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A conference design is a rectangular matrix with orthogonal columns,
one zero in each column, at most one zero in each row and −1’s and +1’s
elsewhere. A definitive screening design can be constructed by folding over
a conference design and adding a row vector of zeroes. We prove that, for
a given even number of rows, there is just one isomorphism class for con-
ference designs with two or three columns. Next, we derive all isomorphism
classes for conference designs with four columns. Based on our results, we
propose a classification criterion for definitive screening designs founded on
projections into four factors. We illustrate the potential of the criterion by
studying designs with 24 and 82 factors.

1. Introduction. Screening designs are helpful to study many controllable
factors using a small number of experimental runs. The major part of the litera-
ture on screening designs focuses on two-level experiments; see Mee, Schoen and
Edwards (2017) and Schoen, Vo-Thanh and Goos (2017) for recent reviews. The
experimental results from a two-level screening design usually permit identifica-
tion of substantial linear effects and, depending on the design, a few two-factor
interactions. However, when all the factors are quantitative, it is of practical inter-
est to investigate the presence of quadratic effects as well. For this purpose, Jones
and Nachtsheim (2011) developed three-level designs using a number of runs that
is one more than twice the number of factors studied. The designs are called defini-
tive screening designs. Since their conception, a considerable effort has been in-
vested into the further development of the definitive screening designs; references
include Jones and Nachtsheim (2013, 2017), Georgiou, Stylianou and Aggarwal
(2014), Nguyen and Pham (2016), and Nachtsheim, Shen and Lin (2017). Recent
applications have been described by Dougherty et al. (2015), Fidaleo et al. (2016)
and Patil (2017).

The original definitive screening designs presented by Jones and Nachtsheim
(2011) were based on a heuristic optimal design algorithm. For an odd number of
factors and also for some even numbers of factors, these designs were not orthogo-
nal for the linear effects. Xiao, Lin and Bai (2012) proposed constructing definitive
screening designs that are orthogonal for the linear main effects using conference
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matrices. A conference matrix C of order N is an N × N matrix with elements
cij ∈ {−1,0,1} such that CT C = (N − 1)IN , where IN is an N × N identity ma-
trix. The definition implies that there is one zero entry in every row and column
of a conference matrix. A definitive screening design is constructed by folding
over a conference matrix C and adding a row vector of zeroes. So, the structure
of a definitive screening design is given by [CT ,−CT ,0N ]T , where 0N is an N -
dimensional column vector of zeroes. The orthogonality of a definitive screening
design for the linear effects follows directly from the properties of a conference
matrix.

Following Xiao, Lin and Bai (2012), the definitive screening designs studied in
the current literature are all based on conference matrices. In this article, we adopt
a more general approach, which is based on the notion of conference designs.
A conference design X is an N ×k matrix, with elements xij ∈ {−1,0,1}, columns
x1, . . . , xk , k ≤ N and at most one 0 in each row, such that XT X = (N − 1)Ik . We
refer to N as the row size of the conference design. Clearly, a conference matrix
is a special case of a conference design. In this paper, we use the name definitive
screening design for any design constructed from an N × k conference design X
by folding it over and adding a zero row. So, the definitive screening designs we
discuss have the form [XT ,−XT ,0k]T .

A justification of using small screening designs with many factors is the factor
sparsity principle, which states that, generally, only a few factors are active. The
end product of the data analysis then is a statistical model involving just a few lin-
ear effects, as well as some quadratic effects or two-factor interactions involving
the active factors. It is therefore important to investigate the potential of screening
designs for fitting models involving just a few factors. This can be done by studying
projections of the screening designs onto smaller numbers of factors. Accordingly,
projection properties form the basis of the generalized aberration criterion for clas-
sifying orthogonal arrays [Deng and Tang (1999)]. The purpose of this paper is to
develop a similar criterion for classifying definitive screening designs based on a
study of their projections onto two, three and four factors. Since definitive screen-
ing designs are constructed by folding over conference designs, enumerating all
their projections onto two, three and four factors is equivalent to enumerating all
possible projections of conference designs onto two, three and four columns. Since
enumerating conference designs is simpler, this is the route we take.

For a given row size N and number of columns k, there can be many different
conference designs. These can be grouped into isomorphism classes. The designs
in one isomorphism class can be obtained from each other by a sequence of row
permutations, column permutations, sign switches in columns or sign switches in
rows. Unlike in orthogonal arrays, sign switches of rows in conference designs do
result in isomorphic definitive screening designs, due to the fact that any such sign
switch in the original conference design X causes an opposite sign switch in the
folded-over conference design −X. As a result, the definitive screening design is
not affected by switching the signs in one or more rows of the original conference
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design. We therefore consider two conference designs that can be obtained from
each other by switching the signs in entire rows as isomorphic.

Isomorphic designs have identical statistical properties, so that it suffices to
study only one instance of each isomorphism class. We denote the set of isomor-
phism classes of conference designs with N rows and k columns by C(N,k). To
develop our classification criterion, the sets C(N,k) for which k equals 2, 3 or 4
are the most important. We focus on even values of N , because this is a necessary
condition for conference designs to exist.

The rest of this paper is organized as follows. In Section 2, we show that all
two-factor conference designs of a given row size N are isomorphic. In Section 3,
we derive a similar result for all three-factor conference designs of a given row
size N . In Section 4, we derive all isomorphism classes of four-factor conference
designs. Finally, based on the findings of the four-factor conference designs, we
propose a classification criterion for definitive screening designs in Section 5 and
we illustrate its potential by studying all conference designs in C(24,24) and 26
conference designs in C(82,82).

2. Conference designs with two columns. For every even value of N ,
C(N,2) includes a single isomorphism class. To see this, consider any N × 2 con-
ference design. By applying sign switches to the rows of the design and permuting
the resulting rows, we can ensure that the first column, x1, of the design equals
[0,1T

N−1]T , where 1z denotes a z-dimensional column vector of ones, and that the
second column, x2, equals [1,0,1T

q ,−1T
q ]T , with q = N/2 − 1. Because C(N,2)

includes a single isomorphism class, projections onto two columns are not useful
for classifying conference designs and definitive screening designs with more than
two columns and a given value for N .

3. Conference designs with three columns.

3.1. Four design classes. At first sight, there are four possible ways to
extend the two-column conference design with x1 = [0,1T

N−1]T and x2 =
[1,0,1T

q ,−1T
q ]T from Section 2 by a third column, x3. These extensions, labeled

I–IV in Table 1, define four possible classes of three-column conference designs.
For each of the classes, we set x13 = 1. This can be done without loss of general-
ity because, in the event x13 would be −1, we can always switch the signs of the
elements in column x3 and obtain a conference design that is isomorphic to the
original one.

The N rows of the four design classes in Table 1 are divided into three parts.
The first part includes the row in which x1 = 0 and x2 = 1, and the row in which
x1 = 1 and x2 = 0. The second part includes the q = N/2−1 rows in with x2 takes
the value 1, and the third part includes the q = N/2 − 1 rows in with x2 takes the
value −1.
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TABLE 1
Four classes of three-column conference designs

Part x1 x2 x3 (I) x3 (II) x3 (III) x3 (IV)

1 0 1 1 1 1 1
1 0 1 −1 1 −1

2 1q 1q 0 0 1q2 1q2

1q2 1q2 −1q−q2 −1q−q2

−1q−1−q2 −1q−1−q2

3 1q −1q 1q3 1q3 0 0
−1q−q3 −1q−q3 1q3 1q3

−1q−1−q3 −1q−1−q3

The four classes in the table differ according to the value taken by x3 at the
second row (either 1 or −1) or according to the design part in which x3 takes the
value 0 (either part 2 or part 3). The number of times x3 takes the value 1 in part
2 of the design is denoted by q2, while the number of times it takes the value 1 in
part 3 of the design is denoted by q3.

3.2. Possible row sizes in the four classes. Since conference designs are or-
thogonal, the column x3 has to be orthogonal to both the columns x1 and x2. This
restricts the values of N for which conference designs of the classes I, II, III and
IV exist. For example, for class I, the columns x1 and x3 can only be orthogonal
when

1 + q2 + q3 = q,

while the columns x2 and x3 can only be orthogonal when

q3 = q2 + 1.

Consequently, q2 = q/2−1 and q3 = q/2. As q2 and q3 have to be whole numbers,
q must be even. Since N = 2+2q , three-column conference designs of class I exist
only when N ≡ 2 (mod 4).

Using a similar reasoning, we can show that conference designs of the classes
II and III only exist when N ≡ 0 (mod 4), and that designs of the class IV only
exist when N ≡ 2 (mod 4).

3.3. Isomorphism classes. When N is a multiple of four, a three-column con-
ference design can either belong to class II or to class III. Table 2 shows the designs
from these two classes when N = 8. The design of class III can be converted into
the design of class II by swapping the second and third columns, sorting the rows
so that the zeros are on the main diagonal, and sorting the remaining rows that do
not contain zeros. Therefore, the designs of classes II and III are isomorphic for
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TABLE 2
Two possible conference designs with 8 rows and 3 columns

Part Class II Class III

1 0 1 1 0 1 1
1 0 −1 1 0 1

2 1 1 0 1 1 1
1 1 1 1 1 −1
1 1 −1 1 1 −1

3 1 −1 1 1 −1 0
1 −1 1 1 −1 1
1 −1 −1 1 −1 −1

N = 8. It is straightforward to show that this holds for all values of N that are
multiples of 4. Thus, we have established the following result.

LEMMA 1. When N ≡ 0 (mod 4), C(N,3) includes a single isomorphism
class.

When N is an odd multiple of two, a three-column conference design can either
belong to class I, or to class IV. Table 3 shows the designs for the two classes
when N = 10. The design of class IV can be converted into the design of class I in
four steps. First, switch the signs in the second and third columns. Second, sort the
rows so that the zero in the third column appears in the third row, while keeping
the first two rows unchanged. Third, sort the remaining rows that do not contain
zeros. Finally, switch the signs in the first row.

TABLE 3
Two possible conference designs with 10 rows and 3 columns

Part Class I Class IV

1 0 1 1 0 1 1
1 0 1 1 0 −1

2 1 1 0 1 1 1
1 1 1 1 1 1
1 1 −1 1 1 −1
1 1 −1 1 1 −1

3 1 −1 1 1 −1 0
1 −1 1 1 −1 1
1 −1 −1 1 −1 1
1 −1 −1 1 −1 −1
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Because we can convert the design of class IV into the design of class I using
operations that preserve isomorphism, the designs of classes I and IV are isomor-
phic for N = 10. It is straightforward to show that this holds for all even values of
N that are not multiples of 4. Thus, we have established the following result.

LEMMA 2. When N ≡ 2 (mod 4), C(N,3) includes a single isomorphism
class.

Combining both lemmas, we state our main result for the number of isomor-
phism classes in C(N,3) as follows.

THEOREM 1. For any N ≡ 0 (mod 2), C(N,3) includes a single isomor-
phism class.

Because C(N,3) includes a single isomorphism class for any given value of N ,
projections onto three columns are not useful for classifying conference designs
and definitive screening designs with more than three columns.

4. Conference designs with four columns.

4.1. J4-characteristics. The J4-characteristic of a design in C(N,4) can be
calculated in three steps. First, determine the elementwise products of the four
columns. Second, sum these products. The resulting sum is the j4-characteristic.
Finally, the absolute value of the j4-characteristic is the J4-characteristic.

The correlation between two two-factor interaction contrast vectors involving
all columns of a four-column conference design equals j4/(N − 2). The sign of
the j4-characteristic changes if the signs of the elements in one or three of the
four columns involved in its calculation are switched. The j4-characteristic is not
affected by any other operation that preserves isomorphism. So, its absolute value,
the J4-characteristic, is invariant to all operations that preserve isomorphism. For
this reason, the J4-characteristic is a key feature of a conference design with four
columns.

Since a four-factor definitive screening design is constructed by folding over a
four-column conference design, its J4-characteristic is twice the J4-characteristic
of the conference design. The correlation between any two two-factor interaction
contrast vectors involving all four factors is the same for the definitive screening
design and for the original conference design.

4.2. Kernels of four-column conference designs. To enumerate nonisomor-
phic four-column conference designs, it is convenient to assume that both the
first column and the first row start with a 0 and have 1’s elsewhere, and that
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x22 = x33 = x44 = 0. Define the kernel K of the conference design as

K =
⎡
⎣
x22 x23 x24
x32 x33 x34
x42 x43 x44

⎤
⎦ =

⎡
⎣

0 x23 x24
x32 0 x34
x42 x43 0

⎤
⎦ .

The kernel thus corresponds to the second, third and fourth column of rows 2,
3 and 4 of the conference design. The off-diagonal elements of K are either 1
or −1. Delsarte, Goethals and Seidel (1971) studied the kernels of N × N confer-
ence matrices and found that they were symmetric or not depending on N . Here,
we establish a similar result for kernels of N × 4 conference designs.

THEOREM 2. N ≡ 2 (mod 4) if and only if K is symmetric. N ≡ 0 (mod 4)

if and only if K = −KT .

PROOF. To prove the sufficient part of Theorem 2, suppose first that K is sym-
metric. If x32 = x23 = 1, the first three columns of any resulting four-column con-
ference design form a three-column conference design that belongs to class I (see
Table 3). If x32 = x23 = −1, the first three columns of any resulting four-column
conference design form a three-column conference design that belongs to class IV
(see again Table 3). Since class-I and class-IV conference designs exist only when
N ≡ 2 (mod 4), the row size N of conference designs with symmetric kernels K
must be such that N ≡ 2 (mod 4).

Suppose further that K = −KT or antisymmetric. If x32 = 1 and x23 = −1, the
first three columns of any resulting four-column conference design form a three-
column conference design that belongs to class II (see Table 2). If x32 = −1 and
x23 = 1, the first three columns of any resulting four-column conference design
form a three-column conference design that belongs to class III (see again Table 2).
Since the designs in classes II and III exist only when N ≡ 0 (mod 4), the row size
N of conference designs with opposite values for x32 and x23 must be a multiple
of four.

To prove the necessary part of the theorem, we need to show that, when N ≡ 0
(mod 4), the kernel must be antisymmetric, and that, when N ≡ 2 (mod 4), the
kernel must be symmetric. To this end, we use a proof by contradiction. First,
suppose that N ≡ 0 (mod 4) and that K is not antisymmetric. In other words,
suppose that x32 = x23 or x42 = x24 or x43 = x34. By applying row and column
permutations in the kernel, we can then always obtain a new kernel for which
x32 = x23 = 1 or x32 = x23 = −1. This produces a contradiction, because the first
three columns of the resulting conference design would then possess the same
structure as the designs in classes I or IV (see Table 3). However, designs in these
classes exist only when N ≡ 2 (mod 4). So, if N ≡ 0 (mod 4), the elements of
the pairs (x32, x23), (x42, x24) or (x43, x34) must have opposite signs, in which
case K = −KT . Using the same kind of reasoning, we can show that, when N ≡ 2
(mod 4), the elements of the pairs (x32, x23), (x42, x24) or (x43, x34) must be equal,
in which case K = KT . �
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TABLE 4
The four rows containing

zeroes in four-column
conference designs whose
row size is a multiple of 4

x1 x2 x3 x4

0 1 1 1
1 0 −1 −p

1 1 0 −q

1 p q 0

4.3. Four-column conference designs when the row size N is a multiple of four.
The rows of conference designs with N ≡ 0 (mod 4) can be arranged such that
the first four rows contain the zeroes on the diagonal and have the structure shown
in Table 4, where p and q are either 1 or −1. We call this set of four rows the zero
part of the design, and we call the remaining rows the nonzero part.

The zero part can include one of four different pairs (p, q). Three of these pairs,
(1,1), (1,−1) and (−1,−1), give rise to isomorphic conference designs. This can
be verified by permuting the rows and columns of the resulting conference designs.
For each of these cases, four of the six pairs of columns in the zero part in Table 4
have inner products of ±2, and the remaining two pairs have inner products of 0.
Conference designs constructed using the fourth pair, (−1,1), are not isomorphic
to those constructed with one of the other three pairs, because all pairs of columns
in the zero part in Table 4 have inner products of 0 when using that fourth pair.
We call the series of conference designs constructed using one of the pairs (1,1),
(1,−1) and (−1,−1) series A, and the series of conference designs constructed
using the pair (−1,1) series B. In the remainder of this section, we assume, without
loss of generality, that the pair (1,1) is chosen to construct the conference designs
in series A.

In the event (p, q) = (1,1), the zero part of the conference design is given by
the first four rows in the left panel of Table 5. The six inner products of all pairs
of columns in that design part equal 2 (columns x1 and x2), 0 (columns x1 and
x3), −2 (columns x1 and x4), 2 (columns x2 and x3), 0 (columns x2 and x4) and 2
(columns x3 and x4). This implies that the 4 × 4 matrix in Table 4 is not orthog-
onal when (p, q) = (1,1), and that it is not a conference design. However, it can
be used to build a conference design with N = 4(g + 1) rows by adding 4g rows
of +1’s and −1’s for which the inner products of the column pairs equal −2, 0,
2, −2, 0 and −2, respectively. These 4g added rows form the nonzero part of the
conference design, and they ensure that the inner products of all pairs of columns,
calculated across the entire design, equal zero, so that all columns are orthogonal.
In the Appendix, we prove that any conference design in series A must contain the
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TABLE 5
Smallest four-column conference designs in series A and series B

Series A Series B

x1 x2 x3 x4 x1 x2 x3 x4

0 1 1 1 0 1 1 1
1 0 −1 −1 1 0 −1 1
1 1 0 −1 1 1 0 −1
1 1 1 0 1 −1 1 0

1 1 −1 1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1

set of four rows from the nonzero part of the design in the left panel of Table 5 if
the zero part is identical to that in the top left part of Table 5. The design shown
in Table 5 therefore represents the smallest possible conference design in series A,
and any larger four-column conference design is an extension of it involving ad-
ditional rows, or is isomorphic to such an extension. The J4-characteristic of the
smallest series-A conference design in the left panel of Table 5, involving eight
rows, equals 0.

After identifying the smallest conference design in series A, the next challenge
is to study the designs with larger row sizes N . To derive all isomorphism classes
in series A for a given row size N , we assume, without loss of generality, that
the first eight rows are those shown in Table 5’s left panel. Conference designs
of series A with N ≥ 12 can thus be constructed by adding a set of z = 4(g − 1)

extra rows to the initial eight. Without loss of generality, the first column in the
extra set can be taken to be 1z. To preserve the orthogonality of the columns in
the complete N -row conference design, the columns 2, 3 and 4 of the z additional
rows must then form a two-level orthogonal array with z rows, three columns and
levels −1 and +1.

Because the design in Table 5 has a J4-characteristic of 0 and the z entries
of the first column of the extra rows are all 1, the J4-characteristic of the com-
plete design is determined entirely by the aliasing structure of the orthogonal ar-
ray used. More specifically, the J4-characteristic of the complete design is equal
to the J3-characteristic of the orthogonal array, which is calculated by taking
the elementwise products of its columns, summing these products to obtain the
j3-characteristic, and taking the absolute value of that j3-characteristic. Deng
and Tang [(1999), Proposition 2(ii)] show that any z-row orthogonal array with
three columns and a certain J3-characteristic can be constructed by concatenating
[z − J3]/8 copies of a full factorial 23 design and J3/4 copies of one of its half
fractions. Denoting the three columns by X2, X3 and X4, each of the two possible



1188 E. D. SCHOEN, P. T. EENDEBAK AND P. GOOS

half fractions includes all four combinations of the ±1 entries for X2 and X3. For
one of the fractions, the entries for X4 are calculated as X4 = X2X3, while, for the
other fraction, the entries for X4 are calculated as X4 = −X2X3. However, if the
latter option is chosen, applying sign switches to the columns 2–4, applying a sign
switch to the first row, and permuting columns and rows, the corresponding con-
ference design can be converted into the conference design based on the former
option. Therefore, the two ways of defining the half fraction lead to isomorphic
conference designs, so that, without loss of generality, we consider only the half
fraction for which X4 = X2X3.

Deng and Tang (1999) also point out that the J3-characteristic of any z-row
orthogonal array involving three two-level factors is a multiple of 4, of the form
z−8h, where h ≤ z/8 is a nonnegative integer. Therefore, the J3-characteristic is a
multiple of 8 if z ≡ 0 (mod 8) and an odd multiple of 4 if z ≡ 4 (mod 8). Because
the J4-characteristic of any entire four-column conference design in series A is
given by the J3-characteristic of the orthogonal array used in the z extra rows, any
conference design in series A will have a J4-characteristic of the form z − 8h,
where z = N − 8. Equivalently, J4 = N − 8λ, where λ ≤ N/8 is a strictly positive
integer.

In the event (p, q) = (−1,1), the 4 × 4 matrix in Table 4 is a conference design
with a J4-characteristic of 0. So, the smallest conference design in series B has
N = 4. That design is shown in the right panel of Table 5. The enumeration of all
isomorphism classes of series B is otherwise similar to that for series A. Adding
z = N − 4 rows to the smallest conference design of this series results in J4-
characteristics of z − 8h = N − 4 − 8λ, where λ ≤ (N − 4)/8 is a nonnegative
integer.

Table 6 shows the possible values of the J4-characteristics of the conference
designs in series A and series B for 4,8, . . . ,24 rows and for a general N value
that is a multiple of four. Each isomorphism class is uniquely determined by its J4-
characteristic. The numbers of isomorphism classes in series A and series B equal

TABLE 6
Possible J4-characteristics and isomorphism classes for conference

designs whose row size N is a multiple of 4

Row size Series A Series B

4 – 0
8 0 4

12 4 8 0
16 8 0 12 4
20 12 4 16 8 0
24 16 8 0 20 12 4

N N − 8λ (N − 4) − 8λ

λ = 1, . . . , �N/8� λ = 0, . . . , �(N −4)/8�
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�N/8� and 	N/8
, respectively. So, the total number of isomorphism classes for a
given value of N is N/4. We summarize the results obtained in this section by the
following theorem.

THEOREM 3. For row sizes N ≡ 0 (mod 4), the following properties hold for
the designs in C(N,4):

1. The number of isomorphism classes equals N/4.
2. Each isomorphism class is uniquely determined by the value of its J4-

characteristic.
3. The possible values of the J4-characteristic are N − 4λ, for λ = 1, . . . ,N/4.

4.4. Four-column conference designs when the row size N is an odd multiple of
two. Without loss of generality, we assume that the first four rows of conference
designs with N ≡ 2 (mod 4) correspond to those in Table 7, where p and q are
either 1 or −1. As before, we refer to these four rows as the zero part of the
conference designs, and to the rows of ±1’s we add as the nonzero part. There
are four possible pairs (p, q). However, by permuting rows and columns, it can be
shown that the designs for (p, q) = (1,−1) and (p, q) = (−1,1) are isomorphic.
In addition, by applying sign switches in the last three columns and permuting the
resulting rows and columns, it can be shown that the design for (p, q) = (−1,−1)

is isomorphic to those for (p, q) = (1,−1) and (p, q) = (−1,1). For these three
cases, the inner products of the columns equal 0 for four of the column pairs and
±2 for two of the pairs. The design for (p, q) = (1,1) is not isomorphic to the
other three designs, because all inner products equal 2. We call the conference
design series for which (p, q) is (1,1) series C, and the series for which (p, q) is
(1,−1), (−1,1) or (−1,−1) series D. To construct designs that are representatives
for the isomorphism classes in series D, we use the pair (p, q) = (1,−1) in the
remainder of this section. The first four rows in the left and right panels of Table 8
show the zero parts for the representatives in series C and D.

TABLE 7
The four rows containing

zeroes in four-column
conference designs whose

row size is an odd
multiple of two

x1 x2 x3 x4

0 1 1 1
1 0 1 p

1 1 0 q

1 p q 0
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TABLE 8
Smallest four-column conference designs within series C and series D

Series C Series D

x1 x2 x3 x4 x1 x2 x3 x4

0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 −1
1 1 1 0 1 1 −1 0

1 1 −1 −1 1 −1 1 −1
1 1 −1 −1 1 −1 −1 1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1

We start by studying the isomorphism classes in series C. As the inner product
of any pair of columns in Table 7 equals 2 when (p, q) = (1,1), conference de-
signs in this series require 4g + 2 additional rows of 1’s and −1’s, for which the
inner product of any pair of columns is −2. In the Appendix, we prove that any
conference design of series C must contain the six rows of the nonzero part of the
design in the left panel of Table 8. Therefore, g should be a strictly positive inte-
ger for series C, and the 10-row design shown in the table is the smallest possible
conference design in series C. Its j4-characteristic equals 6.

To construct conference designs from series D starting from Table 7, we need
to add a matrix involving 4g + 2 rows of 1’s and −1’s for which the inner product
of the columns x1 and x2 is 2, that of the columns x3 and x4 is 2 as well and the
inner products of the other column pairs are 0. In the Appendix, we prove that any
conference design of series D must contain the two rows of the nonzero part of
the design in the right panel of Table 8 if the zero part is identical to that in the
table’s right panel. Therefore, g can be any nonnegative integer for series D, and
the 6-row design shown in the table is the smallest possible conference design in
series D. Its j4-characteristic equals 2.

After identifying the smallest conference designs in series C and D, the next
challenge is to study the designs with larger row sizes N , where N is an odd
multiple of two. We assume, without loss of generality, that the first ten rows of
any N × 4 conference design of series C and the first six rows of any N × 4
conference design of series D are those shown in Table 8. To obtain conference
designs with larger row sizes, we have to add sets of z rows of 1’s and −1’s to
these two designs. Without loss of generality, the first column in the extra sets
can again be taken to be 1z. To preserve the orthogonality of all columns in the
complete conference design, the columns 2, 3 and 4 of the z extra rows must then
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form a two-level orthogonal array with z rows. As all entries of column 1 equal
1, the j4-characteristic of the z added rows, which form the nonzero part of the
design, is equal to the j3-characteristic of the orthogonal array with z rows used
for columns 2, 3 and 4. The j4-characteristic of the complete conference design
now is the sum of the j4-characteristic of the zero part of the design and that of the
nonzero part, while the J4-characteristic is its absolute value.

Unlike the smallest conference designs in series A or series B for rows sizes
N that are multiples of four, those in series C or series D have nonzero j4-
characteristics. More specifically, their j4-characteristics equal 6 and 2, respec-
tively. Therefore, utilizing a z-row orthogonal array with a j3-characteristic of
z − 8h for the columns 2–4 when adding z rows to the smallest designs in se-
ries C and series D results in a j4-characteristic 6 + z − 8h or 2 + z − 8h, respec-
tively, for the entire design. Using the mirror image of the orthogonal array, which
has a j3-characteristic of 8h − z, would result in j4-characteristics of 6 − z + 8h

and 2 − z + 8h, respectively. Therefore, unlike for the conference designs in se-
ries A and series B, using the original orthogonal array or its mirror image results
in different J4-characteristics, unless the z-row orthogonal array used has a J3-
characteristic of zero. Any z-row orthogonal array with a nonzero J3-characteristic
therefore gives rise to two nonisomorphic conference designs in series C and in se-
ries D.

For an N -row conference design in series C, z = N − 10. Therefore, its j4-
characteristic equals N − 4− 8h or −N + 16+ 8h, where h ≤ (N − 10)/8. Equiv-
alently, it is of the form N − 4(2λ + 1), where λ ≤ (N − 10)/4 is a nonnegative
integer. For an N -row conference design in series D, z = N − 6. Therefore, its
j4-characteristic equals N − 4 − 8h or −N + 8 + 8h, where h ≤ (N − 6)/8. So, it
is also of the form N − 4(2λ + 1), but, for series D, λ is a nonnegative integer of
at most (N − 6)/4.

Table 9 shows the possible J4-characteristics of the conference designs in se-
ries C and series D for 6,10, . . . ,22 rows and for a general N value that is an

TABLE 9
Possible J4-characteristics and isomorphism classes for conference

designs whose row size N is an odd multiple of 2

Row size Series C Series D

6 – 2
10 6 6 2
14 10 2 10 2 6
18 14 6 2 14 6 2 10
22 18 10 2 6 18 10 2 6 14

N |N − 4(2λ + 1)| |N − 4(2λ + 1)|
λ = 0, . . . , (N − 10)/4 λ = 0, . . . , (N − 6)/4
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odd multiple of two. The numbers of isomorphism classes in series C and se-
ries D equal �(N − 4)/4� and 	(N − 4)/4
, respectively. So, the total number of
isomorphism classes equals (N − 4)/2 when N is an odd multiple of two. The
J4-characteristics in both series are odd multiples of two. Unlike when N is a mul-
tiple of four, the isomorphism classes in series C and D for a given row size N

are not uniquely identified by their J4-characteristic, except for the class whose
J4-characteristic equals |8 − N |. When the J4-characteristic differs from |8 − N |,
the zero part of the matrix can be used to determine whether the design belongs to
series C or D by checking the inner products of its columns. The design belongs
to series C if the inner products are all nonzero, and to series D otherwise. We
summarize the results as follows.

THEOREM 4. For row sizes N ≡ 2 (mod 4), the following properties hold for
the designs in C(N,4):

1. The number of isomorphism classes equals (N − 4)/2.
2. The possible values of the J4-characteristic are |N − 4(2λ + 1)| for λ =

0, . . . , (N − 6)/4.
3. The J4-characteristic of |N −8| uniquely determines one of the isomorphism

classes for a given N value.
4. The remaining isomorphism classes can be divided into pairs with unique

J4-characteristics.

5. A generalized aberration criterion for definitive screening designs. By
studying the information matrix of a response surface model, including the inter-
cept and all linear effects, quadratic effects and two-factor interactions, it is easy
to establish the following properties of model matrix columns for any definitive
screening design: (1) linear effects are orthogonal to each other, (2) linear effects
are orthogonal to quadratic effects, (3) linear effects are orthogonal to two-factor
interactions, (4) the inner product of any pair of quadratic effect columns equals
2N −4, (5) the inner product of any quadratic effect column involving a given fac-
tor with a two-factor interaction column involving that factor equals 0 and (6) the
inner product of any quadratic effect column involving a factor with a two-factor
interaction column not involving that factor equals ±2; see Jones and Nachtsheim
(2011).

For a given run size 2N + 1 and a given number of factors k, there may be
several nonisomorphic definitive screening designs. When considering the proper-
ties of the columns of the response surface model’s model matrix, the inner prod-
ucts of pairs of two-factor interaction columns are the only variable features in a
definitive screening design of a given run size. This suggests that we should rank
the definitive screening designs according to the extent to which two-factor in-
teractions are aliased. We can do this by considering the J4-characteristics of all
four-factor projections of the definitive screening designs. As definitive screening
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designs and their projections are folded-over conference designs, the possible J4-
characteristics of four-factor projections of definitive screening designs are read-
ily obtained from Theorems 3 and 4. More specifically, the J4-characteristic of a
four-factor definitive screening design is twice the J4-characteristic of the corre-
sponding conference design. Likewise, the J4-characteristic of any possible four-
factor projection of a definitive screening design is twice the J4-characteristic of
the corresponding four-column projection of the corresponding conference design.
Theorems 3 and 4 therefore have the following corollary.

COROLLARY 1. For any four-factor definitive screening design involving
2N + 1 runs:

1. If N ≡ 0 (mod 4), the N/4 possible values of the J4-characteristics are
2N − 8,2N − 16, . . . ,0.

2. If N ≡ 2 (mod 4), the (N − 2)/4 possible values of the J4-characteristics
are 2N − 8,2N − 16, . . . ,4.

When a four-factor definitive screening design has to be selected for an exper-
iment, it is best to pick one that minimizes the J4-characteristic. This is because
the absolute correlation between each of the three pairs of two-factor interaction
contrast vectors involving all four factors equals J4/(2N − 4). Small correlations
between the contrast vectors result in small correlations for the estimators in any
model involving two two-factor interactions and a smaller bias in any model in-
volving only one of the two-factor interactions.

When a definitive screening design with more than four factors has to be se-
lected, we suggest determining the frequency vector F4 of the J4-characteristics of
2N − 8λ for λ = 1, . . . ,N/4 when N is a multiple of 4, or λ = 1, . . . , (N − 2)/4
when N is an odd multiple of 2. The definitive screening designs under consider-
ation are then ordered based on that vector. More specifically, we sort the designs
in ascending order of the F4 vector’s first entry. Designs with the same first entry
are sorted in ascending order of the second entry. The process continues until a
unique order has been established or all entries have been considered. We define
the generalized aberration of a definitive screening design as its rank after the sort-
ing procedure. A design with rank 1 thus has a minimum generalized aberration.

The generalized aberration criterion for orthogonal two-level designs of Deng
and Tang (2002) is based on the confounding frequency vector (F3,F4, . . . ,Fk),
where Fi denotes the frequency vector of the nonzero Ji-characteristics and k is
the number of factors or columns in the design. We base our generalized aberra-
tion criterion for definitive screening designs on the F4 vector only for the fol-
lowing reasons. First, definitive screening designs are fold-over designs, so that
any Ji -characteristic for an odd value of i is zero. This is due to the fact that
the Ji -characteristic of a conference design’s mirror image is the negative of the
Ji -characteristic of the original conference design when i is odd. As a result, Fi
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TABLE 10
F4 vectors for all 49-run definitive screening designs involving 24 factors

Design F4(40,32,24,16,8,0)

1 0 0 0 3036 3036 4554
2 18 12 114 2652 2904 4926
3 24 12 120 2604 2892 4974
4 24 16 120 2588 2892 4986
5 24 21 150 2508 2862 5061
6 24 24 192 2412 2820 5154
7 30 24 150 2460 2856 5106
8 36 20 180 2380 2820 5190
9 66 0 330 1980 2640 5610

vectors are zero vectors when i is odd, for any definitive screening design and,
therefore, do not help to distinguish alternative definitive screening design options.
Second, the Fi vectors for even values of i larger than 4 do not contain informa-
tion that is relevant to experimenters. As a matter of fact, these vectors quantify
the aliasing of contrast vectors corresponding to third-order and higher-order in-
teraction contrast vectors. Generally, such interactions are unimportant and most
experimenters assume they are negligible.

To illustrate the usefulness of our generalized aberration criterion for definitive
screening designs, we studied cases with 24 factors in 49 runs and 82 factors in 165
runs. For the first of these cases, we generated representatives of all isomorphism
classes of conference matrices of order 24 with a dedicated computer program.
This resulted in 9 different conference matrices, which confirms the number of
isomorphism classes established by Greig, Haanpää and Kaski (2006). We deter-
mined the F4 vectors of the corresponding definitive screening designs and ordered
the designs according to their generalized aberration. The F4 vectors are shown in
Table 10.

Since the possible nonzero J4-characteristics for conference designs with N =
24 equal 20, 16, 12, 8 and 4 (see Table 6), the possible nonzero J4-characteristics
for the corresponding definitive screening designs are 40, 32, 24, 16 and 8. The
best of the nine nonisomorphic designs has J4-characteristics of at most 16 and
a maximum absolute correlation of 4/11 between pairs of two-factor interaction
contrast vectors. In total, there are 3 × 3036 = 9108 pairs of interactions with this
absolute correlation. For the other eight designs, the J4-characteristics can be as
large as 40, corresponding to an absolute correlation of 10/11 and indicating al-
most complete aliasing between certain pairs of two-factor interactions. Therefore,
we strongly recommend to employ the first of the nonisomorphic 24-factor defini-
tive screening designs in Table 10. The corresponding conference design is given
explicitly in Appendix B.



A CRITERION FOR DEFINITIVE SCREENING DESIGNS 1195

TABLE 11
F4 vectors for the 165-run definitive screening designs involving 82 factors based on the 26

conference designs of Hurkens and Seidel (1985). For all the designs, max(J4) ≤ 100 and F4(4)

equals 1,749,060 minus the sum of the frequencies stated in the table

Design F4(100,92,84,76,68,60,52,44,36,28,20,12)

2 0 0 0 0 0 0 0 0 22,140 398,520 531,360 0
4 0 0 0 0 0 2700 0 55,080 139,320 116,640 252,720 453,600

13 0 0 0 720 320 3100 10,080 32,200 83,800 173,600 340,080 481,360
23 0 38 4 196 436 3406 8584 30,800 84,790 178,684 345,876 484,092
24 0 38 4 196 436 3406 8584 30,800 84,790 178,684 345,876 484,092
21 0 54 108 0 108 7290 3024 36,612 92,448 163,134 330,912 480,384
22 0 72 18 216 360 4092 10,728 31,770 82,332 172,872 340,452 479,856
7 0 156 0 128 272 3792 7360 31,072 84,104 181,216 349,984 475,648
8 0 156 0 128 272 3792 7360 31,072 84,104 181,216 349,984 475,648

15 0 244 0 0 480 4512 7168 31,552 84,672 173,424 352,064 479,616
11 0 252 0 288 288 4608 5184 25,920 87,768 185,616 364,608 454,752
12 0 252 0 288 288 4608 5184 25,920 87,768 185,616 364,608 454,752
3 0 486 0 0 0 8046 3888 30,780 92,664 173,502 331,452 443,880
1 0 4212 0 0 0 13,824 5184 36,288 104,544 53,136 336,960 513,216

25 2 12 15 186 439 3364 8441 31,468 85,416 178,286 343,555 482,639
26 2 12 15 186 439 3364 8441 31,468 85,416 178,286 343,555 482,639
14 8 6 24 144 816 3182 8624 31,556 83,368 181,894 340,060 479,640
16 18 0 0 594 540 4320 8406 28,314 85,005 182,907 338,202 474,732
17 18 0 0 594 540 4320 8406 28,314 85,005 182,907 338,202 474,732
18 36 234 0 216 918 4698 7740 30,096 86,670 174,672 337,896 471,636
19 36 234 0 216 918 4698 7740 30,096 86,670 174,672 337,896 471,636
5 52 108 0 288 700 4608 8856 28,368 84,212 178,392 339,592 485,488
6 52 108 0 288 700 4608 8856 28,368 84,212 178,392 339,592 485,488

20 72 90 72 144 648 4398 9360 33,192 79,020 173,358 348,696 467,256
9 396 756 0 2376 2916 7056 9648 23,832 81,972 158,904 296,784 492,768

10 396 756 0 2376 2916 7056 9648 23,832 81,972 158,904 296,784 492,768

Hurkens and Seidel (1985) specified how to construct a series of 26 non-
isomorphic conference matrices of order 82 based on sets of mutually orthogonal
Latin squares. Based on these matrices, we constructed definitive screening de-
signs with 165 runs and 82 factors. We determined the F4 vectors of these designs
and ordered the designs according to their generalized aberration. The results are
shown in Table 11; the design labels correspond to those in Hurkens and Seidel
(1985). A Matlab program that outputs the conference matrices as well as the F4
vectors is provided as Supplementary Material to this paper [Schoen, Eendebak
and Goos (2019)].

Since the possible nonzero J4-characteristics for conference designs with
N = 82 equal 78,74, . . . ,2 (see Table 9), the possible J4-characteristics for
the corresponding definitive screening designs are 156,148, . . . ,4. There are
thus no nonzero J4-characteristics. This implies that F4(4) = (82

4

) −∑
F4(J4 > 4) = 1,749,060−∑

F4(J4 > 4), where the sum adds all frequencies of
J4-characteristics larger than 4.
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It turns out that none of the 26 definitive screening designs have J4-
characteristics larger than 100. The best of the 26 nonisomorphic designs has
J4-characteristics of at most 36 and a maximum absolute correlation of 9/40 =
0.225 between pairs of two-factor interaction contrast vectors. In total, there are
3 × 22,140 = 66,420 pairs of interactions with this absolute correlation. The sec-
ond best and third best designs have pairs of interactions with absolute correlations
up to 0.375 and 0.475, respectively, while the remaining designs have correlations
as large as 0.575 (11 cases) or 0.675 (12 cases). Therefore, we strongly recommend
to employ the first of the nonisomorphic 82-factor definitive screening designs in
Table 11.

APPENDIX A: COMPULSORY ROWS IN N × 4 CONFERENCE DESIGNS

The purpose of this Appendix is to prove that certain rows must be present in
the nonzero parts of N × 4 conference designs. The general shape of these parts
is shown in Table 12. The first column can be taken to contain only +1 elements.
It is convenient to use the symbol k for m − 1. So, if N = 4m, the number of
rows in the nonzero part equals z = 4k. In case N = 4m + 2, the number of rows
in the nonzero part is z = 4k + 2. The symbols a, b, c, d, e, f,p, q, r, s, u, v and
w define nonnegative numbers of rows for the various level combinations of the
columns x2, x3 and x4 in the nonzero part of a conference design. For example,
there are a rows with a +1 for x2, there are c rows with a +1 for x2 and a +1 for
x3, and so on.

A.1. Series A. For the initial four rows of an N × 4 conference design in
series A, the six inner products of the column pairs in Table 5 equal 2 (columns x1
and x2), 0 (columns x1 and x3), −2 (columns x1 and x4), 2 (columns x2 and x3), 0
(columns x2 and x4) and 2 (columns x3 and x4), which implies that the 4×4 matrix

TABLE 12
General shape of the nonzero

parts of four-column
conference designs

x1 x2 x3 x4

1z 1a 1c 1p

−1q

−1d 1r

−1s

−1b 1e 1t

−1u

−1f 1v

−1w



A CRITERION FOR DEFINITIVE SCREENING DESIGNS 1197

in Table 5 is not orthogonal. Therefore, it is not a conference design. However, it
can be turned into a conference design by adding z = 4k rows for which the inner
products of the column pairs equal −2, 0, 2, −2, 0 and −2, respectively.

In the extra 4k rows, the second column should add up to −2. Therefore, a =
2k − 1 and b = 2k + 1. The third column’s inner products with the first and the
second column should equal 0 and 2, respectively. Therefore, c = k − 1, d = k,
e = k + 1 and f = k. For the constants p,q, r, s, t, u, v and w, we can derive
four equations based on the values of c, d, e and f and three equations based on
the inner products with columns 1–3 necessary to make the conference design
orthogonal. These equations are as follows:

p + q = k − 1,(1)

r + s = k,(2)

t + u = k + 1,

v + w = k,

p − q + r − s + t − u + v − w = 2,(3)

p − q + r − s − t + u − v + w = 0,(4)

p − q − r + s + t − u − v + w = −2.

We want to establish that r ≥ 1, t ≥ 1, u ≥ 1 and v ≥ 1. We prove that r ≥ 1;
proofs for the remaining three inequalities are similar.

Suppose that r = 0. In that case, adding up equations (3) and (4) results in

(5) 2(p − q) − 2s = 2.

By equation (2), s = k. Inserting this value in equation (5) results in p−q = k +1.
Combining with equation (1) results in p = k and q = −1. This is a contradiction,
because the length of the vectors in Table 12 cannot be negative. We conclude that
r ≥ 1.

The fact that r ≥ 1, t ≥ 1, u ≥ 1 and v ≥ 1 shows that each N × 4 conference
design of series A must contain a row with (x1, x2, x3, x4) = (1,1,−1,1) (by the
condition on r), a row with (x1, x2, x3, x4) = (1,−1,1,1) (by the condition on t),
a row with (x1, x2, x3, x4) = (1,−1,1,−1) (by the condition on u) and a row with
(x1, x2, x3, x4) = (1,−1,−1,1) (by the condition on v). Therefore, it is without
loss of generality that the rows 5–8 of the conference design can be taken to be
those mentioned here. Any larger design then can only be obtained by taking a
column of ones as the first column and inserting the columns of a three-factor
orthogonal array as the second, third and fourth columns.

A.2. Series B. The initial four rows of a conference design in series B form
a conference design by themselves. Therefore, in any further set of 4k rows, the
columns must be orthogonal. By convention, the first column’s elements all equal
+1. The columns 2, 3 and 4 must then form an orthogonal array.
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A.3. Series C. For the initial four rows of an N × 4 conference design in
series C, the six inner products of the column pairs in Table 8 all equal 2. The
initial rows can be turned into a conference design by adding z = 4k + 2 rows for
which the inner products of the column pairs all equal −2.

Referring to the general outline in Table 12, the second column in the extra
4k + 2 rows should add up to −2. Therefore, a = 2k and b = 2k + 2. The third
column’s inner products with the first and the second column should both equal
−2. Therefore, c = k − 1, d = k + 1, e = k + 1 and f = k + 1. For the constants
p,q, r, s, t, u, v and w, we can derive four equations based on the values of c, d, e

and f and three equations based on the inner products with column 1–3 necessary
to make the conference design orthogonal. These equations are as follows:

p + q = k − 1,(6)

r + s = k + 1,(7)

t + u = k + 1,

v + w = k + 1,

p − q + r − s + t − u + v − w = −2,(8)

p − q + r − s − t + u − v + w = −2,(9)

p − q − r + s + t − u − v + w = −2.

We want to establish that s ≥ 2, u ≥ 2 and v ≥ 2. We prove that s ≥ 2; proofs
for the remaining two inequalities are similar.

Adding up equations (8) and (9) results in

(10) (p − q) + (r − s) = −2.

Suppose that s = 0. In that case, by equation (7), r = k + 1. Inserting this value in
equation (10) results in p − q = −k − 3. Combining with equation (6) results in
p = −2 and q = k + 1. This is a contradiction, because the length of the vectors in
Table 12 cannot be negative. We conclude that s ≥ 1. It is easy to show by a similar
reasoning that supposing s = 1 would also result in a contradiction. We thus have
proven that s ≥ 2.

The fact that s ≥ 2, u ≥ 2 and v ≥ 2 shows that each N × 4 conference de-
sign of series C must contain two rows with (x1, x2, x3, x4) = (1,1,−1,−1) (by
the condition on s), two rows with (x1, x2, x3, x4) = (1,−1,1,−1) (by the condi-
tion on u), and two rows with (x1, x2, x3, x4) = (1,−1,−1,1) (by the condition
on v). Therefore, it is without loss of generality that the rows 5–10 of the con-
ference design can be taken to be those mentioned here. Any larger design then
can only be obtained by taking a column of ones as the first column and insert-
ing the columns of a three-factor orthogonal array as the second, third and fourth
columns.
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A.4. Series D. For the initial four rows of an N × 4 conference design in
series D, the six inner products of the column pairs in Table 8 equal 2 (columns
x1 and x2), 0 (columns x1 and x3), 0 (columns x1 and x4), 0 (columns x2 and x3),
0 (columns x2 and x4) and 2 (columns x3 and x4). The initial rows can be turned
into a conference design by adding z = 4k + 2 rows for which the inner products
of the column pairs equal −2, 0, 0, 0, 0 and −2, respectively.

Referring to the general outline in Table 12, the second column in the extra
4k + 2 rows should add up to −2. Therefore, a = 2k and b = 2k + 2. The third
column’s inner products with the first and the second column should both equal 0.
Therefore, c = k, d = k, e = k+1 and f = k+1. For the constants p,q, r, s, t, u, v

and w, we can derive four equations based on the values of c, d, e and f and three
equations based on the inner products with column 1–3 necessary to make the
conference design orthogonal. These equations are as follows:

p + q = k,(11)

r + s = k,

t + u = k + 1,(12)

v + w = k + 1,

p − q + r − s + t − u + v − w = 0,(13)

p − q + r − s − t + u − v + w = 0,

p − q − r + s + t − u − v + w = −2.(14)

We want to establish that u ≥ 1 and v ≥ 1. We prove that u ≥ 1; the proof for
the remaining inequality is similar.

Adding up equations (13) and (14) results in

(15) (p − q) + (t − u) = −1.

Suppose that u = 0. In that case, by equation (12), t = k + 1. Inserting this value
in equation (15) results in p − q = −k − 2. Combining with equation (11) results
in p = −1 and q = k + 1. This is a contradiction, because the length of the vectors
in Table 12 cannot be negative. We conclude that u ≥ 1.

The fact that u ≥ 1 and v ≥ 1 shows that each N × 4 conference design of
series D must contain a row with (x1, x2, x3, x4) = (1,−1,1,−1) (by the con-
dition on u) and a row with (x1, x2, x3, x4) = (1,−1,−1,1) (by the condition
on v). Therefore, it is without loss of generality that the rows 5 and 6 of the con-
ference design can be taken to be those mentioned here. Any larger design then
can only be obtained by taking a column of ones as the first column and insert-
ing the columns of a three-factor orthogonal array as the second, third and fourth
columns.
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APPENDIX B: BEST CONFERENCE MATRIX OF ORDER 24

0 + + + + + + + + + + + + + + + + + + + + + + +
+ 0 − − − − − − − − − − − + + + + + + + + + + +
+ + 0 − − − − − + + + + + − − − − − − + + + + +
+ + + 0 − − − + − − + + + − − + + + + − − − − +
+ + + + 0 − + − − + − − + − + − − + + − − + + −
+ + + + + 0 − + + − − − − − − − + − + + + − + −
+ + + + − + 0 − + + − − − + − + − + − − + − − +
+ + + − + − + 0 + − − + − + + − + − − − − + − +
+ + − + + − − − 0 + + − + + + + + − − + − − − −
+ + − + − + − + − 0 + + − + + − − − + − + + − −
+ + − − + + + + − − 0 − + − + + − − − − + − + +
+ + − − + + + − + − + 0 − − − + − + + + − + − −
+ + − − − + + + − + − + 0 + − − + + − + − − + −
+ − + + + + − − − − + + − 0 + − − + − + − − + +
+ − + + − + + − − − − + + − 0 + + − − + + + − −
+ − + − + + − + − + − − + + − 0 − − + + − + − +
+ − + − + − + − − + + + − + − + 0 − + − + − + −
+ − + − − + − + + + + − − − + + + 0 − − − + + −
+ − + − − − + + + − + − + + + − − + 0 + + − − −
+ − − + + − + + − + + − − − − − + + − 0 + + − +
+ − − + + − − + + − − + + + − + − + − − 0 + + −
+ − − + − + + − + − + − + + − − + − + − − 0 + +
+ − − + − − + + + + − + − − + + − − + + − − 0 +
+ − − − + + − − + + − + + − + − + + + − + − − 0

Acknowledgment. We are grateful to a referee for bringing the set of 26 con-
ference matrices of order 82 to our attention.

SUPPLEMENTARY MATERIAL

Conference matrices of order 82 (DOI: 10.1214/18-AOS1723SUPP; .zip). We
provide Matlab code to construct the 26 nonisomorphic conference matrices of
order 82 from Hurkens and Seidel (1985) and to evaluate the F4 vector of the
definitive screening designs with 82 factors based on these matrices.
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