn|Xn .
Zhu et al. (2010) suggested a determining class of indicator functions to replace
h(·). Let ht (Yn) = I (Yn ≤ t). It follows that

Yn ⊥⊥ Xn|B�
n Xn ⇐⇒ ht (Yn) ⊥⊥ Xn|B�

n Xn, ∀t ∈R.

Define the target matrix

(2.7) Mn =
∫

E
[
Xnht (Yn)

]
E

[
X�

n ht (Yn)
]
dFYn(t),

where FYn denotes the cumulative distribution function of Yn. If the rank of Mn

is qn, then span(Mn) = SYn|Xn . Based on this, it is easy to obtain the sample ver-
sion of Mn. Let Zni be the standardized Xni and ξ̂t = 1

n

∑n
i=1 ZniI (Yni ≤ t). The

estimator of Mn is given by

(2.8) M̂n = 1

n

n∑
j=1

ξ̂Ynj
ξ̂�
Ynj

.
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If the structural dimension qn is given, an estimator B̂n(q) of Bn consists of the
eigenvectors corresponding to the largest qn eigenvalues of M̂n.

Yet we need a consistent estimator q̂n of qn that is usually unknown under the
alternative hypothesis. Later we will see that even when qn is given, we still want
a consistent estimator because we wish the test to have the model adaptation prop-
erty to fully use the dimension reduction structure under the null hypothesis. In-
spired by Xia et al. (2015), we suggest a minimum ridge-type eigenvalue ratio
estimator (MRER) to determine qn. Let λ̂n1 ≥ · · · ≥ λ̂npn and λn1 ≥ · · · ≥ λnpn be
the eigenvalues of the matrix M̂n and Mn respectively. Since rank(Mn) = qn, it
follows that

λn1 ≥ · · · ≥ λnqn > λn,qn+1 = · · · = λn,pn = 0.

Hence we estimate the structural dimension qn by

(2.9) q̂n = arg min
1≤i≤pn

{
i : λ̂2

n,i+1 + cn

λ̂2
ni + cn

}
.

Here λ̂n,pn+1 = 0 and the ridge cn is a positive constant depending on n. The
following result shows that the consistency of MRER is adaptive to the underlying
models. Its proof is given in the Supplementary Material (Tan and Zhu (2019)).

PROPOSITION 3. Suppose that the regularity conditions of Theorem 3 in Zhu
et al. (2010) hold. Let B̂n(qn) be a matrix whose columns are the eigenvectors
that are associated with the largest qn eigenvalues of M̂n. Assume further that
0 < c0 ≤ λnqn ≤ · · · ≤ λn1 ≤ C0 < ∞ and cn = (logn)/n. Then:

(1) under H0, we have P(q̂n = 1) → 1 and ‖B̂n(1) − κnβn0‖ = Op(
√

pn/n);
(2) under H1, we have P(q̂n = qn) → 1 and ‖B̂n(qn) − Bn‖ = Op(

√
pnqn/n).

3. Main results.

3.1. Asymptotic properties of the process. First, we discuss the asymptotic
properties of the process Vn(α̂n, u) under the null hypothesis. To facilitate the
study, we define the following process:

V 0
n (u) = 1√

n

n∑
i=1

[
Yni − g

(
β�

n0Xni, θ0
)]

I
(
κnβ

�
n0Xni ≤ u

)
.

Put

σ 2
n (v) = Var

(
Yn|κnβ

�
n0Xn = v

)
,

ψn(u) = E
[
Var

(
Yn|κnβ

�
n0Xn

)
I
(
κnβ

�
n0Xn ≤ u

)]
.
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Then we have σ 2
n (v) = E(ε2

n|κnβ
�
n0Xn = v) and ψn(u) = ∫ u

−∞ σ 2
n (v)Fκnβn0(dv)

where Fκnβn0 is the cumulative distribution function of κnβ
�
n0Xn. Obviously, ψn(u)

is a nondecreasing and nonnegative function. Since

V 0
n (u) = 1√

n

n∑
i=1

εniI
(
κnβ

�
n0Xni ≤ u

)
is a centered residual cusum process, it is readily seen that

Cov
[
V 0

n (s),V 0
n (t)

] = ψn(s ∧ t).

By Theorem 2.11.22 in van der Vaart and Wellner (1996), we obtain that V 0
n (u) is

asymptotically tight. If ψn(u) → ψ(u) pointwisely in u, it follows that

(3.1) V 0
n (u) −→ V∞(u) in distribution,

in the space �∞(R), where V∞(u) is a centred Gaussian process with the covari-
ance function ψ(s ∧ t) and �∞(R) is the set of all real bounded functions on R

(see Section 1.5 in van der Vaart and Wellner (1996)). Since ψ(u) is also nonde-
creasing and nonnegative, it follows that V∞(u) = B(ψ(u)) in distribution, where
B(u) is a standard Brownian motion.

We now study Vn(α̂n, u) defined in (2.4). By Proposition 3, P(q̂n = 1) → 1
under the null hypothesis. Thus we only need to work on the event {q̂n = 1}. Con-
sequently, S+

q̂n
= {1} and Vn(α̂n, u) can be rewritten as

Vn(α̂n, u) = 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
B̂�

n Xni ≤ u
)
.

Under some regularity conditions stated in the Supplementary Material (Tan and
Zhu (2019))and on the event {q̂n = 1}, we can show that under the null hypothesis

(3.2) Vn(α̂n, u) = V 0
n (u) − √

n(γ̂n − γn0)
�Rn(u) + op(1)

uniformly in u, where Rn(u) = E[g′(βn0, θ0,Xn)I (κnβ
�
n0Xn ≤ u)]. A proof

of (3.2) is given in the Appendix. Combining (3.2) with Proposition 2, some ele-
mentary calculations yield

(3.3) Vn(α̂n, u) = V 0
n (u) − Rn(u)��−1

n

1√
n

n∑
i=1

g′(βn0, θ0,Xni)εni + op(1)

uniformly in u. Altogether we obtain the following result.

THEOREM 3.1. Suppose that the regularity conditions in the Supplementary
Material hold. When (pn logn)3/n → 0 and g′′(β, θ, x) ≡ 0, or p5

n/n → 0, then
under the null hypothesis, we have in distribution

Vn(u) −→ ∣∣V 1∞(u)
∣∣,
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where V 1∞(u) is a zero mean Gaussian process with a covariance function K(s, t)

that is the pointwise limit of Kn(s, t) as

Kn(s, t) = E
[
ε2
nI

(
κnβ

�
n0Xn ≤ s ∧ t

)]
− Rn(s)

��−1
n E

[
ε2
ng

′(βn0, θ0,Xn)I
(
κnβ

�
n0Xn ≤ t

)]
− Rn(t)

��−1
n E

[
ε2
ng

′(βn0, θ0,Xn)I
(
κnβ

�
n0Xn ≤ s

)]
+ Rn(s)

��−1
n E

[
ε2
ng

′(βn0, θ0,Xn)g
′(βn0, θ0,Xn)

�]
�−1

n Rn(t).

REMARK 2. Note that the dimension pn is required to have divergence rate
slower than n1/3/(logn) under some conditions. From the lemmas in the Supple-
mentary Material (Tan and Zhu (2019)), we can see that the leading term n1/3

would be close to optimal. This is because when pn is divergent, the covering
number of index functions in the empirical process diverges at an exponential rate
and the equicontinuity of the process requires such a rate. This conjecture is based
on a similar case for the projection pursuit-type Kolmogonov–Smirnov test inves-
tigated by Zhu and Cheng (1994) who gave the same rate for the lower and upper
bound of the tail probability. Of course, when the underlying model has a sparse
structure and a lower-dimensional model can be selected, the rate of pn can be
faster. This is beyond the scope of this paper.

3.2. Martingale transformation. If p is fixed, V 1∞(u) can be rewritten as
V 1∞(u) = V∞(u) + R(u)�V in distribution and its covariance function can be
specified. The shift term R(u)�V is brought out from the second term in (3.3).
Stute, Thies and Zhu (1998) first proposed a martingale transformation to elim-
inate R(u)�V in V 1∞(u) and then to obtain a tractable limiting distribution of a
functional of V∞(u). This has become one of the basic methodologies in the area
of model checking to derive asymptotically distribution-free tests. It was motivated
by the Khmaladze martingale transformation in constructing goodness of fit tests
for hypothetical distribution functions (Khmaladze (1982)). There are a number
of follow-up studies in the literature to extend this methodology to various high-
dimensional models such as Khmaladze and Koul (2004) and Stute, Xu and Zhu
(2008). However, when pn diverges as n goes to infinity, the shift term does not
have such a close form as that in the fixed dimension case. The martingale transfor-
mation cannot directly target R(u)�V . We then bypass this difficulty by checking
its shift term at the sample level. Note that the shift term comes from the second
term in (3.2) and in the case with the fixed p, R(u)�V is just its weak limit.

Recall that Rn(u) = E[g′(βn0, θ0,Xn)I (κnβ
�
n0Xn ≤ u)] and ψn(u) =∫ u

−∞ σ 2
n (v)Fκnβn0(dv). Let

an(u) = ∂Rn(u)

∂ψn(u)
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be the Radon–Nikodym derivative of Rn(u) with respect to ψn(u). Next, define a
(pn + d) × (pn + d) matrix

An(u) =
∫ ∞
u

an(z)R
�
n (dz) =

∫ ∞
u

an(z)an(z)
�σ 2

n (z)Fκnβn0(dz).

It can also be written as

An(u) = E
[
an

(
κnβ

�
n0Xn

)
g′(βn0, θ0,Xn)

�I
(
κnβ

�
n0Xn ≥ u

)]
.

Mimicking the martingale transformation in Stute and Zhu (2002) at the sample
level, we have

(3.4) (Tnfn)(u) = fn(u) −
∫ u

−∞
an(z)

�A−1
n (z)

(∫ ∞
z

an(v)fn(dv)

)
ψn(dz).

Here we should assume that An(u) is nonsingular and the process fn(u) should be
either of bounded variation or a Brownian motion.

Some elementary computations conclude that Tn(
√

n(γ̂n − γn0)
�Rn) = 0. We

now discuss the asymptotic properties of TnV
0
n . Note that

(
TnV

0
n

)
(u) = V 0

n (u) −
∫ u

−∞
an(z)

�A−1
n (z)

(∫ ∞
z

an(v)V 0
n (dv)

)
ψn(dz)

and ∫ ∞
z

an(v)V 0
n (dv) = 1√

n

n∑
i=1

an

(
κnβ

�
n0Xni

)
I
(
κnβ

�
n0Xni ≥ z

)
εni.

Combining these two formulas, we obtain that

TnV
0
n (u) = V 0

n (u) − 1√
n

n∑
i=1

∫ u

−∞
an(z)

�A−1
n (z)an

(
κnβ

�
n0Xni

)
× I

(
κnβ

�
n0Xni ≥ z

)
ψn(dz)εni .

Therefore, TnV
0
n is also a cusum process of i.i.d. centered residuals with the co-

variance function

(3.5) Cov
[
TnV

0
n (s), TnV

0
n (t)

] = Cov
[
V 0

n (s),V 0
n (t)

] = ψn(s ∧ t).

This means that TnV
0
n (u) admits the same limiting distribution as that of V 0

n (u),
that is,

(3.6) TnV
0
n (u) −→ V∞(u) in distribution.

Consequently, we get rid of the annoying shift term
√

n(γ̂n − γn0)
�Rn and obtain

the process V∞(u) whose supremum over all u has a tractable distribution. The
assertions (3.5) and (3.6) will be justified in the Supplementary Material (Tan and
Zhu (2019); see Lemma 1).
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The transformation Tn obviously contains some unknown quantities and there-
fore needs to be substituted by their empirical analogues. For this, let g′

1(t, θ) =
∂g(t,θ)

∂t
and g′

2(t, θ) = ∂g(t,θ)
∂θ

. It follows that

g′(βn0, θ0,Xn) = (
g′

1
(
β�

n0Xn, θ0
)
X�

n , g′
2
(
β�

n0Xn, θ0
)�)�

.

Consequently, we have

Rn(u) =
(∫ u

−∞
g′

1(z/κn, θ0)rn(z)
�Fκnβn0(dz),

∫ u

−∞
g′

2(z/κn, θ0)
�Fκnβn0(dz)

)�
,

where rn(v) = E(Xn|κnβ
�
n0Xn = v). Conclude that

an(u) =
(

g′
1(u/κn, θ0)rn(u)�

σ 2
n (u)

,
g′

2(u/κn, θ0)
�

σ 2
n (u)

)�
.

Since an(u) is related to rn(u) and σ 2
n (u) on which we do not make any assumption

rather than smoothness, we then need to estimate them in a nonparametric way.
Thus, a standard Nadaraya–Watson estimator for rn(v) is defined by

r̂n(v) =
∑n

i=1 XniK(
v−α̂�

n B̂�
n Xni

h
)∑n

i=1 K(
v−α̂�

n B̂�
n Xni

h
)

,

where K(·) is an univariate kernel function and h is a bandwidth. Similarly for
σ 2

n (u). Thus we obtain two estimators ân(u) and Ân(u) of an(u) and An(u) re-
spectively:

ân(u) =
(

g′
1(u/κ̂n, θ̂n)r̂n(u)�

σ̂ 2
n (u)

,
g′

2(u/κ̂n, θ̂n)
�

σ̂ 2
n (u)

)�
,

Ân(u) = 1

n

n∑
i=1

ân

(
α̂�

n B̂�
n Xni

)
g′(β̂n, θ̂n,Xni)

�I
(
α̂�

n B̂�
n Xni ≥ u

)
.

Finally, we can give an estimator T̂n of Tn:

T̂nVn(α̂n, u)

= Vn(α̂n, u) −
∫ u

−∞
ân(z)

�Â−1
n (z)

(∫ ∞
z

ân(v)Vn(α̂n, dv)

)
σ̂ 2

n (z)Fα̂n
(dz)

= 1

n1/2

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
α̂�

n B̂�
n Xni ≤ u

)

− 1

n3/2

n∑
i,j=1

I
(
α̂�

n B̂�
n Xni ≤ u

)
ân

(
α̂�

n B̂�
n Xni

)�
× Â−1

n

(
α̂�

n B̂�
n Xni

)
ân

(
α̂�

n B̂�
n Xnj

)
× I

(
α̂�

n B̂�
n Xnj ≥ α̂�

n B̂�
n Xni

)[
Ynj − g

(
β̂�

n Xnj , θ̂n

)]
σ̂ 2

n

(
α̂�

n B̂�
n Xni

)
,
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where κ̂n is an estimator of κn and Fα̂n
is the empirical distribution function of

α̂�
n B̂�

n Xni , 1 ≤ i ≤ n. Making sure the columns of B̂n have the same direction as
β̂n, we can assume κn = 1/‖βn0‖ and κ̂n = 1/‖β̂n‖.

THEOREM 3.2. Suppose that An(u) is nonsingular and σ 2
n (u) is bounded

away from zero for all n and u. If (pn logn)3/n → 0 and g′′(β, θ, x) ≡ 0, or
p5

n/n → 0, under the null hypothesis H0 and the regularity conditions in the Sup-
plementary Material (Tan and Zhu (2019)), we have in distribution

sup
α̂n∈S+

q̂

∣∣T̂nVn(α̂n, u)
∣∣ −→ ∣∣V∞(u)

∣∣
in the space �∞([−∞, u0]) for any u0 ∈ R.

Here �∞([−∞, u0]) is the space of all real bounded functions on [−∞, u0].
Note that we consider the convergence of supα̂n∈S+

q̂n

|T̂nVn(α̂n, u)| in the space

�∞([−∞, u0]). This is because Â−1
n (u) in the process T̂nVn(α̂n, u) may be un-

bounded for large u and thus the distributional behavior of the underlying process
may become very unstable in the extreme right tails. Therefore, we restrict T̂nVn

in the interval [−∞, u0].
In a special case where the predictor Xn follows a spherically contoured distri-

bution or its extension, the elliptically contoured distribution, we can show that the
calculations of the martingale transformation are much simpler. The idea is similar
to Stute and Zhu (2002). Without loss of generality, we only consider spherically
contoured distributions. Here we assume that the regression function g does not
depend on θ . Let g′(t) be the derivative of g(t) with respect to t . It follows that

Rn(u) = E
[
g′(β�

n0Xn

)
XnI

(
κnβ

�
n0Xn ≤ u

)]
= ��

n E
[
g′(β�

n0Xn

)
�nXnI

(
κnβ

�
n0Xn ≤ u

)]
,

where �n is an pn × pn orthonormal matrix with the first row κnβ
�
n0 (or

β�
n0/‖βn0‖). Since the conditional expectation of the other components of �nXn

given the first is zero, it follows that

Rn(u) = βn0

‖βn0‖2 E
[
g′(β�

n0Xn

)
β�

n0XnI
(
κnβ

�
n0Xn ≤ u

)]

= βn0

‖βn0‖2

∫ u

−∞
g′(z/κn)(z/κn)Fκnβn0(dz),

whence,

an(u) = βn0

‖βn0‖2

g′(u/κn)u/κn

σ 2
n (u)

,

An(u) = βn0β
�
n0

‖βn0‖4

∫ ∞
u

[g′(z/κn)z/κn]2

σ 2
n (z)

Fκnβn0(dz).
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Note that An(z) is a matrix with rank 1 and is singular when p > 1. Thus the
martingale transformation can not apply directly. However, if we go back to (3.2)
and set

R̃n(u) = E
[
g′(β�

n0Xn

)
β�

n0XnI
(
κnβ

�
n0Xn ≤ u

)]
,

then (3.2) can be rewritten as

(3.7) Vn(α̂n, u) = V 0
n (u) − √

n(γ̂n − γn0)
� βn0

‖βn0‖2 R̃n(u) + op(1).

Conclude that the new an(u) and An(u) become real-valued with the formulas as

an(u) = ∂R̃n(u)

∂ψn(u)
= g′(u/κn)u/κn

σ 2
n (u)

and

An(u) =
∫ ∞
u

[g′(z/κn)(z/κn)]2

σ 2
n (z)

Fκnβn0(dz).

Clearly, Theorem 3.2 can be applied to these new functions.
Hall and Li (1993) showed that, if pn → ∞ as n → ∞, the expectation over

a few linear combinations of the components of Xn behaves like the expecta-
tion over multivariate normal distributions. Note that Rn(u) = E[g′(β�

n0Xn)Xn ×
I (κnβ

�
n0Xn ≤ u)] and a multivariate normal distribution is elliptically-contoured.

Consequently, in large dimension cases, even when Xn does not follow a multi-
variate normal distribution, Rn(u) can be viewed as an expectation on multivariate
normal distributions and then the martingale transformation Tn could be applied
with the real-valued an(u) and An(u) in practice.

3.3. The asymptotic properties under the alternative hypotheses. Now we dis-
cuss the asymptotic properties of supα̂n∈S+

q̂n

|T̂nVn(α̂n, u)| under a sequence of al-

ternatives. To see how sensitive the test to the alternative hypothesis is, we consider
the alternatives which converge to the null hypothesis at the rate of Cn = 1/

√
sn:

(3.8) H1n : Yn = g
(
β�

n0Xn, θ0
) + CnG

(
B�

n Xn

) + εn,

where 0 < s ≤ 1, G(B�
n Xn) is a random variable with zero mean and satisfies

P{G(B�
n Xn) = 0} < 1. The constant s can be fixed or dependent on n tending to

zero. To derive the limiting distribution of T̂nVn(α̂n, u) under H1n, we need the
asymptotic properties of q̂n and γ̂n, as n → ∞ and pn → ∞.

PROPOSITION 4. Assume the regularity conditions of Theorem 3 in Zhu et al.
(2010) hold. Let B̂n(1) be an eigenvector associating with the largest eigenvalues
of M̂n. If pnCn → 0 and cn = C2

n logC−2
n , then under H1n, we have P(q̂n = 1) → 1

and ‖B̂n(1) − κnβn0‖ = Op(
√

pnCn).
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A special case is that when Cn = 1/
√

n and cn = (logn)/n, we have P(q̂ =
1) → 1 and ‖B̂n(1) − κβn0‖ = Op(

√
p/n). Next, we derive the norm consistency

of γ̂n to γn0 and an asymptotic decomposition of γ̂n − γn0 under H1n. Here γ̂n =
(β̂�

n , θ̂�
n )� and γn0 = (β�

n0, θ
�
0 )� as defined before.

PROPOSITION 5. Suppose the regularity conditions in the Supplementary Ma-
terial and (3.8) hold. If npnC

3
n → 0 and g′′(β, θ, x) ≡ 0, or np2

nC
3
n → 0, then γ̂n

is a norm consistent estimator of γn0 with ‖γ̂n − γn0‖ = Op(
√

pnCn). Moreover,

if np
3/2
n C3

n → 0 and g′′(β, θ, x) ≡ 0, or np
5/2
n C3

n → 0, we have

(3.9)

√
n(γ̂n − γn0) = �−1

n

1√
n

n∑
i=1

εnig
′(βn0, θ0,Xni)

+ √
nCn�

−1
n E

[
G(Xn)g

′(βn0, θ0,Xn)
] + op(1).

If p2
n/n → 0 and g′′(β, θ, x) ≡ 0, or p4

n/n → 0, under H1n with Cn = 1/
√

n,
we have γ̂n is a norm consistent estimator of γn0 with ‖γ̂n − γn0‖ = Op(

√
pn/n).

Moreover, if p3
n/n → 0 and g′′(β, θ, x) ≡ 0, or p5

n/n → 0, then we have

(3.10)

√
n(γ̂n − γn0) = �−1

n

1√
n

n∑
i=1

εnig
′(βn0, θ0,Xni)

+ �−1
n E

[
G(Xn)g

′(βn0, θ0,Xn)
] + op(1).

The following theorem states the asymptotic results under various alternatives.

THEOREM 3.3. Suppose the regularity conditions in the the Supplementary
Material hold.

(1) If (pn logn)3/n → 0 and g′′(β, θ, x) ≡ 0, or p5
n/n → 0, under the global

alternative H1, we have in probability

1√
n

sup
α̂n∈S+

q̂n

∣∣T̂nVn(α̂n, u)
∣∣ −→ ∣∣L1(u)

∣∣,
where L1(u) is some nonzero function.

(2) If n(pn logn)
3
2 C3

n → 0 and g′′(β, θ, x) ≡ 0, or np
5/2
n C3

n → 0, then under
the local alternative H1n with Cn = 1/

√
sn and s → 0, we have in probability

√
s sup

α̂n∈S+
q̂n

∣∣T̂nVn(α̂n, u)
∣∣ −→ ∣∣L2(u)

∣∣.
where L2(u) is some nonzero function.
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(3) If (pn logn)3/n → 0 and g′′(β, θ, x) ≡ 0, or p5
n/n → 0, then under the

local alternative H1n with Cn = 1/
√

n, we have in distribution

sup
α̂n∈S+

q̂n

∣∣T̂nVn(α̂n, u)
∣∣ −→ ∣∣V∞(u) + G1(u) − G2(u)

∣∣,
where V∞(u) is a zero-mean Gaussian process given by (3.1) and G1(u) and
G2(u) are the uniform limits of G1n(u) and G2n(u) respectively, which are as
follows:

G1n(u) = E
[
G(Xn)I

(
κnβ

�
n0Xn ≤ u

)]
,

G2n(u) = E

{
G(Xn)

∫ u

−∞
an(z)

�A−1
n (z)an

(
κnβ

�
n0Xn

)
I
(
κnβ

�
n0Xn ≥ z

)
ψn(dz)

}
.

REMARK 3. The results in Theorem 3.3 show that the test is consistent against
all global alternatives with fixed Cn as well as the local alternatives distinct from
the null at the rate of Cn slower than 1/

√
n. That is, the process diverges to infinity

at the rate
√

nCn. It can also detect the local alternatives converging to the null at
the rate of order 1/

√
n in the sense that the process has a shift term from the one

under the null hypothesis. These results include the fixed p cases as special cases.
These results indicate that although pn is divergent, the sensitivity of the test is
identical to that when pn is fixed in the asymptotic sense.

3.4. Test statistic. In this subsection, we use the Cramér–von Mises (CM)
functional to construct the test statistic. Consider

(3.11) CM2
n =

∫ u0

−∞
sup

α̂n∈S+
q̂n

∣∣T̂nVn(α̂n, u)
∣∣2Fn(du),

where Fn is the empirical distribution function of β�
n0Xni/‖βn0‖, 1 ≤ i ≤ n. Ac-

cording to Theroem 3.2 and the Extended Continuous Mapping Theorem (see The-
orem 1.11.1 in van der Vaart and Wellner (1996)), we obtain, under the null,

CM2
n −→

∫ u0

−∞
B2(ψ(u))

σ 2(u)
ψ(du) in distribution,

where B(t) is a standard Brownian motion and σ 2(u) is the pointwise limit of
σ 2

n (u). Since B(tψ(u0))/
√

ψ(u0) = B(t) in distribution, it follows that∫ u0

−∞
B2(

ψ(u)
)
ψ(du) = ψ2(u0)

∫ 1

0
B(t)2 dt in distribution.

Consequently, the resulting test statistic is

(3.12) ACM2
n = 1

ψ̂n(u0)2

∫ u0

−∞
sup

α̂n∈S+
q̂n

∣∣T̂nVn(α̂n, u)
∣∣2σ̂ 2

n (u)Fn(du).
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Here we use ψ̂n(u0) = 1
n

∑n
i=1[Yni − g(β̂�

n Xni, θ̂n)]2I (α̂�
n B̂�

n Xni ≤ u0) as an es-
timator of ψ(u). Therefore, we obtain

ACM2
n −→

∫ 1

0
B2(u) du in distribution.

In homoscedastic models, σ 2
n (u) is free of u and thus can be estimated by

σ̂ 2
n = 1

n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]2
.

We then also have ψn(u0) = σ 2
nFκnβn0(u0) that can be estimated by σ̂ 2

nFn(u0).
ACM2

n becomes

ACM2
n = 1

σ̂ 2
nFn(u0)2

∫ u0

−∞
sup

α̂n∈S+
q̂n

∣∣T̂nVn(α̂n, u)
∣∣2Fn(du).

For u0, as suggested by Stute and Zhu (2002), we take the 99% quantile of Fn in
practical use.

4. Numerical studies.

4.1. Simulation studies. In this subsection we present the results of several
simulation studies to examine the performance of the proposed test. From the the-
oretical results in this paper and similarly as a relevant setting in Fan and Peng
(2004), we set pn = [4n1/4] − 5 with the sample sizes n = 100,200,400 and 800
in Study 1 and 2 and try some bigger dimensions in Study 3. As there are no rel-
evant tests dealing with the diverging dimension case, we give comparisons with
some existing tests that were developed with fixed dimension, as for practical use
they would be workable. Our theoretical investigations also show that the process
has similar properties as Stute and Zhu (2002) under the null hypothesis even when
pn is divergent.

1. Stute and Zhu’s (2002) test:

T SZ
n = 1

ψ̂n(x0)

∫ x0

−∞
∣∣T̂nR

1
n

∣∣2σ̂ 2
n dFn,

where

R1
n(u) = 1√

n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
β̂�

n Xni ≤ u
);

T̂nR
1
n(u) = R1

n(u) −
∫ u

−∞
ân(z)

�Â−1
n (z)

(∫ ∞
z

ân(v)R1
n(dv)

)
σ̂ 2

n (z)Fn(dz).

For ψ̂n(x0), σ̂ 2
n , ân(z), Â−1

n (z), one can refer to their paper for detail.
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2. Bierens’ (1982) integrated conditional moment (ICM) test:

ICMn = 1

n

n∑
i=1

n∑
j=1

êni ênj exp
(
−1

2
‖Xni − Xnj‖

)
,

where êni = Yni − g(β̂�
n Xni, θ̂n).

3. Escanciano’s (2006) test:

PCvMn = 1

n2

n∑
i,j,r=1

êni ênj

∫
Spn

I
(
β�Xni ≤ β�Xnr

)
I
(
β�Xnj ≤ β�Xnr

)
dβ

with the critical value determination by the wild bootstrap. More details can be
found in Escanciano (2006).

4. Zheng’s (1996) test:

T ZH
n =

∑
i �=j K((Xni − Xnj )/h)êni ênj

{∑i �=j 2K2((Xni − Xnj )/h)ê2
ni ê

2
nj }1/2

.

Here we use the kernel function K(u) = (15/16)(1−u2)2I (|u| ≤ 1) and the band-
width h = 1.5n−1/(4+pn).

The significance level is set to be α = 0.05. We also did some simulations at
α = 0.1 and α = 0.01 that are not reported here for saving space as the conclu-
sions from those simulations are very similar. The simulation results are based
on the averages of 2000 replications. In the following simulation studies, a = 0
corresponds to the null while a �= 0 to the alternatives.

STUDY 1. The data are generated from the following models:

H11 : Yn = β�
n0Xn + a exp

(−(
β�

n0Xn

)2) + εn;
H12 : Yn = β�

n0Xn + a cos
(
0.6πβ�

n0Xn

) + εn;
H13 : Yn = β�

n1Xn + a
(
β�

n2Xn

)2 + εn;
H14 : Yn = β�

n1Xn + a exp
(
β�

n2Xn

) + εn;
where βn0 = (1, . . . ,1)�/

√
pn, βn1 = (1, . . . ,1︸ ︷︷ ︸

pn1

,0, . . . ,0)�/
√

pn1 and βn2 =

(0, . . . ,0,1, . . . ,1︸ ︷︷ ︸
pn1

)/
√

pn1 with pn1 = [pn/2]. The predictor Xn is from N(0, Ipn)

and εn is a Gaussian white noise with variance 1. H12 is a high-frequency/
oscilating model and the other three are low-frequency models. In H11 and H12,
the structural dimension equals 1 under both the null and the alternative, while, in
H13 and H14, the structural dimension is 2 under the alternatives.
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TABLE 1
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H11 in Study 1

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.0 0.0500 0.0530 0.0500 0.0505

0.5 0.7770 0.9810 1.0000 1.0000

T SZ
n ,α = 0.05 0.0 0.0510 0.0470 0.0420 0.0495

0.5 0.7825 0.9795 1.0000 1.0000

PCvMn,α = 0.05 0.0 0.0480 0.0590 0.0650 0.0490
0.5 0.8110 0.9860 1.0000 1.0000

ICMn,α = 0.05 0.0 0.0070 0.0000 0.0000 0.0000
0.5 0.3900 0.0910 0.0180 0.0000

T ZH
n ,α = 0.05 0.0 0.0305 0.0300 0.0330 0.0310

0.5 0.1460 0.1285 0.1445 0.0980

The simulation results are reported in Tables 1 to 4. We can see that both ACM2
n

and T SZ
n maintain the significance level very well, and reasonably have similar

power performance. The empirical sizes of PCvMn are also very close to the sig-
nificance level, but slightly more unstable from model to model. T ZH

n can maintain
the significance level occasionally, but generally, it is conservative with smaller
sizes. ICMn is the worst among these tests in both the significance level mainte-
nance and power performance. According to our experience, when pn is smaller
than 5, ICMn could work well. The powers of ACM2

n, T SZ
n and PCvMn are all

very high for low frequency models H11, H13 and H14. In contract, T ZH
n has a

TABLE 2
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H12 in Study 1

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.0 0.0520 0.0465 0.0445 0.0515

0.5 0.1445 0.3225 0.7550 1.0000

T SZ
n ,α = 0.05 0.0 0.0530 0.0480 0.0515 0.0495

0.5 0.1760 0.3235 0.7350 0.9970

PCvMn,α = 0.05 0.0 0.0530 0.0590 0.0440 0.0700
0.5 0.1470 0.2320 0.4080 0.6250

ICMn,α = 0.05 0.0 0.0110 0.0000 0.0000 0.0000
0.5 0.0790 0.0020 0.0000 0.0000

T ZH
n ,α = 0.05 0.0 0.0325 0.0350 0.0320 0.0330

0.5 0.0755 0.0775 0.0940 0.0615
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TABLE 3
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H13 in Study 1

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.00 0.0500 0.0455 0.0435 0.0450

0.25 0.5970 0.8945 0.9980 1.0000

T SZ
n ,α = 0.05 0.00 0.0505 0.0420 0.0470 0.0495

0.25 0.5940 0.8980 0.9945 1.0000

PCvMn,α = 0.05 0.00 0.0580 0.0600 0.0440 0.0570
0.25 0.6160 0.8980 0.9970 1.0000

ICMn,α = 0.05 0.00 0.0110 0.0000 0.0000 0.0000
0.25 0.0590 0.0010 0.0000 0.0000

T ZH
n ,α = 0.05 0.00 0.0275 0.0310 0.0315 0.0340

0.25 0.0730 0.0485 0.0745 0.0625

much low power for these three models. For models H12, ACM2
n and T SZ

n have
much better power performance than PCvMn and T ZH

n when pn is large. Note that
H12 is a high frequency/oscillating model. The empirical experience in this area
shows that locally smoothing tests could perform better for such models in many
cases. However, in our setting with relatively large dimension p, T ZH

n that is a
representative of locally smoothing tests, has very low power for model H12. This
is because T ZH

n severely suffers from the dimensionality problem, which further
shows the negative impact from dimensionality for nondimension reduction-type
tests.

TABLE 4
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H14 in Study 1

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.00 0.0520 0.0460 0.0545 0.0490

0.25 0.9525 1.0000 1.0000 1.0000

T SZ
n ,α = 0.05 0.00 0.0475 0.0490 0.0460 0.0555

0.25 0.9605 0.9995 1.0000 1.0000

PCvMn,α = 0.05 0.00 0.0580 0.0540 0.0570 0.0540
0.25 0.9690 0.9990 1.0000 1.0000

ICMn,α = 0.05 0.00 0.0050 0.0000 0.0000 0.0000
0.25 0.3670 0.0740 0.0120 0.0000

T ZH
n ,α = 0.05 0.00 0.0320 0.0295 0.0325 0.0380

0.25 0.1145 0.1195 0.1410 0.1145
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The hypothetical models are all linear in Study 1. We then consider nonlinear
hypothetical models in the next simulation study.

STUDY 2. The data are generated from the following models:

H21 : Yn = exp
(
β�

n1Xn

) + a
(
β�

n2Xn

) + εn;
H22 : Yn = exp

(
X1

n

) + a
{(

X2
n

)3 + cos
(
πX3

n

) + X4
n · X5

n

} + εn;
H23 : Yn = exp

(
X1

n

) + a
{
X2

n + cos
(
πX3

n

) + (
X4

n

)3 − (
X5

n

)2 − X6
n · X7

n

} + εn.

Here βn1 = (1, . . . ,1︸ ︷︷ ︸
pn1

,0, . . . ,0)�/
√

pn1 and βn2 = (0, . . . ,0,1, . . . ,1︸ ︷︷ ︸
pn1

)�/
√

pn1

with pn1 = [pn/2], Xi
n is the ith component of Xn, εn is N(0,1) and Xn is

N(0, Ipn) independent of εn.

We report the empirical sizes and powers in Tables 5–7. From these tables, we
can obviously see that the empirical sizes of ACM2

n, T SZ
n and PCvMn are again

very close to the significance level, while T ZH
n can only maintain the level some-

times. We also did some more simulations that are unreported here and found
that T ZH

n is in many cases conservative with even smaller empirical sizes. ICMn

is still the worst one. For these three models the empirical powers of ACM2
n are

higher than the other competitors, while T SZ
n ’s empirical powers grow very slow

in models H21 and H22. This would confirm the theoretical result that T SZ
n is not

an omnibus test.
As in practical use, the ratio between the dimension p and the sample size n is

hard to be judged whether it has the rate of convergence in theory, we then consider
the next simulation study.

TABLE 5
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H21 in Study 2

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.0 0.0575 0.0550 0.0585 0.0530

0.5 0.1295 0.1895 0.3030 0.5790

T SZ
n ,α = 0.05 0.0 0.0650 0.0535 0.0550 0.0550

0.5 0.0755 0.0970 0.0835 0.1195

PCvMn,α = 0.05 0.0 0.0470 0.0560 0.0690 0.0510
0.5 0.1310 0.2000 0.2760 0.4450

ICMn,α = 0.05 0.0 0.0050 0.0000 0.0000 0.0000
0.5 0.0210 0.0020 0.0000 0.0000

T ZH
n ,α = 0.05 0.0 0.0445 0.0365 0.0410 0.0380

0.5 0.0690 0.0765 0.0770 0.0545
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TABLE 6
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H22 in Study 2

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.00 0.0575 0.0540 0.0550 0.0505

0.25 0.1840 0.2770 0.4725 0.7840

T SZ
n ,α = 0.05 0.00 0.0615 0.0560 0.0555 0.0495

0.25 0.1055 0.1350 0.1735 0.2670

PCvMn,α = 0.05 0.00 0.0510 0.0620 0.0430 0.0600
0.25 0.0770 0.0870 0.0980 0.1620

ICMn,α = 0.05 0.00 0.0050 0.0000 0.0000 0.0000
0.25 0.0150 0.0000 0.0000 0.0000

T ZH
n ,α = 0.05 0.00 0.0310 0.0410 0.0310 0.0325

0.25 0.0730 0.0695 0.0770 0.0615

STUDY 3. The data are generated from the following models:

H31 : Yn = β�
n0Xn + a exp

(−β�
n0Xn

) + εn;
H32 : Yn = exp

(
β�

n1Xn

) + a
(
β�

n2Xn

) + εn;
where βn0, βn1, βn2, Xn and εn are the same as in Study 1. We set p =
0.25n in model H31 and p = 0.1n in model H32 with the sample size n =
100,200,300,400.

TABLE 7
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H23 in Study 2

n = 100 n = 200 n = 400 n = 800
a p = 7 p = 10 p = 12 p = 16

ACM2
n,α = 0.05 0.0 0.0545 0.0620 0.0580 0.0520

0.1 0.2310 0.4040 0.5855 0.8645

T SZ
n ,α = 0.05 0.0 0.0660 0.0560 0.0500 0.0535

0.1 0.1830 0.3020 0.4580 0.7355

PCvMn,α = 0.05 0.0 0.0580 0.0570 0.0580 0.0560
0.1 0.1500 0.2150 0.3440 0.5970

ICMn,α = 0.05 0.0 0.0110 0.0000 0.0000 0.0000
0.1 0.0210 0.0000 0.0000 0.0000

T ZH
n ,α = 0.05 0.0 0.0430 0.0340 0.0415 0.0340

0.1 0.0480 0.0500 0.0600 0.0525
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TABLE 8
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H31 in Study 3

n = 100 n = 200 n = 300 n = 400
a p = 25 p = 50 p = 75 p = 100

ACM2
n,α = 0.05 0.0 0.0455 0.0465 0.0525 0.0580

0.1 0.3115 0.5695 0.7495 0.8565

T SZ
n ,α = 0.05 0.0 0.0525 0.0425 0.0585 0.0525

0.1 0.2780 0.5095 0.7095 0.8210

PCvMn,α = 0.05 0.0 0.1010 0.0830 0.0830 0.0920
0.1 0.3910 0.6110 0.7640 0.8830

ICMn,α = 0.05 0.0 0.3860 1.0000 1.0000 1.0000
0.1 0.3400 0.9990 0.9990 0.9990

T ZH
n ,α = 0.05 0.0 0.1950 0.0095 0.0000 0.0000

0.1 0.2115 0.0090 0.0000 0.0000

The simulation results are reported in Tables 8–9. For model H31, we can see
that ACM2

n and T SZ
n still perform very well even when the dimension p is much

larger than the cases in Study 1, while the empirical sizes of PCvMn can not main-
tain the significance level. From our experience, if the hypothetical model is rel-
atively simple such as a linear model, the proposed test can perform well even
when p < 0.4n. For the nonlinear model H32, although the dimension is smaller
than the case in model H31 with p = 0.1n, the empirical sizes of our test are higher
than the significance level. The other unreported results also tell that the empirical
sizes of our test are even higher when p > 0.1n. These massages indicate that the

TABLE 9
Empirical sizes and powers of ACM2

n, T SZ
n , PCvMn, ICMn and T ZH

n for H32 in Study 3

n = 100 n = 200 n = 300 n = 400
a p = 10 p = 20 p = 30 p = 40

ACM2
n,α = 0.05 0.0 0.0650 0.0860 0.0980 0.1295

0.5 0.1500 0.2510 0.3815 0.4960

T SZ
n ,α = 0.05 0.0 0.0650 0.0560 0.0535 0.0630

0.5 0.0810 0.1035 0.1215 0.1475

PCvMn,α = 0.05 0.0 0.0550 0.0640 0.0820 0.0670
0.5 0.0550 0.0810 0.0980 0.0940

ICMn,α = 0.05 0.0 0.0000 0.0000 0.0000 0.0000
0.5 0.0000 0.0000 0.0000 0.0000

T ZH
n ,α = 0.05 0.0 0.0255 0.0135 0.3290 0.3245

0.5 0.0430 0.0150 0.3585 0.3280
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dimension cannot be too large unless some theory can be developed to handle the
higher-dimensional scenarios. As expected, the competitors T SZ

n and PCvMn can
control the empirical sizes in most cases, while the empirical powers of these two
tests are much lower than our test. The other two tests T ZH

n and ICMn are still the
worst among these tests and their type I errors are completely out of control.

Therefore, overall, the proposed test in this paper performs well and can detect
different alternatives and in the high-dimensional cases, it shows the advantage
over the other competitors.

4.2. A real data example. In this subsection we analyze the baseball salary
data set that can be obtain through the website http://www4.stat.ncsu.edu/~boos/
var.select/baseball.html. This data set contains 337 Major League Baseball players
on the salary Y from the year 1992 and 16 performance measures from the year
1991. The performance measures are X1: Batting average, X2: On-base percent-
age, X3: runs, X4: hits, X5: doubles, X6: triples, X7: home runs, X8: runs batted in,
X9: walks, X10: strike-outs, X11: stolen bases, X12: errors, X13: Indicator of free
agency eligibility, X14: Indicators of free agent in 1991/2, X15: Indicators of ar-
bitration eligibility and X16: Indicators of arbitration in 1991/2. The dummy vari-
ables X13–X16 measure the freedom of movement of a player to another team. For
easy interpretation, we standardize all variables separately. To obtain the regres-
sion relationship between Y and the performance measures X = (X1, . . . ,X16)

�,
we first test for a linear regression model by the proposed test. The value of the
test statistic is ACM2

n = 1.3651 with the p-value equal to 0.077. Since the p-value
is small although it is larger than, say, 0.05, an often-used significance level, we
may consider a more plausible model to better fit this dataset. Hence we apply
the dimension reduction techniques. Recalling in Section 2.3, we claimed that to
estimate the central subspace, the CSE method is used. The estimated structural
dimension of this datset is q̂n = 1. This means that Y may be conditionally inde-
pendent of X given the projected covariate β̂�

1 X where

β̂1 = (0.0463,−0.1078,0.0383,0.2447,−0.0322,−0.0436,0.0545,0.2229,

0.1173,−0.1718,0.0491,−0.0494,0.7479,−0.0965,0.5022,−0.0165)�,

is the first direction obtained by CSE. The scatter plot of Y against β̂�
1 X is pre-

sented in Figure 1(a). It indicates that a linear regression model for (Y,X) may
not be reasonable. To further exhaust possible projected covariates, we consider
the second projected covariate β̂�

2 X obtained by CSE. The 3-D plot of Y against
(β̂�

1 X, β̂�
2 X) is presented in Figure 2. This figure shows that the second projected

covariate β̂�
2 X has no information in predicting the response Y , as the plot along

β̂�
2 X is almost invariable. This means that the projection of the data onto the sub-

space β̂�
1 X would already contain most of the regression information of (Y,X).

http://www4.stat.ncsu.edu/~boos/var.select/baseball.html
http://www4.stat.ncsu.edu/~boos/var.select/baseball.html
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FIG. 1. Scatter plots of the response Yn against the projected covariate β̂�
1 X and the fitted

quadratic polynomial curve where the direction β̂1 is obtained by CSE.

Figure 1(a) seems to suggest a quadratic polynomial of β̂�
1 X to fit the data. Hence

we use the following regression model:

Y = θ1 + θ2
(
β�X

) + θ3
(
β�X

)2 + ε.

Figure 1(b) adds the fitted curve on the scatter plot. The value of the test statistic
ACM2

n = 0.1038 and the p-value is about 0.83. Therefore the above regression
model is plausible.

5. Discussions. In this paper we investigate model checking for regressions
when the dimension of predictors diverges to infinity as the sample size tends to
infinity. Three remarkable features are worthwhile to discuss. First, although the
empirical process is similar to that in Stute and Zhu (2002), it involves much more

FIG. 2. Scatter plot of the response Yn against the projected covariates (β̂�
1 X, β̂�

2 X) where the

directions (β̂1, β̂2) are obtained by CSE.
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difficult estimation issues in the construction procedure of test statistics. Second, as
the Khmaladze martingale transformation has become an important methodology
for model checking as its asymptotically distribution-free property, we suggest
another way to construct the transformation, rather than directly targeting the limit
of the shift terms in the fixed dimension cases. The transformed process still has
the same limiting Gaussian process as that with fixed dimension. This provides us
an easy way to handle the diverging dimension cases. Third, the model adaptation
property shows its advantage in maintaining the significance level and enhancing
power performance.

The research also leaves some unsolved topics. They are beyond the scope of
this paper and deserve further studies.

The first topic is about how to relax the condition on the diverging rate of the
dimension. In this paper, we cannot have faster rate than pn = O(n1/3/ logn) even
when the hypothetical model is linear. From the lemmas, it seems not easy to
improve. We guess that this rate would be close to optimal although we have not
proved this result.

The second topic is about the assumption that β̃n0 ∈ SE(Yn|Xn) under the alter-
natives such that E(en|B�

n Xn) = G(B�
n Xn)−g(β̃�

n0Xn, θ̃0) �= 0. If g(β�Xn, θ) =
β�Xn follows a linear regression model, we have shown that β̃n0 ∈ SE(Yn|Xn)

under the other conditions on the model we assume in the paper. For other
models, this assumption may not hold. A simple solution is that we consider
B̃n = (β̃n0,Bn). It is easy to see that under the null, Bn = κnβn0 and β̃n0 = βn0.
Then E(en|B̃�

n Xn) = E(en|β�
n0Xn) = 0. Under the alternatives, we can have that

E(en|B̃�
n Xn) = G(B�

n Xn) − g(β̃�
n0Xn, θ̃0) �= 0. Although the theoretical develop-

ments under the alternatives are similar as before, the limiting null distribution is
no longer tractable. This is because the weak limit of the process under the null is
supα∈S+

2
|B(ψ( u

a1+a2
))| and S+

2 is not a single point {+1} any more, its distribution
is untractable. Here α = (a1, a2) and B(t) is a Brownian motion. This destroys the
advantage of the innovative process approach described in this paper.

We now provide a partial solution that is a refined adaptive-to-model method.
The test statistic construction is based on the following fact. Define a new index
set S̃+

qn+1 = {αn = (I (qn �= 1)a0, a1, . . . , aqn)
� ∈ R

qn+1 : ‖αn‖ = 1 and a1 ≥ 0}.
Under the null, S̃+

qn+1 = {(0,1)�}. For any αn ∈ S̃+
qn+1,

E
[
enI

(
α�

n (β̃n0,Bn)
�Xn ≤ u

)] = E
[
enI

(
κnβ

�
n0Xn ≤ u

)] = 0.

Under the alternatives with qn �= 1, there exists an αn ∈ S̃+
qn+1 such that

E
[
enI

(
α�

n (β̃n0,Bn)
�Xn ≤ u

)] �= 0.

Therefore, the revised test statistic becomes

Vn(α̂n, u) = 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
[
α̂�

n (β̂n, B̂n)
�Xni ≤ u

]
,
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Vn(u) = sup
α̂n∈S̃+

q̂n+1

∣∣Vn(α̂n, u)
∣∣.

Then Vn(u) can still have the desirable property described in the paper. That is,
under the null, S̃+

q̂n+1 = {(0,1)�} with a probability going to one. This is because
q̂n = 1 in probability. Thus, the limiting null distribution of our test statistic is
tractable. Under the alternatives, the theoretical results can be similar to those in
the previous version.

As we mentioned above, this solution partly relaxes the condition. If the alter-
native model is a semiparametric single-index model with qn = 1, it follows that
S̃+

qn+1 = {(0,1)�}. We still need to assume that β̃n0 is proportional to Bn, other-

wise under the alternatives E(en|α�
n B̃�

n Xn) = E(en|B�
n Xn) would not be neces-

sarily equal to G(B�
n Xn)−g(β̃�

n0Xn) �= 0. Thus, how to obtain a complete solution
is still an interesting topic.

The third topic is about the assumption on the error term. We have assumed that
the error term εn has dimension reduction structures under the null and alternatives:
εn = V1(β

�
n0Xn)ε̃ and εn = V2(B

�
n Xn)ε̃n respectively. In effect, if the methods for

identifying the central mean subspace can be applied, such as pHd (Li (1992)),
these conditions can be removed. However, as we mentioned in the main context,
when pn is divergent, we have no relevant asymptotic results about pHd and guess
that even if we can get some results, the convergence rate would be very slow. This
is because it involves the square of Hessian matrix, not Hessian matrix itself and

then the convergence rate of its estimator would have a rate of order
√

p4
n/n rather

than
√

p2
n/n. The theoretical development in our setting becomes difficult. Thus,

we may discuss this issue in a further study.

APPENDIX

In this section we only give the proof for Theorem 3.1. The regularity conditions
and the proofs of the other theoretical results are put in the Supplementary Material
(Tan and Zhu (2019)). This is because the main focus of this paper is to show at
what diverging rate of pn the convergence of the empirical process can be derived.
This theorem presents the relevant results.

PROOF OF THEOREM 3.1. Under the null hypothesis, we have P(q̂n = 1) →
1. Thus we need only to work on the event {q̂n = 1}. It follows that α̂n = 1 and we
can rewrite Vn(α̂n, u) as

Vn(α̂n, u) = 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
B̂�

n Xni ≤ u
)

= 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
I
(
κnβ

�
n0Xni ≤ u

)
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+ 1√
n

n∑
i=1

[
Yni − g

(
β̂�

n Xni, θ̂n

)]
× [

I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]
=: Vn1 + Vn2.

Recall γ = (β�, θ�)�. Then we obtain that

Vn1 = 1√
n

n∑
i=1

εniI
(
κnβ

�
n0Xni ≤ u

)

− 1√
n

n∑
i=1

[
g
(
β̂�

n Xni, θ̂n

) − g
(
β�

n0Xni, θ0
)]

I
(
κnβ

�
n0Xni ≤ u

)

= 1√
n

n∑
i=1

εniI
(
κnβ

�
n0Xni ≤ u

)

− 1√
n

n∑
i=1

(γ̂n − γn0)
�g′(βn0, θ0,Xni)I

(
κnβ

�
n0Xni ≤ u

)

− 1√
n

n∑
i=1

(γ̂n − γn0)
�g′′(β1n, θ1n,Xni)(γ̂n − γn0)I

(
κnβ

�
n0Xni ≤ u

)
= Vn11 − Vn12 − Vn13,

where (β1n, θ1n) lies between (β̂n, θ̂n) and (βn0, θ0). For the third term Vn13 in
Vn1, note that

E sup
u

∥∥∥∥∥
n∑

i=1

g′′(β1n, θ1n,Xni)I
(
κnβ

�
n0Xni ≤ u

)∥∥∥∥∥
≤

n∑
i=1

E sup
u

∥∥g′′(β1n, θ1n,Xni)I
(
κnβ

�
n0Xni ≤ u

)∥∥

≤
n∑

i=1

[
E sup

u

∥∥g′′(β1n, θ1n,Xni)I
(
κnβ

�
n0Xni ≤ u

)∥∥2
]1/2

≤
n∑

i=1

( p+d∑
j,k=1

Eg′′
jk(β1n, θ1n,Xni)

2

)1/2

≤ Cn(pn + d).

Therefore Vn13 = 1√
n

pn

n
n(pn + d)Op(1) = op(1) uniformly in u. If g′′(β, θ, x) ≡

0, then Vn13 = 0. For Vn12, recall that Rn(u) = E[g′(βn0, θ0,Xn)I (κnβ
�
n0X ≤ u)].
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Then we decompose Vn12 as

Vn12 = √
n(γ̂n − γn0)

�Rn(u)

+ √
n(γ̂n − γn0)

�
(

1

n

n∑
i=1

g′(βn0, θ0,Xni)I
(
κnβ

�
n0Xni ≤ u

) − Rn(u)

)
.

For the second term in Vn12, Lemma 3 in the Supplementary Material (Tan and
Zhu (2019)) yields

sup
u

∥∥∥∥∥1

n

n∑
i=1

g′(βn0, θ0,Xni)I
(
κnβ

�
n0Xni ≤ u

) − Rn(u)

∥∥∥∥∥ = op

(√
p

3/2
n logn

n

)
.

Conclude that

√
n(γ̂n − γn0)

�
(

1

n

n∑
i=1

g′(βn0, θ0,Xni)I
(
κnβ

�
n0Xni ≤ u

) − Rn(u)

)

=
√

p
5/2
n logn

n
op(1) = op(1).

Since ‖Rn(u)‖ = O(1) uniformly in u, by Proposition 2, we have

Vn12 = Rn(u)��−1
n

1√
n

n∑
i=1

[
Yni − g

(
β�

n0Xni, θ0
)]

g′(βn0, θ0,Xni) + op(1).

Therefore, we obtain that

(A.1)

Vn1 = 1√
n

n∑
i=1

εniI
(
κnβ

�
n0Xni ≤ u

)

− 1√
n
Rn(u)��−1

n

n∑
i=1

εnig
′(βn0, θ0,Xni) + op(1).

Now we consider the term Vn2. It can be decomposed as

Vn2 = 1√
n

n∑
i=1

εni

[
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]

− 1√
n

n∑
i=1

[
g
(
β̂�

n Xni, θ̂n

) − g
(
β�

n0Xni, θ0
)]

× [
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]
= 1√

n

n∑
i=1

εni

[
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]
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− 1√
n

n∑
i=1

(γ̂n − γn0)
�g′(βn0, θ0,Xni)

[
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]

− 1√
n

n∑
i=1

(γ̂n − γn0)
�g′′(β1n, θ1n,Xni)(γ̂n − γn0)

× [
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)]
= Vn21 − Vn22 − Vn23.

By Lemma 6 in the Supplementary Material (Tan and Zhu (2019)), we obtain that
Vn21 = op(1) uniformly in u when (pn logn)3/n → 0. For the second term Vn22,
let

Wn(β,u) = E
{
g′(βn0, θ0,Xn)

[
I
(
β�Xni ≤ u

) − I (κnβn0Xni ≤ u)
]}

.

By Lemma 7 in the Supplementary Material, we have

sup
u

∥∥∥∥∥1

n

n∑
i=1

g′(βn0, θ0,Xni)
[
I
(
B̂�

n Xni ≤ u
) − I

(
κnβ

�
n0Xni ≤ u

)] − Wn(B̂n, u)

∥∥∥∥∥
= op

(√
p

3/2
n logn

n

)
.

Therefore, we derive that

Vn22 = √
n(γ̂n − γn0)

�Wn(B̂n, u) +
√

p
5/2
n logn

n
op(1).

Let Rn(β,u) = E[g′(βn0, θ0,Xn)I (β�Xni ≤ u)]. Then Wn(B̂n, u) = Rn(B̂n, u)−
Rn(κnβn0, u). By Taylor’s expansion around κnβn0 and condition (B2) in the Sup-
plementary Material, we have

Vn22 = √
n(γ̂n − γn0)

�
(

∂Rn

∂β
(κnβn0, u)(B̂n − κnβn0) + op

(‖B̂n − κnβn0‖))

+
√

p
5/2
n logn

n
op(1).

It follows that Vn22 = op(1) uniformly in u.
We can obtain that Vn23 = op(1) uniformly in u similarly as that for Vn13. Com-

bining these with (A.1), we obtain that

(A.2)

Vn(α̂n, u) = 1√
n

n∑
i=1

εniI
(
κnβ

�
n0Xni ≤ u

)

− 1√
n
Rn(u)��−1

n

n∑
i=1

εnig
′(βn0, θ0,Xni) + op(1).
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By Theorem 2.11.22 in van der Vaart and Wellner (1996), we have the first two
terms of the right-hand side of (A.2) are asymptotically tight.

Now we consider the convergence of finite-dimensional distributions. Let Yni =
(Yni(u1), . . . , Yni(um))� where

Yni(u) = 1√
n
εni

[
I
(
κnβ

�
n0Xni ≤ u

) − Rn(u)��−1
n g′(βn0, θ0,Xni)

]
.

For any δ > 0, we have
n∑

i=1

E‖Yni‖2I
(‖Yni‖ > δ

) = nE
{‖Yn1‖2I

(‖Yn1‖ > δ
)}

≤ n
{
E‖Yn1‖4}1/2{

P
(‖Yn1‖ > δ

)}1/2
.

Since

P
(‖Yn1‖ > δ

) = P
(
Yn1(u1)

2 + · · · + Yn1(um)2 > δ2)
≤

m∑
j=1

P

(
Yn1(uj )

2 >
δ2

m

)

and

P

(
Yn1(u)2 >

δ2

m

)

= P

(
ε2
n1

[
I
(
κnβ

�
n0Xn1 ≤ u

) − Rn(u)��−1
n g′(βn0, θ0,Xn1)

]2
>

nδ2

m

)

≤ 2mEε2
n1 + 2mE{ε2

n1[Rn(u)��−1
n g′(βn0, θ0,Xn1)]2}

nδ2

≤ 2mEε2
n1 + 2mλ2

max(�
−1)‖Rn(u)‖2E{ε2

n1‖g′(βn0, θ0,Xn1)‖2}
nδ2 ,

it follows that P(‖Yn1‖ > δ) = O(pn/n). Further, it is easy to see that

E‖Yn1‖4 ≤ m
[
EYn1(u1)

4 + · · · + EYn1(um)4]
.

Since

EYn1(u)4

= 1

n2 E
{
ε4
n1

[
I
(
κnβ

�
n0Xn1 ≤ u

) − Rn(u)��−1
n g′(βn0, θ0,Xn1)

]4}
≤ 8

n2

{
E

[
ε4
n1I

(
κnβ

�
n0Xn1 ≤ u

)] + E
[
εn1Rn(u)��−1

n g′(βn0, θ0,Xn1)
]4}

≤ 8

n2

{
E

[
ε4
n1I

(
κnβ

�
n0Xn1 ≤ u

)]
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+ λ4
max

(
�−1

n

)∥∥Rn(u)
∥∥4

E
[
ε4
n1

∥∥g′(βn0, θ0,Xn1)
∥∥4]}

≤ 8

n2

{
Eε4

n1 + λ4
max

(
�−1

n

)∥∥Rn(u)
∥∥4

×
p+d∑
j,k=1

E
[
ε4
n1g

′
j (βn0, θ0,Xn1)

2g′
k(βn0, θ0,Xn1)

2]}
,

it follows that EYn1(u)4 = O(p2
n/n2). Hence

∑n
i=1 E‖Yni‖2I (‖Yni‖ > δ) =

O(
√

p3
n/n) = o(1).

For the covariance matrix
∑n

i=1 Cov(Yni), we only need to consider∑n
i=1 Cov{Yni(s), Yni(t)}. It is easy to see that

n∑
i=1

Cov
{
Yni(s), Yni(t)

}
= E

[
ε2
n1I

(
κnβ

�
n0Xn1 ≤ s ∧ t

)]
− Rn(s)

��−1
n E

[
ε2
n1g

′(βn0, θ0,Xn1)I
(
κnβ

�
n0Xn1 ≤ t

)]
− Rn(t)

��−1
n E

[
ε2
n1g

′(βn0, θ0,Xn1)I
(
κnβ

�
n0Xn1 ≤ s

)]
+ Rn(s)

��−1
n E

[
ε2
n1g

′(βn0, θ0,Xn1)g
′(βn0, θ0,Xn1)

�]
�−1

n Rn(t).

Thus
∑n

i=1 Cov{Yni(s), Yni(t)} = Kn(s, t). Since Kn(s, t) → K(s, t), it follows
that Yni satisfies the conditions of Lindeberg–Feller Central limit theorem. Hence
the convergence of the finite-dimensional distributions holds. Altogether, we have

Vn(u) −→ ∣∣V 1∞(u)
∣∣,

where V 1∞(u) is a zero mean Gaussian process with covariance function K(s, t).
Hence we complete the proof. �

SUPPLEMENTARY MATERIAL

Supplementary Material to “Adaptive-to-model checking for regressions
with diverging number of predictors.” (DOI: 10.1214/18-AOS1735SUPP; .pdf).
This Supplementary Material contains three parts with the regularity conditions,
technical lemmas and proofs of the main results.
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